
itools

Juan David Ibáñez Palomar1

jdavid@itaapy.com

January 3, 2005

1Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later ver-
sion published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. There is a copy of the license at
http://www.gnu.org/copyleft/fdl.html

Contents

1 Introduction 4

1.1 What is itools? . 4
1.1.1 The resource-handler model 5
1.1.2 eXtensible Markup Language 5
1.1.3 The Simple Template Language 6
1.1.4 Workflow . 6
1.1.5 Internationalization and Localization 6
1.1.6 Index and Search . 6

1.2 Who is this document for? . 6
1.3 Project status . 7
1.4 Installation . 7
1.5 About this document . 7

2 Uniform Resource Identifiers 8

2.1 Syntax . 9
2.1.1 Generic URIs . 9
2.1.2 Non Generic URIs . 10

2.2 Relative references . 10
2.2.1 Resolving references . 11

2.3 Paths . 11

3 Resources 13

3.1 Retrieving resources . 13
3.2 File Resources . 14
3.3 Folder Resources . 15
3.4 Supported schemes . 17

3.4.1 The memory storage . 17

4 File handlers 18

4.1 Introduction . 18
4.1.1 One resource, many handlers 19
4.1.2 Load . 19
4.1.3 Save . 20
4.1.4 Serialization and de-serialization 20

4.2 The skeleton . 21
4.3 Text and binary handlers . 22
4.4 Overview of the available handlers 22
4.5 The handler factory . 25

1

4.5.1 The get handler shorthand 26

5 Folder handlers 27

5.1 The handler tree . 28

6 eXtensible Markup Language 30

6.1 XML.Document . 30
6.1.1 XML.Element . 31

6.2 Namespaces . 32

7 Simple Template Language 34

7.1 A descriptive language . 34
7.1.1 The template . 34
7.1.2 The namespace . 35

7.2 Example: an addressbook . 35
7.3 Language overview . 37

7.3.1 Expressions . 38

8 Writing handler classes 39

8.1 Step by step . 39
8.2 Example: Addressbook . 40

8.2.1 Load and Save . 40

9 Internationalization and Localization 44

9.1 Internationalization . 44
9.1.1 Naming conventions . 44
9.1.2 Template selection . 45

9.2 Localization . 45
9.2.1 Message extraction . 46

9.3 Human translation . 47
9.4 Template building . 47

10 Addendum 48

10.1 In the real world . 48
10.2 Future works . 49
10.3 Free Software . 49

A Coding style guide 50

A.1 Language and encoding . 50
A.2 Module structure . 50

A.2.1 Example . 51
A.3 Format rules . 52
A.4 Comments . 53
A.5 Naming conventions . 53

A.5.1 Class names . 54
A.5.2 Functions and methods 54
A.5.3 Variables . 54
A.5.4 Constants . 54

2

B GNU arch 55

B.1 Keeping track of itools . 55
B.1.1 Browsing the sources . 55
B.1.2 Check out . 55
B.1.3 A session with tla and itools 56
B.1.4 Help . 56

B.2 Maintaining private changes . 56
B.2.1 Create an archive . 57
B.2.2 Create a branch . 57
B.2.3 Working with your branch 58
B.2.4 Merging from the main branch 59

B.3 Contributing your work to the main tree 59

3

Chapter 1

Introduction

This paper is the official documentation of itools.

1.1 What is itools?

itools is a Python1 package. Originally it was intended to develop web appli-
cations, but being low level stuff it is likely to be found useful in other contexts.

It consists of a collection of sub-packages and modules which makes up a
coherent set of tools for the developer. A summary of these tools follows:

• itools.uri – an API to manage URIs, to identify and locate resources.

• itools.resources – an abstraction layer over resources that lets to man-
age them with a consistent API, independently of where they are stored.

• itools.handlers – resource handlers infrastructure (resource handlers
are non persistent classes that add specific semantics to resources). This
package also includes several handlers out of the box.

• itools.xml – XML infrastructure, includes resource handlers for XML,
XHTML and HTML documents. Plus the Simple Template Language.

• itools.i18n – tools for language negotiation and text segmentation.

• itools.workflow – represent workflows as automatons, objects can move
from one state to another through transitions, classes can add specific
semantics to states and transitions.

• itools.catalog – An index and search engine.

One of the criterias behind the itools architecture is to reduce the depen-
dencies between the different modules to the minumum, what makes up a flexible
set of tools. Think of it as an extension to the Python’s Standard Library.

1http://www.python.org

4

1.1.1 The resource-handler model

Of everything in itools I am probably most proud of the the three sub-packages
itools.uri, itools.resources and itools.handlers, which make up what
I call the resource-handler model.

There is a linear relationship of dependency between these modules, uri

depends on nothing but Python, resources depends on uri, and handlers

depends on resources.
This allows to use these modules on a flexible way. For example, you can

just use itools.uri (ignoring the others) to benefit from a higher level API to
work with URIs than that provided by the Standard Library (urlparse).

Or you may use itools.resources if you want to benefit from an abstrac-
tion layer over the storage. This is to say, if you want to be able to manipulate
many resources stored in different systems and accessed through different pro-
tocols with the same, consistent, rich API.

You may even take advantage of itools.handlers without fully under-
standing the model behind. For example, you could use some of the handlers
itools offers out-of-the-box for standard file formats like CSV, PO or XHTML,
to simplify your live if you ever need to work with one of these formats.

But, in order to exploit everything itools has to offer to its limit, you
may choose to base part or all of your application architecture on the resource-

handler model, a model heavily influenced by the filesystem and the Web. In this
situation the three packages (uri, resources and handlers) show themselves
as three different components with a distinct role in the architecture:

• itools.uri identifies and locates resources, wherever they are. Altogether
with itools.resources it effectively enables your information system to
be distributed through an heterogeneous base.

• itools.resources provides persistency to your data, this is to say, re-
sources are where the data is stored.

• and itools.handlers is where the logic lives. The essential characteristic
of a resource handler (or handler for short) is that it is non-persistent,
instead it is associated with a resource, whose content it is responsible to
manage.

The first chapters of this document will cover these sub-packages, itools.uri,
itools.resources and itools.handlers with detail.

1.1.2 eXtensible Markup Language

The itools.xml package depends on itools.handlers, this is its first advan-
tage. It represents an XML document as an DOM like tree. But it also provides
support for schemas, what allows to easily build higher level data structures.

The package also provides handlers for specific document types out-of-the-
box, most notably XHTML and HTML (even if HTML is not XML, it shares a
lot with XHTML).

5

1.1.3 The Simple Template Language

The Simple Template Language is included in the itools.xml package, but it
is important enough to deserve its own chapter in the documentation.

Its design goals are:

• Truly separate logic and presentation. Even Python expressions are not
allowed within the template.

• Really simple. It can be mastered in half a day.

• Damn fast (easy to achieve through simplicity).

• Secure. Even non-trusted users could write templates without risk, be-
cause code is not allowed within the template.

And the key idea behind, is to make it a descriptive language.

1.1.4 Workflow

The sub-package itools.workflow (once known as flux) is the oldest code in
itools. It does not depend on anything but the Standard Library, and don’t
puts any restriction on the storage. This makes it very easy to combine with
other frameworks.

There is a chapter exclusively dedicated to it.

1.1.5 Internationalization and Localization

The itools.i18n package provides a wide range of tools for internationalization
and localization of both software and data. From message extraction to language
negotiation, through text segmentation, fuzzy matching or algorithms to guess
the language a text is written in.

A chapter is devoted to this topic.

1.1.6 Index and Search

The itools.catalog sub-package provides an index and search engine. Though
still young, it already provides full text indexing, boolean queries and results
sorted by weight.

1.2 Who is this document for?

This document is addressed to Python developers. Though it may be useful
to software architects in general, as some ideas exposed here could be found
interesting2.

It is convenient to have some basic skills with the Python programming
language to fully understand this document. Probably the best introduction to
Python is the official tutorial:

http://python.org/doc/2.3.4/tut/tut.html.

2For example, itools.workflow inspired XXX to write a similar engine in Java, see
http://XXX

6

This document touches many different technologies and standards, such as
XML. References will be given in the relevant chapters.

1.3 Project status

Currently itools is in alpha stage of development (at the time of this writing
the last version available is 0.5). This means that the API is not yet stable, the
documentation is incomplete, and there may be bugs.

However, we have been using it on a daily basis for a long time now. It fuels
the iKaaro3 Content Management System, and most of our customer projects.

1.4 Installation

Before going further, be sure your system is correctly setup. First you will need
Python 2.3.4 or later.

Then download the last itools version from http://www.ikaaro.org, un-
pack it somewhere, and install it; itools uses distutils, so just type:

$ python setup.py install

Be sure to have the right permissions.

1.5 About this document

The development keeps ahead of the documentation. I would say the docs cover
around 60% of itools.

There are also two appendixes, one explaining the coding style itools is
written in, another one introducing the use of GNU arch. Both are specially
addressed to those that want to contribute back to the main tree.

3http://www.ikaaro.org

7

Chapter 2

Uniform Resource

Identifiers

In the wild Internet, the first challenge we encounter is how to identify and
locate the numerous resources that populate it. Well, that’s what Uniform
Resource Identifiers (or just URIs) are for.

The Python Standard Library (batteries included!) provides a module named
urlparse which is able to split a generic URI into its main parts (scheme, au-
thority, path, query and fragment), to rebuild it, and to resolve relative refer-
ences.

