
LTSP − Linux Terminal Server Project − v4.1

James McQuillan

jam@LTSP.org

Copyright © 2004 by James A. McQuillan

Revision History

Revision 4.1.3−en 2004−06−20 Revised by: jam

GNU/Linux makes a great platform for deploying diskless thin clients. The primary purpose of this document
is to show you how to deploy thin clients using LTSP. But, this document also covers many issues with
diskless workstations in general.

Table of Contents
Introduction...1

1. Disclaimer..1
2. Copyright and License...2

Chapter 1. Theory of operation...3
1.1. The steps that the workstation will go through...3
1.2. Loading the kernel into memory...6

Chapter 2. Installing LTSP on the server...8
2.1. Installing the LTSP utilities..8
2.2. Installing the LTSP client packages..8
2.3. Configuring the services needed by LTSP..12
2.4. Workstation specific configuration...15
2.5. Displaying the current configuration..18

Chapter 3. Setting up the workstation..19
3.1. Booting with PXE...19
3.2. Booting with Etherboot...19

Chapter 4. Running the workstation...22

Chapter 5. Printing...23
5.1. Client side setup..23
5.2. Server side setup...23

Chapter 6. Screen Scripts...26

Chapter 7. Troubleshooting...28
7.1. Troubleshooting Etherboot floppy image...28
7.2. Troubleshooting DHCP..28
7.3. Troubleshooting TFTP..31
7.4. Troubleshooting NFS root filesystem...32
7.5. Troubleshooting the Xserver...34
7.6. Troubleshooting the Display manager..34

Chapter 8. Kernels..38
8.1. Standard LTSP supplied kernels...38
8.2. Build your own kernel..38

Chapter 9. lts.conf entries..43
9.1. Sample lts.conf file...43
9.2. Available lts.conf parameters..43

Chapter 10. Local Applications...51
10.1. Benefits of running apps locally...51
10.2. Issues with setting up support for local apps..51
10.3. Server Configuration for Local Apps...52
10.4. Application Configuration..53

LTSP − Linux Terminal Server Project − v4.1

i

Table of Contents
Chapter 10. Local Applications

10.5. Launching local applications..54

Chapter 11. Configuration examples..55
11.1. Serial Mouse...55
11.2. PS/2 Wheel mouse..55
11.3. USB printer on a ThinkNic...55
11.4. Forcing a workstation to load a XFree86 3.3.6 Xserver...55

Chapter 12. Other sources of information..56
12.1. Online references..56
12.2. Print publications..56

LTSP − Linux Terminal Server Project − v4.1

ii

Introduction
The LTSP provides a simple way to utilize low cost workstations as either graphical or character based
terminals on a GNU/Linux server.

In a traditional office setting, there are relatively high powered Intel based PC's spread around at every desk.
Each with several gigabytes of hard disk space. Users store their own data on the local hard drives and
backups are rarely (if ever) performed.

Does it really make sense to have a full computer at each desk?

We say no.

Fortunately, there is another way. Utilizing the LTSP, you can take very low−end PCs, remove the hard drive,
floppy and CDRom, and add a bootable network card. Many network cards have bootrom sockets, just
waiting for a bootrom to be inserted.

During the boot phase, the diskless workstation obtains its IP info and a kernel from the server, then mounts
the root filesystem from the server via NFS.

The workstation can be configured in one of 3 modes:

Graphical X Window System interface•

Using X Windows, the workstation can be used to access any applications on the server, or on other
servers within the network.

Character based Telnet sessions•

The workstation can invoke multiple telnet sessions to the server. Each Telnet session will be on a
separate virtual screen. Pressing Alt−F1 through Alt−F9 will switch between the telnet sessions.

Shell prompt•

The workstation can be configured to drop you right into a bash shell at the console. This is very
useful when debugging problems with X Windows or NFS.

The really neat thing is that you can have lots of workstations served by a single GNU/Linux server. How
many workstations? Well, that depends on the size of the server, and the applications that will be used.

It's not unusual to have 50 workstations, all running Mozilla and OpenOffice from a Dual P4−2.4 with 4GB of
ram. We know this works. In fact, the load−average is rarely above 1.0!

1. Disclaimer

Neither the author nor the distributors, or any other contributor of this document are in any way responsible
for physical, financial, moral or any other type of damage incurred by following the suggestions in this text.

Introduction 1

2. Copyright and License

This document is copyright 2004 by James McQuillan, and is released under the terms of the GNU Free
Documentation License, which is hereby incorporated by reference.

LTSP − Linux Terminal Server Project − v4.1

2. Copyright and License 2

Chapter 1. Theory of operation
Booting a diskless workstation involves several steps. Understanding what is happening along the way will
make it much easier to solve problems, should they arise.

There are four basic services required to boot an LTSP workstation. They are:

DHCP•
TFTP•
NFS•
XDMCP•

LTSP is very flexible. Each of the above services can be served from the same server, or from several
different servers. For our example, we'll describe a simple setup which consists of a single server, handling all
of the above services.

1.1. The steps that the workstation will go through

Load the linux kernel into the memory of the workstation. This can be done several different ways,
including:

1.

Bootrom (Etherboot,PXE,MBA,Netboot)a.
Floppyb.
Harddiskc.
CD−ROMd.
USB Memory devicee.

Each of the above booting methods will be explained later in this chapter.

Once the kernel has been loaded into memory, it will begin executing.2.

The kernel will initialize the entire system and all of the peripherals that it recognizes.3.

This is where the fun really begins. During the kernel loading process, a ramdisk image will also be
loaded into memory. A kernel command line argument of root=/dev/ram0 tells the kernel to mount
the image as the root directory.

4.

Normally, when the kernel is finished booting, it will launch the init program. But, in this case, we've
instructed the kernel to load a small shell script instead. We do this by passing init=/linuxrc on the
kernel command line.

5.

The /linuxrc script begins by scanning the PCI bus, looking for a network card. For each PCI device
it finds, it does a lookup in the /etc/niclist file, to see if it finds a match. Once a match is found, the
name of the NIC driver module is returned, and that kernel module is loaded. For ISA cards, the
driver module MUST be specified on the kernel command line, along with any IRQ or address
parameters that may be required.

6.

A small DHCP client called dhclient will then be run, to make another query from the DHCP server.
We need to do this separate user−space query, because we need more information than the bootrom
retrieved with the first dhcp query.

7.

Chapter 1. Theory of operation 3

When dhclient gets a reply from the server, it will run the /etc/dhclient−script file, which will take
the information retrieved, and configure the eth0 interface.

8.

Upto this point, the root filesystem has been a ram disk. Now, the /linuxrc script will mount a new
root filesystem via NFS. The directory that is exported from the server is typlically /opt/ltsp/i386. It
can't just mount the new filesystem as /. It must first mount it as /mnt. Then, it will do a pivot_root.
pivot_root will swap the current root filesystem for a new filesystem. When it completes, the NFS
filesystem will be mounted on /, and the old root filesystem will be mounted on /oldroot.

