

Intel® Threading Building Blocks

Design Patterns

Document Number 323512-001US

World Wide Web: http://www.intel.com

Intel® Threading Building Blocks

ii 323512-001

Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY
APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR
DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or go to: http://www.intel.com/#/en_US_01.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor
family, not across different processor families. See http://www.intel.com/products/processor_number for details.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino Inside, Centrino logo, Core
Inside, FlashFile, i960, InstantIP, Intel, Intel logo, Intel386, Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom
Inside, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, Itanium, Itanium Inside,
MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside, vPro
Inside, VTune, Xeon, and Xeon Inside are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

Copyright (C) 2010, Intel Corporation. All rights reserved.

Revision History

Version Version Information Date

1.00 Initial version. 2010-Apr-4

http://www.intel.com/#/en_US_01

Introduction

Design Patterns iii

Contents

1 Introduction ...1
2 Agglomeration..2
3 Elementwise...5
4 Odd-Even Communication ..7
5 Wavefront..8
6 Reduction ..12
7 Divide and Conquer...16
8 GUI Thread ..20
9 Non-Preemptive Priorities...24
10 Local Serializer ...27
11 Fenced Data Transfer ..31
12 Lazy Initialization..34
13 Reference Counting...37
14 Compare and Swap Loop..39
General References...41

Introduction

Design Patterns 1

1 Introduction
This document is a “cookbook” of some common parallel programming patterns and
how to implement them in Intel® Threading Building Blocks (Intel® TBB). A cookbook
will not make you a great chef, but provides a collection of recipes that others have
found useful.

Like most cookbooks, this document assumes that you know how to use basic tools.
The Intel® Threading Building Blocks (Intel® TBB) Tutorial is a good place to learn the
basic tools. This document is a guide to which tools to use when.

A design pattern description is much more than a rote coding recipe. The description
of each pattern has the following format:

• Problem – describes the problem to be solved.

• Context – describes contexts in which the problem arises.

• Forces – considerations that drive use of the pattern.

• Solution – describes how to implement the pattern.

• Example – presents an example implementation.

Variations and examples are sometimes discussed. The code examples are intended to
emphasize key points and are not full-fledged code. Examples may omit obvious const
overloads of non-const methods.

Much of the nomenclature and examples are adapted from Web pages created by Eun-
Gyu and Marc Snir, and the Berkeley parallel patterns wiki. See links in the General
References section

For brevity, some of the code examples use C++0x lambda expressions. It is
straightforward, albeit sometimes tedious, to translate such lambda expressions into
equivalent C++98 code. See the Section "Lambda Expressions" in the Intel® TBB
tutorial on how to enable lambda expressions in the Intel® Compiler or how do the
translation by hand.

Intel® Threading Building Blocks

2 323512-001

2 Agglomeration

Problem

Parallelism is so fine grained that overhead of parallel scheduling or communication
swamps the useful work.

Context

Many algorithms permit parallelism at a very fine grain, on the order of a few
instructions per task. But synchronization between threads usually requires orders of
magnitude more cycles. For example, elementwise addition of two arrays can be done
fully in parallel, but if each scalar addition is scheduled as a separate task, most of the
time will be spent doing synchronization instead of useful addition.

Forces

• Individual computations can be done in parallel, but are small. For practical use of
Intel® Threading Building Blocks (Intel® TBB), "small" here means less than
10,000 clock cycles.

• The parallelism is for sake of performance and not required for semantic reasons.

Solution

Group the computations into blocks. Evaluate computations within a block serially.

The block size should be chosen to be large enough to amortize parallel overhead. Too
large a block size may limit parallelism or load balancing because the number of blocks
becomes too small to distribute work evenly across processors.

The choice of block topology is typically driven by two concerns:

• Minimizing synchronization between blocks.

• Minimizing cache traffic between blocks.

If the computations are completely independent, then the blocks will be independent
too, and then only cache traffic issues must be considered.

If the loop is “small”, on the order of less than 10,000 clock cycles, then it may be
impractical to parallelize at all, because the optimal agglomeration might be a single
block,

Agglomeration

Design Patterns 3

Examples

Intel® TBB loop templates such as tbb::parallel_for that take a range argument

support automatic agglomeration.

When agglomerating, think about cache effects. Avoid having cache lines cross
between groups if possible.

There may be boundary to interior ratio effects. For example, if the computations form
a 2D grid, and communicate only with nearest neighbors, then the computation per
block grows quadratically (with the block’s area), but the cross-block communication
grows with linearly (with the block’s perimeter). Figure 1 shows four different ways to
agglomerate an 8×8 grid. If doing such analysis, be careful to consider that information
is transferred in cache line units. For a given area, the perimeter may be minimized
when the block is square with respect to the underlying grid of cache lines, not square
with respect to the logical grid.

+

Figure 1: Four different agglomerations of an 8×8 grid.

Also consider vectorization. Blocks that contain long contiguous subsets of data may
better enable vectorization.

For recursive computations, most of the work is towards the leaves, so the solution is
to treat subtrees as a groups as shown in Figure 2.

Intel® Threading Building Blocks

4 323512-001

Figure 2: Agglomeration of a recursive computation

Often such an agglomeration is achieved by recursing serially once some threshold is
reached. For example, a recursive sort might solve sub-problems in parallel only if they
are above a certain threshold size.

Reference

Ian Foster introduced the term "agglomeration" in his book Designing and Building
Parallel Programs <http://www.mcs.anl.gov/~itf/dbpp>. There agglomeration is part of
a four step “PCAM” design method:

1. Partitioning - break the program into the smallest tasks possible.

2. Communication – figure out what communication is required between tasks.
When using Intel® TBB, communication is usually cache line transfers. Though
they are automatic, understanding which ones happen between tasks helps
guide the agglomeration step.

3. Agglomeration – combine tasks into larger tasks. His book has an extensive list
of considerations that is worth reading.

4. Mapping – map tasks onto processors. The Intel® TBB task scheduler does this
step for you.

Elementwise

Design Patterns 5

3 Elementwise

Problem

Initiate similar independent computations across items in a data set, and wait until all
complete.

Context

Many serial algorithms sweep over a set of items and do an independent computation
on each item. However, if some kind of summary information is collected, use the
Reduction pattern instead.

Forces

No information is carried or merged between the computations.

Solution

If the number of items is known in advance, use tbb::parallel_for. If not, consider
using tbb::parallel_do.

Use agglomeration if the individual computations are small relative to scheduler
overheads.

If the pattern is followed by a reduction on the same data, consider doing the element-
wise operation as part of the reduction, so that the combination of the two patterns is
accomplished in a single sweep instead of two sweeps. Doing so may improve
performance by reducing traffic through the memory hierarchy.