But there are more things we would like to do with a URI. For example we
could go further in the parsing process and split the path into its segments, then
split each segment into the name and the parameters if any; we could get the
user information, host address and port number from the authority; we could
normalize URIs; we could implement other operations beyond just resolving
relative references, etc.

This is the purpose of itools.uri, to provide a complete API to parse and
work with URIs, following the standard as described by RFC2396.

The main function provided by itools.uri is get reference, a factory to
build references:

get reference(reference)

- Parses the given string and returns a reference object.

Let’s go right to the code:

>>> from itools import uri

>>> r1 = uri.get_reference(’http://www.w3.org/TR/REC-xml/#sec-intro’)

>>> r2 = uri.get_reference(’mailto:jdavid@itaapy.com’)

>>> r3 = uri.get_reference(’http://www.ietf.org/rfc/rfc2616.txt’)

>>> r4 = uri.get_reference(’http://sf.net/cvs/?group_id=5470’)

>>> r5 = uri.get_reference(’news:comp.infosystems.www.servers.unix’)

8

2.1 Syntax

Before going further, we will give an overview of the URI syntax, something
required to understand the rest of this chapter.

A URI is divided in two parts. The first one is the scheme: http, ftp,
mailto, etc.. The syntax and semantics of the second part depends on the
scheme:

uri = <scheme>:<scheme-specific-part>

However, many schemes share a similar syntax for the second part, these
URIs are known as generic URIs.

2.1.1 Generic URIs

The syntax of a generic URI reference is:

<scheme>://<authority><absolute path>?<query>#<fragment>

Generic URIs are modeled by uri.Reference. Following the code at the
beginning, we are going to inspect the r1 object:

>>> r1

<itools.uri.Reference object at 0x403ebc4c>

>>> print r1

http://www.w3.org/TR/REC-xml/#sec-intro

>>> print r1.scheme

http

>>> print r1.authority

www.w3.org

>>> print r1.path

/TR/REC-xml/

>>> print r1.query

>>> print r1.fragment

sec-intro

Note that there is an attribute for every component: the scheme, the au-
thority, the path, the query and the fragment. Now we are going to quickly
describe each of these components:

Scheme Defines the method or protocol to access the resource.

Authority Defines the server address that hosts the resource. Its syntax is:

authority = [<userinfo>@]<hostport>

Absolute path The path identifies the resource within the scope of the scheme
and authority.

It consists of a sequence of segments. A segment has two parts, the name
and the parameters, though the parameters are optional. The syntax is:

9

absolute path = /<relative path>

relative path = <segment>[/<relative path>]

segment = <name>[;<parameters>]

Query The query is information to be interpreted by the resource. It does not
have a pre-defined syntax.

Fragment The fragment is a reference within the resource.

Actually, the fragment does not belong to the URI, as it does not help to
identify the resource, however we include it here because it does appears
in URI references, what is what we work with.

As the query, the fragment does not have a pre-defined syntax.

2.1.2 Non Generic URIs

Other schemes do not follow the generic syntax. As an example, let’s inspect
the r2 object seen before:

>>> r2 = uri.get_reference(’mailto:jdavid@itaapy.com’)

>>> print r2

mailto:jdavi@itaapy.com

>>> r2

<itools.uri.Mailto object at 0x403f45ec>

>>> print r2.scheme

mailto

>>> print r2.username

jdavid

>>> print r2.host

itaapy.com

As you see the r2 is not an instance of uri.Reference, but an instance of
uri.Mailto.

2.2 Relative references

So far the examples we have seen show absolute URIs, but there are relative
URI references too. A relative reference is one that lacks, at least, the scheme.
There are three types of of relative references: network paths, absolute paths,
and relative paths:

Network paths Network paths only lack the scheme, they start by a double
slash and the authority, followed by the absolute path. They are rarely
used.

//www.ietf.org/rfc/rfc2396.txt

Absolute paths The absolute paths lack both the scheme and the authority.
They start by a slash.

/rfc/rfc2396.txt

10

Relative paths Relative paths lack the first slash of absolute paths. They can
start by the special segment ”.”, or by one or more ”..”. Examples are:

rfc/rfc2396.txt

./rfc/rfc2396.txt

../rfc2616.txt

2.2.1 Resolving references

The most common operation with relative references is to resolve them. That is
to say, to obtain (with the help of a base reference) the absolute reference that
identifies our resource. This is achieved with the resolve method:

>>> base = uri.get_reference(’http://www.ietf.org/rfc/rfc2615.txt’)

>>> print base.resolve(’//www.ietf.org/rfc/rfc2396.txt’)

http://www.ietf.org/rfc/rfc2396.txt

>>> print base.resolve(’/rfc/rfc2396.txt’)

http://www.ietf.org/rfc/rfc2396.txt

>>> print base.resolve(’rfc2396.txt’)

http://www.ietf.org/rfc/rfc2396.txt

2.3 Paths

One component that deserves special attention is the path. The path of a generic
URI is an instance of the uri.Path class:

>>> ref = uri.get_reference(’http://www.ietf.org/rfc/rfc2616.txt’)

>>> ref.path

<itools.uri.Path at 0x403f50a4>

>>> print ref.path

/rfc/rfc2616.txt

Paths are iterable:

>>> for segment in ref.path:

... print segment

...

rfc

rfc2616.txt

Each component of the path is called a segment. Segments are instances of
the class uri.Segment. Each segment has two components, the name and the
parameter. The code below illustrates this:

>>> path = uri.Path(’/itaapy;lang=es/team’)

>>> for segment in path:

... print repr(segment)

... print ’ name:’, segment.name

... print ’ param:’, segment.param

...

<itools.uri.Segment object at 0x404c1acc>

name: itaapy

param: lang=es

11

<itools.uri.Segment object at 0x404c1a2c>

name: team

param: None

The uri.Path class also provides an API to manipulate paths:

is absolute()

- Returns True if the path is absolute (i.e. if it starts by an slash),
False otherwise.

is relative()

- Returns True if the path is relative (i.e. if it does not start by a
slash), False otherwise.

get prefix(path)

- Returns the path that is common to self and to the given path.

resolve(path)

- Returns a new path from a base path (self) and the given path.
Follows the RFC2396 standard, i.e. takes into account the trailing
slash.

resolve2(path)

- Same as resolve, but it does not teke into account the trailing
slash.

get pathto(path)

- Returns the path needed to go from self to the given path (this
complements the resolve method).

get pathtoroot()

- Returns a relative path to the root (something like ../../..).

12

Chapter 3

Resources

In the previous chapter we have learned how to work with URIs, objects that
identify resources; but how to manipulate the resources themselves?

The problem we face now is the fact that the resources are dispersed, stored
in different systems, and accessed through different protocols. In spite of that,
it would be nice to be able to manipulate them with a uniform API.

That’s the purpose of itools.resources, to provide an abstraction layer
over resources: doesn’t matters where the resources are stored (in the local file
system, in a remote web server, etc.), they are handled with the same consistent
API.

3.1 Retrieving resources

Of course, the first step, before working with a resource, is to retrieve it, this is
done with the function get resource:

get resource(reference)

- From the given URI reference returns a resource object.

Let’s see a few examples:

>>> from itools.resources import get_resource

>>> get_resource(’examples/hello.txt’)

<itools.resources.file.File instance at 0x402175ac>

>>> get_resource(’http://example.com’)

<itools.resources.http.File instance at 0x404aadec>

>>> get_resource(’examples’)

<itools.resources.file.Folder instance at 0x401e568c>

These examples show two fundamental aspects of itools.resources which
we will explore on detail later. First is the support for multiple protocols, in
particular the example illustrates the schemes file for the local file system, and
http for the HyperText Transfer Protocol.

The second aspect is the support for two kinds of resources, files and folders.
Before looking at each type of resource, files and folders, let’s see the API they
share:

13

uri

- The URI reference the resource was retrieved from.

get mimetype()

- Tries to guess the mimetype of the resource and returns it as
a string. Folders are always application/x-not-regular-file.
Returns None if it fails.

get ctime()

- Returns a datetime object with the time the resource was cre-
ated.

get mtime()

- Returns a datetime object with the last time the resource was
modified.

get atime()

- Returns a datetime object with the last time the resource was
accessed.

It may happen that a specific scheme does not implements one or more of
these methods.

3.2 File Resources

Besides the common methods for files and folders, each resource type has a
specific API, the one for file resources is:

get data()

- Returns the resource data as a byte string.

set data(data)

- Replaces the resource content by the given data (a byte string).

get size()

- Returns the length (the number of bytes) of the resource data.

getitem (index)

- Returns the byte at the given position.

getslice (a, b)

- Returns the byte string that goes from a to b.

setitem (index, value)

- Sets the given value to the given position (index). Usually value
will be just a byte, but it may be a slice too.

append(data)

- Appends the given data to the resource.

As an example of the API let’s exercise it with a web page:

>>> resource = get_resource(’http://example.com’)

>>> print resource

<itools.resources.http.File instance at 0x404aadec>

>>> print resource.get_mimetype()

14

text/html

>>> print resource.get_size()

438

>>> print resource.get_data()

<HTML>

<HEAD>

<TITLE>Example Web Page</TITLE>

</HEAD>

<body>

<p>You have reached this web page by typing

...

Of course, in this example, we can not modify the resource as we don’t have
write access to the web server.