9.

Once the mounting and pivoting of the new root filesystem is complete, we are done with the /linuxrc
shell script and we need to invoke the real /sbin/init program.

10.

Init will read the /etc/inittab file and begin setting up the workstation environment.11.

One of the first items in the inittab file is the rc.sysinit command that will be run while the
workstation is in the 'sysinit' state.

12.

The rc.sysinit script will create a 1mb ramdisk to contain all of the things that need to be written to or
modified in any way.

13.

The ramdisk will be mounted as the /tmp directory. Any files that need to be written will actually
exist in the /tmp directory, and there are symbolic links pointing to these files.

14.

The /proc filesystem is mounted.15.

The lts.conf file will be parsed, and all of the parameters in that file that pertain to this
workstation will be set as environment variables for the rc.sysinit script to use.

16.

If the workstation is configured to swap over NFS, the /var/opt/ltsp/swapfiles directory will be
mounted as /tmp/swapfiles. Then, if there isn't a swapfile for this workstation yet, it will be created
automatically. The size of the swapfile is configured in the lts.conf file.

17.

The swapfile will then be enabled, using the swapon command.

The loopback network interface is configured. This is the networking interface that has 127.0.0.1 as
its IP address.

18.

If Local apps is enabled, then the /home directory will be mounted, so that the apps can access the
users home directories.

19.

Several directories are created in the /tmp filesystem for holding some of the transient files that are
needed while the system is running. Directories such as:

20.

/tmp/compileda.

/tmp/varb.

/tmp/var/runc.

/tmp/var/logd.

LTSP − Linux Terminal Server Project − v4.1

Chapter 1. Theory of operation 4

/tmp/var/locke.

/tmp/var/lock/subsysf.

will all be created.

The /tmp/syslog.conf file will be created. This file will contain information telling the syslogd
daemon which host on the network to send the logging information to. The syslog host is specified in
the lts.conf file. There is a symbolic link called /etc/syslog.conf that points to the
/tmp/syslog.conf file.

21.

The syslogd daemon is started, using the config file created in the previous step.22.

Once the rc.sysinit script is finished, control returns back to the /sbin/init program, which will change
the runlevel from sysinit to 5.

23.

This will cause any of the entries in the /etc/inittab file to be executed.

By default, there are entries in inittab to run the /etc/screen_session script on tty1, tty2 and tty3. That
means that you can run 3 sessions at a time, and the type of session is controlled by the SCREEN_01,
SCREEN_02 and SCREEN_03 entries in lts.conf.

24.

More entries can be setup in inittab for more sessions, if desired.

If SCREEN_01 is set to a value of startx, then the /etc/screen.d/startx script will be executed, which
will launch the X Windows System, giving you a graphical user interface.

25.

In the lts.conf file, there is a parameter called XSERVER. If this parameter is missing, or set to
"auto", then an automatic detection of the video card will be attempted. If the card is PCI or AGP,
then it will get the PCI Vendor and Device id, and do a lookup in the /etc/vidlist file.

If the card is supported by Xorg 6.7, the pci_scan routine will return the name of the driver module. If
it is only supported by XFree86 3.3.6, pci_scan will return the name of the X server to use. The startx
script can tell the difference because the older 3.3.6 server names start with 'XF86_', whereas the
newer Xorg X sesrver modules are typically lowercase names, like ati or trident.

If Xorg is used, then the /etc/build_x4_cfg script will be called to build an XF86Config file. If
XFree86 3.3.6 is used, then /etc/build_x3_cfg will be called to build the XF86Config file. These files
are placed in the /tmp directory. Which, if you'll remember, is a ramdisk, seen only by the
workstation.

26.

The XF86Config file will be built, based on entries in the /etc/lts.conf file.

Once the XF86Config file has been built, then the startx script will launch the X server with that new
config file.

27.

The X server will send an XDMCP query to the LTSP server, which will offer a login dialog.28.

At this point, the user can log in. They'll get a session on the server.29.

LTSP − Linux Terminal Server Project − v4.1

Chapter 1. Theory of operation 5

This confuses alot of people at first. They are sitting at a workstation, but they are running a session
on the server. All commands they run, will be run on the server, but the output will be displayed on
the workstation.

1.2. Loading the kernel into memory

Getting the Linux kernel into the workstations memory can be accomplished in a variety of ways.

Boot ROM•
Local media•

1.2.1. Boot ROM

Etherboot•

Etherboot is a very popular open−source bootrom project. It contains drivers for many common
network cards, and works very well with LTSP.

Linux kernels must be tagged with the mknbi−linux, which will prepare the kernel for network
booting, by prefixing the kernel with some additional code, and appending the initrd to the end of the
kernel.

The kernels that are supplied with LTSP are already tagged, and ready to boot with Etherboot.

Etherboot can also be written to a floppy, which works great for testing.

PXE•

Part of the 'Wired for Management' specification from the late 1990's included a specification for a
bootrom technology known as the Pre−boot Execution Environment commonly abreviated as PXE.

A PXE bootrom can load at most a 32 kilo−byte file. A Linux kernel is quite a bit larger than that.
Therefore, we setup PXE to load a 2nd stage boot−loader called pxelinux. pxelinux is small enough
to be loaded, and it knows how to load much larger files, such as a Linux kernel.

MBA•

Managed Boot Agent (MBA) is a bootrom from a company named emBoot. emBoot used to be the
Lanworks division of 3Com. MBA is really four bootroms in one. It will handle PXE, TCP/IP, RPL
and Netware.

The MBA implementation of PXE works very well. You can use it with pxelinux to boot a Linux
kernel.

The TCP/IP method can be used, but the kernel must first be prepared with a utility called imggen.

Netboot•

Netboot, like Etherboot, is a free software project that provides free boot ROM images. The
difference is that it is a wrapper around the NDIS driver or packet drivers that ship with the network

LTSP − Linux Terminal Server Project − v4.1

1.2. Loading the kernel into memory 6

cards.

1.2.2. Local media

Floppy disk•

There are 2 ways to boot a LTSP workstation with a floppy. One way is to load Etherboot in the boot
sector of the floppy. Then, it will act just like a bootrom. The boot code will be executed, the network
card will be initialized, and the kernel will be loaded from the network server.

You can also write the kernel and initrd to the floppy, and boot that way. However, it is actually faster
to load the kernel over the network.

Hard disk•

The hard disk can be used with LILO or GRUB, to load the Linux kernel and initrd. OR, you can load
the Etherboot bootrom image from the harddisk, and it will act like a bootrom.

