
itools

Juan David Ibáñez Palomar1

jdavid@itaapy.com

June 6, 2005

1Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later ver-
sion published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. There is a copy of the license at
http://www.gnu.org/copyleft/fdl.html

2

Contents

1 Introduction 7
1.1 What is itools? . 7

1.1.1 The resource-handler model 8
1.1.2 eXtensible Markup Language 8
1.1.3 The Simple Template Language 9
1.1.4 Workflow . 9
1.1.5 Internationalization and Localization 9
1.1.6 Index and Search . 9

1.2 Who is this document for? . 9
1.3 Project status . 10
1.4 Installation . 10
1.5 About this document . 10

2 Uniform Resource Identifiers 11
2.1 Syntax . 12

2.1.1 Generic URIs . 12
2.1.2 Non Generic URIs . 13

2.2 Relative references . 13
2.2.1 Resolving references . 14

2.3 Paths . 14

3 Type marshalers 17
3.1 Built-in types . 17
3.2 Other types . 18

4 Resources 21
4.1 Retrieving resources . 21
4.2 File Resources . 22
4.3 Folder Resources . 23
4.4 Supported schemes . 25

4.4.1 The memory storage . 25

5 File handlers 27
5.1 Introduction . 27
5.2 Handler’s state . 28

5.2.1 Load . 29
5.2.2 Save . 30
5.2.3 Serialization and de-serialization 31

3

4 CONTENTS

5.3 The skeleton . 31
5.4 Text and binary handlers . 32
5.5 Overview of the available handlers 33
5.6 The handler factory . 34

5.6.1 The get handler shorthand 36

6 Writing file handler classes 37
6.1 Functional scope . 37
6.2 The file format . 37
6.3 De-serialization . 38
6.4 Serialization . 39
6.5 The API . 40
6.6 The skeleton . 41
6.7 Register . 41

7 Folder handlers 43
7.1 Folder’s state . 43
7.2 The API . 43
7.3 Example . 44
7.4 The handler tree . 45

8 eXtensible Markup Language 47
8.1 The parser . 47
8.2 Namespaces . 48
8.3 Documents . 49

8.3.1 Inspecting the tree . 50
8.3.2 Elements . 51

8.4 XHTML . 52

9 Simple Template Language 55
9.1 A descriptive language . 55

9.1.1 The template . 55
9.1.2 The namespace . 56

9.2 Example: Task Tracker . 56
9.3 Language overview . 58

9.3.1 Expressions . 59

10 Internationalization and Localization 61
10.1 Internationalization . 61

10.1.1 Python code . 62
10.1.2 Templates . 63

10.2 Localization . 64
10.2.1 Message extraction . 64
10.2.2 Human translation . 65

10.3 Build . 65

11 Addendum 67
11.1 In the real world . 67
11.2 Future works . 68
11.3 Free Software . 68

CONTENTS 5

A Coding style guide 69
A.1 Language and encoding . 69
A.2 Module structure . 69

A.2.1 Example . 70
A.3 Format rules . 71
A.4 Comments . 72
A.5 Naming conventions . 72

A.5.1 Class names . 73
A.5.2 Functions and methods 73
A.5.3 Variables . 73
A.5.4 Constants . 73

B GNU arch 75
B.1 Keeping track of itools . 75

B.1.1 Browsing the sources . 75
B.1.2 Check out . 75
B.1.3 A session with tla and itools 76
B.1.4 Help . 76

B.2 Maintaining private changes . 76
B.2.1 Create an archive . 77
B.2.2 Create a branch . 77
B.2.3 Working with your branch 78
B.2.4 Merging from the main branch 79

B.3 Contributing your work to the main tree 79

6 CONTENTS

Chapter 1

Introduction

This paper is the official documentation of itools.

1.1 What is itools?

itools is a Python1 library. Originally intended to develop web applications,
it has evolved into a large framework suitable for a wide range of applications.

It can be seen as an extension of the Python’s Standard Library, as it provides
a set of lightly coupled sub-packages which can be used independently; itools
is split into the following sub-packages:

• itools.uri – an API to manage URIs, to identify and locate resources.

• itools.types – type marshalers for basic types (integer, date, etc.) and
not so basic types (filenames, XML qualified names, etc.).

• itools.resources – an abstraction layer over resources that lets to man-
age them with a consistent API, independently of where they are stored.

• itools.handlers – resource handlers infrastructure (resource handlers
are non persistent classes that add specific semantics to resources). This
package also includes several handlers out of the box.

• itools.gettext – resource handlers for PO and MO files.

• itools.xml – includes an intuitive event driven XML parser, a handler
for XML documents, and the Simple Template Language.

• itools.xhtml – resource handlers for XHTML documents.

• itools.html – resource handlers for HTML documents.

• itools.i18n – tools for language negotiation and text segmentation.

• itools.workflow – represent workflows as automatons, objects can move
from one state to another through transitions, classes can add specific
semantics to states and transitions.

• itools.catalog – An index and search engine.

1http://www.python.org

7

8 CHAPTER 1. INTRODUCTION

1.1.1 The resource-handler model

Of everything in itools I am probably most proud of the the three sub-packages
itools.uri, itools.resources and itools.handlers, which make up what
I call the resource-handler model.

There is a linear relationship of dependency between these modules, uri

depends on nothing but Python, resources depends on uri, and handlers

depends on resources.

This allows to use these modules on a flexible way. For example, you can
just use itools.uri (ignoring the others) to benefit from a higher level API to
work with URIs than that provided by the Standard Library (urlparse).

Or you may use itools.resources if you want to benefit from an abstrac-
tion layer over the storage. This is to say, if you want to be able to manipulate
many resources stored in different systems and accessed through different pro-
tocols with the same, consistent, rich API.

You may even take advantage of itools.handlers without fully under-
standing the model behind. For example, you could use some of the handlers
itools offers out-of-the-box for standard file formats like CSV, PO or XHTML,
to simplify your live if you ever need to work with one of these formats.

But, in order to exploit everything itools has to offer to its limit, you
may choose to base part or all of your application architecture on the resource-

handler model, a model heavily influenced by the filesystem and the Web. In this
situation the three packages (uri, resources and handlers) show themselves
as three different components with a distinct role in the architecture:

• itools.uri identifies and locates resources, wherever they are. Altogether
with itools.resources it effectively enables your information system to
be distributed through an heterogeneous base.

• itools.resources provides persistency to your data, this is to say, re-
sources are where the data is stored.

• and itools.handlers is where the logic lives. The essential characteristic
of a resource handler (or handler for short) is that it is non-persistent,
instead it is associated with a resource, whose content it is responsible to
manage.

The first chapters of this document will cover these sub-packages, itools.uri,
itools.resources and itools.handlers with detail.

1.1.2 eXtensible Markup Language

The itools.xml package depends on itools.handlers, this is its first advan-
tage. It represents an XML document as an DOM like tree. But it also provides
support for schemas, what allows to easily build higher level data structures.

The package also provides handlers for specific document types out-of-the-
box, most notably XHTML and HTML (even if HTML is not XML, it shares a
lot with XHTML).

1.2. WHO IS THIS DOCUMENT FOR? 9

1.1.3 The Simple Template Language

The Simple Template Language is included in the itools.xml package, but it
is important enough to deserve its own chapter in the documentation.

Its design goals are:

• Truly separate logic and presentation. Even Python expressions are not
allowed within the template.

• Really simple. It can be mastered in half a day.

• Damn fast (easy to achieve through simplicity).

• Secure. Even non-trusted users could write templates without risk, be-
cause code is not allowed within the template.

And the key idea behind, is to make it a descriptive language.

1.1.4 Workflow

The sub-package itools.workflow (once known as flux) is the oldest code in
itools. It does not depend on anything but the Standard Library, and don’t
puts any restriction on the storage. This makes it very easy to combine with
other frameworks.

There is a chapter exclusively dedicated to it.

1.1.5 Internationalization and Localization

The itools.i18n package provides a wide range of tools for internationalization
and localization of both software and data. From message extraction to language
negotiation, through text segmentation, fuzzy matching or algorithms to guess
the language a text is written in.

A chapter is devoted to this topic.

1.1.6 Index and Search

The itools.catalog sub-package provides an index and search engine. Though
still young, it already provides full text indexing, boolean queries and results
sorted by weight.

1.2 Who is this document for?

This document is addressed to Python developers. Though it may be useful
to software architects in general, as some ideas exposed here could be found
interesting2.

It is convenient to have some basic skills with the Python programming
language to fully understand this document. Probably the best introduction to
Python is the official tutorial:

http://python.org/doc/2.3.5/tut/tut.html.

2For example, itools.workflow inspired XXX to write a similar engine in Java, see
http://XXX

10 CHAPTER 1. INTRODUCTION

This document touches many different technologies and standards, such as
XML. References will be given in the relevant chapters.

1.3 Project status

Currently itools is in alpha stage of development (at the time of this writing
the last version available is 0.8). This means that the API is not yet stable, the
documentation is incomplete, and there may be bugs.

However, we have been using it on a daily basis for a long time now. It fuels
the iKaaro3 Content Management System, and most of our customer projects.

1.4 Installation

Before going further, be sure your system is correctly setup. First you will need
Python 2.3.4 or later.

Then download the last itools version from http://www.ikaaro.org, un-
pack it somewhere, and install it; itools uses distutils, so just type:

$ python setup.py install

Be sure to have the right permissions.

1.5 About this document

The development keeps ahead of the documentation. I would say the docs cover
around 60% of itools.

There are also two appendixes, one explaining the coding style itools is
written in, another one introducing the use of GNU arch. Both are specially
addressed to those that want to contribute back to the main tree.

3http://www.ikaaro.org

Chapter 2

Uniform Resource

Identifiers

In the wild Internet, the first challenge we encounter is how to identify and
locate the numerous resources that populate it. Well, that’s what Uniform
Resource Identifiers (or just URIs) are for.

The Python Standard Library (batteries included!) provides a module named
urlparse which is able to split a generic URI into its main parts (scheme, au-
thority, path, query and fragment), to rebuild it, and to resolve relative refer-
ences.

But there are more things we would like to do with a URI. For example we
could go further in the parsing process and split the path into its segments, then
split each segment into the name and the parameters if any; we could get the
user information, host address and port number from the authority; we could
normalize URIs; we could implement other operations beyond just resolving
relative references, etc.

This is the purpose of itools.uri, to provide a complete API to parse and
work with URIs, following the standard as described by RFC2396.

The main function provided by itools.uri is get reference, a factory to
build references:

get reference(reference)

- Parses the given string and returns a reference object.

Let’s go right to the code:

>>> from itools import uri

>>> r1 = uri.get_reference(’http://www.w3.org/TR/REC-xml/#sec-intro’)

>>> r2 = uri.get_reference(’mailto:jdavid@itaapy.com’)

>>> r3 = uri.get_reference(’http://www.ietf.org/rfc/rfc2616.txt’)

>>> r4 = uri.get_reference(’http://sf.net/cvs/?group_id=5470’)

>>> r5 = uri.get_reference(’news:comp.infosystems.www.servers.unix’)

11

12 CHAPTER 2. UNIFORM RESOURCE IDENTIFIERS

2.1 Syntax

Before going further, we will give an overview of the URI syntax, something
required to understand the rest of this chapter.