The methods getitem , setitem , etc. are specially useful to work with
binary files, as they allow to read and write data at specific positions within
a resource. These methods allow to access the resource with the same syntax
used to access lists in Python:

>>> import struct

>>> n = struct.pack(’>I’, 47)

>>> resource[20:24] = n

This brief example shows how to write the number 47 at the position 20 of
a given resource, encoded as an 32 bits unsigned integer.

For a real example you can look at itools.catalog, which makes extensive
and systematic use of this approach.

3.3 Folder Resources

The specific API for folders is:

15

get resource(path)

- Returns the resource in the given path (where path is either an
instance of uri.Path or a string).

get resource names(path=’.’)

- Returns a list with the names of all the resources in the given
path.

get resources(path=’.’)

- Returns the resources in the given path (it is a generator).

has resource(path)

- Returns True if there is a resource in the given path, False oth-
erwise.

set resource(path, resource)

- Adds the given resource to the given path.

del resource(path)

- Removes the resource at the given path.

del resources(paths)

- Removes the resources at the given paths (where paths is a list
of paths).

traverse()

- This method allows to traverse the resource tree below this folder.
It is a generator which returns a resource at a time, starting by this
folder.

Let’s exercise the API a little:

>>> examples = get_resource(’examples’)

>>> print examples.get_resource_names()

[’hello.xhtml~’, ’hello.xhtml’, ’hello.txt’, ’.arch-ids’]

>>> hello = examples.get_resource(’hello.txt’)

>>> print hello.get_data()

hello world

To copy a web page to the local file system:

>>> tmp = get_resource(’/tmp’)

>>> web_page = get_resource(’http://example.com’)

>>> tmp.set_resource(’example.html’, web_page)

>>> copy_of_web_page = tmp.get_resource(’example.html’)

>>> print web_page

<itools.resources.http.File instance at 0x405e8a2c>

>>> print copy_of_web_page

<itools.resources.file.File instance at 0x405fb64c>

To copy a whole tree:

>>> from pprint import pprint

>>> talks = get_resource(’/home/jdavid/talks’)

>>> tmp.set_resource(’talks’, talks)

>>> pprint(tmp.get_resource_names(’talks/EuroPython2004’))

[’itools-vfs’,

16

’Makefile’,

’itools-vfs.log’,

’itools-vfs.tex’,

’itools-vfs.aux’,

’itools-vfs.toc’,

’itools-vfs.dvi’,

’itools-vfs.ps’,

’itools-vfs.pdf’,

’itools-vfs.tex~’]

This is more impressive when copying a big tree from one storage to another.
For example we use it in the context of the iKaaro Content Management System
to export and import web sites from the Zope Object DataBase to the file
system, and back from the file system to the ZODB.

3.4 Supported schemes

At the time of this writing the number of supported schemes is pretty short:
itools.file for the file system, itools.http for the HTTP protocol (though
the implementation is minimal), and itools.memory to store resources in mem-
ory. The iKaaro CMS provides support to store resources in Zope 2.

3.4.1 The memory storage

The memory storage (itools.memory) deserves few lines as it is very handy. It
is possible to build a resource from scratch directly calling its constructor:

>>> from itools.resources import memory

>>> resource = memory.File(’hello world’)

>>> resource

<itools.resources.memory.File instance at 0x405e458c>

>>> resource.get_data()

’hello world’

>>> tmp.set_resource(’hello.txt’, resource)

This technique is used internally by resource handlers to build handler in-
stances without passing a resource. They are the object of our next section.

17

Chapter 4

File handlers

Resources provide persistence to our data, but they lack any knowledge about
the structure and the meaning of the information they contain. For example,
the resource layer ignores that an XML document has a tree structure, hence
it does not provide an API to traverse it; nor it knows how to get the messages
and translations from a PO file.

This is the purpose of the resource handlers, to add semantics to specific
resources.

As with resources, there are two types of handlers, files and folders. This first
chapter focuses on file handlers, the next one will analyze the folder handlers.

Several key concepts will be exposed in this chapter, the relationship between
resources and handlers, the load (de-serialization) and save (serialization) op-
erations, the handler skeleton, and the handler factory. We will learn to use
the file handlers itools offers out of the box, and how to write custom handler
classes.

4.1 Introduction

To get a feeling, let’s start with an example:

1. First we load a resource as seen in the previous chapter:

>>> from itools.resources import get_resource

>>> resource = get_resource(’http://example.com’)

2. Now we build a handler for the resource:

>>> from itools.xml import HTML

>>> handler = HTML.Document(resource)

>>> print handler

<itools.handlers.HTML.Document object at 0x40647b4c>

>>> print handler.to_str()

<HTML>

<HEAD>

<TITLE>Example Web Page</TITLE>

</HEAD>

<body>

18

<p>You have reached this web page by typing

...

There are several things to highlight here. First the way we have built our
handler instance, passing a resource to a handler class (HTML.Document),
later we will see other ways to build handler instances.

Second the to str method (all the file handlers have this method), which
serializes the handler, i.e. transforms the handler to a sequence of bytes.
This is a key concept to which we will come back later.

3. Now we can start working with the handler:

>>> from itools.xml import XML

>>> for node in handler.traverse():

... if isinstance(node, XML.Element) and node.name == ’title’:

... print node.children

Example Web Page

Unlike to str, the method traverse is specific to XML documents. Every
handler class provides its own API.

4.1.1 One resource, many handlers

The relationship between resources to handlers is 1 to n. While there may
be several different handlers associated to the same resource (though it is not
obvious how this is useful), a handler is only associated to one resource.

The resource associated to a handler is accessible through the resource

attribute. Following the example above, the code below checks that the resource
we loaded in the first place is exactly the same our handler is associated to:

>>> resource

<itools.resources.http.File instance at 0x404aadec>

>>> handler.resource

<itools.resources.http.File instance at 0x404aadec>

>>> resource is handler.resource

True

4.1.2 Load

It may happen that the resource (a web page in our example) gets updated,
then the handler will keep a data structure on memory that does not correspond
anymore to the content of the resource, in other words, the handler would be
out-of-date. We can check this by comparing the last modification time of the
resource with the timestamp every handler always keeps:

>>> print handler.resource.get_mtime()

2004-11-28 19:53:57

>>> print handler.timestamp

2004-12-29 19:31:39.055367

>>> handler.resource.get_mtime() > handler.timestamp

False

19

Ok, the example above shows everything is alright. But what to do if it was
not? then we would need to reload the resource, this is done with the load

method:

>>> print handler.timestamp

2004-12-29 19:31:39.055367

>>> handler.load()

>>> print handler.timestamp

2004-12-29 19:51:50.152499

You should try it yourself with a resource in the filesystem: start the Python
interpreter, build a handler for a resource in the filesystem, modify the resource
with another program, see how the resource modification time is more recent
than the handler’s timestamp, then reload the handler and verify the handler is
up-to-date now.

The full prototype of the method load follows:

load(resource=None)

- Loads the data from the given resource into the handler, if no
resource is given, the one the handler is attached to will be used.

As you see the load method accepts an optional parameter, a resource. If
it is not given the handler will be reloaded from the resource it handles. But
if other resource is passed it will be loaded from the given resource. Then we
would reach a situation opposite to the one seen before: the resource would be
outdated, as the handler would keep a newer version.

4.1.3 Save

Another way to get a handler more recent than the resource it is associated
with, is to modify the handler through the API it offers, which depends on the
handler class (e.g. the API of an XML handler is different from the API of an
image handler).

To update the resource so both resource and handler are in sync again we
use the save method:

save()

- Saves the handler into the resource.

So load and save are two sides of the same coin. The first one reloads
the handler with the resource, the second one saves the handler state in the
resource.

4.1.4 Serialization and de-serialization

A file resource represents a sequence of bytes. A handler keeps a data structure
in memory, and offers an API to inspect and modify this data structure.

Two key concepts in computer science will help to clarify what we have seen
up to now:

serialization is the process by which a sequence of bytes is transformed into a
data structure.

20

de-serialization is the process by which a data structure is transformed to a
sequence of bytes.

Now it becomes obvious that the load method what actually does is to de-
serialize the resource and update the handler. And viceversa, the save method
serializes the handler and updates the resource.

Remember the method to str we saw at the beginning? it is the one re-
sponsible for the serialization process. The save method calls to str first, and
then updates the resource.

4.2 The skeleton

As we have seen the handler constructor expects one parameter: the resource it
is meant to handle (and once the handler is built the resource is always accessible
with handler.resource).

However, it is also possible to build a handler without passing it any pa-
rameter; in this case a memory resource will be built on the fly, let’s see an
example:

>>> from itools.xml import HTML

>>> handler = HTML.Document()

>>> handler

<itools.handlers.HTML.Document object at 0x403ee12c>

>>> handler.resource

<itools.resources.memory.File instance at 0x40638e4c>

>>> print handler.to_str()

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta content="text/html; charset=UTF-8" http-equiv="Content-Type">

<title></title>

<body></body>

</head></html>

The default content of the resource depends on the handler, and it is called
the handler skeleton. The constructor also accepts arbitrary keyword parame-
ters:

>>> handler = HTML.Document(title=’Hello World’)

>>> print handler.to_str()

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

<meta content="text/html; charset=UTF-8" http-equiv="Content-Type">

<title>Hello World</title>

</head>

<body></body>

</html>

The keyword parameters are used to initialize the skeleton; in the example
above the title parameter defines the HTML document title, which by default
is empty. The parameters accepted depend on the handler.