CD−ROM•

A bootable CD−ROM can be loaded either with a Linux kernel, or an Etherboot image.

USB Memory device•

Just like a CD−ROM, Floppy disk and Hard disk, you can use a USB Memory device to boot either
an Etherboot module, or a complete Linux kernel and initrd image.

LTSP − Linux Terminal Server Project − v4.1

1.2. Loading the kernel into memory 7

Chapter 2. Installing LTSP on the server
LTSP is best thought of as a complete distribution of Linux. It's a distribution that sits on top of a host
distribution. the Host distro can be any Linux distro that you want. In fact, there's no real requirement that the
host be running Linux. The only requirement is that the host system needs to be able to serve NFS (Network
File System). Most any Unix system can handle that. In fact, even some versions of Microsoft Windows can
be configured to work as a LTSP server.

There are three phases to building an LTSP server.

Installing the LTSP utilities•
Installing the LTSP client packages•
Configuring the services needed by LTSP•

2.1. Installing the LTSP utilities

Starting with version 4.1, LTSP has a package of utilities for installing and managing the LTSP client
packages (The stuff that is executed on the thin clients), and for configuring the services on the LTSP server.

The administration utility is called ltspadmin and the configuration tool is called ltspcfg. Both of these tools
are part of the ltsp−utils package.

The ltsp−utils package is available in both RPM and TGZ formats. Choose which format you prefer to install,
and follow the appropriate instructions.

2.1.1. Installing the RPM package

Download the latest release of the ltsp−utils RPM package, and install it using the following command:

rpm −ivh ltsp−utils−0.1−0.noarch.rpm

The above commands will install the utilities on the server.

2.1.2. Installing the TGZ packages

Download the latest release of the ltsp−utils TGZ package and install it using the following commands:

tar xzf ltsp−utils−0.1−0.noarch.tgz
cd ltsp_utils
./install.sh
cd ..

The above commands will install the utilities on the server. This is useful for non−RPM based systems.

2.2. Installing the LTSP client packages

Once the installation of the ltsp−utils package is complete, you can run the ltspadmin command. This utility
is used to manage the LTSP Client packages. It will query the LTSP download repository, and get the list of
currently available packages.

Run the ltspadmin command and you'll see a screen like the following:

Chapter 2. Installing LTSP on the server 8

Figure 2−1. LTSP installer − Main Screen

From this screen, you can choose "Install/Update", and if this is your first time running the utility, it will
display the installer configuration screen.

Figure 2−2. LTSP installer − Configuration Screen

In the configuration screen, you can set several values that the installer will use, for downloading and
installing the LTSP packages. Those values are:

LTSP − Linux Terminal Server Project − v4.1

Chapter 2. Installing LTSP on the server 9

Where to retrieve packages from
This is a URL, pointing to the the package repository. Typically, this would be
http://www.ltsp.org/ltsp−4.1, but if you want to install the packages from a local
filesystem, you can use the file: instead. For instance, if the packages are on a CD−ROM, and
you've mounted the CD−ROM on /mnt/cdrom, then the value for the package repository would be:
file:///mnt/cdrom. (Notice the 3 slashes).

In which directory would you like to place the LTSP client tree
This is the directory on the server, where you'd like to put the LTSP client tree. Typically, this would
be: /opt/ltsp. The directory will be created, if it does not already exist.

Within this directory, the root directories for each architecture will be created. Currently, only x86
workstations are officially supported by LTSP, but there are several people working on ports to other
architectures, such as PPC and Sparc.

HTTP Proxy
If the server is behind a firewall, and all web access must go through a proxy, you can configure the
installer to use the proxy here. The value should contain the URL to the proxy, including the protocol
and the port. An example for this setting is: http://firewall.yourdomain.com:3128.

If you don't need a proxy, you should set this to "none".

FTP Proxy
For packages located on an FTP server, if you need to go through an FTP proxy, you can enter it here.
The syntax is similar to the HTTP Proxy option above.

If you don't need a proxy, you should set this to "none".

Once you get past the configuration screen, the installer will query the package repository, and obtain the list
of currently available components.

LTSP − Linux Terminal Server Project − v4.1

Chapter 2. Installing LTSP on the server 10

Figure 2−3. LTSP installer − Component list

Select each component that you want to install. To select it, move the high−lighted line to that component,
and press 'I' to select the individual component. You can also press 'A' to select ALL of the components. Most
of the time, this will be what you want. That way, you can support the broadest range of thin client hardware.

There are several keys that can be used to navigate around this screen. You can get help on those keys by
pressing the 'H' key.

Figure 2−4. LTSP installer − Help window

If you want to see the list of packages that are in a particular component, you can press 'S', and the list of
packages will be displayed. It will show the version currently installed, and also the latest available version.

LTSP − Linux Terminal Server Project − v4.1

Chapter 2. Installing LTSP on the server 11

Figure 2−5. LTSP installer − Package list

Once the desired components are selected, you can exit the component selection screen. The installer will
prompt you, to see if you really want to install/update the selected packages. If you answer 'Y', then it will
download and install the selected packages.

2.3. Configuring the services needed by LTSP

There are four basic services required to support the booting of an LTSP workstation. They are:

DHCP•
TFTP•
NFS•
XDMCP•

The ltspcfg can be used to configure all of those services, plus alot of other LTSP related things.

You can access ltspcfg from the ltspadmin, or you can run ltspcfg by typing it at the command line.

When you run the ltspcfg utility, it will scan the server, to assess what is currently installed and running.
You'll see a screen like:

LTSP − Linux Terminal Server Project − v4.1

2.3. Configuring the services needed by LTSP 12

Figure 2−6. ltspcfg − Initial screen

This shows all of the things that the utility is looking for.

To configure all of the things that need to be setup, choose 'C', and the configuration menu will be displayed.
From the configuration menu, you'll need to go through each item, to make sure it is configured properly for
serving LTSP workstations.

Figure 2−7. ltspcfg − Initial screen

LTSP − Linux Terminal Server Project − v4.1

2.3. Configuring the services needed by LTSP 13

1 − Runlevel
The Runlevel is variable used by the init program. With Linux and Unix systems, at any given time,
the system is said to be in a specific "Runlevel". Runlevel 2 or 3 is typically used when the server is in
text mode. Runlevel 5 typically indicates the system is in graphical mode on a network.

For an LTSP server, traditionally Runlevel 5 is used. Most systems are already configured to serve
NFS and XDMCP when in Runlevel 5. For those systems that aren't already configured for that, this
utility will take care of them.

2 − Interface selection
For systems that have multiple network interfaces, you'll need to specify which interface the Thin
clients are connected to.

By selecting the interface, the configuration tool will be able to properly create other configuration
files, such as the dhcpd.conf and the /etc/exports files.