A URI is divided in two parts. The first one is the scheme: http, ftp,
mailto, etc.. The syntax and semantics of the second part depends on the
scheme:

uri = <scheme>:<scheme-specific-part>

However, many schemes share a similar syntax for the second part, these
URIs are known as generic URIs.

2.1.1 Generic URIs

The syntax of a generic URI reference is:

<scheme>://<authority><absolute path>?<query>#<fragment>

Generic URIs are modeled by uri.Reference. Following the code at the
beginning, we are going to inspect the r1 object:

>>> r1

<itools.uri.Reference object at 0x403ebc4c>

>>> print r1

http://www.w3.org/TR/REC-xml/#sec-intro

>>> print r1.scheme

http

>>> print r1.authority

www.w3.org

>>> print r1.path

/TR/REC-xml/

>>> print r1.query

>>> print r1.fragment

sec-intro

Note that there is an attribute for every component: the scheme, the au-
thority, the path, the query and the fragment. Now we are going to quickly
describe each of these components:

Scheme Defines the method or protocol to access the resource.

Authority Defines the server address that hosts the resource. Its syntax is:

authority = [<userinfo>@]<hostport>

Absolute path The path identifies the resource within the scope of the scheme
and authority.

It consists of a sequence of segments. A segment has two parts, the name
and the parameters, though the parameters are optional. The syntax is:

2.2. RELATIVE REFERENCES 13

absolute path = /<relative path>

relative path = <segment>[/<relative path>]

segment = <name>[;<parameters>]

Query The query is information to be interpreted by the resource. It does not
have a pre-defined syntax.

Fragment The fragment is a reference within the resource.

Actually, the fragment does not belong to the URI, as it does not help to
identify the resource, however we include it here because it does appears
in URI references, what is what we work with.

As the query, the fragment does not have a pre-defined syntax.

2.1.2 Non Generic URIs

Other schemes do not follow the generic syntax. As an example, let’s inspect
the r2 object seen before:

>>> r2 = uri.get_reference(’mailto:jdavid@itaapy.com’)

>>> print r2

mailto:jdavi@itaapy.com

>>> r2

<itools.uri.Mailto object at 0x403f45ec>

>>> print r2.scheme

mailto

>>> print r2.username

jdavid

>>> print r2.host

itaapy.com

As you see the r2 is not an instance of uri.Reference, but an instance of
uri.Mailto.

2.2 Relative references

So far the examples we have seen show absolute URIs, but there are relative
URI references too. A relative reference is one that lacks, at least, the scheme.
There are three types of of relative references: network paths, absolute paths,
and relative paths:

Network paths Network paths only lack the scheme, they start by a double
slash and the authority, followed by the absolute path. They are rarely
used.

//www.ietf.org/rfc/rfc2396.txt

Absolute paths The absolute paths lack both the scheme and the authority.
They start by a slash.

/rfc/rfc2396.txt

14 CHAPTER 2. UNIFORM RESOURCE IDENTIFIERS

Relative paths Relative paths lack the first slash of absolute paths. They can
start by the special segment ”.”, or by one or more ”..”. Examples are:

rfc/rfc2396.txt

./rfc/rfc2396.txt

../rfc2616.txt

2.2.1 Resolving references

The most common operation with relative references is to resolve them. That is
to say, to obtain (with the help of a base reference) the absolute reference that
identifies our resource. This is achieved with the resolve method:

>>> base = uri.get_reference(’http://www.ietf.org/rfc/rfc2615.txt’)

>>> print base.resolve(’//www.ietf.org/rfc/rfc2396.txt’)

http://www.ietf.org/rfc/rfc2396.txt

>>> print base.resolve(’/rfc/rfc2396.txt’)

http://www.ietf.org/rfc/rfc2396.txt

>>> print base.resolve(’rfc2396.txt’)

http://www.ietf.org/rfc/rfc2396.txt

2.3 Paths

One component that deserves special attention is the path. The path of a generic
URI is an instance of the uri.Path class:

>>> ref = uri.get_reference(’http://www.ietf.org/rfc/rfc2616.txt’)

>>> ref.path

<itools.uri.Path at 0x403f50a4>

>>> print ref.path

/rfc/rfc2616.txt

Paths are iterable:

>>> for segment in ref.path:

... print segment

...

rfc

rfc2616.txt

Each component of the path is called a segment. Segments are instances of
the class uri.Segment. Each segment has two components, the name and the
parameter. The code below illustrates this:

>>> path = uri.Path(’/itaapy;lang=es/team’)

>>> for segment in path:

... print repr(segment)

... print ’ name:’, segment.name

... print ’ param:’, segment.param

...

<itools.uri.Segment object at 0x404c1acc>

name: itaapy

param: lang=es

2.3. PATHS 15

<itools.uri.Segment object at 0x404c1a2c>

name: team

param: None

The uri.Path class also provides an API to manipulate paths:

is absolute()

- Returns True if the path is absolute (i.e. if it starts by an slash),
False otherwise.

is relative()

- Returns True if the path is relative (i.e. if it does not start by a
slash), False otherwise.

get prefix(path)

- Returns the path that is common to self and to the given path.

resolve(path)

- Returns a new path from a base path (self) and the given path.
Follows the RFC2396 standard, i.e. takes into account the trailing
slash.

resolve2(path)

- Same as resolve, but it does not teke into account the trailing
slash.

get pathto(path)

- Returns the path needed to go from self to the given path (this
complements the resolve method).

get pathtoroot()

- Returns a relative path to the root (something like ../../..).

16 CHAPTER 2. UNIFORM RESOURCE IDENTIFIERS

Chapter 3

Type marshalers

The module itools.types provides deserialization and serialization code for
several simple types, from built-in types like intergers or dates to slightly more
complex types like URIs or XML qualified names.

All of them are implemented as the couple of class methods decode and
encode, for example:

>>> from itools.types import DateTime

>>> datetime = DateTime.decode(’2005-05-02 16:47’)

>>> datetime

datetime.datetime(2005, 5, 2, 16, 47)

>>> DateTime.encode(datetime)

’2005-05-02 16:47’

This approach, to implement the serialization/deserialization code separate
from the type itself, allows to avoid subclassig built-in types, what has a per-
formance impact.

This also illustrates one of the software principles behind the itools coding,
different programming aspects should be cleary distinct in the implementation
and programming interface.

3.1 Built-in types

The Python built-in types supported, including those provided by the standard
library, are integers, text strings (unicode), byte strings, booleans, dates and
datetimes.

Integers (itools.types.Integer)

An integer number is serialized using ASCII characters. This means a call to
Integer.decode(x) is equivalent to int(x), and Integer.encode(x) does the
same than str(x).

Unicode strings (itools.types.Unicode)

Unicode strings are serialized using the UTF-8 encoding (by default).

17

18 CHAPTER 3. TYPE MARSHALERS

Byte strings (itools.types.String)

A byte string does not needs to be serialized or deserialized, the output is always
equal to the input.

Booleans (itools.types.Boolean)

Boolean values are encoded with the “0” character for the false value and with
the “1” character for the true value.

Dates (itools.types.Date)

Dates are encoded following the ISO 8601 standard1: “YYYY-MM-DD”.

Datetimes (itools.types.DateTime)

Date and time is encoded with the pattern: “YYYY-MM-DD hh:mm”.

3.2 Other types

Type marshalers are provided for other three types: URIs, filenames and XML
qualified names.

URIs (itools.types.URI)

The URI decoder will build and return one of the URI reference objects de-
fined in the itools.uri package, usually it will be an instance of the class
itools.uri.generic.Reference.

Filenames (itools.types.FileName)

Usually filenames include extensions to indicate the file type, and sometimes
other information like the language. The filename decoder will parse a filename
and return a tuple where the first element is the filename, the second element
is the file type, and the last element is the language. For example:

>>> from itools.types import FileName

>>> FileName.decode(’index.html.en’)

(’index’, ’html’, ’en’)

>>> FileName.decode(’index.html’)

(’index’, ’html’, None)

>>> FileName.decode(’index’)

(’index’, None, None)

XML qualified names (itools.types.QName)

An XML qualified name has two parts, the prefix and the local name, so our
decoder will return a tuple with these two elements:

1http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html

3.2. OTHER TYPES 19

>>> from itools.types import QName

>>> QName.decode(’dc:title’)

(’dc’, ’title’)

>>> QName.decode(’href’)

(None, ’href’)

The encoder expects a two element tuple:

>>> QName.encode((’dc’, ’title’))

’dc:title’

>>> QName.encode((None, ’href’))

’href’

20 CHAPTER 3. TYPE MARSHALERS

Chapter 4

Resources

In the previous chapter we have learned how to work with URIs, objects that
identify resources; but how to manipulate the resources themselves?

The problem we face now is the fact that the resources are dispersed, stored
in different systems, and accessed through different protocols. In spite of that,
it would be nice to be able to manipulate them with a uniform API.

That’s the purpose of itools.resources, to provide an abstraction layer
over resources: doesn’t matters where the resources are stored (in the local file
system, in a remote web server, etc.), they are handled with the same consistent
API.

4.1 Retrieving resources

Of course, the first step, before working with a resource, is to retrieve it, this is
done with the function get resource:

get resource(reference)

- From the given URI reference returns a resource object.

Let’s see a few examples:

>>> from itools.resources import get_resource

>>> get_resource(’examples/hello.txt’)

<itools.resources.file.File instance at 0x402175ac>

>>> get_resource(’http://example.com’)

<itools.resources.http.File instance at 0x404aadec>

>>> get_resource(’examples’)

<itools.resources.file.Folder instance at 0x401e568c>

These examples show two fundamental aspects of itools.resources which
we will explore on detail later. First is the support for multiple protocols, in
particular the example illustrates the schemes file for the local file system, and
http for the HyperText Transfer Protocol.

The second aspect is the support for two kinds of resources, files and folders.
Before looking at each type of resource, files and folders, let’s see the API they
share:

21

22 CHAPTER 4. RESOURCES

uri

- The URI reference the resource was retrieved from.

get mimetype()

- Tries to guess the mimetype of the resource and returns it as
a string. Folders are always application/x-not-regular-file.
Returns None if it fails.

get ctime()

- Returns a datetime object with the time the resource was cre-
ated.

get mtime()

- Returns a datetime object with the last time the resource was
modified.

get atime()

- Returns a datetime object with the last time the resource was
accessed.

It may happen that a specific scheme does not implements one or more of
these methods.

4.2 File Resources

Besides the common methods for files and folders, each resource type has a
specific API, the one for file resources is:

read()

- Returns the resource data as a byte string.

write(data)

- Replaces the resource content by the given data (a byte string).

get size()

- Returns the length (the number of bytes) of the resource data.

getitem (index)

- Returns the byte at the given position.

getslice (a, b)

- Returns the byte string that goes from a to b.

setitem (index, value)

- Sets the given value to the given position (index). Usually value
will be just a byte, but it may be a slice too.

append(data)

- Appends the given data to the resource.

As an example of the API let’s exercise it with a web page:

>>> resource = get_resource(’http://example.com’)

>>> print resource

<itools.resources.http.File instance at 0x404aadec>

>>> print resource.get_mimetype()

4.3. FOLDER RESOURCES 23

text/html

>>> print resource.get_size()

438

>>> print resource.read()

<HTML>

<HEAD>

<TITLE>Example Web Page</TITLE>

</HEAD>

<body>

<p>You have reached this web page by typing

...

Of course, in this example, we can not modify the resource as we don’t have
write access to the web server.