21

4.3 Text and binary handlers

File handlers split into text and binary handlers. The class Text is the base
class for all the text handlers.

The key difference is that text handlers represent the resource’s content in
memory as a unicode string, instead of just a byte string.

When the resource is loaded the text handler tries to guess the character
encoding of the resource’s content. For some file formats this information is
stored within the content itself; for example an XML document starts by an
XML declaration that specifies the encoding, if the declaration is missing it
is assumed the encoding is UTF-8. When this information is not explicitly
indicated, the text handler tries to guess the encoding by brute force.

With the character encoding the text handler decodes and loads the re-
source’s content.

The API of binary and text handlers also differs, compare the one offered
by the File handler class:

to str()

- Returns the resource data as a byte string (this is similar to the
method handler.resource.get data()).

with the one offered by the Text handler class:

to str(encoding=’UTF-8’)

- Returns the resource data as a byte string, using the given encod-
ing (defaults to UTF-8). Note that this will be different than the
string returned by handler.resource.get data() if the resource
data is not encoded in UTF-8 in the source.

to unicode(encoding=None)

- Returns the resource data as an unicode string.

Note the to str method for text handlers accepts the encoding as an optional
parameter. This not only will return a byte string in the given charater encoding,
it will also specify the encoding in the byte string for file formats that should
include it.

There is also the new method to unicode, which returns the content as a uni-
code string. This method accepts the encoding parameter too. For file formats
that do not include the encoding within the content, the result of to unicode

will be the same regardless of the given encoding. But for file formats like XML
that should specify the encoding within the content, the returned unicode string
will include it.

4.4 Overview of the available handlers

Out of the box itools comes with several handlers for different standard file
formats. The Figure 4.1 shows an excerpt of the tree of the available handler
classes, which express the inheritance relationship between them.

We are not going to see folder handlers here, as they will be studied in the
next chapter.

22

Handler

File Folder

Text

CSV PO XML.Document

XHTML.Document

HTML.Document

Figure 4.1: The handler tree

23

We have already seen the difference between binary and text handlers. Now
we are going to present some of the higher level file handler classes itools

includes.

XML.Document This is the default handler for XML documents, which in-
ternally are represented as a tree. The API includes the methods already de-
scribed for the Text handler; specific methods of XML.Document are:

cmp (other)

- Lets to compare two XML documents.

get root element()

- Returns the root element of this XML document.

traverse()

- This method allows to traverse the XML document, as it has a
tree structure. It is a generator which returns a node at a time,
starting by the document instance.

traverse2()

- As traverse, this method allows to traverse the XML document,
though it is more powerful, and complex. It will be explained in
the XML chapter.

XHTML.Document The handler for XHTML documents, it extends the
API provided by XML.Document API with the methods:

get head()

- Returns the head element.

get body()

- Returns the body element.

to text()

- Strips all the XML markup and returns the text content of the
XHTML document. This is useful, for example, to index the doc-
ument.

PO The handler to manage PO files, the message catalog of the GNU gettext
utilities.

get msgids()

- Returns the list of message ids stored in the catalog.

get messages()

- Returns the list of messages stored in the catalog, where each
message is represented as an instance of the class PO.Message.

get msgstr(msgid)

- Returns the message string for the given message id.

set message(msgid, msgstr=[u’’], comments=[u’’], references={})
- Adds a message (from the given parameters) to the catalog.

24

4.5 The handler factory

So far we have built a handler instance through a handler class:

>>> handler = HTML.Document(resource)

>>> handler

<itools.xml.HTML.Document object at 0x405740cc>

This is the standard pattern to build instances. However, if the resource
is not an HTML document this procedure would fail. In other words, this
procedure is only useful if you already know the kind of resource you are working
with.

Another option is to let itools to choose which handler class to use. This
can be done with the build handler method, which provides the factory pat-
tern.

build handler(resource)

- A class method that identifies the given resource, chooses the
available handler class that better matches it, and builds and re-
turns a handler for it.

For example, from the examples directory type:

>>> from itools.resources import get_resource

>>> from itools.handlers.Handler import Handler

>>> from itools import xml

>>>

>>> here = get_resource(’.’)

>>> for name in here.get_resource_names():

... resource = here.get_resource(name)

... handler = Handler.build_handler(resource)

... print name, handler

...

chapter6 <itools.handlers.Folder.Folder object at 0x40538d4c>

chapter7 <itools.handlers.Folder.Folder object at 0x4032c0cc>

hello.txt <itools.handlers.Text.Text object at 0x40536f4c>

hello.xhtml <itools.xml.XHTML.Document object at 0x4053b70c>

hello.xml <itools.xml.XML.Document object at 0x40538d6c>

Note that build handler is a class method. In the example above we have
called it through the most abstract handler class: Handler, which is the root of
the inheritance tree. But it is also possible to call it with another handler class:

>>> from itools.xml import XML

>>>

>>> resource = here.get_resource(’hello.xhtml’)

>>> XML.Document.build_handler(resource)

<itools.xml.XHTML.Document object at 0x405c6ecc>

There is an important difference between calling build handler from one
or another class: the set of possible handler classes to use is restricted to all the
sub-classes of the choosen handler class. For example, if we pass a plain text
file to XML.Document.build handler, it will fail:

25

>>> resource = here.get_resource(’hello.txt’)

>>> XML.Document.build_handler(resource)

Traceback (most recent call last):

[...]

xml.parsers.expat.ExpatError: syntax error: line 1, column 0

4.5.1 The get handler shorthand

There is a short way to load a handler (instead of loading first the resource and
then building the handler explicitly), the function get handler:

get handler(uri)

- Loads the resource at the given uri, tries to guess its mimetype by
different meanings (name extension, etc.), searches for a suitable
handler class in the registry, builds and returns the handler for the
resource.

Compare the explicit way seen before:

>>> from itools.resources import get_resource

>>> from itools.handlers.Handler import Handler

>>>

>>> resource = get_resource(’http://example.com’)

>>> handler = Handler.build_handler(resource)

With the shorthand:

>>> from itools.handlers import get_handler

>>>

>>> handler = get_handler(’http://example.com’)

26

Chapter 5

Folder handlers

A handler that deserves its particular section is the default handler for folders,
whose core API is:

get handler(path)

- Returns a handler for the resource at the given path. It will
use the available handler class that better matches the resource
mimetype.

get handler names(path=’.’)

- Returns a list with the names of all the handlers in the given
path.

get handlers(path=’.’)

- Returns the handlers in the given path (it is a generator).

has handler(path)

- Returns True if there is a handler in the given path, False oth-
erwise.

set handler(path, handler)

- Adds the given handler to the given path. Actually what is added
is the resource associated to the handler.

del handler(path)

- Removes the handler at the given path (i.e. the associated re-
source).

An example will show it better.

1. First we build a handler for the temporary directory:

>>> from itools.handlers import get_handler

>>>

>>> tmp = get_handler(’/tmp’)

>>> tmp

<itools.handlers.Folder.Folder object at 0x40652dec>

>>> tmp.resource

<itools.resources.file.Folder instance at 0x406acacc>

2. Second, we create a new HTML handler:

27

>>> from itools.xml import HTML

>>> hello = HTML.Document(title=’Hello World’)

>>> hello.resource

<itools.resources.memory.File instance at 0x405e49cc>

Note that the associated resource is built on the fly and lives in memory.

3. Third, we set the HTML handler to the temporary folder:

>>> tmp.set_handler(’hello.html’, hello)

What this actually does is to add the file hello.resource (which lives in
memory) to the folder tmp.resource (which is on the file system); this is
to say, it creates a new file in the file system at /tmp/hello.html.

4. Finally, we get the handler we just added:

>>> hello = tmp.get_handler(’hello.html’)

>>> hello.resource

<itools.resources.file.File instance at 0x40638c6c>

Note that the handler hello we have built in these last lines manages a
resource that lives in the file system.

5.1 The handler tree

Folders allow to classify files, hence giving a tree structure to our data. Every
handler has two attributes, parent and name, they tell us where the handler is
in the handler tree:

>>> hello.parent

<itools.handlers.Folder.Folder object at 0x403ebb2c>

>>> hello.name

’hello.html’

>>> hello.parent is tmp

True

>>> print tmp.parent

None

>>> print tmp.name

>>>

Based on these two attributes handlers provide the following API:

28

get abspath()

- Returns the absolute path from the tree root to the self handler.

get root()

- Returns the handler for the root of the tree.

get pathtoroot()

- Returns a relative path from self to the tree root (e.g. ../../..).

get pathto(handler)

- Returns a relative path from self to the given handler (which is
supposed to be in the same tree), for example: ../../zoo/lion.

traverse()

- This method allows to traverse the handler tree below this folder.
It is a generator which returns a handler at a time, starting by this
folder.

acquire(name)

- If the current handler is a folder and contains a resource with
the given name, then return a handler for it; otherwise look at
the parent folder, and recursively to the root tree. This method
actually shows how to implement acquisition.

29

Chapter 6

eXtensible Markup

Language

The purpose of this chapter is to explain the XML services provided by itools,
which can be found in the sub-package itools.xml.

6.1 XML.Document

As the reader already knows from the previous chapters, the XML services are
built upon the resource-handler model. Hence we are going to start talking
about a handler class, the XML.Document class:

>>> from itools.resources import get_resource

>>> from itools.xml import XML

>>>

>>> resource = get_resource(’examples/hello.xml’)

>>> doc = XML.Document(resource)

>>>

>>> doc

<itools.xml.XML.Document object at 0x4064466c>

The document is represented on memory as a tree of nodes, like the Document
Object Model standard1. Though, so far, no effort has been done to develop
an API compatible with DOM.