Example

Convolution is often used in signal processing. The convolution of a filter c and signal x
is computed as:

∑ −=
j jiji xcy

Serial code for this computation might look like:

// Assumes c[0..clen-1] and x[1-clen..xlen-1] are defined
for(int i=0; i<xlen+clen-1; ++i) {
 float tmp = 0;
 for(int j=0; j<clen; ++j)

Intel® Threading Building Blocks

6 323512-001

 tmp += c[j]*x[i-j];
 y[i] = tmp;
}

For simplicity, the fragment assumes that x is a pointer into an array padded with
zeros such that x[k] for returns zero when k<0 or k≥xlen.

The inner loop does not fit the elementwise pattern, because each iteration depends on
the previous iteration. However, the outer loop fits the elementwise pattern. It is
straightforward to render it using tbb::parallel_for as shown:

tbb::parallel_for(0, xlen+clen-1, [=](int i) {
 float tmp = 0;
 for(int j=0; j<clen; ++j)
 tmp += c[j]*x[i-j];
 y[i] = tmp;
});

tbb::parallel_for does automatic agglomeration by implicitly using
tbb::auto_partitioner in its underlying implementation. If there is reason to
agglomerate explicitly, use the overload of tbb::parallel_for that takes an explicit
range argument. The following shows the example transformed to use the overload.

tbb::parallel_for(
 tbb::blocked_range<int>(0,xlen+clen-1,1000),
 [=](tbb::blocked_range<int> r) {
 int end = r.end();
 for(int i=r.begin(); i!=end; ++i) {
 float tmp = 0;
 for(int j=0; j<clen; ++j)
 tmp += c[j]*x[i-j];
 y[i] = tmp;
 }
 }
);

Odd-Even Communication

Design Patterns 7

4 Odd-Even Communication

Problem

Operations on data cannot be done entirely independently, but data can be partitioned
into two subsets such that all operations on a subset can run in parallel.

Context

Solvers for partial differential equations can often be modified to follow this pattern.
For example, for a 2D grid with only nearest-neighbor communication, it may be
possible to treat the grid as a checkerboard, and alternate between updating red
squares and black squares.

Another context is staggered grid ("leap frog") Finite Difference Time Domain (FDTD)
solvers, which naturally fit the pattern. The code examples/parallel_for/seismic/

uses such a solver.

Forces

• Dependences between items form a bipartite graph.

Solution

Alternate between updating one subset and then the other subset. Apply the
elementwise pattern to each subset.

Example

The example in examples/parallel_for/seismic demonstrates the principle. In it,

two physical fields velocity and stress each depend upon each other, and so cannot all
be updated simultaneously. However, the velocity calculations can be done
independently as long as the stress values remain fixed, and vice-versa. So the code
alternates updates of the velocity and stress fields. Each update is done using
tbb::parallel_for.

Reference

The document "Odd-Even Communication Group"
<http://www.cs.uiuc.edu/homes/snir/PPP/patterns/oddeven.pdf> by Eun-Gyu Kim and
Marc Snir describes the pattern.

Intel® Threading Building Blocks

8 323512-001

5 Wavefront

Problem

Perform computations on items in a data set, where the computation on an item uses
results from computations on predecessor items. See reference for a discussion.

Context

The dependences between computations form an acyclic graph.

Forces

• Dependence constraints between items form an acyclic graph.

• The number of immediate predecessors in the graph is known in advance, or can
be determined some time before the last predecessor completes.

Solution

The solution is a parallel variant of topological sorting, using tbb::parallel_do to

process items. Associate an atomic counter with each item. Initialize each counter to
the number of predecessors. Invoke tbb::parallel_do to process the items that have no
predessors (have counts of zero). After an item is processed, decrement the counters
of its successors. If a successor's counter reaches zero, add that successor to the
tbb::parallel_do via a "feeder".

If the number of predecessors for an item cannot be determined in advance, treat the
information "know number of predecessors" as an additional predecessor. When the
number of predecessors becomes known, treat this conceptual predecessor as
completed.

If the overhead of counting individual items is excessive, aggregate items into blocks,
and do the wavefront over the blocks.

Example

Below is a serial kernel for the longest common subsequence algorithm. The
parameters are strings x and y with respective lengths xlen and ylen.

int F[MAX_LEN+1][MAX_LEN+1];

void SerialLCS(const char* x, size_t xlen, const char* y, size_t ylen)

Wavefront

Design Patterns 9

{
 for(size_t i=1; i<=xlen; ++i)
 for(size_t j=1; j<=ylen; ++j)
 F[i][j] = x[i-1]==y[j-1] ? F[i-1][j-1]+1 :
 max(F[i][j-1],F[i-1][j]);
}

The kernel sets F[i][j] to the length of the longest common subsequence shared by
x[0..i-1] and y[0..j-1]. It assumes that F[0][0..ylen] and F[0..xlen][0] have already
been initialized to zero.

Figure 3 shows the data dependences for calculating F[i][j].

Fi-1,j-1 Fi-1,j

Fi,j-1 Fi,j

Figure 3: Data dependences for longest common substring calculation.

As Figure 4 shows, the gray diagonal dependence is the transitive closure of other
dependences. Thus for parallelization purposes it is a redundant dependence that can
be ignored.

Fi-1,j-1 Fi-1,j

Fi,j-1 Fi,j

Figure 4: Diagonal dependence is redundant.

It is generally good to remove redundant dependences from consideration, because the
atomic counting incurs a cost for each dependence considered.

Another consideration is grain size. Scheduling each F[i][j] element calculation
separately is prohibitively expensive. A good solution is to aggregate the elements into
contiguous blocks, and process the contents of a block serially. The blocks have the
same dependence pattern, but at a block scale. Hence scheduling overheads can be
amortized over blocks.

The parallel code follows. Each block consists of N×N elements. Each block has an
associated atomic counter. Array Count organizes these counters for easy lookup. The

Intel® Threading Building Blocks

10 323512-001

code initializes the counters and then rolls a wavefront using parallel_do, starting
with the block at the origin since it has no predecessors.

const int N = 64;
tbb::atomic<char> Count[MAX_LEN/N+1][MAX_LEN/N+1];

void ParallelLCS(const char* x, size_t xlen, const char* y, size_t ylen
) {

 // Initialize predecessor counts for blocks.
 size_t m = (xlen+N-1)/N;
 size_t n = (ylen+N-1)/N;
 for(int i=0; i<m; ++i)
 for(int j=0; j<n; ++j)
 Count[i][j] = (i>0)+(j>0);

 // Roll the wavefront from the origin.
 typedef pair<size_t,size_t> block;
 block origin(0,0);
 tbb::parallel_do(&origin, &origin+1,
 [=](const block& b, tbb::parallel_do_feeder<block>& feeder) {

 // Extract bounds on block
 size_t bi = b.first;
 size_t bj = b.second;
 size_t xl = N*bi+1;
 size_t xu = min(xl+N,xlen+1);
 size_t yl = N*bj+1;
 size_t yu = min(yl+N,ylen+1);

 // Process the block
 for(size_t i=xl; i<xu; ++i)
 for(size_t j=yl; j<yu; ++j)
 F[i][j] = x[i-1]==y[j-1] ? F[i-1][j-1]+1 :
 max(F[i][j-1],F[i-1][j]);

 // Account for successors
 if(bj+1<n && --Count[bi][bj+1]==0)
 feeder.add(block(bi,bj+1));
 if(bi+1<m && --Count[bi+1][bj]==0)
 feeder.add(block(bi+1,bj)); }
);
}

A regular structure simplifies implementation of the wavefront pattern, but is not
required. The parallel preorder traversal in
examples/parallel_do/parallel_preorder applies the wavefront pattern to traverse
each node of a graph in parallel, subject to the constraint that a node is traversed after
its predecessors are traversed. In that example, each node in the graph stores its
predecessor count.