3 − DHCP configuration
DHCP needs to be configured to supply the required fields to the workstation. Among those fields are
fixed−address, filename, subnet−mask, broadcast−address and root−path.

By selecting this menu item, you'll be able to create the dhcpd.conf configuration file, and enable
dhcpd to run at startup time.

4 − TFTP configuration
TFTP is used by the thin client to download the Linux kernel. The tftpd service needs to be enabled
on the server, to serve up the kernel.

5 − Portmapper configuration
The Portmapper is used by RPC services. Each RPC service, such as NFS.

6 − NFS configuration
NFS is the service that allows local directory trees to be mounted by remote machines. This is
required for LTSP, because the workstations mount their root filesystems from the server.

This menu item will take care of configuring NFS to start at bootup time. The configuration file is
/etc/exports and its creating is described later in this section.

7 − XDMCP configuration
XDMCP is the "X Display Manager Control Protocol". The X server sends an XDMCP query to the
Display manager on the server, to get a login prompt.

Common display managers in use are XDM, GDM and KDM. This menu item will display which
display managers are found, and which one is configured to run.

For security purposes, the Display manager is configured by default to NOT allow remote
workstations to connect. This is usually the reason for the infamous Gray screen with large X cursor.
ltspcfg can usually configure the display manager to allow remote workstations to get a connection.

8 − Create /etc/hosts entries
Many services, like NFS and the Display manager need to be able to map the IP address of the
workstation to a hostname. You could setup the Berkeley Intenet Naming Daemon (BIND) to do that,

LTSP − Linux Terminal Server Project − v4.1

2.3. Configuring the services needed by LTSP 14

but you'd have to make sure you get the reverses setup properly. Ultimately, using bind is probably
the best way to do it, but configuration of bind is beyond the scope of this document and the ltspcfg
utility.

A much simpler approach for configuring the mapping of IP addresses and hostnames is the
/etc/hosts file.

9 − Create /etc/hosts.allow entries
Some services use a layer of security known as tcpwrappers. This is configured through the
/etc/hosts.allow file. This menu item will setup that file for you.

10 − Create the /etc/exports file
This is the file that NFS uses, to determine which directories are allowed to be mounted by remote
machines. This menu item will create that file.

11 − Create the lts.conf file
The configuration of each workstation is directed by entries in the lts.conf file. For fairly modern
workstations with a PCI bus, it shouldn't require any additional entries in the lts.conf file. But, the file
still needs to exist. This menu item will create the default lts.conf file for you.

2.4. Workstation specific configuration

Now, it's time to tell the LTSP server about your specific workstation. There are three files that contain
information about the workstation.

/etc/dhcpd.conf1.
/etc/hosts2.
/opt/ltsp/i386/etc/lts.conf3.

2.4.1. /etc/dhcpd.conf

The workstation needs an IP address and other information. It will get the following from the DHCP server:

IP address•
hostname•
Server IP address•
Default gateway•
Pathname of kernel to load•
Server and directory path to be mounted as the root filesystem•

For our example LTSP environment, we have chosen DHCP for handling IP address assignment to the
workstations.

During the ltsp_initialize script, a sample dhcpd.conf file is installed. It is called
/etc/dhcpd.conf.example you can copy that file to /etc/dhcpd.conf to use it as a basis for your
dhcp configuration. You will need to modify the parts of this file that pertain to your specific workstation and
server environment.

LTSP − Linux Terminal Server Project − v4.1

2.4. Workstation specific configuration 15

default−lease−time 21600;
max−lease−time 21600;

option subnet−mask 255.255.255.0;
option broadcast−address 192.168.0.255;
option routers 192.168.0.254;
option domain−name−servers 192.168.0.254;
option domain−name "ltsp.org";
option root−path "192.168.0.254:/opt/ltsp/i386";

shared−network WORKSTATIONS {
 subnet 192.168.0.0 netmask 255.255.255.0 {
 }
}

group {
 use−host−decl−names on;
 option log−servers 192.168.0.254;

 host ws001 {
 hardware ethernet 00:E0:18:E0:04:82;
 fixed−address 192.168.0.1;
 filename "/lts/vmlinuz.ltsp";
 }
}

Figure 2−8. /etc/dhcpd.conf

As of LTSP, version 2.09pre2, you no longer have to specify a particular kernel to load. The standard kernel
package supports all of the network cards that Linux supports. There are two kernel files included in the LTSP
kernel package. One kernel has the Linux Progress Patch (LPP) applied, and the other kernel does not. The
names for the kernels are:

vmlinuz−2.4.9−ltsp−5
vmlinuz−2.4.9−ltsp−lpp−5

You may have noticed that the kernel is sitting in the /tftpboot/lts directory, but in the "filename" entry
in the /etc/dhcpd.conf file is missing the leading /tftpboot component of the pathname. That is
because on Redhat versions 7.1 and above, TFTP is run with the '−s' option. That causes the tftpd daemon to
run in secure mode. That is, it does a chroot to the /tftpboot directory when it starts. Therefore, all files
that are available to the tftpd daemon are relative to the /tftpboot directory.

Other Linux distributions may not have the '−s' option set for tftpd, so you will need to add the /tftpboot
prefix to the kernel pathname.

2.4.2. /etc/hosts

IP address to hostname mapping

Computers generally communicate just fine with IP addresses. Then, us humans come along and need to put
names on the computers, because we can't remember the numbers. That's where DNS or the /etc/hosts
file come into play. This IP address to hostname mapping generally isn't required, except in an LTSP
environment. That's because without it, NFS will give you permissions errors when the workstation attempts
to mount the root filesystem.

In addition to NFS problems, if the workstation is not listed in the /etc/hosts file, you may also have

LTSP − Linux Terminal Server Project − v4.1

2.4. Workstation specific configuration 16

problems with the GDM or KDM display managers.

2.4.3. /opt/ltsp/i386/etc/lts.conf

There are a number of configuration entries that can be specified in the lts.conf file.

The lts.conf file has a simple syntax, that consists of multiple sections. There is a default section called
[default] and there can be sections for individual workstations. The workstations can be identified by
hostname, IP address or MAC address.

A typical lts.conf file looks like this:

#
Config file for the Linux Terminal Server Project (www.ltsp.org)
#

[Default]
 SERVER = 192.168.0.254
 XSERVER = auto
 X_MOUSE_PROTOCOL = "PS/2"
 X_MOUSE_DEVICE = "/dev/psaux"
 X_MOUSE_RESOLUTION = 400
 X_MOUSE_BUTTONS = 3
 USE_XFS = N
 LOCAL_APPS = N
 RUNLEVEL = 5

[ws001]
 USE_NFS_SWAP = Y
 SWAPFILE_SIZE = 48m
 RUNLEVEL = 5

[ws002]
 XSERVER = XF86_SVGA
 LOCAL_APPS = N
 USE_NFS_SWAP = Y
 SWAPFILE_SIZE = 64m
 RUNLEVEL = 3

Example 2−1. lts.conf file

The following is a list of some of those entries:

XSERVER
If your video card is a PCI card, and if it is supported by X.org 6.7.0, then you just need the
lts_x_core package. That contains all of the driver modules for X4.