The methods getitem , setitem , etc. are specially useful to work with
binary files, as they allow to read and write data at specific positions within
a resource. These methods allow to access the resource with the same syntax
used to access lists in Python:

>>> import struct

>>> n = struct.pack(’>I’, 47)

>>> resource[20:24] = n

This brief example shows how to write the number 47 at the position 20 of
a given resource, encoded as an 32 bits unsigned integer.

For a real example you can look at itools.catalog, which makes extensive
and systematic use of this approach.

4.3 Folder Resources

The specific API for folders is:

24 CHAPTER 4. RESOURCES

get resource(path)

- Returns the resource in the given path (where path is either an
instance of uri.Path or a string).

get resource names(path=’.’)

- Returns a list with the names of all the resources in the given
path.

get resources(path=’.’)

- Returns the resources in the given path (it is a generator).

has resource(path)

- Returns True if there is a resource in the given path, False oth-
erwise.

set resource(path, resource)

- Adds the given resource to the given path.

del resource(path)

- Removes the resource at the given path.

del resources(paths)

- Removes the resources at the given paths (where paths is a list
of paths).

traverse()

- This method allows to traverse the resource tree below this folder.
It is a generator which returns a resource at a time, starting by this
folder.

Let’s exercise the API a little:

>>> examples = get_resource(’examples’)

>>> print examples.get_resource_names()

[’hello.xhtml~’, ’hello.xhtml’, ’hello.txt’, ’.arch-ids’]

>>> hello = examples.get_resource(’hello.txt’)

>>> print hello.read()

hello world

To copy a web page to the local file system:

>>> tmp = get_resource(’/tmp’)

>>> web_page = get_resource(’http://example.com’)

>>> tmp.set_resource(’example.html’, web_page)

>>> copy_of_web_page = tmp.get_resource(’example.html’)

>>> print web_page

<itools.resources.http.File instance at 0x405e8a2c>

>>> print copy_of_web_page

<itools.resources.file.File instance at 0x405fb64c>

To copy a whole tree:

>>> from pprint import pprint

>>> talks = get_resource(’/home/jdavid/talks’)

>>> tmp.set_resource(’talks’, talks)

>>> pprint(tmp.get_resource_names(’talks/EuroPython2004’))

[’itools-vfs’,

4.4. SUPPORTED SCHEMES 25

’Makefile’,

’itools-vfs.log’,

’itools-vfs.tex’,

’itools-vfs.aux’,

’itools-vfs.toc’,

’itools-vfs.dvi’,

’itools-vfs.ps’,

’itools-vfs.pdf’,

’itools-vfs.tex~’]

This is more impressive when copying a big tree from one storage to another.
For example we use it in the context of the iKaaro Content Management System
to export and import web sites from the Zope Object DataBase to the file
system, and back from the file system to the ZODB.

4.4 Supported schemes

At the time of this writing the number of supported schemes is pretty short:
itools.file for the file system, itools.http for the HTTP protocol (though
the implementation is minimal), and itools.memory to store resources in mem-
ory. The iKaaro CMS provides support to store resources in Zope 2.

4.4.1 The memory storage

The memory storage (itools.memory) deserves few lines as it is very handy. It
is possible to build a resource from scratch directly calling its constructor:

>>> from itools.resources import memory

>>> resource = memory.File(’hello world’)

>>> resource

<itools.resources.memory.File instance at 0x405e458c>

>>> resource.read()

’hello world’

>>> tmp.set_resource(’hello.txt’, resource)

This technique is used internally by resource handlers to build handler in-
stances without passing a resource. They are the object of our next section.

26 CHAPTER 4. RESOURCES

Chapter 5

File handlers

Resources provide persistence to our data, but they lack any knowledge about
the structure and the meaning of the information they contain. For example,
the resource layer ignores that an XML document has a tree structure, hence
it does not provide an API to traverse it; nor it knows how to get the messages
and translations from a PO file.

This is the purpose of the resource handlers, to add semantics to specific
resources.

As with resources, there are two types of handlers, files and folders. This first
chapter focuses on file handlers, the next one will analyze the folder handlers.

Several key concepts will be exposed in this chapter, the relationship between
resources and handlers, the load (de-serialization) and save (serialization) op-
erations, the handler skeleton, and the handler factory. We will learn to use
the file handlers itools offers out of the box, and how to write custom handler
classes.

5.1 Introduction

To get a feeling, let’s start with an example:

1. First we load a resource as seen in the previous chapter:

>>> from itools.resources import get_resource

>>> resource = get_resource(’http://example.com’)

2. Now we build a handler for the resource:

>>> from itools.xml import HTML

>>> handler = HTML.Document(resource)

>>> print handler

<itools.html.HTML.Document object at 0x40647b4c>

>>> print handler.to_str()

<HTML>

<HEAD>

<TITLE>Example Web Page</TITLE>

</HEAD>

<body>

27

28 CHAPTER 5. FILE HANDLERS

<p>You have reached this web page by typing

...

There are several things to highlight here. First the way we have built our
handler instance, passing a resource to a handler class (HTML.Document),
later we will see other ways to build handler instances.

Second the to str method (all the file handlers have this method), which
serializes the handler, i.e. transforms the handler to a sequence of bytes.
This is a key concept to which we will come back later.

3. Now we can start working with the handler:

>>> from itools.xml import XML

>>> for node in handler.traverse():

... if isinstance(node, XML.Element) and node.name == ’title’:

... print node.children

Example Web Page

Unlike to str, the method traverse is specific to XML documents. Every
handler class provides its own API.

One resource, many handlers

The relationship between resources to handlers is 1 to n. While there may
be several different handlers associated to the same resource (though it is not
obvious how this is useful), a handler is only associated to one resource.

The resource associated to a handler is accessible through the resource

attribute. Following the example above, the code below checks that the resource
we loaded in the first place is exactly the same our handler is associated to:

>>> resource

<itools.resources.http.File instance at 0x404aadec>

>>> handler.resource

<itools.resources.http.File instance at 0x404aadec>

>>> resource is handler.resource

True

5.2 Handler’s state

A handler is a non-persitent object, it stores in volatile memory a data structure
that represents the resource’s content. For example, the Figure 5.1 shows at the
left an XML file, and at the right the state of the handler as a tree of XML
elements.

The state of a handler is stored within the instance variable state, what
this variable contains depends on the handler class; e.g. an element tree for
XML documents, a mapping from message to translation for PO files, or just a
unicode string for plain text files. For example:

>>> from itools.xhtml import XHTML

>>> handler = XHTML.Document()

>>> print handler

5.2. HANDLER’S STATE 29

Figure 5.1: Handler’s state

<itools.xhtml.XHTML.Document object at 0xb7cae8ac>

>>> print handler.state

<itools.handlers.Handler.State object at 0xb7cae92c>

>>>

>>> from pprint import pprint

>>> pprint(handler.state.__dict__.keys())

[’xml_version’,

’source_encoding’,

’document_type’,

’root_element’,

’standalone’]

The state variable should never be accessed directly, instead the API each
handler provides should be used.

We call load to the process of building the handler state from the data
stored in the resource. And viceversa, we call save to the process of updating
the resource with the changes made to the handler state.

So, while the handler and the resource are synced inmediately after the
handler is loaded, this is to say, they contain the same information, one or
the other may change, hence becoming desynchronized. There are a couple of
scenarios we want to deal with:

• Once the handler is loaded, the resource is modified by other means, for
example you open the file with an editor and modify it.

Then the handler is outdated, its state represents an older version of the
resource.

• After loading the handler, its state is modified through the API it provides.

Then the resource is outdated, as the handler contains a newer version of
the information.

5.2.1 Load

It may happen that the resource (a web page in our example) gets updated,
then the handler will keep a data structure on memory that does not correspond

30 CHAPTER 5. FILE HANDLERS

anymore to the content of the resource, in other words, the handler would be
out-of-date. We can check this by comparing the last modification time of the
resource with the timestamp every handler always keeps:

>>> print handler.resource.get_mtime()

2004-11-28 19:53:57

>>> print handler.timestamp

2004-12-29 19:31:39.055367

>>> handler.resource.get_mtime() > handler.timestamp

False

Ok, the example above shows everything is alright. But what to do if it
was not? then we would need to reload the resource, this is done with the
load state method:

>>> print handler.timestamp

2004-12-29 19:31:39.055367

>>> handler.load_state()

>>> print handler.timestamp

2004-12-29 19:51:50.152499

You should try it yourself with a resource in the filesystem: start the Python
interpreter, build a handler for a resource in the filesystem, modify the resource
with another program, see how the resource modification time is more recent
than the handler’s timestamp, then reload the handler and verify the handler is
up-to-date now.

The full prototype of the method load state follows:

load state(resource=None)

- Loads the data from the given resource into the handler, if no
resource is given, the one the handler is attached to will be used.

As you see the load state method accepts an optional parameter, a re-
source. If it is not given the handler will be reloaded from the resource it
handles. But if other resource is passed it will be loaded from the given re-
source. Then we would reach a situation opposite to the one seen before: the
resource would be outdated, as the handler would keep a newer version.

5.2.2 Save

Another way to get a handler more recent than the resource it is associated
with, is to modify the handler through the API it offers, which depends on the
handler class (e.g. the API of an XML handler is different from the API of an
image handler).

To update the resource so both resource and handler are in sync again we
use the save state method:

save state()

- Saves the handler into the resource.

So load state and save state are two sides of the same coin. The first one
reloads the handler with the resource, the second one saves the handler state in
the resource.

5.3. THE SKELETON 31

5.2.3 Serialization and de-serialization

A file resource represents a sequence of bytes. A handler keeps a data structure
in memory, and offers an API to inspect and modify this data structure.

Two key concepts in computer science will help to clarify what we have seen
up to now:

serialization is the process by which a sequence of bytes is transformed into a
data structure.

de-serialization is the process by which a data structure is transformed to a
sequence of bytes.

Now it becomes obvious that the load statemethod what actually does is to
de-serialize the resource and update the handler. And viceversa, the save state

method serializes the handler and updates the resource.
Remember the method to str we saw at the beginning? it is the one re-

sponsible for the serialization process. The save state method calls to str

first, and then updates the resource.

5.3 The skeleton

As we have seen the handler constructor expects one parameter: the resource it
is meant to handle (and once the handler is built the resource is always accessible
with handler.resource).

However, it is also possible to build a handler without passing it any pa-
rameter; in this case a memory resource will be built on the fly, let’s see an
example:

>>> from itools.html import HTML

>>> handler = HTML.Document()

>>> handler

<itools.handlers.HTML.Document object at 0x403ee12c>

>>> handler.resource

<itools.resources.memory.File instance at 0x40638e4c>

>>> print handler.to_str()

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta content="text/html; charset=UTF-8" http-equiv="Content-Type">

<title></title>

<body></body>

</head></html>

The default content of the resource depends on the handler, and it is called
the handler skeleton. The constructor also accepts arbitrary keyword parame-
ters:

>>> handler = HTML.Document(title=’Hello World’)

>>> print handler.to_str()

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

32 CHAPTER 5. FILE HANDLERS

<html>

<head>

<meta content="text/html; charset=UTF-8" http-equiv="Content-Type">

<title>Hello World</title>

</head>

<body></body>

</html>

The keyword parameters are used to initialize the skeleton; in the example
above the title parameter defines the HTML document title, which by default
is empty. The parameters accepted depend on the handler.