Reference

Wavefront

Design Patterns 11

The longest common substring example is adapted from “Wavefront Pattern”
<http://www.cs.illinois.edu/homes/snir/PPP/patterns/wavefront.pdf> by Eun-Gyu Kim
and Marc Snir.

http://www.cs.illinois.edu/homes/snir/PPP/patterns/wavefront.pdf

Intel® Threading Building Blocks

12 323512-001

6 Reduction

Problem

Perform an associative reduction operation across a data set.

Context

Many serial algorithms sweep over a set of items to collect summary information.

Forces

The summary can be expressed as an associative operation over the data set, or at
least is close enough to associative that reassociation does not matter.

Solution

Two solutions exist in Intel® Threading Building Blocks (Intel® TBB). The choice on
which to use depends upon several considerations:

• Is the operation commutative as well as associative?

• Are instances of the reduction type expensive to construct and destroy? For
example, a floating point number is inexpensive to construct. A sparse floating-
point matrix might be very expensive to construct.

Use tbb::parallel_reduce when the objects are inexpensive to construct. It works
even if the reduction operation is not commutative. The Intel® TBB Tutorial describes
how to use tbb::parallel_reduce for basic reductions.

Use tbb::parallel_for and tbb::combinable if the reduction operation is
commutative and instances of the type are expensive.

If the operation is not precisely associative but a precisely deterministic result is
required, use recursive reduction and parallelize it using tbb::parallel_invoke.

Examples

The examples presented here illustrate the various solutions and some tradeoffs.

The first example uses t tbb::parallel_reduce to do a + reduction over sequence of
type T. The sequence is defined by a half-open interval [first,last).

T AssocReduce(const T* first, const T* last, T identity) {

Reduction

Design Patterns 13

 return tbb::parallel_reduce(

 // Index range for reduction
 tbb::blocked_range<const T*>(first,last),

 // Identity element
 identity,

 // Reduce a subrange and partial sum
 [&](tbb::blocked_range<const T*> r, T partial_sum)->float {
 return std::accumulate(r.begin(), r.end(), partial_sum);
 },

 // Reduce two partial sums
 std::plus<T>()
);
}

The third and fourth arguments to this form of parallel_reduce are a built in form of the
agglomeration pattern. If there is an elementwise action to be performed before the
reduction, incorporating it into the third argument (reduction of a subrange) may
improve performance because of better locality of reference.

The second example assumes the + is commutative on T. It is a good solution when T
objects are expensive to construct.

T CombineReduce(const T* first, const T* last, T identity) {
 tbb::combinable<T> sum(identity);
 tbb::parallel_for(
 tbb::blocked_range<const T*>(first,last),
 [&](tbb::blocked_range<const T*> r) {
 sum.local() += std::accumulate(r.begin(), r.end(), identity);
 }
);
 return sum.combine([](const T& x, const T& y) {return x+y;});
}

Sometimes it is desirable to destructively use the partial results to generate the final
result. For example, if the partial results are lists, they can be spliced together to form
the final result. In that case use class tbb::enumerable_thread_specific instead of
combinable. The ParallelFindCollisions example in Chapter 7 demonstrates the

technique.

Floating-point addition and multiplication are almost associative. Reassociation can
cause changes because of rounding effects. The techniques shown so far reassociate
terms non-deterministically. Fully deterministic parallel reduction for a not quite
associative operation requires using deterministic reassociation. The code below
demonstrates this in the form of a template that does a + reduction over a sequence of
values of type T.

template<typename T>
T RepeatableReduce(const T* first, const T* last, T identity) {
 if(last-first<=1000) {

 // Use serial reduction

Intel® Threading Building Blocks

14 323512-001

 return std::accumulate(first, last, identity);
 } else {

 // Do parallel divide-and-conquer reduction
 const T* mid = first+(last-first)/2;
 T left, right;
 tbb::parallel_invoke(
 [&]{left=RepeatableReduce(first,mid,identity);},
 [&]{right=RepeatableReduce(mid,last,identity);}
);
 return left+right;
 }
}

The outer if-else is an instance of the agglomeration pattern for recursive
computations. The reduction graph, though not a strict binary tree, is fully
deterministic. Thus the result will always be the same for a given input sequence,
assuming all threads do identical floating-point rounding.

The final example shows how a problem that typically is not viewed as a reduction can
be parallelized by viewing it as a reduction. The problem is retrieving floating-point
exception flags for a computation across a data set. The serial code might look
something like:

 feclearexcept(FE_ALL_EXCEPT);
 for(int i=0; i<N; ++i)
 C[i]=A[i]*B[i];
 int flags = fetestexcept(FE_ALL_EXCEPT);
 if (flags & FE_DIVBYZERO) ...;
 if (flags & FE_OVERFLOW) ...;
 ...

The code can be parallelized by computing chunks of the loop separately, and merging
floating-point flags from each chunk. To do this with tbb:parallel_reduce, first define

a "body" type, as shown below.

struct ComputeChunk {

 int flags; // Holds floating-point exceptions seen so far.
 void reset_fpe() {
 flags=0;
 feclearexcept(FE_ALL_EXCEPT);
 }
 ComputeChunk () {
 reset_fpe();
 }

 // "Splitting constructor" called by parallel_reduce when splitting a range into subranges.
 ComputeChunk (const ComputeChunk&, tbb::split) {
 reset_fpe();
 }

 // Operates on a chunk and collects floating-point exception state into flags member.
 void operator()(tbb::blocked_range<int> r) {

Reduction

Design Patterns 15

 int end=r.end();
 for(int i=r.begin(); i!=end; ++i)
 C[i] = A[i]/B[i];

 // It is critical to do |= here, not =, because otherwise we
 // might lose earlier exceptions from the same thread.
 flags |= fetestexcept(FE_ALL_EXCEPT);
 }

 // Called by parallel_reduce when joining results from two subranges.
 void join(Body& other) {
 flags |= other.flags;
 }
};

Then invoke it as follows:

 // Construction of cc implicitly resets FP exception state.
 ComputeChunk cc;
 tbb::parallel_reduce(tbb::blocked_range<int>(0,N), cc);
 if (cc.flags & FE_DIVBYZERO) ...;
 if (cc.flags & FE_OVERFLOW) ...;
 ...

Intel® Threading Building Blocks

16 323512-001

7 Divide and Conquer

Problem

Parallelize a divide and conquer algorithm.