There are several XFree86 3.3.6 packages available for LTSP. This is in case your card isn't supported
by X.org 6.7.0.

You can make entries in the lts.conf for each individual workstation, or you can make default
entries that are shared by all workstations.

Our workstation has an Intel i810 video chipset, and it can correctly be auto detected, so we don't
need any XSERVER entry in the lts.conf file. The XSERVER entry can be specified, if you want, or

LTSP − Linux Terminal Server Project − v4.1

2.4. Workstation specific configuration 17

it can be set to 'auto' to show that it is going to be auto detected.

RUNLEVEL
We want to run the workstation in graphical mode, so we need to set the runlevel to '5'. This is done
by another entry in the lts.conf file.

2.5. Displaying the current configuration

With ltspcfg, you can get a look at the current status of all of the services required by LTSP. From the ltspcfg
main menu, press 'S', and you will see the current status.

Figure 2−9. ltspcfg − Current Status

LTSP − Linux Terminal Server Project − v4.1

2.5. Displaying the current configuration 18

Chapter 3. Setting up the workstation
Once the server is setup, it is time to focus on setting up the workstation.

The LTSP project is all about what happens after the kernel is in memory. There are several ways to get the
kernel into memory, including Etherboot, Netboot, PXE and floppy disk.

3.1. Booting with PXE

If your network card or PC has PXE built into it, then you can use that to load the Linux kernel. PXE is a
bootrom technology, similar to Etherboot or Netboot.

You may need to enable the PXE bootrom on your NIC. You may also need to change the boot device order
in your BIOS, to make "Boot from LAN" the first choice, rather than booting from the floppy or the hard disk.

PXE has a limitation of only being able to load files that are 32kb or smaller. The Linux kernel is quite a bit
larger than that, so you can't load the Linux kernel directly with PXE. You need to load something known as a
'Network Bootstrap Program' or NBP.

There is an NBP available for loading Linux kernels called pxelinux.0. This is part of the syslinux package
from kernel developer H. Peter Anvin.

The LTSP kernel package includes the pxelinux.0 NBP and the configuration file needed to load the Linux
kernel and an initial ramdisk image.

The way it works, is this:

The PXE bootrom initialializes the network card and sends a DHCP request.•
The DHCP server replies with an IP address, and the name of the NBP to load.•
The PXE bootrom downloads the NBP, places it in memory, and starts executing it.•
The NBP uses tftp to download the configuration file from the server.•
The configuration file contains the name of the kernel, the name of the initial ramdisk file, and
options to pass to the kernel, once it is loaded.

•

Here is an example of the pxelinux configuration file:

prompt=0
label linux
 kernel bzImage−2.4.24−ltsp−4
 append init=/linuxrc rw root=/dev/ram0 initrd=initrd−2.4.24−ltsp−4.gz

The NBP then uses tftp to download the Linux kernel, and the initial ramdisk (initrd).•
Control is then passed to the Linux kernel, it boots up, mounts the initrd, and continues on with the
startup of the Thin client.

•

3.2. Booting with Etherboot

Etherboot is a software package for creating ROM images that can download code over

Chapter 3. Setting up the workstation 19

an Ethernet network to be executed on an x86 computer. Many network adapters have a
socket where a ROM chip can be installed. Etherboot is code that can be put in such a
ROM.

−−Ken Yap
Etherboot is also Open Source, protected under the GNU General Public License, Version 2 (GPL2).

To use Etherboot, if you have a network card with an Etherboot bootrom, may need to change your BIOS
configuration to tell it to "Boot from LAN" before booting from floppy or hard disk.

If you don't yet have an Etherboot bootrom, you can either make a bootrom, or you can make a floppy disk
with an Etherboot image on its boot sector.

Etherboot supports a very large number of network cards. Over 200 models, with more being added all the
time. Whether you choose to make a floppy or a burn the code to an Eprom, you'll need to determine which
model network card you have.

3.2.1. Choosing an Etherboot driver for an ISA network card

For older ISA based network cards, it isn't so important that you determine the exact type. First of all, most of
them are either ne2000 or 3Com 3c509 cards. You just need to pick the right Etherboot driver, the one that
selects the correct media type on cards that both 10 base−2 (Coax) and 10 base−T (Twisted pair).

3.2.2. Choosing an Etherboot driver for a PCI network card

For PCI cards, it is important that you pick the Etherboot driver that matches the PCI Vendor and Device ID
of the network card.

Sometimes, you'll get lucky. You'll know exactly which model card you have, because the model number is
printed on the card, and it exactly matches the description of one of the Etherboot modules. But, in many
cases, you will need to find the PCI ID numbers.

If your workstation has a floppy drive, you can boot a tomsrtbt (Tom's Root Boot) floppy. Or, if your
workstation has a CD−ROM drive, you can boot a Knoppix CD. If you can't load linux on your workstation,
then your only hope may be to move the network card to a machine that can boot Linux.

Once you have Linux booted, you can use the lspci command. with the '−n' option.

[root@jamlap root]# lspci −n
0000:00:00.0 Class 0600: 8086:7190 (rev 03)
0000:00:01.0 Class 0604: 8086:7191 (rev 03)
0000:00:03.0 Class 0607: 104c:ac1c (rev 01)
0000:00:03.1 Class 0607: 104c:ac1c (rev 01)
0000:00:07.0 Class 0680: 8086:7110 (rev 02)
0000:00:07.1 Class 0101: 8086:7111 (rev 01)
0000:00:07.2 Class 0c03: 8086:7112 (rev 01)
0000:00:07.3 Class 0680: 8086:7113 (rev 03)
0000:00:08.0 Class 0401: 125d:1978 (rev 10)
0000:01:00.0 Class 0300: 1002:4c4d (rev 64)
0000:06:00.0 Class 0200: 8086:1229 (rev 09)

In the example above, you can see an entry for each of the PCI cards in the system. You only need to look at
the Class 0200 devices. So, running the command again, looking only at the Ethernet interfaces, the list

LTSP − Linux Terminal Server Project − v4.1

3.2. Booting with Etherboot 20

becomes much more manageable.

[root@jamlap root]# lspci −n | grep "Class 0200"
0000:06:00.0 Class 0200: 8086:1229 (rev 09)

The PCI ID numbers are: 8086:1229. The first field, 8086 is the PCI Vendor ID. In this example, the vendor is
the Intel Corporation. The second field, 1229 is the PCI Device ID. That tells us which model of the network
card. In this case, it's an EtherExpress 100 card.