In fact, the API is rather simple:

get root element()

- Returns the root element.

traverse()

- It is a generator that traverses the XML tree in pre-order, and
returns each time a node.

The examples/hello.xml file’s content is:

1http://www.w3.org/DOM/

30

<?xml version="1.0" encoding="UTF-8"?>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Hello world</title>

<!-- Changed by: , 02-Jun-2004 -->

</head>

<body>

</body>

</html>

The method traverse lets us to easily inspect the tree nodes:

>>> for node in doc.traverse():

... print repr(node)

...

<itools.xml.XML.Document object at 0x405ea38c>

<itools.xml.XML.XMLDeclaration object at 0x405e0f8c>

<itools.xml.XML.Raw object at 0x4064408c>

<itools.xml.XML.Element object at 0x4065248c>

<itools.xml.XML.Raw object at 0x406528ec>

<itools.xml.XML.Element object at 0x40652a6c>

<itools.xml.XML.Raw object at 0x406525ac>

<itools.xml.XML.Element object at 0x406526ac>

<itools.xml.XML.Raw object at 0x40652d0c>

<itools.xml.XML.Element object at 0x406527cc>

<itools.xml.XML.Raw object at 0x40652dac>

<itools.xml.XML.Raw object at 0x4065284c>

<itools.xml.XML.Comment object at 0x40652f4c>

<itools.xml.XML.Raw object at 0x40652e6c>

<itools.xml.XML.Raw object at 0x40652e8c>

<itools.xml.XML.Element object at 0x40652e4c>

<itools.xml.XML.Raw object at 0x40652eac>

<itools.xml.XML.Raw object at 0x40652f8c>

<itools.xml.XML.Raw object at 0x40652ecc>

This example shows the different types of nodes that make up the document
tree: elements, comments, text nodes, etc.

6.1.1 XML.Element

Lets to stop and look at the API of the most important node type, XML.Element:

31

parent

- It is the element’s parent.

attributes

- The element’s attributes, it is a mapping from attribute names
to XML.Attribute objects.

get elements(name=None)

- Returns a list with all the element nodes whose name is the given
name; if the parameter name is not given, then return all the ele-
ment nodes.

traverse()

- As with XML.Document, this method is a generator that traverses
the element children in pre-order, and returns each time a node.

copy()

- Returns a copy of the element, including all its children; but with
the attribute parent set to None.

append child(node)

- Appends the given node to the element children, the current ele-
ment will be the node’s parent.

6.2 Namespaces

One very important concept of XML are the namespaces.
An XML document may contain many different elements and attributes, if

there is not any XML declaration these elements and attributes will be instances
of the XML.Element and XML.Attribute classes, with the standard API and
none specific semantics.

But if there are namespace declarations, itools.xml will be able to build
specific objects that add some special semantics. To see it we are going to load
the file examples/hello.xhtml, whose content is:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Hello world</title>

<!-- Changed by: , 02-Jun-2004 -->

</head>

<body>

</body>

</html>

The only two differences between this file and the example we saw at the
beginning (examples/hello.xml) are the document type declaration and, what
interests us now, the XML namespace declaration:

xmlns="http://www.w3.org/1999/xhtml"

32

What this sentence says is that all the elements and attributes within the
document belong to the XHTML namespace. This information lets the itools

XML parser to build a more “intelligent” tree:

>>> resource = get_resource(’examples/hello.xhtml’)

>>> doc = XML.Document(resource)

>>>

>>> doc

<itools.xml.XML.Document object at 0x405ea38c>

>>>

>>> for node in doc.traverse():

... print repr(node)

...

<itools.xml.XML.Document object at 0x405ea38c>

<itools.xml.XML.XMLDeclaration object at 0x403eb82c>

<itools.xml.XML.Raw object at 0x406514ac>

<itools.xml.XML.DocumentType object at 0x406515cc>

<itools.xml.XML.Raw object at 0x406516cc>

<itools.xml.XHTML.Element object at 0x40651d2c>

<itools.xml.XML.Raw object at 0x406517ec>

<itools.xml.XHTML.Element object at 0x40651d0c>

<itools.xml.XML.Raw object at 0x40651e0c>

<itools.xml.XHTML.Element object at 0x4065186c>

<itools.xml.XML.Raw object at 0x40651eac>

<itools.xml.XHTML.Element object at 0x40651f6c>

<itools.xml.XML.Raw object at 0x40651f8c>

<itools.xml.XML.Raw object at 0x40651bec>

<itools.xml.XML.Comment object at 0x40651c0c>

<itools.xml.XML.Raw object at 0x40651fec>

<itools.xml.XML.Raw object at 0x4065180c>

<itools.xml.XHTML.Element object at 0x40651dec>

<itools.xml.XML.Raw object at 0x405e0eac>

<itools.xml.XML.Raw object at 0x405e0eec>

Now, the element nodes are not any more instances of XML.Element, but
instances of XHTML.Element, which extends the generic API with the methods:

is inline()

- Returns True if the element is an inline element, False otherwise.

is block()

- Returns True if the element is a block element, False otherwise.

Ok, not too much2, but enough to give an idea of the power of itools.xml.
In the next chapter we will see a much more compelling example of what can
be done with itools.xml, the Simple Template Language.

2These two methods, is inline and is block, are actually really useful. They are used
by the message extraction algorithm, a fundamental brick of the internationalization and
localization services provided by itools.

33

Chapter 7

Simple Template Language

STL is a template language. It is implemented as an XML namespace handler,
taking advantage of the underlying infrastructure provided by itools.xml.

STL process and transforms XML files. It is aimed at presentation, for
example to produce the web pages that make up the user interface of a web
application.

7.1 A descriptive language

Unlike other template languages in the Python world, STL does not mix Python
code within the template. The STL statements only describe the transforma-
tions to be performed on the template.

This way the logic and the presentation are really separated.
There are always two sides: the template, which represents the presentation

side; and the namespace, the logic side.
In five words: STL is a descriptive language.

7.1.1 The template

For example, look at the template below (examples/chapter6/template.xml):

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:stl="http://xml.itools.org/namespaces/stl">

<head></head>

<body>

<h1 stl:content="title" />

</body>

</html>

Note the declaration of the stl namespace, it is mandatory.
When this template will be processed, the content of the <h1> tag will be

replaced by the value of the variable title. But, where will we find title?
Solution: in the namespace.

34

7.1.2 The namespace

In order to process an STL template, you need to pass it a Python namespace
(a dictionary for example). But first we have to load the template as a handler:

>>> from itools.handlers import get_handler

>>> from itools import xml

>>>

>>> template = get_handler(’template.xml’)

>>>

>>> template

<itools.xml.XML.Document object at 0x405ea38c>

Note that so far nothing delates the STL presence, but inspecting the
template object shows that the stl namespace handler has been loaded:

>>> template.stl

<itools.xml.STL.STL object at 0x406516cc>

Ok, it is time to build the namespace and process the template:

>>> namespace = {’title’: ’hello world’}

>>> print template.stl(namespace)

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns:stl="http://xml.itools.org/namespaces/stl"

xmlns="http://www.w3.org/1999/xhtml">

<head></head>

<body>

<h1>hello world</h1>

</body>

</html>

As this example shows, the value of the variable title is looked within the
namespace passed as parameter to template.stl.

7.2 Example: an addressbook

Let’s go with a more complex example. The template below shows a simple
addressbook (see examples/chapter6/addressbook view.xml):

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:stl="http://xml.itools.org/namespaces/stl">

<head></head>

<body>

<h3>Addressbook</h3>

<li stl:repeat="address addressbook">

35

<stl:block content="address/last_name" />,

<stl:block content="address/first_name" />:

<stl:block content="address/telephone" />

</body>

</html>

The first new thing this example shows is the repeat statement. While
stl:content expects a string as the value, stl:repeat expects a sequence.
When this template is processed, the XML output will contain as many

elements as items are in the addressbook variable. Within the element, in
each iteration over the addressbook sequence, the variable address will be the
respective item of the list.

The second new thing we see is the <stl:block> element. When the tem-
plate is processed the <stl:block> tags are automatically removed.

Finally, look at the expression address/last name, it shows the slash oper-
ator, which lets to traverse namespaces. So the variable address is expected to
be a mapping (e.g. a dictionary), and last name a key in that mapping, whose
value is a string.

The Python side

Now let’s see the Python code (see examples/chapter6/addressbook.py), this
time as a class which keeps the addressbook information, with a method that
process the template to produce an HTML page that shows the addressbook.