Context

Divide and conquer is widely used in serial algorithms. Common examples are
quicksort and mergesort.

Forces

• Problem can be transformed into subproblems that can be solved independently.

• Splitting problem or merging solutions is relatively cheap compared to cost of
solving the subproblems.

Solution

There are several ways to implement divide and conquer in Intel®Threading Building
Blocks (Intel® TBB). The best choice depends upon circumstances.

• If division always yields the same number of subproblems, use recursion and
tbb::parallel_invoke.

• If the number of subproblems varies, use recursion and tbb::task_group.

• If ultimate efficiency and scalability is important, use tbb::task and continuation
passing style.

Example

Quicksort is a classic divide-and-conquer algorithm. It divides a sorting problem into
two subsorts. A simple serial version looks like:1

void SerialQuicksort(T* begin, T* end) {

1 Production quality quicksort implementations typically use more sophisticated pivot
selection, explicit stacks instead of recursion, and some other sorting algorithm for
small subsorts. The simple algorithm is used here to focus on exposition of the parallel
pattern.

Divide and Conquer

Design Patterns 17

 if(end-begin>1) {
 using namespace std;
 T* mid = partition(begin+1, end, bind2nd(less<T>(),*begin));
 swap(*begin, mid[-1]);
 SerialQuicksort(begin, mid-1);
 SerialQuicksort(mid, end);
 }
}

The number of subsorts is fixed at two, so tbb::parallel_invoke provides a simple
way to parallelize it. The parallel code is shown below:

void ParallelQuicksort(T* begin, T* end) {
 if(end-begin>1) {
 using namespace std;
 T* mid = partition(begin+1, end, bind2nd(less<T>(),*begin));
 swap(*begin, mid[-1]);
 tbb::parallel_invoke([=]{ParallelQuicksort(begin, mid-1);},
 [=]{ParallelQuicksort(mid, end);});
 }
}

Eventually the subsorts become small enough that serial execution is more efficient.
The following variation, with changed parts in blue, does sorts of less than 500
elements using the earlier serial code.

void ParallelQuicksort(T* begin, T* end) {
 if(end-begin>=500) {
 using namespace std;
 T* mid = partition(begin+1, end, bind2nd(less<T>(),*begin));
 swap(*begin, mid[-1]);
 tbb::parallel_invoke([=]{ParallelQuicksort(begin, mid-1);},
 [=]{ParallelQuicksort(mid, end);});
 } else {
 SerialQuicksort(begin, end);
 }
}

The change is an instance of the Agglomeration pattern.

The next example considers a problem where there are a variable number of
subproblems. The problem involves a tree-like description of a mechanical assembly.
There are two kinds of nodes:

• Leaf nodes represent individual parts.

• Internal nodes represent groups of parts.

The problem is to find all nodes that collide with a target node. The following code
shows a serial solution that walks the tree. It records in Hits any nodes that collide
with Target.

Intel® Threading Building Blocks

18 323512-001

std::list<Node*> Hits;
Node* Target;

void SerialFindCollisions(Node& x) {
 if(x.is_leaf()) {
 if(x.collides_with(*Target))
 Hits.push_back(&x);
 } else {
 for(Node::const_iterator y=x.begin(); y!=x.end(); ++y)
 SerialFindCollisions(*y);
 }
}

A parallel version is shown below.

typedef tbb::enumerable_thread_specific<std::list<Node*> > LocalList;
LocalList LocalHits;

Node* Target; // Target node

void ParallelWalk(Node& x) {
 if(x.is_leaf()) {
 if(x.collides_with(*Target))
 LocalHits.local().push_back(&x);
 } else {
 // Recurse on each child y of x in parallel
 tbb::task_group g;
 for(Node::const_iterator y=x.begin(); y!=x.end(); ++y)
 g.run([=]{ParallelWalk(*y);});
 // Wait for recursive calls to complete
 g.wait();
 }
}

void ParallelFindCollisions(Node& x) {
 ParallelWalk(x);
 for(LocalList::iterator i=LocalHits.begin(); i!=LocalHits.end(); ++i)
 Hits.splice(Hits.end(), *i);
}

The recursive walk is parallelized using class task_group to do recursive calls in
parallel.

There is another significant change because of the parallelism that is introduced.
Because it would be unsafe to update Hits concurrently, the parallel walk uses variable
LocalHits to accumulate results. Because it is of type enumerable_thread_specific,
each thread accumulates its own private result. The results are spliced together into
Hits after the walk completes.

The results will not be in the same order as the original serial code.

Divide and Conquer

Design Patterns 19

If parallel overhead is high, use the agglomeration pattern. For example, use the serial
walk for subtrees under a certain threshold.

Intel® Threading Building Blocks

20 323512-001

8 GUI Thread

Problem

A user interface thread must remain responsive to user requests, and must not get
bogged down in long computations.

Context

Graphical user interfaces often have a dedicated thread (“GUI thread”) for servicing
user interactions. The thread must remain responsive to user requests even while the
application has long computations running. For example, the user might want to press
a “cancel” button to stop the long running computation. If the GUI thread takes part in
the long running computation, it will not be able to respond to user requests.

Forces

• The GUI thread services an event loop.

• The GUI thread needs to offload work onto other threads without waiting for the
work to complete.

• The GUI thread must be responsive to the event loop and not become dedicated to
doing the offloaded work.

Related

Non-Preemptive Priorities

Local Serializer

Solution

The GUI thread offloads the work by firing off a task to do it using method
task::enqueue. When finished, the task posts an event to the GUI thread to indicate
that the work is done. The semantics of enqueue cause the task to eventually run on a
worker thread distinct from the calling thread. The method is a new feature in Intel®
Threading Building Blocks (Intel® TBB) 3.0.

Figure 5 sketches the communication paths. Items in black are executed by the GUI
thread; items in blue are executed by another thread.

GUI Thread

Design Patterns 21

message loop

task::enqueue_self

post event

task::execute()

Figure 5: GUI Thread pattern

Example

The example is for the Microsoft Windows* operating systems, though similar principles
apply to any GUI using an event loop idiom. For each event, the GUI thread calls a
user-defined function WndProc. to process an event. The key parts are in bold font.