3.2.3. Creating a boot floppy

You can download the Etherboot package and configure it for the type of bootrom that you need. Then, you
can compile the source to produce a bootrom image that can be written to an EPROM, or written to a floppy
disk.

A much simpler approach is to go to Marty Connor's www.Rom−O−Matic.net website.

Marty has done an excellent job of putting a web based front−end on the configuration and compilation
process of making bootrom images with Etherboot. On his site, you select what type of network card you
have, and what kind of image you want. Then, you have an opportunity to modify many Etherboot
configuration options. Then, you can press the 'Get ROM' button and a custom bootrom image will be
generated while you wait.

For the ROM output format, choose 'Floppy Bootable ROM Image'. This will cause it to include a 512 byte
header that is a boot loader for loading the etherboot image into ram where it can be executed.

Press the 'Get ROM' button. The bootrom image will be generated while you wait. It only takes a few seconds,
and when it completes, your browser will pop−up a "Save As" window where you can designate where you
want the bootrom image to be saved on your computer.

Once you've saved the image to your hard drive, you need to write it out to a floppy disk. Insert a floppy
diskette into the drive and run the following command to write the floppy:

dd if=Etherboot_Image of=/dev/fd0

3.2.4. Creating a bootrom

Writing the Etherboot image to an EPROM requires an EPROM programmer. This is a piece of equipment
that ranges in price from few hundred dollars to several thousand dollars, depending on the features.

The process of creating a bootrom is entirely dependent on the EPROM programmer. This is beyond the scope
of this document.

LTSP − Linux Terminal Server Project − v4.1

3.2. Booting with Etherboot 21

http://www.rom-o-matic.net

Chapter 4. Running the workstation
Assuming that the server and workstation are configured properly, it should just be a matter of inserting the
boot floppy in the floppy drive and turning on the workstation.

The Etherboot code will be read from the floppy into memory, the network card will be found and initialized,
the dhcp request will be sent on the network and a reply will be sent from the server and the kernel will be
downloaded to the workstation. Once the kernel has initialized the workstation hardware, X windows will
start and a login box should appear on the workstation, similar to the example below.

Figure 4−1. Login screen

At this point, you can log in. An important thing to keep in mind is that you are logging into the server. All of
the commands that you run are actually running on the server, and displaying their output on the workstation.
That's the power of X windows.

You can run any program that is supported by the server.

Chapter 4. Running the workstation 22

Chapter 5. Printing
Aside from the workstation being a fully functioning GUI or character mode terminal, it can also act as a print
server, allowing upto 3 printers to be attached to the parallel and serial ports.

This is all transparent to the user of the workstation. They won't even notice the small amount of traffic that is
going through the workstation to the printers.

5.1. Client side setup

LTSP uses the lp_server program on the workstation, to redirect print jobs from the server to the printer
attached to one of the ports on the workstation.

To enable the printer on the workstation, there are a set of configuration entries in the lts.conf file.

[ws001]
 PRINTER_0_DEVICE = /dev/lp0
 PRINTER_0_TYPE = P

The above entry will cause the lp_server program to run as a daemon, listening on TCP/IP port 9100 for a
print stream from the server. The print data will then be redirected to the printer attached to the /dev/lp0
parallel port.

There are many more options available. Check the lts.conf section later in this document for more information
on printer configuration entries.

5.2. Server side setup

Setting up the printer on the server is a matter of defining a print queue, using the printer configuration tool on
the server.

On Redhat 7.2, there is both a GUI and a Text based printer configuration tool. The GUI tool is called
printconf−gui, and the text based tool is called printconf−tui. Older versions of Redhat have a program
called printtool. Printtool also exists on Redhat 7.2, but it will call printconf−gui. Other Linux distributions
have their own printer configuration tool.

Chapter 5. Printing 23

Figure 5−1. Printconf−gui Adding new printer

Once you launch the printer configuration tool, you need to add a new printer. The lp_server program allows
the workstation to emulate an HP JetDirect print server. You just need to create a JetDirect printer.

You need to give the printer a Queue name. The name can be anything, but make it a meaningful name, and
the name can contain only the following characters:

"a−z" lower−case letters•
"A−Z" upper−case letters•
"0−9" numeric digits•
"−" hyphen•
"_" underscore•

The name chosen in the example above is ws001_lp. This name makes it easy to see that the printer is
associated with ws001.

LTSP − Linux Terminal Server Project − v4.1

Chapter 5. Printing 24

Figure 5−2. Printconf−gui Detail info

There are two fields required to communicate with the printer:

IP Address or hostname of the workstation that the printer is associated with.1.
The TCP port that the lp_server daemon is listening on.2.

The first printer you connect to a workstation will be on TCP/IP port 9100. The second printer will be
on port 9101, and the third printer will be on port 9102.

LTSP − Linux Terminal Server Project − v4.1

Chapter 5. Printing 25

Chapter 6. Screen Scripts
A feature of LTSP that was added with version 4.0 is something called Screen Scripts. These are scripts for
starting various types of sessions.

You can specify multiple screen scripts for a workstation. Doing so, will all you to have multiple sessions.
They can be different types of sessions, or they can be the same type of session. For example, you could
specify the following:

 SCREEN_01 = startx
 SCREEN_02 = shell

This would start an X server on the first screen, and a shell prompt on the second screen. You can switch
between the screens by pressing Ctrl−Alt−F1 to get to the first screen, and Ctrl−Alt−F2 to get to the second
screen.

You can specify upto 12 screen scripts for a workstation, but most people would just have a single one.

Available types of screen scripts:

startx
This script will launch the Xserver with a −query option, to send an XDMCP request to a display
manager to get a login dialog box to display on the screen.

shell
This script will launch a shell on the terminal. This is really intended to be used for troubleshooting
problems with the workstation. Because it gives you a session on the thin client, rather than the server,
it isn't very useful for running applications.

telnet
This script will launch a telnet session that will connect to the server. This will give you a character
based session on the server.

By default, telnet will connect to the LTSP server. If you want to specify a different server, you can
pass it on the same line as the screen script. For example:

 SCREEN_01 = telnet server2.mydomain.com

You can also specify any options that Telnet understands, But, if you do specify any options, then you
must also specify the server to connect to.

rdesktop
This script will launch the rdesktop program, which will connect to a Microsoft Window server. You
can specify any rdesktop options you want on the line, directly after the name of the screen script
name. For example, if you want to specify the server to connect to, you can do it like this:

 SCREEN_01 = rdesktop −f w2k.mydomain.com

The above example will launch rdesktop in full screen mode. The user will see a windows login dialog, and
they will only have to log in once. This is very useful when you just want to get a windows login, without
having a Linux login or window manager. The user won't even know they are running Linux.