Import from itools

from itools.handlers import get_handler

from itools import xml

class Addressbook(object):

def __init__(self):

self.addresses = []

def add_address(self, last_name, first_name, telephone):

address = {’last_name’: last_name,

’first_name’: first_name,

’telephone’: telephone}

self.addresses.append(address)

def view(self):

Load the STL template

template = get_handler(’addressbook_view.xml’)

Build the namespace

namespace = {’addressbook’: self.addresses}

Process the template and return the output

return template.stl(namespace)

36

The end of the module creates an Addressbook instance, fills it with a couple
of entries and prints the result of the view method:

if __name__ == ’__main__’:

Create the addressbook

addressbook = Addressbook()

addressbook.add_address(’Jordan’, ’Robert’, ’0606060606’)

addressbook.add_address(’Buendia’, ’Aureliano’, ’0612345678’)

Output the addressbook content

print addressbook.view()

The output of running this program is:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns:stl="http://xml.itools.org/namespaces/stl"

xmlns="http://www.w3.org/1999/xhtml">

<head></head>

<body>

<h3>Addressbook</h3>

Jordan,

Robert:

0606060606

Buendia,

Aureliano:

0612345678

</body>

</html>

7.3 Language overview

So far we have seen stl:content and stl:repeat. Below is the summary with
all the STL statements:

37

content=“expression”
- Replaces the element’s content by the result of evaluating the
given STL expression.

attributes=“name expression[; name expression]*”
- For every pair “name: expression”, replace the the value of the
attribute name by the result of evaluating expression.

if=“[not]expression”
- If the given expression evaluates to True, do nothing; if evaluates
to False, remove the XML element.

repeat=“name expression”
- The given expression is expected to be a sequence or an iterator.
For every item in expression, create an element and add the item
to the namespace stack before processing the element.

7.3.1 Expressions

The STL expressions are pretty simple, their syntax is:

name[/name]*

That is, a sequence of names separated by slashes. The semantics is:

1. Look the first name in the namespace stack.

2. If there are more names left, the last value found must be a namespace,
then look the next name in that namespace.

Iterate until the last name is consumed.

3. Once the end of the sequence is reached, we will have a value. If the value
is callable, then call it to get a new value.

4. Finally, we should have a value that is either a string, a boolean or a
sequence, depending on which statement (content, repeat, etc.) the
expression is being used with.

38

Chapter 8

Writing handler classes

In previous chapters we have seen some of the handlers itools provides out of
the box, and how they help us to work with resources (e.g. XML documents).

This chapter explains how to build your own handler classes, which will let
you to add support for file formats either standard or defined by yourself. The
explanation will be driven by an example.

Following up the previous chapter, we will extend our addressbook, which
will become a handler class. This means that the list of addressess (each one
with its last name, first name and telephone number) will be stored in a resource,
hence giving persistence to our addressbook.

8.1 Step by step

The process to write a handler class can be splitted in several steps, these are:

1. First the file format must be choosen or designed. If there is an standard
file format that matches our requirements it could be wise to use it. Other
option is to design our own.

For example, if, in the context of a miltilingual application, we want to
have a catalog that keeps sentences in one language and its translations
to another language, then there are two obvious options, the PO file for-
mat from GNU gettext and the TMX standard (Translation Memory
eXchange1).

In other situations we may want to design our own format, this is the case
we will illustrate in this chapter with the new version of the addressbook.

2. The second step is to choose the handler class to use as base class.

For instance, if we’re going to write a handler for TMX the base handler
class should be XML.Document. If we want to write a handler for Comma
Separated Value files, then our class should inherit from Text.

3. Usually we will implement the method load, which is the responsible
to parse the resource data and to build the data structure we want in
memory.

1http://www.lisa.org/tmx

39

4. Next is to write the method to str, which serializes the handler and lets
to save it into the resource.

5. It is likely we will also write the method get skeleton() which must
return the default content of a resource.

6. Finally we will develop the specific API that will enable us to work with
our handler.

8.2 Example: Addressbook

An addressbook could be stored in a resource using different file formats, we
are going to use an XML based one, below is an example (which can be found
in examples/chapter7/addressbook.xml):

<?xml version="1.0" encoding="UTF-8"?>

<addressbook>

<address>

<lastname>Jordan</lastname>

<firstname>Robert</firstname>

<telephone>0606060606</telephone>

</address>

<address>

<lastname>Buendia</lastname>

<firstname>Aureliano</firstname>

<telephone>0612345678</telephone>

</address>

</addressbook>

Being an XML document, it is clear our handler class should inherit from
XML.Document:

from itools.xml import XML

class Addressbook(XML.Document):

...

8.2.1 Load and Save

If you remember the previous chapter, the addressbook was stored on memory
as a list of dictionaries. We are going to keep the same data structure.

Our goal is to be able to:

1. Load the resource data, which we will use to feed the handler data struc-
ture with it.

2. Modify the handler (add, edit or remove addresses).

3. Save the changes on the resource.

Our focus now are the load and save operations.

40

Load

The method responsible to load the resource, and which we must implement, is
load:

class Addressbook(XML.Document):

def _load(self, resource):

Load the XML tree

XML.Document._load(self, resource)

Initialize data structure

self.addresses = []

Load addressbook

addressbook_element = self.get_root_element()

for address_element in addressbook_element.get_elements():

Initialize address record with default values

address = {’last_name’: ’’,

’first_name’: ’’,

’telephone’: ’’}

Load values from the XML resource

for element in address_element.get_elements():

if element.name == ’lastname’:

address[’last_name’] = unicode(element.children)

elif element.name == ’firstname’:

address[’first_name’] = unicode(element.children)

elif element.name == ’telephone’:

address[’telephone’] = unicode(element.children)

Add to the list of addresses

self.addresses.append(address)

Clean the unneeded XML tree

del self.children

Note that the init method has been removed, this method is provided
by the itools.handlers.File.File, and should never be implemented in our
custom handler classes.

Now let’s test our handler class:

>>> from pprint import pprint

>>> from itools.resources import get_resource

>>> from addressbook import Addressbook

>>>

>>> r = get_resource(’addressbook.xml’)

>>> addressbook = Addressbook(r)

>>> addressbook

<addressbook.Addressbook object at 0x4058004c>

>>>

>>> pprint(addressbook.addresses)

[{’first_name’: u’Robert’,

’last_name’: u’Jordan’,

’telephone’: u’0606060606’},

{’first_name’: u’Aureliano’,

’last_name’: u’Buendia’,

’telephone’: u’0612345678’}]

What we have done is to load the data contained in a file resource on an easy
to use data structure on memory, this process is also known as de-serialization
(to transform a byte string to a data structure).

41

Save

Now we are going to do the opposite, to transform the data structure to a byte
string (the process known as serialization). This way we will be able to save the
changes we do to our the handler instance.

The method we are going to implement is to unicode, which must return a
unicode string representing the data contained by the handler:

class Addressbook(XML.Document):

def _load(self, resource):

...

def to_unicode(self, encoding=’UTF-8’):

XML declaration

data = u’<?xml version="1.0" encoding="%s"?>\n’ % encoding

Open root element

data += u’<addressbook>\n’

Addresses

pattern = u’ <address>\n’ \

u’ <lastname>%(last_name)s</lastname>\n’ \

u’ <firstname>%(first_name)s</firstname>\n’ \

u’ <telephone>%(telephone)s</telephone>\n’ \

u’ </address>\n’

for address in self.addresses:

data += pattern % address

Close root element

data += u’</addressbook>’

Return as a byte string

return data

Note that it accepts the encoding parameter, and that the returned unicode
string starts by the XML declaration which specifies the encoding.

To test it type the code below:

>>> from itools.resources import get_resource

>>> from addressbook import Addressbook

>>>

>>> r = get_resource(’addressbook.xml’)

>>> addressbook = Addressbook(r)

>>>

>>> print addressbook

<?xml version="1.0" encoding="UTF-8"?>

<addressbook>

<address>

<lastname>Jordan</lastname>

<firstname>Robert</firstname>

<telephone>0606060606</telephone>

</address>

<address>

<lastname>Buendia</lastname>

<firstname>Aureliano</firstname>

<telephone>0612345678</telephone>

</address>

</addressbook>

42

As you see the output is similar to the original resource, because we did not
modify the handler. Now we are going to add a new entry:

>>> addressbook.add_address(’Bonaparte’, ’Napoleon’, ’’)

>>> print addressbook

<?xml version="1.0" encoding="UTF-8"?>

<addressbook>

<address>

<lastname>Jordan</lastname>

<firstname>Robert</firstname>

<telephone>0606060606</telephone>

</address>

<address>

<lastname>Buendia</lastname>

<firstname>Aureliano</firstname>

<telephone>0612345678</telephone>

</address>

<address>

<lastname>Bonaparte</lastname>

<firstname>Napoleon</firstname>

<telephone></telephone>

</address>

</addressbook>

Now we have modified the handler, but look at the resource examples/chapter7/addressbook.xml,
it still keeps the origianl two entries. What we have now is that the handler
and the resource it manages are out of sync, the resource has not been updated
with the changes made to the handler. To update the resource the method save

must be used:

>>> addressbook.save()

If now you look at the resource you will see the new address.

Load and Save

The code above has showed how a resource may be outdated as it does not
contains the changes made to the handler, and how to sync it with the method
save.

But the opposite may happen too, if you build a handler for a resource, then
you go and modify the resource with another application (e.g. vi or emacs),
then your handler will be outdated as it won’t contain the changes made to
the resource. As maybe you have already guessed, the method to update the
handler is load.

In summary the API is:

load(resource=None)

- Loads the data from the given resource into the handler, if no
resource is given, the one the handler is attached to will be used.

save()

- Saves the handler into the resource.

43

Chapter 9

Internationalization and

Localization

Or the art of developing multilingual applications. Let’s start with the con-
cepts1:

Internationalization the operation by which a program, or a set of programs
turned into a package, is made aware of and able to support multiple
languages. This is a generalization process, by which the programs are
untied from calling only English strings or other English specific habits,
and connected to generic ways of doing the same, instead.