// Event posted from enqueued task when it finishes its work.
const UINT WM_POP_FOO = WM_USER+0;

// Queue for transmitting results from enqueued task to GUI thread.
tbb::concurrent_queue<Foo> ResultQueue;

// GUI thread’s private copy of most recently computed result.
Foo CurrentResult;

LRESULT CALLBACK WndProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM
lParam) {
 switch(msg) {
 case WM_COMMAND:
 switch (LOWORD(wParam)) {
 case IDM_LONGRUNNINGWORK:

 // User requested a long computation. Delegate it to another thread.
 LaunchLongRunningWork(hWnd);
 break;
 case IDM_EXIT:
 DestroyWindow(hWnd);
 break;
 default:
 return DefWindowProc(hWnd, msg, wParam, lParam);
 }
 break;
 case WM_POP_FOO:

 // There is another result in ResultQueue for me to grab.
 ResultQueue.try_pop(CurrentResult);

 // Update the window with the latest result.
 RedrawWindow(hWnd, NULL, NULL, RDW_ERASE|RDW_INVALIDATE);
 break;

Intel® Threading Building Blocks

22 323512-001

 case WM_PAINT:
 Repaint the window using CurrentResult
 break;
 case WM_DESTROY:
 PostQuitMessage(0);
 break;
 default:
 return DefWindowProc(hWnd, msg, wParam, lParam);
 }
 return 0;
}

The GUI thread processes long computations as follows:

1. The GUI thread calls LongRunningWork, which hands off the work to a worker

thread and immediately returns.

2. The GUI thread continues servicing the event loop. If it has to repaint the
window, it uses the value of CurrentResult, which is the most recent Foo that
it has seen.

When a worker finishes the long computation, it pushes the result into ResultQueue,
and sends a message WM_POP_FOO to the GUI thread.

3. The GUI thread services a WM_POP_FOO message by popping an item from
ResultQueue into CurrentResult. The try_pop always succeeds because there is
exactly one WM_POP_FOO message for each item in ResultQueue.

Routine LaunchLongRunningWork creates a root task and launches it using method
task::enqeueue. The task is a root task because it has no successor task waiting on it.

class LongTask: public tbb::task {
 HWND hWnd;
 tbb::task* execute() {
 Do long computation
 Foo x = result of long computation
 ResultQueue.push(x);
 // Notify GUI thread that result is available.
 PostMessage(hWnd,WM_POP_FOO,0,0);
 return NULL;
 }
public:
 LongTask(HWND hWnd_) : hWnd(hWnd_) {}
};

void LaunchLongRunningWork(HWND hWnd) {
 LongTask* t = new(tbb::task::allocate_root()) LongTask(hWnd);
 tbb::task::enqueue(*t);
}

GUI Thread

Design Patterns 23

It is essential to use method task::enqueue and not method task::spawn. The reason
is that method enqueue_self ensures that the task eventually executes when

resources permit, even if no thread explicitly waits on the task. In contrast, method
spawn may postpone execution of the task until it is explicitly waited upon.

The example uses a concurrent_queue for workers to communicate results back to the

GUI thread. Since only the most recent result matters in the example, and alternative
would be to use a shared variable protected by a mutex. However, doing so would
block the worker while the GUI thread was holding a lock on the mutex, and vice versa.
Using concurrent_queue provides a simple robust solution.

If two long computations are in flight, there is a chance that the first computation
completes after the second one. If displaying the result of the most recently requested
computation is important, then associate a request serial number with the
computation. The GUI thread can pop from ResultQueue into a temporary variable,
check the serial number, and update CurrentResult only if doing so advances the
serial number.

See Non-Preemptive Priorities for how to implement priorities. See Local Serializer for
how to force serial ordering of certain tasks.

Intel® Threading Building Blocks

24 323512-001

9 Non-Preemptive Priorities

Problem

Choose the next work item to do, based on priorities.

Context

The scheduler in Intel® Threading Building Blocks (Intel® TBB) chooses tasks using
rules based on scalability concerns. The rules are based on the order in which tasks
were spawned or enqueued, and are oblivious to the contents of tasks. However,
sometimes it is best to choose work based on some kind of priority relationship.

Forces

• Given multiple work items, there is a rule for which item should be done next that
is not the default Intel® TBB rule.

• Preemptive priorities are not necessary. If a higher priority item appears, it is not
necessary to immediately stop lower priority items in flight. If preemptive priorities
are necessary, then non-preemptive tasking is inappropriate. Use threads instead.

Solution

Put the work in a shared work pile. Decouple tasks from specific work, so that task
execution chooses the actual piece of work to be selected from the pile.

Example

The following example implements three priority levels. The user interface for it and
top-level implementation follow:

enum Priority {
 P_High,
 P_Medium,
 P_Low
};

template<typename Func>
void EnqueueWork(Priority p, Func f) {
 WorkItem* item = new ConcreteWorkItem<Func>(p, f);

Non-Preemptive Priorities

Design Patterns 25

 ReadyPile.add(item);
}

The caller provides a priority p and a functor f to routine EnqueueWork. The functor
may be the result of a lambda expression. EnqueueWork packages f as a WorkItem and
adds it to global object ReadyPile.

Class WorkItem provides a uniform interface for running functors of unknown type:

// Abstract base class for a prioritized piece of work.
class WorkItem {
public:
 WorkItem(Priority p) : priority(p) {}
 // Derived class defines the actual work.
 virtual void run() = 0;
 const Priority priority;
};

template<typename Func>
class ConcreteWorkItem: public WorkItem {
 Func f;
 /*override*/ void run() {
 f();
 delete this;
 }
public:
 ConcreteWorkItem(Priority p, const Func& f_) :
 WorkItem(p), f(f_)
 {}
};

Class ReadyPile contains the core pattern. It maintains a collection of work and fires
off tasks that choose work from the collection:

class ReadyPileType {
 // One queue for each priority level
 tbb::concurrent_queue<WorkItem*> level[P_Low+1];
public:
 void add(WorkItem* item) {
 level[item->priority].push(item);
 tbb::task::enqueue(*new(tbb::task::allocate_root()) RunWorkItem);
 }
 void runNextWorkItem() {
 // Scan queues in priority order for an item.
 WorkItem* item=NULL;
 for(int i=P_High; i<=P_Low; ++i)
 if(level[i].try_pop(item))
 break;
 assert(item);
 item->run();
 }

Intel® Threading Building Blocks

26 323512-001

};

ReadyPileType ReadyPile;

The task enqueued by add(item) does not necessarily execute that item. The task
executes runNextWorkItem(), which may find a higher priority item. There is one task

for each item, but the mapping resolves when the task actually executes, not when it is
created.

Here are the details of class RunWorkItem:

class RunWorkItem: public tbb::task {
 /*override*/tbb::task* execute(); // Private override of virtual
method
};
...
tbb::task* RunWorkItem::execute() {
 ReadyPile.runNextWorkItem();
 return NULL;
};

RunWorkItem objects are fungible. They enable the Intel® TBB scheduler to choose
when to do a work item, not which work item to do. The override of virtual method
task::execute is private because all calls to it are dispatched via base class task.

Other priority schemes can be implemented by changing the internals for
ReadyPileType. A priority queue could be used to implement very fine grained
priorities.

The scalability of the pattern is limited by the scalability of ReadyPileType. Ideally
scalable concurrent containers should be used for it.

Local Serializer

Design Patterns 27

10 Local Serializer

Context

Consider an interactive program. To maximize concurrency and responsiveness,
operations requested by the user can be implemented as tasks. The order of operations
can be important. For example, suppose the program presents editable text to the
user. There might be operations to select text and delete selected text. Reversing the
order of “select” and “delete” operations on the same buffer would be bad. However,
commuting operations on different buffers might be okay. Hence the goal is to
establish serial ordering of tasks associated with a given object, but not constrain
ordering of tasks between different objects.