5.4 Text and binary handlers

File handlers split into text and binary handlers. The class Text is the base
class for all the text handlers.

The key difference is that text handlers represent the resource’s content in
memory as a unicode string, instead of just a byte string.

When the resource is loaded the text handler tries to guess the character
encoding of the resource’s content. For some file formats this information is
stored within the content itself; for example an XML document starts by an
XML declaration that specifies the encoding, if the declaration is missing it
is assumed the encoding is UTF-8. When this information is not explicitly
indicated, the text handler tries to guess the encoding by brute force.

With the character encoding the text handler decodes and loads the re-
source’s content.

The API of binary and text handlers also differs, compare the one offered
by the File handler class:

to str()

- Returns the resource data as a byte string (this is similar to the
method handler.resource.read()).

set data(data)

- Updates the handler state with the given data.

with the one offered by the Text handler class:

to str(encoding=’UTF-8’)

- Returns the resource data as a byte string, using the given en-
coding (defaults to UTF-8). Note that this will be different than
the string returned by handler.resource.read() if the resource
data is not encoded in UTF-8 in the source.

to unicode(encoding=’UTF-8’)

- Returns the resource data as an unicode string.

Note the to strmethod for text handlers accepts the encoding as an optional
parameter. This not only will return a byte string in the given charater encoding,
it will also specify the encoding in the byte string for file formats that should
include it.

5.5. OVERVIEW OF THE AVAILABLE HANDLERS 33

Handler

File Folder

Text Image MO

CSV PO Python XML.Document

XHTML.Document

HTML.Document

Figure 5.2: The handler tree

There is also the new method to unicode, which returns the content as a uni-
code string. This method accepts the encoding parameter too. For file formats
that do not include the encoding within the content, the result of to unicode

will be the same regardless of the given encoding. But for file formats like XML
that should specify the encoding within the content, the returned unicode string
will include it.

5.5 Overview of the available handlers

Out of the box itools comes with several handlers for different standard file
formats. The Figure 5.2 shows an excerpt of the tree of the available handler
classes, which express the inheritance relationship between them.

We are not going to see folder handlers here, as they will be studied in the
next chapter.

We have already seen the difference between binary and text handlers. Now
we are going to present some of the higher level file handler classes itools

includes.

34 CHAPTER 5. FILE HANDLERS

XML.Document This is the default handler for XML documents, which in-
ternally are represented as a tree. The API includes the methods already de-
scribed for the Text handler; specific methods of XML.Document are:

cmp (other)

- Lets to compare two XML documents.

get root element()

- Returns the root element of this XML document.

traverse()

- This method allows to traverse the XML document, as it has a
tree structure. It is a generator which returns a node at a time,
starting by the document instance.

traverse2()

- As traverse, this method allows to traverse the XML document,
though it is more powerful, and complex. It will be explained in
the XML chapter.

XHTML.Document The handler for XHTML documents, it extends the
API provided by XML.Document API with the methods:

get head()

- Returns the head element.

get body()

- Returns the body element.

to text()

- Strips all the XML markup and returns the text content of the
XHTML document. This is useful, for example, to index the doc-
ument.

PO The handler to manage PO files, the message catalog of the GNU gettext
utilities.

get msgids()

- Returns the list of message ids stored in the catalog.

get messages()

- Returns the list of messages stored in the catalog, where each
message is represented as an instance of the class PO.Message.

get msgstr(msgid)

- Returns the message string for the given message id.

set message(msgid, msgstr=[u’’], comments=[u’’], references={})
- Adds a message (from the given parameters) to the catalog.

5.6 The handler factory

So far we have built a handler instance through a handler class:

5.6. THE HANDLER FACTORY 35

>>> handler = HTML.Document(resource)

>>> handler

<itools.xml.HTML.Document object at 0x405740cc>

This is the standard pattern to build instances. However, if the resource
is not an HTML document this procedure would fail. In other words, this
procedure is only useful if you already know the kind of resource you are working
with.

Another option is to let itools to choose which handler class to use. This
can be done with the build handler method, which provides the factory pat-
tern.

build handler(resource)

- A class method that identifies the given resource, chooses the
available handler class that better matches it, and builds and re-
turns a handler instance for it.

For example, from the examples directory type:

>>> from itools.resources import get_resource

>>> from itools.handlers.Handler import Handler

>>> from itools import xml

>>>

>>> here = get_resource(’.’)

>>> for name in here.get_resource_names():

... resource = here.get_resource(name)

... handler = Handler.build_handler(resource)

... print name, handler

...

chapter6 <itools.handlers.Folder.Folder object at 0x40538d4c>

chapter7 <itools.handlers.Folder.Folder object at 0x4032c0cc>

hello.txt <itools.handlers.Text.Text object at 0x40536f4c>

hello.xhtml <itools.xml.XHTML.Document object at 0x4053b70c>

Note that build handler is a class method. In the example above we have
called it through the most abstract handler class: Handler, which is the root of
the inheritance tree. But it is also possible to call it with another handler class:

>>> from itools.xml import XML

>>>

>>> resource = here.get_resource(’hello.xhtml’)

>>> XML.Document.build_handler(resource)

<itools.xml.XHTML.Document object at 0x405c6ecc>

There is an important difference between calling build handler from one
or another class: the set of possible handler classes to use is restricted to all the
sub-classes of the choosen handler class. For example, if we pass a plain text
file to XML.Document.build handler, it will fail:

>>> resource = here.get_resource(’hello.txt’)

>>> XML.Document.build_handler(resource)

Traceback (most recent call last):

[...]

xml.parsers.expat.ExpatError: syntax error: line 1, column 0

36 CHAPTER 5. FILE HANDLERS

5.6.1 The get handler shorthand

There is a short way to load a handler (instead of loading first the resource and
then building the handler explicitly), the function get handler:

get handler(uri)

- Loads the resource at the given uri, tries to guess its mimetype by
different meanings (name extension, etc.), searches for a suitable
handler class in the registry, builds and returns the handler for the
resource.

Compare the explicit way seen before:

>>> from itools.resources import get_resource

>>> from itools.handlers.Handler import Handler

>>>

>>> resource = get_resource(’http://example.com’)

>>> handler = Handler.build_handler(resource)

With the shorthand:

>>> from itools.handlers import get_handler

>>>

>>> handler = get_handler(’http://example.com’)

Chapter 6

Writing file handler classes

The chapter before we have learnt about file handlers and how to use them, now
we are going to learn how to write our own handler classes, what by the way
will help to solidify the concepts seen before.

The explanation will be driven by an example: we are going to write a task
tracker. The code can be found in the directory examples/chapter6.

6.1 Functional scope

Lets start by defining the functional scope of our task tracker. It is going to
be very simple, it will be a collection of tasks where every task will have three
fields:

• title, a short sentence describing the task.

• description, a longer description detailing the task.

• state, it may be open (if the task has not been finished yet), or closed (if
the task has been finished).

The task tracker will provide an API to manipulate the collection of tasks:
create a new task, see either the open or the closed tasks, and close a task.

6.2 The file format

Now that we know what we want to do, we have to decide where and how the
information will be stored.

We will keep the tasks in a single text file, with a format somewhat similar
to the one used by the standards vCard and iCal, for example:

title:Re-write the chapter about writing handler classes.

description:A new chapter that explains how to write file handler

classes must be written, it should go inmediately after the chapter

that introduces file handlers.

state:closed

title:Finish the chapter about folder handlers.

37

38 CHAPTER 6. WRITING FILE HANDLER CLASSES

description:The chapter about folder handlers needs much more work.

For example the skeleton of folder handlers must be explained.

state:open

Each task is separated from the next one by a blank line. Every field starts
by the field name follewed by the field value, both separated by a colon. If a
field value is very long it can be written in multiple lines, where the second and
next lines start by an space.

This very same file can be found in the examples directory with the name
itools.tt. Using our own filename extension (tt) will prove useful, as we will
see later.

6.3 De-serialization

The first draft of our handler class will be able to load (de-serialize) the resource
into a data structure on memory.

from itools.handlers.Text import Text

class Task(object):

def __init__(self, title, description, state=’open’):

self.title = title

self.description = description

self.state = state

class TaskTracker(Text):

def _load_state(self, resource=None):

Load the resource as a unicode string

Text._load_state(self, resource)

Split the raw data in lines.

state = self.state

lines = state.data.splitlines()

Append None to signal the end of the data.

lines.append(None)

Free the un-needed data structure, ’state.data’

del state.data

Initialize the internal data structure

state.tasks = []

Parse and load the tasks

fields = {}

for line in lines:

if line is None or line.strip() == ’’:

if fields:

task = Task(fields[’title’],

fields[’description’],

fields[’state’])

state.tasks.append(task)

fields = {}

else:

6.4. SERIALIZATION 39

if line.startswith(’ ’):

fields[field_name] += line

else:

field_name, field_value = line.split(’:’, 1)

fields[field_name] = field_value

First, our handler class TaskTracker inherits from the handler class Text,
because it is intended to manage a text file.

The method load state is the one to implement, it is responsible to de-
serialize the resource and build a data structure on memory that represents
it.

The first thing it does is to call the parent’s load state method, which will
read the resource’s data and get a unicode string from it, which will be stored in
the self.state.data variable. This is an intermediary representation, which
will be discarded.

The rest of the method process the raw data and builds a list of instances
of the class Task into the variable self.state.tasks.

Lets try it:

>>> from pprint import pprint

>>> import textwrap

>>> from itools.resources import get_resource

>>> from TaskTracker import TaskTracker

>>>

>>> resource = get_resource(’itools.tt’)

>>> task_tracker = TaskTracker(resource)

>>>

>>> pprint(task_tracker.state.tasks)

[<TaskTracker.Task object at 0xb7aebd4c>,

<TaskTracker.Task object at 0xb7aebe6c>]

>>>

>>> task = task_tracker.state.tasks[0]

>>> print task.title

Re-write the chapter about writing handler classes.

>>> print textwrap.fill(task.description)

A new chapter that explains how to write file handler classes must be

written, it should go inmediately after the chapter that introduces

file handlers.

>>> print task.state

closed

6.4 Serialization

Now we are going to write the other half, the serialization process, just adding
the to unicode method to the TaskTracker class:

def to_unicode(self, encoding=’UTF-8’):

lines = []

for task in self.state.tasks:

lines.append(u’title:%s’ % task.title)

description = u’description:%s’ % task.description

description = textwrap.wrap(description)

40 CHAPTER 6. WRITING FILE HANDLER CLASSES

lines.append(description[0])

for line in description[1:]:

lines.append(u’ %s’ % line)

lines.append(u’state:%s’ % task.state)

lines.append(’’)

return u’\n’.join(lines)

Note that we implement the to unicode method instead of to str because
this is a text handler. The encoding parameter is not used in our example
because the file format does not specifiy the encoding within its content, but it
must be declared anyway.

Lets try our new code:

>>> print task_tracker.to_str()

title:Re-write the chapter about writing handler classes.

description:A new chapter that explains how to write file handler

classes must be written, it should go inmediately after the chapter

that introduces file handlers.

state:closed

title:Finish the chapter about folder handlers.

description:The chapter about folder handlers needs much more work.

For example the skeleton of folder handlers must be explained.

state:open

We could have tried to unicode to get a similar output, except that then
the result would be a unicode string instead of a byte string.