Chapter 6. Screen Scripts 26

The screen scripts reside in the /opt/ltsp/i386/etc/screen.d directory. You can create your own
screen scripts and place them in this directory. It's best to follow one of the existing scripts as an example.

LTSP − Linux Terminal Server Project − v4.1

Chapter 6. Screen Scripts 27

Chapter 7. Troubleshooting
If, after following through the previous chapters, your workstation doesn't boot, then you've got to start the
process of troubleshooting the installation.

The first thing to do is figure out how far through the bootup the workstation has gotten.

7.1. Troubleshooting Etherboot floppy image

When you boot from the floppy, you should see something similar to this:

loaded ROM segment 0x0800 length 0x4000 reloc 0x9400
Etherboot 5.0.1 (GPL) Tagged ELF for [LANCE/PCI]
Found AMD Lance/PCI at 0x1000, ROM address 0x0000
Probing...[LANCE/PCI] PCnet/PCI−II 79C970A base 0x1000, addr 00:50:56:81:00:01
Searching for server (DHCP)...
<sleep>

The above example shows what you can expect to see on the screen when booting from a floppy. If you don't
see those messages, indicating that Etherboot has started, then you may have a bad floppy disk, or you didn't
write the image to it properly.

If, you see a message like the following, then it probably indicates that the Etherboot image you have
generated is not the correct image for your network card.

ROM segment 0x0800 length 0x8000 reloc 0x9400
Etherboot 5.0.2 (GPL) Tagged ELF for [Tulip]
Probing...[Tulip]No adapter found
<sleep>
<abort>

If it does get to the point where it detects the network card and displays the proper MAC address, then the
floppy is probably good.

7.2. Troubleshooting DHCP

Once the network card is initialized, it will send out a DHCP broadcast on the local network, looking for a
DHCP server.

If the workstation gets a valid reply from the DHCP server, then it will configure the network card. You can
tell if it worked properly if the IP address information is displayed on the screen. Here's an example of what it
should look like:

ROM segment 0x0800 length 0x4000 reloc 0x9400
Etherboot 5.0.1 (GPL) Tagged ELF for [LANCE/PCI]
Found AMD Lance/PCI at 0x1000, ROM address 0x0000
Probing...[LANCE/PCI] PCnet/PCI−II 79C970A base 0x1000, addr 00:50:56:81:00:01
Searching for server (DHCP)...
<sleep>
Me: 192.168.0.1, Server: 192.168.0.254, Gateway 192.168.0.254

If you see the line that starts with 'Me:', following by an IP address, then you know that DHCP is working
properly. You can move on to checking to see if TFTP is working.

Chapter 7. Troubleshooting 28

If instead, you see the following message on the workstation, followed by lots of <sleep> messages, then
something is wrong. Although, it is common to see one or two <sleep> messages, after which the dhcp server
replies.

Searching for server (DHCP)...

Figuring out what is wrong can sometimes be difficult, but here are some things to look for.

7.2.1. Check the connections

Is the workstation physically connected to the same network that the server is connected to?

With the workstation turned on, make sure that the link lights are lit at all of the connections.

If you are connecting directly between the workstation and the server (no hub or switch), make sure that you
are using a cross−over cable. If you are using a hub or switch, then make sure you are using a normal
straight−thru cable, both between the workstation and hub, and also between the hub and server.

7.2.2. Is dhcpd running?

You need to determine whether dhcpd is running on the server. We can find the answer a couple of ways.

dhcpd normally sits in the background, listening on udp port 67. Try running the netstat command to see if
anything is listening on that port:

netstat −an | grep ":67 "

You should see output similar to the following:

udp 0 0 0.0.0.0:67 0.0.0.0:*

The 4th column contains the IP address and port, separated by a colon (':'). An address of all zeroes ('0.0.0.0')
indicates that it is listening on all interfaces. That is, you may have an eth0 and an eth1 interface, and dhcpd
is listening on both interfaces.

Just because netstat shows that something is listening on udp port 67, it doesn't mean that it is definately
dhcpd that is listening. It could be bootpd, but that is unlikely, because bootp is no longer included on most
distributions of Linux.

To make sure that it is the dhcpd that is running, try running the ps command.

ps aux | grep dhcpd

You should see something like the following:

root 23814 0.0 0.3 1676 820 ? S 15:13 0:00 /usr/sbin/dhcpd
root 23834 0.0 0.2 1552 600 pts/0 S 15:52 0:00 grep dhcp

The first line shows that dhcpd is running. The second line is just our grep command.

If you don't see any lines showing that dhcpd is running, then you need to check that the server is configured
for runlevel 5, and that dhcpd is configured to start in runlevel 5. On Redhat based systems, you can run the
ntsysv and scroll down to make sure dhcpd is configured to start.

You can try starting dhcpd with this command:

LTSP − Linux Terminal Server Project − v4.1

7.2. Troubleshooting DHCP 29

service dhcpd start

Pay attention to the output, it may show errors.

7.2.3. Double−check the dhcpd configuration

Does the /etc/dhcpd.conf file have an entry for our workstation?

You should double−check the 'fixed−address' setting in the config file, to make sure it exactly matches the
card in the workstation.

7.2.4. Is ipchains or iptables blocking the request?

7.2.4.1. Checking for ipchains

Run the following command to see what it says:

ipchains −L −v

If you see something like this:

Chain input (policy ACCEPT: 229714 packets, 115477216 bytes):
Chain forward (policy ACCEPT: 10 packets, 1794 bytes):
Chain output (policy ACCEPT: 188978 packets, 66087385 bytes):

Then it isn't ipchains that is getting in the way.

7.2.4.2. Checking for iptables

Run the following command to see what it says:

iptables −L −v

If you see something like this:

Chain INPUT (policy ACCEPT 18148 packets, 2623K bytes)
 pkts bytes target prot opt in out source destination

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT 17721 packets, 2732K bytes)
 pkts bytes target prot opt in out source destination

Then it is not iptables getting in the way.

7.2.5. Is the workstation sending the request?

Try watching the /var/log/messages file while the workstation is booting. You can do that with the
following command:

tail −f /var/log/messages

This will 'follow' the log file as new records are written to it.

server dhcpd: DHCPDISCOVER from 00:50:56:81:00:01 via eth0
server dhcpd: no free leases on subnet WORKSTATIONS
server dhcpd: DHCPDISCOVER from 00:50:56:81:00:01 via eth0
server dhcpd: no free leases on subnet WORKSTATIONS

LTSP − Linux Terminal Server Project − v4.1

7.2. Troubleshooting DHCP 30

If you see messages like those above, saying 'no free leases', that indicates that dhcpd is running, but it doesn't
know anything about the workstation that is requesting an IP address.

7.3. Troubleshooting TFTP

Etherboot uses TFTP to retrieve a Linux kernel from the server. This is a fairly simple protocol, but
sometimes there are problems trying to get it to work.