Forces

• Operations associated with a certain object must be performed in serial order.

• Serializing with a lock would be wasteful because threads would be waiting at the
lock when they could be doing useful work elsewhere.

Solution

Sequence the work items using a FIFO (first-in first-out structure). Always keep an
item in flight if possible. If no item is in flight when a work item appears, put the item
in flight. Otherwise, push the item onto the FIFO. When the current item in flight
completes, pop another item from the FIFO and put it in flight.

The logic can be implemented without mutexes, by using concurrent_queue for the
FIFO and atomic<int> to count the number of items waiting and in flight. The example

explains the accounting in detail.

Example

The following example builds on the Non-Preemptive Priorities example to implement
local serialization in addition to priorities. It implements three priority levels and local
serializers. The user interface for it follows:

enum Priority {
 P_High,
 P_Medium,
 P_Low
};

Intel® Threading Building Blocks

28 323512-001

template<typename Func>
void EnqueueWork(Priority p, Func f, Serializer* s=NULL);

Template function EnqueueWork causes functor f to run when the three constraints in
Table 1 are met.

Table 1: Implementation of Constraints

Constraint Resolved by class...

Any prior work for the Serializer has completed. Serializer

A thread is available. RunWorkItem

No higher priority work is ready to run. ReadyPileType

Constraints on a given functor are resolved from top to bottom in the table. The first
constraint does not exist when s is NULL. The implementation of EnqueueWork
packages the functor in a SerializedWorkItem and routes it to the class that enforces

the first relevant constraint between pieces of work.

template<typename Func>
void EnqueueWork(Priority p, Func f, Serializer* s=NULL) {
 WorkItem* item = new SerializedWorkItem<Func>(p, f, s);
 if(s)
 s->add(item);
 else
 ReadyPile.add(item);
}

A SerializedWorkItem is derived from a WorkItem, which serves as a way to pass
around a prioritized piece of work without knowing further details of the work.

// Abstract base class for a prioritized piece of work.
class WorkItem {
public:
 WorkItem(Priority p) : priority(p) {}

 // Derived class defines the actual work.
 virtual void run() = 0;
 const Priority priority;
};

template<typename Func>
class SerializedWorkItem: public WorkItem {
 Serializer* serializer;
 Func f;

 /*override*/ void run() {
 f();
 Serializer* s = serializer;

 // Destroy f before running Serializer’s next functor.
 delete this;
 if(s)

Local Serializer

Design Patterns 29

 s->noteCompletion();
 }
public:
 SerializedWorkItem(Priority p, const Func& f_, Serializer* s) :
 WorkItem(p), serializer(s), f(f_)
 {}
};

Base class WorkItem is the same as class WorkItem in the example for Non-Preemptive
Priorities. The notion of serial constraints is completely hidden from the base class,
thus permitting the framework to extend other kinds of constraints or lack of
constraints. Class SerializedWorkItem is essentially ConcreteWorkItem from the
other example, extended with a Serializer aspect.

Virtual method run() is invoked when it becomes time to run the functor. It performs
three steps:

1. Run the functor

2. Destroy the functor.

3. Notify the Serializer that the functor completed, and thus unconstraining the

next waiting functor.

Step 3 is the difference from the operation of ConcreteWorkItem::run. Step 2 could be
done after step 3 in some contexts to increase concurrency slightly. However, the
presented order is recommended because if step 2 takes non-trivial time, it likely has
side effects that should complete before the next functor runs.

Class Serializer implements the core of the Local Serializer pattern:

class Serializer {
 tbb::concurrent_queue<WorkItem*> queue;

 tbb::atomic<int> count; // Count of queued items and in-flight item
 void moveOneItemToReadyPile() { // Transfer item from queue to ReadyPile
 WorkItem* item;
 queue.try_pop(item);
 ReadyPile.add(item);
 }
public:
 void add(WorkItem* item) {
 queue.push(item);
 if(++count==1)
 moveOneItemToReadyPile();
 }

 void noteCompletion() { // Called when WorkItem completes.
 if(--count!=0)
 moveOneItemToReadyPile();
 }
};

Intel® Threading Building Blocks

30 323512-001

The class maintains two members:

• A queue of WorkItem waiting for prior work to complete.

• A count of queued or in-flight work.

Mutexes are avoided by using concurrent_queue<WorkItem*> and atomic<int> along
with careful ordering of operations. The transitions of count are the key understanding
how class Serializer works.

• If method add increments count from 0 to 1, this indicates that no other work is in
flight and thus the work should be moved to the ReadyPile.

• If method noteCompletion decrements count and it is not from 1 to 0, then the

queue is non-empty and another item in the queue should be moved to
ReadyPile.

Class ReadyPile is explained in the example for Non-Preemptive Priorities.

If priorities are not necessary, there are two variations on method moveOneItem, with

different implications.

• Method moveOneItem could directly invoke item->run(). This approach has
relatively low overhead and high thread locality for a given Serializer. But it is
unfair. If the Serializer has a continual stream of tasks, the thread operating on
it will keep servicing those tasks to the exclusion of others.

• Method moveOneItem could invoke task::enqueue to enqueue a task that invokes
item->run(). Doing so introduces higher overhead and less locality than the first

approach, but avoids starvation.

The conflict between fairness and maximum locality is fundamental. The best resolution
depends upon circumstance.

The pattern generalizes to constraints on work items more general than those
maintained by class Serializer. A generalized Serializer::add determines if a work

item is unconstrained, and if so, runs it immediately. A generalized
Serializer::noteCompletion runs all previously constrained items that have become

unconstrained by the completion of the current work item. The term “run” means to
run work immediately, or if there are more constraints, forwarding the work to the next
constraint resolver.

Fenced Data Transfer

Design Patterns 31

11 Fenced Data Transfer

Problem

Write a message to memory and have another processor read it on hardware that does
not have a sequentially consistent memory model.

Context

The problem normally arises only when unsynchronized threads concurrently act on a
memory location, or are using reads and writes to create synchronization. High level
synchronization constructs normally include mechanisms that prevent unwanted
reordering.

Modern hardware and compilers can reorder memory operations in a way that
preserves the order of a thread's operation from its viewpoint, but not as observed by
other threads. A serial common idiom is to write a message and mark it as ready to
ready as shown in the following code:

bool Ready;
std::string Message;

void Send(const std::string& src) { // Executed by thread 1
 Message=src;
 Ready = true;
}

bool Receive(std::string& dst) { // Executed by thread 2
 bool result = Ready;
 if(result) dst=Message;

 return result; // Return true if message was received.
}

Two key assumptions of the code are:

a. Ready does not become true until Message is written.

b. Message is not read until Ready becomes true.