Localization the operation by which, in a set of programs already internation-
alized, one gives the program all needed information so that it can adapt
itself to handle its input and output in a fashion which is correct for some
native language and cultural habits. This is a particularisation process,
by which generic methods already implemented in an internationalized
program are used in specific ways.

We are going to illustrate both processes, in the context of itools, by ex-
tending the addressbook example.

9.1 Internationalization

What must be internationalized is the user interface, what in our example is
reduced to the template addressbook view.xml.

9.1.1 Naming conventions

The technique we use with itools requires to have one template per language,
being english the master language. Each template must have a distinct name,
we will achieve it by appending the language code to the end of the file:

addressbook_view.xml.en

addressbook_view.xml.es

1Definitions take fron the GNU gettext documentation.

44

addressbook_view.xml.fr

...

So the first thing to do is to rename the file addressbook view.xml to
addressbook view.xml.en.

Note that only the template in English belongs to the source, the others will
be automatically built with the help of itools.

9.1.2 Template selection

The method view also must be modified, so the right template is used:

def view(self, language=’en’):

Load the STL template

resource_name = ’addressbook_view.xml.%s’ % language

resource = get_resource(resource_name)

template = XML.Document(resource)

...

What remains to explain is how the application chooses the language the
user wants to see the addressbook in. This topic is out of the scope of this
chapter.

9.2 Localization

To illustrate the example we will use Spanish as the second language.
The issue is, from the template addressbook view.xml.enwe must produce

a template named addressbook view.xml.es, where the translatable messages
will be in Spanish instead of English.

In our case there is only one translatable message, the word Addressbook.
While the English template contains the header:

<h3>Addressbook</h3>

the Spansih one must have:

<h3>Libro de direcciones</h3>

The localization process is splitted in three stages:

1. Message extraction.

2. Human translation.

3. Template re-construction.

Through the whole process we will use GNU gettext2, which is the standard
in the Free Software world for software internationalization and localization;
and the script igettext.py provided by itools.

The Figure 9.1 shows the localization process.

2http://www.gnu.org/software/gettext/

45

Figure 9.1: The localization process

9.2.1 Message extraction

This step consists on the parsing of the templates that define the user interface
(in our case the file addressbook view.xml.en), the extraction of the trans-
latable messages they contain, and the building of a PO file which will be the
input for the human translator.

This all is done with the igettext.py script:

$ python igettext.py --pot addressbook_view.xml.en > es.po

The result is the es.po file, whose content will be:

msgid ""

msgstr ""

"Project-Id-Version: PACKAGE VERSION\n"

"POT-Creation-Date: 2004-10-28 17:10+CET\n"

"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"

"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"

"Language-Team: LANGUAGE <LL@li.org>\n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=UTF-8\n"

"Content-Transfer-Encoding: 8bit\n"

#: addressbook_view.xml.en:0

msgid "Addressbook"

msgstr ""

The file consist of a header and the translatable messages that have been
found, in our case just the word Addressbook. This file is the one the translator
will work with.

46

9.3 Human translation

The human translator receives the PO file, and must return the same PO file,
but including the translations for every message. In our example he should
return the file (excluding the header):

#: addressbook_view.xml.en:0

msgid "Addressbook"

msgstr "Libro de direcciones"

To do his work he may use a simple text editor like vi or emacs. But typically
he will use one of the PO graphic editors available, for example:

• KBabel, http://www.kde.org

• poedit, http://poedit.sourceforge.net

9.4 Template building

To close the process, we must generate the template addressbook view.xml.es

from the master template (addressbook view.xml.en) and from the translated
PO file (es.po). This is done with the script igettext.py:

$ igettext.py --xhtml addressbook_view.xml.en es.po \

> addressbook_view.xml.es

And that’s it, now we have the two templates, one in English and one in
Spanish.

47

Chapter 10

Addendum

This documentation is work in progress. It has covered only about half the
packages provided by itools. It remains to look at the workflow engine from
itools.workflowand the index and search possibilities offered by itools.catalog.

And the topics we have talked about have only been exposed on the surface.
The API provided by the different classes is actually bigger than what this
document shows. The examples are minimal, and leave most possibilities to the
reader’s imagination. We haven’t seen all the available handlers in detail.

Anyway, I hope you have found these tools interesting enough to get a closer
look.

If you didn’t, I have still a few words to add.

10.1 In the real world

In spite of the youth of itools (version 0.5 at the time of this writing), it is
already being used in real production projects. Specially, it is the foundation of
the iKaaro1 Content Management System.

Some of the advantages it provides include:

• The whole web site data is stored as a tree of human readable files, instead
of opaque persistent Python objects. It is possible to export a web site to
the file system, to inspect and manipulate the tree, to make a tarball, to
import it back to the ZODB.

• This approach encourages the use of standards, every time we need a new
feature we look first if there is already a standard file format. The result is
a highly portable, standards compliant application, easy to interact with
other applications.

• It is possible to seamlessly integrate content from foreign sources and to
make it appear as if they were in our web site. We are just at the surface
of the possibilities.

But the most important, it provides a simple, high-productive framework to
build our applications on, to reduce the development time to the minimum.

1http://www.ikaaro.org

48

10.2 Future works

Some of the stuff waiting on the pipe. . .

• Schemas. Not only for XML documents (XML Schema2 support is on the
works), but also other handlers, specially folders.

• Many handlers for standard file formats: iCal, vCard, TMX, XLIFF, etc.

• Make itools.uri 100% compliant with the RFC2396, maybe write a
Python Extension Proposal to get it in the Standard Library.

• Support for new schemes, protocols and storages for itools.resources.

• Add the last bricks to itools.i18n to get an engine able to power high
end translation memory systems.

10.3 Free Software

And, last but not least, itools is free software, released to the world under the
terms and conditions of the GNU Lesser General Public License3, developers
own the copyright of the code they write, contributions are very welcomed.

2http://www.w3.org/XML/Schema
3http://www.gnu.org/copyleft/lesser.html

49

Appendix A

Coding style guide

This chapter describes the coding conventions used to write itools. If you ever
contribute a patch to itools, be sure your code adheres to these rules.

Sometimes this guide contradicts the PEP 81 recommendations; in these
cases this guide applies, in the context of itools.

A.1 Language and encoding

Code must be written in english. The preferred encoding is UTF-8, though
others encodings are allowed.

A.2 Module structure

Each module is splitted in six sections:

1. encoding statement;

2. copyright notice;

3. license reference;

4. the module documentation string;

5. import statements;

6. the code itself.

Here we are going to describe the module’s header, made up of the first five
sections. The style for the code itself will described in the rest of this chapter.

The encoding

It is only requiered if it is any other encoding than ASCII. Example:

-*- coding: UTF-8 -*-

1http://www.python.org/peps/pep-0008.html

50

The Copyright

After the encoding comes the copyright, whose structure is:

Copyright (C) <years> <author name> <email>

<years> <author name> <email>

...

The License

Right after the copyright statement comes a reference to the license. For itools
it is the LGPL.

The module’s documentation string

There should be a documentation string explaining what the module does
(though it is better to have none than a dummy one).

The explanation about how to write a documentation string is out of the
scope of this chapter, it is covered by the PEP 2572.

Imports

The imports statements are at the top of the file (just after the legal statements
and the module docstrings), though there may be imports within a function or
method to avoid circular references.

Imports should be grouped, with the order being:

1. standard library imports

2. itools imports

3. other package package imports

Every group should be preceded by an introductory comment, like:

Import from the Standard Library

...

Import from itools

...

A.2.1 Example

For example, at the time of this writting the module itools.handlers.Handler
starts by:

-*- coding: ISO-8859-1 -*-

Copyright (C) 2003-2004 Juan David Ibá~nez Palomar <jdavid@itaapy.com>

#

This library is free software; you can redistribute it and/or

modify it under the terms of the GNU Lesser General Public

License as published by the Free Software Foundation; either

version 2.1 of the License, or (at your option) any later version.

2http://www.python.org/peps/pep-0257.html

51

#

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

#

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

"""

This module provides the abstract class which is the root in the

handler class hierarchy.

"""

Import from the Standard Library

import datetime

Import from itools

from itools import uri

from itools.resources import base

A.3 Format rules

Indentation: 4 spaces

Each indentation level must have four (4) spaces. Never use tabs.

Maximum line length: 80 characters

Lines should be 80 characters wide at most.
The preferred way of wrapping long lines is by using Python’s implied line

continuation inside parentheses, brackets and braces. If necessary, you can add
an extra pair of parentheses around an expression, but usually using a backslash
looks better. Make sure to indent the continued line appropriately.

One line, one statement

Don’t put more than one statement on the same line:

Good Bad

1 if x is True: if x is True: do something()

do something()

2 do one() do one(); do two(); do three()

do two()

do three()

3 def get area(x, y): def get area(x, y): return x * y

return x * y

52

Blank lines

Separate classes with three blank lines. Separate methods and functions with
two blank lines. There is also a blank line between the class definition and the
first method definition.

Use blank lines in functions, sparingly, to indicate logical sections.

Whitespace in expressions and statements

Surround operators with one white space. Arithmetics operators may be the
exception, for them it is possible to use either one space or none, whatever reads
better. But never use more than one space.

Well, there is another exception, the sign “=” used in keyword arguments
should not be surrounded by spaces. Type Document(title="hello") instead
of Document(title = "hello").

Never add spaces neither before nor after parentheses, brackets or braces.
The only exception is for list comprehensions, where it is allowed to add a space
after the opening bracket, and another space before the closing bracket.