6.5 The API

Now it is time to write the API to manage the tasks, here is an excerpt:

def add_task(self, title, description):

task = Task(title, description)

self.state.tasks.append(task)

def show_open_tasks(self):

for id, task in enumerate(self.state.tasks):

if task.state == ’open’:

print ’Task #%d: %s’ % (id, task.title)

print

print textwrap.fill(task.description)

print

print

def close_task(self, id):

task = self.state.tasks[id]

task.state = u’closed’

The first method, add task creates a new task, whose state will be open. The
method show open tasks prints the list of open tasks with a human readable
format (we could write a method that returns HTML instead, to use our task
tracker on the web). Finally, the method close task closes the task.

6.6. THE SKELETON 41

6.6 The skeleton

The skeleton for our task tracker should be empty, but to illustrate this feature
we are going to implement an skeleton with one dummy task:

def get_skeleton(self):

return ’title:Read the docs!\n’ \

’description:Read the itools documentation, it is\n’ \

’ so gooood.\n’ \

’state:open\n’

To exercise the whole thing we are going to create a new task tracker, we
will close the first task, add a new one, and look what we have.

>>> from TaskTracker import TaskTracker

>>>

>>> task_tracker = TaskTracker()

>>> task_tracker.show_open_tasks()

Task #0: Read the docs!

Read the itools documentation, it is so gooood.

>>> task_tracker.close_task(0)

>>> task_tracker.add_task(’Join itools!’,

... ’Subscribe to the itools mailing list.’)

>>> task_tracker.show_open_tasks()

Task #1: Join itools!

Subscribe to the itools mailing list.

Now, don’t forget to save the task tracker in the file system, so you can come
back to it later:

>>> from itools.handlers import get_handler

>>>

>>> tmp = get_handler(’/tmp’)

>>> tmp.set_handler(’most_important_things_in_live.tt’, task_tracker)

>>> tmp.save_state()

6.7 Register

However:

>>> task_tracker = tmp.get_handler(’most_important_things_in_live.tt’)

>>> print task_tracker

<itools.handlers.File.File object at 0xb7c00f0c>

It would be nice if the code above worked. To achieve it we will asso-
ciate the new mimetype text/x-task-tracker to the file extension tt, we will
tell our handler class is able to manage that mimetype with the variable class
class mimetypes, and we will register our handler class to its parent:

42 CHAPTER 6. WRITING FILE HANDLER CLASSES

import mimetypes

mimetypes.add_type(’text/x-task-tracker’, ’.tt’)

class TaskTracker(Text):

class_mimetypes = [’text/x-task-tracker’]

[...]

Text.register_handler_class(TaskTracker)

And voilà:

>>> task_tracker = tmp.get_handler(’most_important_things_in_live.tt’)

>>> print task_tracker

<TaskTracker.TaskTracker object at 0xb7af084c>

The full code can be found in examples/chapter6/TaskTracker.py.

Chapter 7

Folder handlers

A handler that deserves its particular chapter is the default handler for folders.

7.1 Folder’s state

If the content of a file resource is a byte string, the content of a folder resource
is a set of resources, each one identified by a name. Hence, the state of a folder
handler is a mapping fron handler name to handler instance.

But imagine a folder that contains many big files. To load its state would
mean to load all the files it contains, what is unacceptable from a performance
point of view. This is the reason the folder handler implements lazy load, this
is to say, it loads a handler only when it is needed.

The folder state is stored in the variable cache, because it behaves like a
cache. See:

>>> examples = get_handler(’examples’)

[some operations later]

>>> pprint(examples.state.cache)

{’.arch-ids’: None,

’chapter8’: <itools.handlers.Folder.Folder object at 0xb77b2fac>,

’chapter9’: None,

’hello.txt’: <itools.handlers.Text.Text object at 0xb77b2bcc>,

’hello.xhtml’: None,

’task_tracker0’: None,

’task_tracker1’: None,

’task_tracker2’: None}

As the code above shows, a handler that has not yet been loaded appears in
the cache with the None value.

7.2 The API

The programming interface for folder handlers remembers the one of folder
resources, where there we spelled get resource here we will write get handler.
Details follow:

43

44 CHAPTER 7. FOLDER HANDLERS

get handler(path)

- Returns a handler for the resource at the given path. It will
use the available handler class that better matches the resource
mimetype.

get handler names(path=’.’)

- Returns a list with the names of all the handlers in the given
path.

get handlers(path=’.’)

- Returns the handlers in the given path (it is a generator).

has handler(path)

- Returns True if there is a handler in the given path, False oth-
erwise.

set handler(path, handler)

- Adds the given handler to the given path. Actually what is added
is the resource associated to the handler.

del handler(path)

- Removes the handler at the given path (i.e. the associated re-
source).

7.3 Example

As the proverb says, a code snippet is worth more than one thousand words:

1. First we build a handler for the temporary directory:

>>> from itools.handlers import get_handler

>>>

>>> tmp = get_handler(’/tmp’)

>>> tmp

<itools.handlers.Folder.Folder object at 0x40652dec>

>>> tmp.resource

<itools.resources.file.Folder instance at 0x406acacc>

2. Second, we create a new HTML handler:

>>> from itools.xml import HTML

>>> hello = HTML.Document(title=’Hello World’)

>>> hello.resource

<itools.resources.memory.File instance at 0x405e49cc>

Note that the associated resource is built on the fly and lives in memory.

3. Third, we set the HTML handler to the temporary folder:

>>> tmp.set_handler(’hello.html’, hello)

What this actually does is to add the file hello.resource (which lives in
memory) to the folder tmp.resource (which is on the file system); this is
to say, it creates a new file in the file system at /tmp/hello.html.

7.4. THE HANDLER TREE 45

4. Finally, we get the handler we just added:

>>> hello = tmp.get_handler(’hello.html’)

>>> hello.resource

<itools.resources.file.File instance at 0x40638c6c>

Note that the handler hello we have built in these last lines manages a
resource that lives in the file system.

7.4 The handler tree

Folders allow to classify files, hence giving a tree structure to our data. Every
handler has two attributes, parent and name, they tell us where the handler is
in the handler tree:

>>> hello.parent

<itools.handlers.Folder.Folder object at 0x403ebb2c>

>>> hello.name

’hello.html’

>>> hello.parent is tmp

True

>>> print tmp.parent

None

>>> print tmp.name

>>>

Based on these two attributes handlers provide the following API:

get abspath()

- Returns the absolute path from the tree root to the self handler.

get root()

- Returns the handler for the root of the tree.

get pathtoroot()

- Returns a relative path from self to the tree root (e.g. ../../..).

get pathto(handler)

- Returns a relative path from self to the given handler (which is
supposed to be in the same tree), for example: ../../zoo/lion.

traverse()

- This method allows to traverse the handler tree below this folder.
It is a generator which returns a handler at a time, starting by this
folder.

acquire(name)

- If the current handler is a folder and contains a resource with
the given name, then return a handler for it; otherwise look at
the parent folder, and recursively to the root tree. This method
actually shows how to implement acquisition.

46 CHAPTER 7. FOLDER HANDLERS

Chapter 8

eXtensible Markup

Language

The purpose of this chapter is to explain the XML services provided by itools,
which can be found in the sub-package itools.xml.

8.1 The parser

The first layer is the event driven parser implemented by itools.xml.parser,
which is a wrapper around the expat1 parser.

With expat you need a function for every event you want to manage, so for
example, if you want to deal just with elements, comments and text nodes, you
will need four functions (the start element, end element, comment and character
data handlers), plus the main function that sets up the parser. State is typically
shared across event handlers through instance variables. The expat approach
makes it relatively hard to follow the program flow.

With itools.xml.parser all the code is within a single function, and state
is stored in local variables. Let’s see a dummy example:

from itools.xml import parser

for event, value, line_number in parser.parse(data):

if event == parser.START_ELEMENT:

namespace, prefix, local_name = value

print ’START ELEMENT:’, local_name

elif event == parser.END_ELEMENT:

namespace, prefix, local_name = value

print ’END ELEMENT:’, local_name

elif event == parser.TEXT:

print ’TEXT’, value

The example above just prints a message to standard output each time the
start of an element, the end of an element or a text node is found.

1http://expat.sourceforge.net/

47

48 CHAPTER 8. EXTENSIBLE MARKUP LANGUAGE

The parser returns a list of events, where every event is a tuple of three
valuese: the event type, the value (which depends on the event type) and the
line number. The types of events implemented are:

Event Value
XML DECLARATION (xml version, encoding, standalone)
DOCUMENT TYPE (name, system id, public id, has internal subset)
START ELEMENT (namespace uri, prefix, local name)
END ELEMENT (namespace uri, prefix, local name)
ATTRIBUTE (namespace uri, prefix, local name, value)
COMMENT value
TEXT value

As you can appreciate only a subset of the XML standard is supported,
though it is all what most users need.

Another impotant thing to note is that all values returned are normal strings,
not unicode strings. It is not the job of the low level parser to deserialize the
values.

8.2 Namespaces

From the table above you can see itools.xml provides support for XML names-
paces. The event values for elements and attributes are tuples, where the first
two components are the namespace uri and the prefix. If an element or attribute
is not attached to a namespace, the uri and the prefix will be None.

The module itools.xml.namespacesprovides a registry for namespace han-
dlers, and an abstract class which defines the programming interface and pro-
vides a default behaviour for subclasses. The table below defines this program-
ming interface:

class uri

- The uri that uniquely identifies this namespace.

class prefix

- The recommended prefix for the namespace. For example “dc”
for Dublin Core. By default it is None.

get element schema(name)

- Returns the schema for the given element name.

get attribute schema(name)

- Returns the schema for the given attribute name.

The schema is a dictionary whose keys and values are somewhat arbitrary,
they will depend on what you need. Though, it usually includes the type of the
attribute or element, which is used to deserialize and serialize the values. For
example, consider a link within an XHTML document, like:

The href attribute should be loaded as a URI reference, and title should
be a unicode string. The excerpt below will do the job:

8.3. DOCUMENTS 49

from itools.xml import parser, namespaces

from itools import xhtml

for event, value, line_number in parser.parse(data):

if event == parser.ATTRIBUTE:

namespace_uri, prefix, local_name, value = value

namespace = namespaces.get_namespace(namespace_uri)

schema = namespace.get_attribute_schema(local_name)

value = schema[’type’].decode(value)

print local_name, schema[’type’]

print repr(value)

print

The output when running this code is:

href <class ’itools.handlers.IO.URI’>

<itools.uri.generic.Reference object at 0xb7a8c8ac>

title <class ’itools.handlers.IO.Unicode’>

u’Example’

For examples about how to define your own namespace handlers see the
Dublin Core (itools.xml.DublinCore) and XHTML (itools.xhtml.XHTML)
implementations.

8.3 Documents

If itools.xml.parser provides an event driven parser, whose function is similar
to SAX2, we do have too an equivalent for DOM3. And of course it takes the
form of a resource handler.