These assumptions are trivially true on uniprocessor hardware. However, they may
break on multiprocessor hardware. Reordering by the hardware or compiler can cause
the sender's writes to appear out of order to the receiver (thus breaking condition a) or
the receiver's reads to appear out of order (thus breaking condition b).

Intel® Threading Building Blocks

32 323512-001

Forces

• Creating synchronization via raw reads and writes.

Related

Lazy Initialization

Solution

Change the flag from bool to tbb::atomic<bool> for the flag that indicates when the

message is ready. Here is the previous example, with modifications colored blue.

tbb::atomic<bool> Ready;
std::string Message;

void Send(const std::string& src) { // Executed by thread 1
 Message=src;
 Ready = true;
}

bool Receive(std::string& dst) { // Executed by thread 2
 bool result = Ready;
 if(result) dst=Message;

 return result; // Return true if message was received.
}

A write to a tbb::atomic value has release semantics, which means that all of its prior
writes will be seen before the releasing write. A read from tbb::atomic value has

acquire semantics, which means that all of its subsequent reads will happen after the
acquiring read. The implementation of tbb::atomic ensures that both the compiler and
the hardware observe these ordering constraints.

Variations

Higher level synchronization constructs normally include the necessary acquire and
release fences. For example, mutexes are normally implemented such that acquisition
of a lock has acquire semantics and release of a lock has release semantics. Thus a
thread that acquires a lock on a mutex always sees any memory writes done by
another thread before it released a lock on that mutex.

Non Solutions

Mistaken solutions are so often proposed that it is worth understanding why they are
wrong.

Fenced Data Transfer

Design Patterns 33

One common mistake is to assume that declaring the flag with the volatile keyword
solves the problem. Though the volatile keyword forces a write to happen

immediately, it generally has no effect on the visible ordering of that write with respect
to other memory operations. An exception to this rule are processors from the Intel®
Itanium® processor family, which by convention assign acquire semantics to volatile

reads and release semantics to volatile writes.

Another mistake is to assume that conditionally executed code cannot happen before
the condition is tested. However, the compiler or hardware may speculatively hoist the
conditional code above the condition.

Similarly, it is a mistake to assume that a processor cannot read the target of a pointer
before reading the pointer. A modern processor does not read individual values from
main memory. It reads cache lines. The target of a pointer may be in a cache line that
has already been read before the pointer was read, thus giving the appearance that the
processor presciently read the pointer target.

Intel® Threading Building Blocks

34 323512-001

12 Lazy Initialization

Problem

Perform an initialization the first time it is needed.

Context

Initializing data structures lazily is a common technique. Not only does it avoid the
cost of initializing unused data structures, it is often a more convenient way to
structure a program.

Forces

• Threads share access to an object.

• The object should not be created until the first access.

The second force covers several possible motivations:

• The object is expensive to create and creating it early would slow down program
startup.

• It is not used in every run of the program.

• Early initialization would require adding code where it is undesirable for readability
or structural reasons.

Related

Fenced Data Transfer

Solutions

A parallel solution is substantially trickier, because it must deal with several
concurrency issues.

Races: If two threads attempt to simultaneously access to the object for the first time,
and thus cause creation of the object, the race must be resolved in a way that both
threads end up with a reference to the same object of type T.

Memory leaks: In the event of a race, the implementation must ensure that any extra
transient T objects are cleaned up.

Lazy Initialization

Design Patterns 35

Memory consistency: If thread X executes value=new T(), all other threads must
see stores by new T() occur before the assignment value= .

Deadlock: What if the constructor of T() requires acquiring a lock, but the current

holder of that lock is also racing to access the object for the first time?

There are two solutions. One is based on double-check locking. The other relies on
compare-and-swap. Because the tradeoffs and issues are subtle, most of the discussion
is in the following examples section.

Examples

An Intel® TBB implementation of the “double-check” pattern is shown below:

template<typename T, typename Mutex=tbb::mutex>
class lazy {
 tbb::atomic<T*> value;
 Mutex* mut;
public:
 lazy() : value(NULL) {}
 ~lazy() {delete value;}
 T& get() {

 if(!value) { // Read of value has acquire semantics.
 Mutex::scoped_lock lock;

 if(!value) value = new T(); // Write of value has release semantics
 }
 return *value;
 }
};

The name comes from the way that the pattern deals with races. There is one check
done without locking and one check done after locking. The first check handles the
presumably common case that the initialization has already been done, without any
locking. The second check deals with cases where two threads both see an uninitialized
value, and both try to acquire the lock. In that case, the second thread to acquire the
lock will see that the initialization has already occurred.

If T() throws an exception, the solution is correct because value will still be NULL and
the mutex unlocked when object lock is destroyed.

The solution correctly addresses memory consistency issues. A write to a tbb::atomic

value has release semantics, which means that all of its prior writes will be seen before
the releasing write. A read from tbb::atomic value has acquire semantics, which

means that all of its subsequent reads will happen after the acquiring read. Both of
these properties are critical to the solution. The releasing write ensures that the
construction of T() is seen to occur before the assignment to value. The acquiring read
ensures that when the caller reads from *value, the reads occur after the
"if(!value)" check. The release/acquire is essentially the Fenced Data Transfer

Intel® Threading Building Blocks

36 323512-001

pattern, where the “message” is the fully constructed instance T(), and the “ready”
flag is the pointer value.

The solution described involves blocking threads while initialization occurs. Hence it can
suffer the usual pathologies associated with blocking. For example, if the thread first
acquires the lock is suspended by the OS, all other threads will have to wait until that
thread resumes. A lock-free variation avoids this problem by making all contending
threads attempt initialization, and atomically deciding which attempt succeeds.

An Intel® TBB implementation of the non-blocking variant follows. It also uses double-
check, but without a lock.

template<typename T>
class lazy {
 tbb::atomic<T*> value;
 Mutex* mut;
public:
 lazy() : value(NULL) {}
 ~lazy() {delete value;}
 T& get() {
 if(!value) {
 T* tmp = new T();
 if(value.compare_and_swap(tmp,NULL)!=NULL)

 // Another thread installed the value, so throw away mine.
 delete tmp;
 }
 return value;
 }
};

The second check is performed by the expression
value.compare_and_swap(tmp,NULL)!=NULL, which conditionally assigns value=tmp if
value==NULL, and returns true if the old value was NULL. Thus if multiple threads
attempt simultaneous initialization, the first thread to execute the compare_and_swap

will set value to point to its T object. Other contenders that execute the
compare_and_swap will get back a non-NULL pointer, and know that they should delete

their transient T objects.

As with the locking solution, memory consistency issues are addressed by the
semantics of tbb::atomic. The first check has acquire semantics and the
compare_and_swap has both acquire and release semantics.

Reference

A sophisticated way to avoid the acquire fence for a read is Mike Burrow's algorithm
<http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2660.htm>.

Reference Counting

Design Patterns 37

13 Reference Counting

Problem

Destroy an object when it will no longer be used.

Context

Often it is desirable to destroy an object when it is known that it will not be used in the
future. Reference counting is a common serial solution that extends to parallel
programming if done carefully.