The comma and colon must be followed by a space (or a new line), but
never put a space before. The only exception is for one element tuples, where the
comma must be immediately followed by the closing parentheses. The semicolon
should never be used.

A.4 Comments

Comments must describe the code that follows them, and must be indented to
the same level of that code. Inline comments are not allowed; this is to say, a
comment always starts a new line.

A comment starts by a single # character followed by a space.
Comments must be written in good english (as good as the developer can

write it). This means, for example, that the first letter must be capitalized.

A.5 Naming conventions

The names of variables, classes, functions, methods and constants are written
with one or more english words. Most of the words used are nouns, verbs, and
adjectives.

Abbreviations may be used, but in general it is preferred the complete word,
for example, language instead of lang. When an abbreviation is not obvious,
its meaning should be explained with a comment.

The allowed naming conventions are three:

lower case with underscores All words are in lowercase and separated by an
underscore. This convention is used for variables, functions and methods.

UPPER CASE WITH UNDERSCORES All words are in uppercase and
separated by an underscore. Used only for constants.

CapitalizedWords All words start by an uppercase, with the rest of the word
in lowercase. Words are not separated by any character, the uppercase

53

letters serve to visually distinguish when a new word starts. Used only for
classes.

A.5.1 Class names

Class names are written in capitalized words. Typically they are made of nouns
and/or adjectives.

A.5.2 Functions and methods

Functions and methods are written in lowercase with underscores.
They must start by a verb, and they should be followed by a complenent that

clearifies what the funciont does. For example, it is better to spell set object

than just set.

A.5.3 Variables

Variables are written in lowercase with underscores. Most of the time they are
nouns with or without adjectives.

One letter variables may be used in mathematical expressions, for sequence
indexes, or in comprehensive lists:

>>> public_handlers = [x for x in handlers if x.state == ’public’]

A.5.4 Constants

Constants are written in uppercase with underscores.

54

Appendix B

GNU arch

A control version system is a tool that keeps track of changes made in the code,
when a change was made, by whom. It helps multiple developers to work on
the same project, to merge the different changes they made in the same code
base.

GNU arch1 (also known as tla) is a modern and advanced control version
system. It is the one we use to manage the itools source code.

There are many ways to work with tla, this appendix explains the one we
use for itools.

The exposition is organized in three sections that detail:

1. How to keep track of the development of itools.

2. How to maintain private changes.

3. How to contribute your changes back to the main development tree.

B.1 Keeping track of itools

You may want to have the last bleeding edge features from itools in your
system as soon as they are written, or to track how the development is going
on. Then this section is for you.

B.1.1 Browsing the sources

To browse the itools archive tree through the web, just go the url below:

http://in-girum.net/cgi-bin/archzoom.cgi/jdavid@itaapy.com--public

B.1.2 Check out

To check out itools from the archive you need to install tla. Most distributions
include it, for example, if you use Gentoo2 just type:

$ sudo emerge tla

Once tla is installed, follow the steps described below.

1http://www.gnu.org/software/gnu-arch/
2http://www.gentoo.org

55

Set your id

$ tla my-id "Toto Bonaparte <toto@example.com>"

$ tla my-id

Toto Bonaparte <toto@example.com>

Register the official itools archive

$ tla register-archive jdavid@itaapy.com--public \

http://in-girum.net/~jdavid/archives/public

$ tla archives

jdavid@itaapy.com--public

http://in-girum.net/~jdavid/archives/public

Check out itools

$ cd ~/sandboxes

$ tla get jdavid@itaapy.com--public/itools--main--0.6 itools-0.6

$ cd itools-0.6

$ tla tree-version

jdavid@itaapy.com--public/itools--main--0.6

B.1.3 A session with tla and itools

Now, whenever you want to see if something has changed in itools, just type:

$ cd ~/sandboxes/itools-0.6

$ tla missing --summary

patch-80

use Python’s documentation to profile the catalog

patch-81

fix XML error handling (hence better STL message errors)

The output shows the new patches available (if your code is up-to-date the
output will be empty). Say you want to apply the patches, type:

$ tla update

[...]

B.1.4 Help

The Table B.1 summarizes the tla commands seen in this section. To learn
about other commands use tla help, and for details about a command type:

$ tla <command> --help

B.2 Maintaining private changes

Now maybe you want to make some changes to itools. The wisest to do in
this situation is to create a branch of itools, this will let you to easily update
to the last version while keeping your changes.

The first step is to setup an archive (if you have already one you can skip to
the next subsection).

56

tla my-id

- Print or change your id.

tla register-archive

- Change an archive location registration.

tla archives

- Report registered archives and their locations.

tla get

- Construct a project tree for a revision.

tla tree-version

- Print the default version for a project tree.

tla missing

- Print patches missing from a project tree.

tla update

- Update a project tree to reflect recent archived changes.

tla help

- Provide help with arch.

Table B.1: Basic tla commands

B.2.1 Create an archive

$ mkdir ~/{archives}

$ mkdir ~/{archives}/public

$ tla make-archive toto@example.com--public ~/{archives}/public

$ tla archives

jdavid@itaapy.com--public

http://in-girum.net/~jdavid/archives/public

toto@example.com--public

/home/toto/{archives}/public

Make it your default archive:

$ tla my-default-archive toto@example.com--public

$ tla my-default-archive

toto@example.com--public

B.2.2 Create a branch

With your own archive, it is time to create a branch of itools:

$ tla tag -S jdavid@itaapy.com--public/itools--main--0.6 itools--toto--0.6

* creating category toto@example.com--public/itools

* creating branch toto@example.com--public/itools--toto

* creating version toto@example.com--public/itools--toto--0.6

* Archive caching revision

So now you can replace the check-out from the main tree with a one from
your own branch:

57

$ cd ~/sandboxes

$ rm -rf itools-0.6

$ tla get toto@example.com--public/itools--toto--0.6 itools-0.6

$ cd itools-0.6

$ tla tree-version

toto@example.com--public/itools--toto--0.6

B.2.3 Working with your branch

So, now you modify itools to add a new feature. Every change made to a
file will be automatically detected by tla, but if your work includes new files or
directories, or you have removed, renamed or moved a file or a directory, then
you must tell tla about these changes, to do so use the commands below:

$ tla add <filename>

[...]

$ tla delete <filename>

[...]

$ tla move <old filename> <new filename>

[...]

Maybe you forgot to add a file, before committing is a very good idea to
verify it with the command tree-lint:

$ tla tree-lint

[...]

This command looks at your project tree and tells you about files suspected
to be source code that have non been added yet.

Ok, so you have finished working on this new cool feature and are willing to
check it in your branch of itools. First, verify what you have changed:

$ tla changes

[...]

This command shows which files (and folders) have been modified, removed,
added or moved. For a more detailed description, try:

$ tla changes --diffs | less

Take your time to examine the changes, maybe you forgot to remove a print
statement? a close look at the output of tla changes --diffs will tell you.

Once you are sure everything is alright, it came the time to commit. First
you have to write a log message:

$ vi ‘tla make-log‘

Within the editor, you should introduce a title that describes the changes
you have done, and optionally a longer description. Once you are done, left the
editor and type:

$ tla commit

$ tla revisions

[...]

patch-1

add feature XXX

58

B.2.4 Merging from the main branch

Ok, so now the upstream version of itools is modified, how to merge the
changes in your tree? easy:

$ cd ~/sandboxes/itools-0.6

$ tla star-merge -t jdavid@itaapy.com--public/itools--main--0.6

[...]

Beware, there may be conflicts that you must resolve.
Now, your project tree contains the changes from the upstream archive, you

must commit them in your own archive. The log is written automatically by
typing:

$ tla log-for-merge >> ‘tla make-log‘

$ vi ‘tla make-log‘

Within the editor there will be a description detailing the patchs that have
been applied. So you just have to add the subject, something like “merging
from the main tree”. Once this is done just commit as usual:

$ tla commit

Summary

See the Table B.2 for a summary of the tla commands seen in this section.

B.3 Contributing your work to the main tree

To contribute your changes back to the main development branch you must
make your branch available through internet. We assume the archive you have
set-up is your local computer, so you have to create a mirror of your archive
from your local computer to an internet server:

$ tla make-archive --listing --mirror toto@example.com--public \

sftp://example.com/home/toto/{archives}/public

You must be sure your mirror can be accessed through an internet protocol,
like HTTP or FTP. So other developers will be able to merge from your branch.

Now, whenever you make and commit a change, to share that change with
the community, you have to synchronize your mirror:

$ tla archive-mirror

[...]

See the Table B.3 for a summary of the commands seen in this section.

59

tla make-archive

- Create a new archive directory.

tla my-default-archive

- Print or change your default archive.

tla tag

- Create a continuation revision (aka tag or branch).

tla add

- Add an explicit inventory id.

tla delete

- Remove an explicit inventory id.

tla move

- Move an explicit inventory id.

tla tree-lint

- Audit a source tree.

tla changes

- Report about local changes in a project tree.

tla make-log

- Initialize a new log file entry.

tla commit

- Archive a changeset-based revision.

tla revisions

- List the revisions in an archive version.

tla star-merge

- Merge mutually merged branches.

tla log-for-merge

- Generate a log entry body for a merge.

Table B.2: Maintaining private changes: summary

tla archive-mirror

- Update an archive mirror.

Table B.3: Maintaining private changes: summary

60