The handler class itools.xml.XML.Document loads the document into mem-
ory as a tree of nodes, with some global attributes. Let’s inspect an example:

>>> from itools.handlers import get_handler

>>> import itools.xml

>>>

>>> doc = get_handler(’examples/chapter8/hello.xml’)

>>> doc

<itools.xml.XML.Document object at 0x4064466c>

>>> print doc.xml_version

1.0

>>> print doc.standalone

-1

>>> print doc.document_type

None

>>> print doc.root_element

<itools.xml.XML.Element object at 0xb7a3272c>

The code above shows the four attributes that keep the document’s state:

2http://XXX
3http://XXX

50 CHAPTER 8. EXTENSIBLE MARKUP LANGUAGE

xml version

- The XML version of the document, usually it is 1.0.

standalone

- Possible values are: 1 if the document was declared standalone,
0 if it was declared not to be standalone, or -1 if the standalone
clause was omitted.

document type

- If the document lacks a document type declaration this attribute
will be None. If the document type was specified this attribute will
be a tuple with four values: the name, the system id, the public id
and a boolean that tells wether the document contains an internal
declaration subset.

root element

- An instance of the XML.Element class, the root of the DOM-like
tree that represents the XML data, and that we will study later
with more detail.

The API for the documents is rather simple:

get root element()

- Returns the root element.

traverse()

- A generator that traverses the XML tree in pre-order, and returns
each time a node. It is a shorthand for root element.traverse().

traverse2()

- A more powerful version of traverse. It is a shorthand for
root element.traverse2().

8.3.1 Inspecting the tree

Coming back to the example, the examples/hello.xml file’s content is:

<?xml version="1.0" encoding="UTF-8"?>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Hello world</title>

<!-- Changed by: , 02-Jun-2004 -->

</head>

<body>

</body>

</html>

The method traverse lets us to easily inspect the tree nodes:

>>> for node in doc.traverse():

... print repr(node)

...

<itools.xml.XML.Element object at 0xb7a3316c>

8.3. DOCUMENTS 51

u’\n ’

<itools.xml.XML.Element object at 0xb7a331ac>

u’\n ’

<itools.xml.XML.Element object at 0xb7a332ac>

u’\n ’

<itools.xml.XML.Element object at 0xb7a331ec>

u’Hello world’

u’\n ’

<itools.xml.XML.Comment object at 0xb7a335cc>

u’\n ’

u’\n ’

<itools.xml.XML.Element object at 0xb798574c>

u’\n ’

u’\n’

Here we see the three kind of nodes currently supported: elements, comments
and text nodes.

8.3.2 Elements

Of the three kinds of nodes, elements are the most important and complex.
Element nodes give the tree structure, as they are the only ones that may have
children. If you inspect an element you will see the following attributes:

namespace

- The XML namespace of the element (it will be None for a bare
element).

prefix

- The prefix used for the element’s XML namespace.

name

- The name of the element.

attributes

- A dictionary mapping from the tuple XML namespace and local
name to the attributes value.

prefixes

- A mapping from XML namespace to prefix (used to get the qual-
ified name of an attribute).

children

- A list with the children of the element (elements, comments and
text nodes).

And here is the API:

52 CHAPTER 8. EXTENSIBLE MARKUP LANGUAGE

get qname()

- Returns the qualified name of the element.

copy()

- Returns a clone of the element.

set attribute(namespace, local name, value, prefix=None)

- Sets the given attribute.

get attribute(namespace, local name)

- Returns the attribute value for the given XML namespace and
local name.

has attribute(namespace, local name)

- Returns a boolean value, true if the element contains a value for
the given XML namespace and local name, false otherwise.

get attributes() - Is a generator that returns a three value tuple
each time, the values are: XML namespace uri, local name, value.

get attribute qname(namespace, local name)

- Returns the qualified name for the given XML namespace and
local name.

set element(element)

- Appends the given element to the list of children.

set comment(comment)

- Appends the given comment to the list of children.

set text(text)

- Appends the given text node (a unicode value) to the list of
children.

get elements(name=None)

- Returns a list with all the element nodes whose name is the given
name; if the parameter name is not given, then return all the ele-
ment nodes.

traverse()

- A generator that traverses the element’s children in pre-order,
and returns each time a node.

traverse2()

- A more powerful version of traverse.

8.4 XHTML

To finish the chapter we are going to give a glance to the implementation of
XHTML provided by itools.xhtml.

To drive the explanation here is the document source we will use as example
(see examples/hello.xhtml):

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

8.4. XHTML 53

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Hello world</title>

<!-- Changed by: , 02-Jun-2004 -->

</head>

<body>

</body>

</html>

The only two differences between this file and the example we saw at the
beginning (examples/chapter8/hello.xml) are the document type declaration
and the XML namespace declaration. The result is get handler returns an
XHTML document instead of an XML document:

>>> doc = get_handler(’examples/hello.xhtml’)

>>> doc

<itools.xhtml.XHTML.Document object at 0xb7a2ec4c>

>>>

>>> for node in doc.traverse():

... print repr(node)

...

<itools.xhtml.XHTML.BlockElement object at 0xb79884ec>

u’\n ’

<itools.xhtml.XHTML.HeadElement object at 0xb798852c>

u’\n \n ’

<itools.xhtml.XHTML.BlockElement object at 0xb79885ac>

u’Hello world’

u’\n ’

<itools.xml.XML.Comment object at 0xb798856c>

u’\n ’

u’\n ’

<itools.xhtml.XHTML.BlockElement object at 0xb798858c>

u’\n ’

u’\n’

Now, the element nodes are not any more instances of XML.Element, but
instances of XHTML.Element, which extends the generic API with the methods:

is inline()

- Returns True if the element is an inline element, False otherwise.

is block()

- Returns True if the element is a block element, False otherwise.

Ok, not too much4, but enough to give an idea of the power of itools.xml.
In the next chapter we will see a much more compelling example of what can
be done with itools.xml, the Simple Template Language.

4These two methods, is inline and is block, are actually really useful. They are used
by the message extraction algorithm, a fundamental brick of the internationalization and
localization services provided by itools.

54 CHAPTER 8. EXTENSIBLE MARKUP LANGUAGE

Chapter 9

Simple Template Language

STL is a template language. It is implemented as an XML namespace handler,
taking advantage of the underlying infrastructure provided by itools.xml.

STL process and transforms XML files. It is aimed at presentation, for
example to produce the web pages that make up the user interface of a web
application.

9.1 A descriptive language

Unlike other template languages in the Python world, STL does not mix Python
code within the template. The STL statements only describe the transforma-
tions to be performed on the template.

This way the logic and the presentation are really separated.
There are always two sides: the template, which represents the presentation

side; and the namespace, the logic side.
In five words: STL is a descriptive language.

9.1.1 The template

For example, look at the template below (examples/chapter9/template.xml):

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:stl="http://xml.itools.org/namespaces/stl">

<head></head>

<body>

<h1 stl:content="title" />

</body>

</html>

Note the declaration of the stl namespace, it is mandatory.
When this template will be processed, the content of the <h1> tag will be

replaced by the value of the variable title. But, where will we find title?
Solution: in the namespace.

55

56 CHAPTER 9. SIMPLE TEMPLATE LANGUAGE

9.1.2 The namespace

In order to process an STL template, you need to pass it a Python namespace
(a dictionary for example). But first we have to load the template as a handler:

>>> from itools.handlers import get_handler

>>> from itools import xml

>>>

>>> template = get_handler(’template.xml’)

>>>

>>> template

<itools.xml.XML.Document object at 0x405ea38c>

Note that so far nothing delates the STL presence, but inspecting the
template object shows that the stl namespace handler has been loaded:

>>> template.stl

<itools.xml.STL.STL object at 0x406516cc>

Ok, it is time to build the namespace and process the template:

>>> namespace = {’title’: ’hello world’}

>>> print template.stl(namespace)

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns:stl="http://xml.itools.org/namespaces/stl"

xmlns="http://www.w3.org/1999/xhtml">

<head></head>

<body>

<h1>hello world</h1>

</body>

</html>

As this example shows, the value of the variable title is looked within the
namespace passed as parameter to template.stl.

9.2 Example: Task Tracker

Now we are going to illustrate STL with a more complex example. Building up
on the Task Tracker from the Chapter 6, we are going to write a method that
produces an HTML page showing all the tasks.

First, the template (see examples/chapter9/TaskTracker view.xml):

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:stl="http://xml.itools.org/namespaces/stl">

<head></head>

<body>

<h2>Task Tracker</h2>

9.2. EXAMPLE: TASK TRACKER 57

<div stl:repeat="task tasks">

<h4>

#<stl:block content="task/id" />:

<stl:block content="task/title" />

(<em stl:content="task/state" />)

</h4>

<p stl:content="task/description" />

</div>

</body>

</html>

The first new thing this example shows is the repeat statement. While
stl:content expects a string as the value, stl:repeat expects a sequence.
When this template is processed, the XML output will contain as many <div>

elements as tasks are in the tasks variable. Within the div element, in each
iteration over the tasks sequence, the variable task will be the respective item
of the list.

The second new thing we see is the <stl:block> element. When the tem-
plate is processed the <stl:block> tags are automatically removed.

Finally, look at the expression task/id or task/title, it shows the slash

operator, which lets to traverse namespaces. So the variable task is expected
to be a mapping (e.g. a dictionary), and id a key in that mapping, whose value
is a string.

The Python side

Now let’s see the Python code (see examples/chapter9/TaskTracker.py). Ba-
sically we have added the method view to the class TaskTracker:

def view(self):

Load the STL template

handler = get_handler(’TaskTracker_view.xml’)

Build the namespace

namespace = {}

namespace[’tasks’] = []

for i, task in enumerate(self.state.tasks):

namespace[’tasks’].append({’id’: i,

’title’: task.title,

’description’: task.description,

’state’: task.state,

’is_open’: task.state == ’open’})

Process the template and return the output

return handler.stl(namespace)

To try the code run the Python interpreter and type:

>>> from itools.handlers import get_handler

>>> import TaskTracker

>>>

>>> task_tracker = get_handler(’itools.tt’)

>>> print task_tracker.view()

58 CHAPTER 9. SIMPLE TEMPLATE LANGUAGE

Figure 9.1: The task tracker view

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns:stl="http://xml.itools.org/namespaces/stl"

xmlns="http://www.w3.org/1999/xhtml">

<head></head>

<body>

<h2>Task Tracker</h2>

<div>

<h4>

#0:

Re-write the chapter about writing handler classes.

(closed)

</h4>

<p>A new chapter...

The Figure 9.1 shows how the HTML looks with a browser.

9.3 Language overview

So far we have seen stl:content and stl:repeat. Below is the summary with
all the STL statements:

9.3. LANGUAGE OVERVIEW 59

content=“expression”
- Replaces the element’s content by the result of evaluating the
given STL expression.

attributes=“name expression[; name expression]*”
- For every pair “name: expression”, replace the the value of the
attribute name by the result of evaluating expression.

if=“[not]expression”
- If the given expression evaluates to True, do nothing; if evaluates
to False, remove the XML element.

repeat=“name expression”
- The given expression is expected to be a sequence or an iterator.
For every item in expression, create an element and add the item
to the namespace stack before processing the element.

9.3.1 Expressions

The STL expressions are pretty simple, their syntax is:

name[/name]*

That is, a sequence of names separated by slashes. The semantics is:

1. Look the first name in the namespace stack.

2. If there are more names left, the last value found must be a namespace,
then look the next name in that namespace.

Iterate until the last name is consumed.

3. Once the end of the sequence is reached, we will have a value. If the value
is callable, then call it to get a new value.

4. Finally, we should have a value that is either a string, a boolean or a
sequence, depending on which statement (content, repeat, etc.) the
expression is being used with.