Forces

• If there are cycles of references, basic reference counting is insufficient unless the
cycle is explicitly broken.

• Atomic counting is relatively expensive in hardware.

Solution

Thread-safe reference counting is like serial reference counting, except that the
increment/decrement is done atomically, and the decrement and test "count is zero?"
must act as a single atomic operation. The following example uses tbb::atomic<int> to
achieve this.

template<typename T>
class counted {
 tbb::atomic<int> my_count;
 T value;
public:

 // Construct object with a single reference to it.
 counted() {my_count=1;}

 // Add reference
 void add_ref() {++my_count;}

 // Remove reference. Return true if it was the last reference.
 bool remove_ref() {return --my_count==0;}

 // Get reference to underlying object
 T& get() {
 assert(my_count>0);
 return my_value;
 }

Intel® Threading Building Blocks

38 323512-001

};

It is incorrect to use a separate read for testing if the count is zero. The following code
would be an incorrect implementation of method remove_ref() because two threads
might both execute the decrement, and then both read my_count as zero. Hence two
callers would both be told incorrectly that they had removed the last reference.

 --my_count;

 return my_count==0; // WRONG!

The decrement may need to have a release fence so that any pending writes complete
before the object is deleted.

There is no simple way to atomically copy a pointer and increment its reference count,
because there will be a timing hole between the copying and the increment where the
reference count is too low, and thus another thread might decrement the count to zero
and delete the object. Two way to address the problem are “hazard pointers” and “pass
the buck”. See the references at the end of this chapter for details.

Variations

Atomic increment/decrement can more than an order of magnitude more expensive
than ordinary increment/decrement. The serial optimization of eliminating redundant
increment/decrement operations becomes more important with atomic reference
counts.

Weighted reference counting can be used to reduce costs if the pointers are unshared
but the referent is shared. Associate a weight with each pointer. The reference count is
the sum of the weights. A pointer x can be copied as a pointer x' without updating the
reference count by splitting the original weight between x and x'. If the weight of x is
too low to split, then first add a constant W to the reference count and weight of x.

References

D. Bacon and V.T. Rajan, “Concurrent Cycle Collection in Reference Counted Systems”
in Proc. European Conf. on Object-Oriented Programming (June 2001). Describes a
garbage collector based on reference counting that does collect cycles.

M. Michael, “Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects” in IEEE
Transactions on Parallel and Distributed Systems (June 2004). Describes the “hazard
pointer” technique.

M. Herlihy, V. Luchangco, and M. Moir, “The Repeat Offender Problem: A Mechanism
for Supporting Dynamic-Sized, Lock-Free Data Structures” in Proceedings of the 16th
International Symposium on Distributed Computing (Oct. 2002). Describes the “pass
the buck” technique.

Compare and Swap Loop

Design Patterns 39

14 Compare and Swap Loop

Problem

Atomically update a scalar value so that a predicate is satisfied.

Context

Often a shared variable must be updated atomically, by a transform that maps its old
value to a new value. The transform might be a transition of a finite state machine, or
recording global knowledge. For instance, the shared variable might be recording the
maximum value that any thread has seen so far.

Forces

• The variable is read and updated by multiple threads.

• The hardware implements “compare and swap” for a variable of that type.

• Protecting the update with a mutex is to be avoided.

Related

Reduction

Reference counting

Solution

The solution is to atomically snapshot the current value, and then use
atomic<T>::compare_and_swap to update it. Retry until the compare_and_swap
succeeds. In some cases it may be possible to exit before the compare_and_swap

succeeds because the current value meets some condition.

The template below does the update x=F(x) atomically.

// Atomically perform x=F(x).
template<typename F, typename T>
void AtomicUpdate(atomic<T>& x, F f) {
 int o;
 do {

 // Take a snapshot
 int o = x;

 // Attempt to install new value computed from snapshot

Intel® Threading Building Blocks

40 323512-001

 } while(x.compare_and_swap(o,f(o))!=o);
}

It is critical to take a snapshot and use it for intermediate calculations, because the
value of X may be changed by other threads in the meantime.

The following code shows how the template might be used to maintain a global
maximum of any value seen by RecordMax.

// Atomically perform UpperBound = max(UpperBound,y)
void RecordMax(int y) {
 extern atomic<int> UpperBound;
 AtomicUpdate(UpperBound, [&](int value){return std::max(value,y);});
}

When y is not going to increase UpperBound, the call to AtomicUpdate will waste time
doing the redundant operation compare_and_swap(o,o). In general, this kind of
redundancy can be eliminated by making the loop in AtomicUpdate exit early if
F(o)==o. In this particular case where F==std::max<int>, that test can be further
simplified. The following custom version of RecordMax has the simplified test.

// Atomically perform UpperBound =max(UpperBound,y)

void RecordMax(int y) { .
 extern atomic<int> UpperBound;
 do {
 // Take a snapshot
 int o = UpperBound;
 // Quit if snapshot meets condition.
 if(o>=y) break;
 // Attempt to install new value.
 } while(UpperBound.compare_and_swap(y,o)!=o);
}

Because all participating threads modify a common location, the performance of a
compare and swap loop can be poor under high contention. Thus the applicability of
more efficient patterns should be considered first. In particular:

• If the overall purpose is a reduction, use the reduction pattern instead.

• If the update is addition or subtraction, use atomic<T>::fetch_and_add. If the
update is addition or subtraction by one, use atomic<T>::operater++ or
atomic<T>::operator--. These methods typically employ direct hardware support

that avoids a compare and swap loop.

CAUTION: If use compare_and_swap to update links in a linked structure, be sure you understand

if the “ABA problem” is an issue. See the Internet for discourses on the subject.

Compare and Swap Loop

Design Patterns 41

General References
This section lists general references. References specific to a pattern are listed at the
end of the chapter for the pattern.

• E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns (1995).

• Berkeley Pattern Language for Parallel Programming,
http://parlab.eecs.berkeley.edu/wiki/patterns

• T. Mattson, B. Sanders, B. Massingill. Patterns for Parallel Programming (2005).

• ParaPLoP 2009, http://www.upcrc.illinois.edu/workshops/paraplop09/program.html

• ParaPLoP 2010, http://www.upcrc.illinois.edu/workshops/paraplop10/program.html

• Eun-Gyu Kim and Marc Snir, “Parallel Programming Patterns”,
http://www.cs.illinois.edu/homes/snir/PPP/index.html

http://parlab.eecs.berkeley.edu/wiki/patterns
http://www.upcrc.illinois.edu/workshops/paraplop09/program.html

	 Legal Information
	1 Introduction
	2 Agglomeration
	3 Elementwise
	4 Odd-Even Communication
	5 Wavefront
	6 Reduction
	7 Divide and Conquer
	8 GUI Thread
	9 Non-Preemptive Priorities
	10 Local Serializer
	11 Fenced Data Transfer
	12 Lazy Initialization
	13 Reference Counting
	14 Compare and Swap Loop