60 CHAPTER 9. SIMPLE TEMPLATE LANGUAGE

Chapter 10

Internationalization and

Localization

The task tracker from the previous chapter provides a user interface in only one
language. The purpose of this chapter is to explain how to build applications
that provide a user interface in many languages. We will illustrate this building
up on the task tracker example.

See the file layout of the already multilingual task tracker:

Makefile

TaskTracker.py

TaskTracker_view.xml.en

locale/

locale.pot

en.po

es.po

There are two things to note. First the locale directory: it is a database
which keeps the translations for the text messages of the user interface. The
translations are stored in PO1 files, one per language; in our example there is
one for English (en.po) and another for Spanish (es.po). Each PO file keeps
the source messages, usually written in English, and their translations (because
the source language is English, the en.po file will be usually empty).

The second thing to note is the Makefile, it will help us to automatize the
localization and build processes. The Figure 10.1 shows these two processes.

10.1 Internationalization

Internationalization:

the operation by which a program, or a set of programs turned into

a package, is made aware of and able to support multiple languages.

This is to say, if you have a monolingual product like the task tracker from the
previous chapter, you will need to make some changes to the code, so it becomes

1XXX

61

62 CHAPTER 10. INTERNATIONALIZATION AND LOCALIZATION

Figure 10.1: The localization process

able to deal with multiple languages. This process is called internationalization.
Of course, you may also write international software since the beginning.

The text messages to translate are stored in the XML templates and the
Python code, so these are the two things to internationalize.

10.1.1 Python code

To start, our task tracker must be domain aware:

from itools.gettext.domains import DomainAware

class TaskTracker(Text, DomainAware):

class_mimetypes = [’text/x-task-tracker’]

class_domain = ’task tracker’

We use here the word domain because it is standard in the internationaliza-
tion jargon. Here by a domain we understand a database that keeps message
translations for one or more languages. A domain aware class is one that is
implicitly associated to a domain and has an API to access that domain.

Every application and library will have a unique domain name, this will
allow us to explicitly refer to a given domain to retrieve translations from it.
The domain name is specified with the class variable class domain.

By the way, we need to register the domain:

from itools import get_abspath

from itools.gettext.domains import register_domain

10.1. INTERNATIONALIZATION 63

domain_path = get_abspath(globals(), ’../locale’)

register_domain(TaskTracker.class_domain, domain_path)

The class DomainAware provides the application programming interface we
will use within the Python code:

get languages()

- Returns a list with the language codes of our application. By
default it is not implemented, so it must be overriden by subclasses.

select language(languages=None)

- Chooses and returns a language from the given list of languages.
If the languages are not given, the method get languages will be
called to get them. The default implementation uses the environ-
ment variable LANGUAGE.

gettext(message, language=None, domain=None)

- Returns the translation for the given message in the given lan-
guage, from the given domain. If there is not a translation the
input message is returned. If no language is given the method
select language will be called to choose one from the languages
available in the domain. By default the domain used is the one
specified in the class variable class domain.

Now we just need to replace every text string in the source code by a call to
gettext, e.g u’hello’ becomes self.gettext(u’hello’). In our example it
would be:

def show_open_tasks(self):

for id, task in enumerate(self.state.tasks):

if task.state == ’open’:

print self.gettext(u’Task #%(id)d: %(title)s’) \

% {’id’: id, ’title’: task.title}

...

Note that we have used named arguments for the formatted string instead
of positional arguments. This is because the position of the arguments may be
different in another language.

10.1.2 Templates

The technique we use with itools requires to have one template per language,
being English the master language. Each template must have a distinct name,
we will achieve it by appending the language code to the end of the file:

TaskTracker_view.xml.en

TaskTracker_view.xml.es

Note that only the template in English belongs to the source, the others will
be automatically built with the help of itools.

Now we are going to make some changes to the TaskTracker class. First we
must override the method get languages:

64 CHAPTER 10. INTERNATIONALIZATION AND LOCALIZATION

def get_languages(self):

return [’en’, ’es’]

These are the languages of our task tracker, English and Spanish. Now we
must modify the view method to choose the right template:

def view(self):

Load the STL template

language = self.select_language()

handler = get_handler(’TaskTracker_view.xml.%s’ % language)

...

10.2 Localization

Localization:

the operation by which, in a set of programs already international-

ized, one gives the program all needed information so that it can

adapt itself to handle its input and output in a fashion which is cor-

rect for some native language and cultural habits.

The source is ready, now starts the localization process, it consists of two
steps:

1. Message extraction.

2. Human translation.

10.2.1 Message extraction

This step consists on the parsing of the source code, the extraction of the trans-
latable messages they contain, and the building of a PO file which will be the
input for the human translator.

This is done with the GNU gettext2 tools, which are the standard in the
Free Software world for software internationalization and localization; and the
script igettext.py provided by itools.

But the process is automatized by the Makefile so the only thing we need
to do is to type:

$ make po

This will parse the Python and XHTML source and update the PO files
within the locale directory. See below an excerpt:

#: TaskTracker.py:117

#, python-format

msgid "Task #%(id)d: %(title)s"

msgstr ""

#: TaskTracker_view.xml.en:0

msgid "Task Tracker"

msgstr ""

2http://www.gnu.org/software/gettext/

10.3. BUILD 65

Marking messages

The message extraction script will pick all text strings3 from the Python source,
and all text nodes from the source templates. Then it will split the messages
into sentences, a process known as segmentation, it will be these sentences which
will feed the message catalog.

This means that no explicit markup is required to signal a text string as
translatable. This way we reduce the burden on the developer, who just needs
to remember to use Python unicode strings for text, i.e. to type:

u’Hello world.’

instead of:

’Hello world.’

For the templates, the only rule is to write them properly. In particular, to
use block elements as block elements, and inline elements as inline elements.

10.2.2 Human translation

The human translator receives the PO file, and must return the same PO file,
but including the translations for every message. In our example the output
should be:

#: TaskTracker.py:117

#, python-format

msgid "Task #%(id)d: %(title)s"

msgstr "Tarea #%(id)d: %(title)s"

#: TaskTracker_view.xml.en:0

msgid "Task Tracker"

msgstr "Gestor de tareas"

To do this work the translator don’t needs to understand the file format,
there are graphical tools available to do the job like:

• KBabel, http://www.kde.org

• poedit, http://poedit.sourceforge.net

10.3 Build

To close the process, we must generate the translated templates (TaskTracker view.xml.es)
and the MO files (en.mo, es.mo) that will be used in runtime by the gettext

method.
To build the templates from the master template (TaskTracker view.xml.en)

and from the translated PO file (es.po), is done with the script igettext.py:

$ igettext.py --xhtml addressbook_view.xml.en es.po \

> addressbook_view.xml.es

3Text strings are most often known as unicode strings in Python.

66 CHAPTER 10. INTERNATIONALIZATION AND LOCALIZATION

The MO file is a binary version of the PO file, and is built with the msgfmt

tool.
But, again, the process is automatized by the Makefile, so the only thing

we need to do is to type:

$ make bin

igettext.py --output=TaskTracker_view.xml.es \

--xhtml TaskTracker_view.xml.en locale/es.po

msgfmt locale/en.po -o locale/en.mo

msgfmt locale/es.po -o locale/es.mo

touch bin

And voilà.

Chapter 11

Addendum

This documentation is work in progress. It has covered only about half the
packages provided by itools. It remains to look at the workflow engine from
itools.workflow and the index and search possibilities offered by itools.catalog.

And the topics we have talked about have only been exposed on the surface.
The API provided by the different classes is actually bigger than what this
document shows. The examples are minimal, and leave most possibilities to the
reader’s imagination. We haven’t seen all the available handlers in detail.

Anyway, I hope you have found these tools interesting enough to get a closer
look.

If you didn’t, I have still a few words to add.

11.1 In the real world

In spite of the youth of itools (version 0.5 at the time of this writing), it is
already being used in real production projects. Specially, it is the foundation of
the iKaaro1 Content Management System.

Some of the advantages it provides include:

• The whole web site data is stored as a tree of human readable files, instead
of opaque persistent Python objects. It is possible to export a web site to
the file system, to inspect and manipulate the tree, to make a tarball, to
import it back to the ZODB.

• This approach encourages the use of standards, every time we need a new
feature we look first if there is already a standard file format. The result is
a highly portable, standards compliant application, easy to interact with
other applications.

• It is possible to seamlessly integrate content from foreign sources and to
make it appear as if they were in our web site. We are just at the surface
of the possibilities.

But the most important, it provides a simple, high-productive framework to
build our applications on, to reduce the development time to the minimum.

1http://www.ikaaro.org

67

68 CHAPTER 11. ADDENDUM

11.2 Future works

Some of the stuff waiting on the pipe. . .

• Schemas. Not only for XML documents (XML Schema2 support is on the
works), but also other handlers, specially folders.

• Many handlers for standard file formats: iCal, vCard, TMX, XLIFF, etc.

• Make itools.uri 100% compliant with the RFC2396, maybe write a
Python Extension Proposal to get it in the Standard Library.

• Support for new schemes, protocols and storages for itools.resources.

• Add the last bricks to itools.i18n to get an engine able to power high
end translation memory systems.

11.3 Free Software

And, last but not least, itools is free software, released to the world under the
terms and conditions of the GNU Lesser General Public License3, developers
own the copyright of the code they write, contributions are very welcomed.

2http://www.w3.org/XML/Schema
3http://www.gnu.org/copyleft/lesser.html

Appendix A

Coding style guide

This chapter describes the coding conventions used to write itools. If you ever
contribute a patch to itools, be sure your code adheres to these rules.

Sometimes this guide contradicts the PEP 81 recommendations; in these
cases this guide applies, in the context of itools.

A.1 Language and encoding

Code must be written in english. The preferred encoding is UTF-8, though
others encodings are allowed.

A.2 Module structure

Each module is splitted in six sections:

1. encoding statement;

2. copyright notice;

3. license reference;

4. the module documentation string;

5. import statements;

6. the code itself.

Here we are going to describe the module’s header, made up of the first five
sections. The style for the code itself will described in the rest of this chapter.

The encoding

It is only requiered if it is any other encoding than ASCII. Example:

-*- coding: UTF-8 -*-

1http://www.python.org/peps/pep-0008.html

69

70 APPENDIX A. CODING STYLE GUIDE

The Copyright

After the encoding comes the copyright, whose structure is:

Copyright (C) <years> <author name> <email>

<years> <author name> <email>

...

The License

Right after the copyright statement comes a reference to the license. For itools
it is the LGPL.

The module’s documentation string

There should be a documentation string explaining what the module does
(though it is better to have none than a dummy one).

The explanation about how to write a documentation string is out of the
scope of this chapter, it is covered by the PEP 2572.

Imports

The imports statements are at the top of the file (just after the legal statements
and the module docstrings), though there may be imports within a function or
method to avoid circular references.

Imports should be grouped, with the order being:

1. standard library imports

2. itools imports

3. other package package imports

Every group should be preceded by an introductory comment, like:

Import from the Standard Library

...

Import from itools

...

A.2.1 Example

For example, at the time of this writting the module itools.handlers.Handler
starts by:

-*- coding: ISO-8859-1 -*-

Copyright (C) 2003-2004 Juan David Ibá~nez Palomar <jdavid@itaapy.com>

#

This library is free software; you can redistribute it and/or

modify it under the terms of the GNU Lesser General Public

License as published by the Free Software Foundation; either

version 2.1 of the License, or (at your option) any later version.

2http://www.python.org/peps/pep-0257.html

A.3. FORMAT RULES 71

#

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

#

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

"""

This module provides the abstract class which is the root in the

handler class hierarchy.

"""

Import from the Standard Library

import datetime

Import from itools

from itools import uri

from itools.resources import base

A.3 Format rules

Indentation: 4 spaces

Each indentation level must have four (4) spaces. Never use tabs.

Maximum line length: 80 characters

Lines should be 80 characters wide at most.
The preferred way of wrapping long lines is by using Python’s implied line

continuation inside parentheses, brackets and braces. If necessary, you can add
an extra pair of parentheses around an expression, but usually using a backslash
looks better. Make sure to indent the continued line appropriately.

One line, one statement

Don’t put more than one statement on the same line:

Good Bad

1 if x is True: if x is True: do something()

do something()

2 do one() do one(); do two(); do three()

do two()

do three()

3 def get area(x, y): def get area(x, y): return x * y

return x * y

72 APPENDIX A. CODING STYLE GUIDE

Blank lines

Separate classes with three blank lines. Separate methods and functions with
two blank lines. There is also a blank line between the class definition and the
first method definition.

Use blank lines in functions, sparingly, to indicate logical sections.

Whitespace in expressions and statements

Surround operators with one white space. Arithmetics operators may be the
exception, for them it is possible to use either one space or none, whatever reads
better. But never use more than one space.

Well, there is another exception, the sign “=” used in keyword arguments
should not be surrounded by spaces. Type Document(title="hello") instead
of Document(title = "hello").

Never add spaces neither before nor after parentheses, brackets or braces.
The only exception is for list comprehensions, where it is allowed to add a space
after the opening bracket, and another space before the closing bracket.

The comma and colon must be followed by a space (or a new line), but
never put a space before. The only exception is for one element tuples, where the
comma must be immediately followed by the closing parentheses. The semicolon
should never be used.

A.4 Comments

Comments must describe the code that follows them, and must be indented to
the same level of that code. Inline comments are not allowed; this is to say, a
comment always starts a new line.

A comment starts by a single # character followed by a space.
Comments must be written in good english (as good as the developer can

write it). This means, for example, that the first letter must be capitalized.

A.5 Naming conventions

The names of variables, classes, functions, methods and constants are written
with one or more english words. Most of the words used are nouns, verbs, and
adjectives.

Abbreviations may be used, but in general it is preferred the complete word,
for example, language instead of lang. When an abbreviation is not obvious,
its meaning should be explained with a comment.

The allowed naming conventions are three:

lower case with underscores All words are in lowercase and separated by an
underscore. This convention is used for variables, functions and methods.

UPPER CASE WITH UNDERSCORES All words are in uppercase and
separated by an underscore. Used only for constants.

CapitalizedWords All words start by an uppercase, with the rest of the word
in lowercase. Words are not separated by any character, the uppercase

A.5. NAMING CONVENTIONS 73

letters serve to visually distinguish when a new word starts. Used only for
classes.

A.5.1 Class names

Class names are written in capitalized words. Typically they are made of nouns
and/or adjectives.

A.5.2 Functions and methods

Functions and methods are written in lowercase with underscores.
They must start by a verb, and they should be followed by a complenent that

clearifies what the funciont does. For example, it is better to spell set object

than just set.

A.5.3 Variables

Variables are written in lowercase with underscores. Most of the time they are
nouns with or without adjectives.

One letter variables may be used in mathematical expressions, for sequence
indexes, or in comprehensive lists:

>>> public_handlers = [x for x in handlers if x.state == ’public’]

A.5.4 Constants

Constants are written in uppercase with underscores.

74 APPENDIX A. CODING STYLE GUIDE

Appendix B

GNU arch

A control version system is a tool that keeps track of changes made in the code,
when a change was made, by whom. It helps multiple developers to work on
the same project, to merge the different changes they made in the same code
base.

GNU arch1 (also known as tla) is a modern and advanced control version
system. It is the one we use to manage the itools source code.

There are many ways to work with tla, this appendix explains the one we
use for itools.

The exposition is organized in three sections that detail:

1. How to keep track of the development of itools.

2. How to maintain private changes.

3. How to contribute your changes back to the main development tree.

B.1 Keeping track of itools

You may want to have the last bleeding edge features from itools in your
system as soon as they are written, or to track how the development is going
on. Then this section is for you.

B.1.1 Browsing the sources

To browse the itools archive tree through the web, just go the url below:

http://in-girum.net/cgi-bin/archzoom.cgi/jdavid@itaapy.com--public

B.1.2 Check out

To check out itools from the archive you need to install tla. Most distributions
include it, for example, if you use Gentoo2 just type:

$ sudo emerge tla

Once tla is installed, follow the steps described below.

1http://www.gnu.org/software/gnu-arch/
2http://www.gentoo.org

75

76 APPENDIX B. GNU ARCH

Set your id

$ tla my-id "Toto Bonaparte <toto@example.com>"

$ tla my-id

Toto Bonaparte <toto@example.com>

Register the official itools archive

$ tla register-archive jdavid@itaapy.com--public \

http://in-girum.net/~jdavid/archives/public

$ tla archives

jdavid@itaapy.com--public

http://in-girum.net/~jdavid/archives/public

Check out itools

$ cd ~/sandboxes

$ tla get jdavid@itaapy.com--public/itools--main--0.6 itools-0.6

$ cd itools-0.6

$ tla tree-version

jdavid@itaapy.com--public/itools--main--0.6

B.1.3 A session with tla and itools

Now, whenever you want to see if something has changed in itools, just type:

$ cd ~/sandboxes/itools-0.6

$ tla missing --summary

patch-80

use Python’s documentation to profile the catalog

patch-81

fix XML error handling (hence better STL message errors)

The output shows the new patches available (if your code is up-to-date the
output will be empty). Say you want to apply the patches, type:

$ tla update

[...]

B.1.4 Help

The Table B.1 summarizes the tla commands seen in this section. To learn
about other commands use tla help, and for details about a command type:

$ tla <command> --help

B.2 Maintaining private changes

Now maybe you want to make some changes to itools. The wisest to do in
this situation is to create a branch of itools, this will let you to easily update
to the last version while keeping your changes.

The first step is to setup an archive (if you have already one you can skip to
the next subsection).

B.2. MAINTAINING PRIVATE CHANGES 77

tla my-id

- Print or change your id.

tla register-archive

- Change an archive location registration.

tla archives

- Report registered archives and their locations.

tla get

- Construct a project tree for a revision.

tla tree-version

- Print the default version for a project tree.

tla missing

- Print patches missing from a project tree.

tla update

- Update a project tree to reflect recent archived changes.

tla help

- Provide help with arch.

Table B.1: Basic tla commands

B.2.1 Create an archive

$ mkdir ~/{archives}

$ mkdir ~/{archives}/public

$ tla make-archive toto@example.com--public ~/{archives}/public

$ tla archives

jdavid@itaapy.com--public

http://in-girum.net/~jdavid/archives/public

toto@example.com--public

/home/toto/{archives}/public

Make it your default archive:

$ tla my-default-archive toto@example.com--public

$ tla my-default-archive

toto@example.com--public

B.2.2 Create a branch

With your own archive, it is time to create a branch of itools:

$ tla tag -S jdavid@itaapy.com--public/itools--main--0.6 itools--toto--0.6

* creating category toto@example.com--public/itools

* creating branch toto@example.com--public/itools--toto

* creating version toto@example.com--public/itools--toto--0.6

* Archive caching revision

So now you can replace the check-out from the main tree with a one from
your own branch:

78 APPENDIX B. GNU ARCH

$ cd ~/sandboxes

$ rm -rf itools-0.6

$ tla get toto@example.com--public/itools--toto--0.6 itools-0.6

$ cd itools-0.6

$ tla tree-version

toto@example.com--public/itools--toto--0.6

B.2.3 Working with your branch

So, now you modify itools to add a new feature. Every change made to a
file will be automatically detected by tla, but if your work includes new files or
directories, or you have removed, renamed or moved a file or a directory, then
you must tell tla about these changes, to do so use the commands below:

$ tla add <filename>

[...]

$ tla delete <filename>

[...]

$ tla move <old filename> <new filename>

[...]

Maybe you forgot to add a file, before committing is a very good idea to
verify it with the command tree-lint:

$ tla tree-lint

[...]

This command looks at your project tree and tells you about files suspected
to be source code that have non been added yet.

Ok, so you have finished working on this new cool feature and are willing to
check it in your branch of itools. First, verify what you have changed:

$ tla changes

[...]

This command shows which files (and folders) have been modified, removed,
added or moved. For a more detailed description, try:

$ tla changes --diffs | less

Take your time to examine the changes, maybe you forgot to remove a print
statement? a close look at the output of tla changes --diffs will tell you.

Once you are sure everything is alright, it came the time to commit. First
you have to write a log message:

$ vi ‘tla make-log‘

Within the editor, you should introduce a title that describes the changes
you have done, and optionally a longer description. Once you are done, left the
editor and type:

$ tla commit

$ tla revisions

[...]

patch-1

add feature XXX

B.3. CONTRIBUTING YOUR WORK TO THE MAIN TREE 79

B.2.4 Merging from the main branch

Ok, so now the upstream version of itools is modified, how to merge the
changes in your tree? easy:

$ cd ~/sandboxes/itools-0.6

$ tla star-merge -t jdavid@itaapy.com--public/itools--main--0.6

[...]

Beware, there may be conflicts that you must resolve.
Now, your project tree contains the changes from the upstream archive, you

must commit them in your own archive. The log is written automatically by
typing:

$ tla log-for-merge >> ‘tla make-log‘

$ vi ‘tla make-log‘

Within the editor there will be a description detailing the patchs that have
been applied. So you just have to add the subject, something like “merging
from the main tree”. Once this is done just commit as usual:

$ tla commit

Summary

See the Table B.2 for a summary of the tla commands seen in this section.

B.3 Contributing your work to the main tree

To contribute your changes back to the main development branch you must
make your branch available through internet. We assume the archive you have
set-up is your local computer, so you have to create a mirror of your archive
from your local computer to an internet server:

$ tla make-archive --listing --mirror toto@example.com--public \

sftp://example.com/home/toto/{archives}/public

You must be sure your mirror can be accessed through an internet protocol,
like HTTP or FTP. So other developers will be able to merge from your branch.

Now, whenever you make and commit a change, to share that change with
the community, you have to synchronize your mirror:

$ tla archive-mirror

[...]

See the Table B.3 for a summary of the commands seen in this section.

80 APPENDIX B. GNU ARCH

tla make-archive

- Create a new archive directory.

tla my-default-archive

- Print or change your default archive.

tla tag

- Create a continuation revision (aka tag or branch).

tla add

- Add an explicit inventory id.

tla delete

- Remove an explicit inventory id.

tla move

- Move an explicit inventory id.

tla tree-lint

- Audit a source tree.

tla changes

- Report about local changes in a project tree.

tla make-log

- Initialize a new log file entry.

tla commit

- Archive a changeset-based revision.

tla revisions

- List the revisions in an archive version.

tla star-merge

- Merge mutually merged branches.

tla log-for-merge

- Generate a log entry body for a merge.

Table B.2: Maintaining private changes: summary

tla archive-mirror

- Update an archive mirror.

Table B.3: Maintaining private changes: summary

Index

URI, 11

81