If you see a message similar to this:

Loading 192.168.0.254:/lts/vmlinuz−2.4.24−ltsp−4.........

with the dots filling the screen rather quickly, that normally indicates that TFTP is working properly, and the
kernel is downloading.

If, instead, you don't see the dots, there is a problem. Possible problems include:

7.3.1. tftpd is not running

If tftpd isn't configured to run, then it certainly won't be able to answer the request from the workstation. You
can see if it is running, you can use the netstat command, like this:

[root@bigdog]# netstat −anp | grep ":69 "

udp 0 0 0.0.0.0:69 0.0.0.0:* 453/inetd

If you don't see any output from that command, then tftpd is likely not running.

There are two common methods for invoking tftpd, They are inetd and the newer xinetd

inetd uses a configuration file called /etc/inetd.conf. In that file, make sure that the line for starting
tftpd is NOT commented out. This is what the line should look like:

tftp dgram udp wait nobody /usr/sbin/tcpd /usr/sbin/in.tftpd −s /tftpboot

xinetd uses a directory of individual configuration files. One file for each service. If your server is using
xinetd, then the configuration file for tftpd is called /etc/xinetd.d/tftp. Below is an example:

service tftp
{
 disable = no
 socket_type = dgram
 protocol = udp
 wait = yes
 user = root
 server = /usr/sbin/in.tftpd
 server_args = −s /tftpboot
}

Make sure that the disable line doesn't say yes.

LTSP − Linux Terminal Server Project − v4.1

7.3. Troubleshooting TFTP 31

7.3.2. Kernel not where tftpd expects to find it

The kernel needs to be in a location that the tftpd daemon can access it. If the '−s' option is specified for the
tftpd daemon, then whatever the workstation is asking for must be relative to the /tftpboot. So, if the
filename entry in the /etc/dhcpd.conf file is set to /lts/vmlinuz−2.4.24−ltsp−4, then the
kernel actually needs to be /tftpboot/lts/vmlinuz−2.4.24−ltsp−4

7.4. Troubleshooting NFS root filesystem

There are several things that can prevent a root filesystem from being mounted. Including the following:

7.4.1. No init found

If you get the following error:

Kernel panic: No init found. Try passing init= option to kernel.

Then it is is most likely that either you are mounting the wrong directory as the root filesystem, or the
/opt/ltsp/i386 directory is empty.

7.4.2. Server returned error −13

If you get the following error:

Root−NFS: Server returned error −13 while mounting /opt/ltsp/i386

This indicates that either the /opt/ltsp/i386 directory isn't listed in the /etc/exports file.

Take a look in the /var/log/messages file to see if there are any clues. An entry like this:

Jul 20 00:28:39 bigdog rpc.mountd: refused mount request from ws004
 for /opt/ltsp/i386 (/): no export entry

Then it confirms our suspicion that the entry in /etc/exports isn't correct.

7.4.3. NFS Daemon problems (portmap, nfsd & mountd)

NFS can be a complex and difficult service to trouble−shoot, but understanding what should be setup and
what tools are available to diagnose the problems will surely help to make it easier.

There are three daemons that need to be running on the server for NFS to work properly. portmap, nfsd and
mountd.

7.4.3.1. The Portmapper (portmap)

If you get the following messages:

Looking up port of RPC 100003/2 on 192.168.0.254
portmap: server 192.168.0.254 not responding, timed out
Root−NFS: Unable to get nfsd port number from server, using default
Looking up port of RPC 100005/2 on 192.168.0.254
portmap: server 192.168.0.254 not responding, timed out

LTSP − Linux Terminal Server Project − v4.1

7.3. Troubleshooting TFTP 32

Root−NFS: Unable to get mountd port number from server, using default
mount: server 192.168.0.254 not responding, timed out
Root−NFS: Server returned error −5 while mounting /opt/ltsp/i386
VFS: unable to mount root fs via NFS, trying floppy.
VFS: Cannot open root device "nfs" or 02:00
Please append a correct "root=" boot option
Kernel panic: VFS: Unable to mount root fs on 02:00

This most likely is caused by the portmap daemon not running. You can confirm whether or not the
portmapper is running by using the ps command:

ps −e | grep portmap

If the portmapper is running, you should see output like this:

30455 ? 00:00:00 portmap

Another test is to use the netstat. The portmapper uses TCP and UDP ports 111. Try running this:

netstat −an | grep ":111 "

You should see the following output:

tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN
udp 0 0 0.0.0.0:111 0.0.0.0:*

If you don't see similar output, then the portmapper isn't running. You start the portmapper by running:

/etc/rc.d/init.d/portmap start

Then, you should make sure that the portmapper is setup to start when the server boots. Run ntsysv to make
sure it is selected to run.

7.4.3.2. The NFS and MOUNT daemons (nfsd & mountd)

NFS has 2 daemons that need to be running. nfsd and mountd. They are both started by the
/etc/rc.d/init.d/nfs script.

You can run the ps command to make sure that they are running.

ps −e | grep nfs
ps −e | grep mountd

If it shows that one or both of the daemons are not running, then you will need to start them.

Normally, you should be able to run the startup script with the restart argument to cause them both to startup,
but for some reason, the /etc/rc.d/init.d/nfs script doesn't restart nfsd that way. It only restarts
mountd (bug?). So, you should instead run the following sequence of commands:

/etc/rc.d/init.d/nfs stop
/etc/rc.d/init.d/nfs start

You may get errors on the stop command, but that is Ok. The start command should show OK as the status.

If the daemons are running, but NFS is still not working, you can verify that they have registered themselves
with the portmapper by using the rpcinfo command.

rpcinfo −p localhost

You should see results similar to the following:

program vers proto port
 100000 2 tcp 111 portmapper
 100000 2 udp 111 portmapper

LTSP − Linux Terminal Server Project − v4.1

7.4. Troubleshooting NFS root filesystem 33

 100003 2 udp 2049 nfs
 100003 3 udp 2049 nfs
 100021 1 udp 32771 nlockmgr
 100021 3 udp 32771 nlockmgr
 100021 4 udp 32771 nlockmgr
 100005 1 udp 648 mountd
 100005 1 tcp 651 mountd
 100005 2 udp 648 mountd
 100005 2 tcp 651 mountd
 100005 3 udp 648 mountd
 100005 3 tcp 651 mountd
 100024 1 udp 750 status
 100024 1 tcp 753 status

This indicates that nfs (nfsd) and mountd are both running and have registered themselves with the
portmapper.

7.5. Troubleshooting the Xserver

Oh boy!, Probably the single most difficult part of setting up an LTSP workstation is getting the X server
configured properly. If you are using a fairly new video card, and it is supported by the Xorg Xservers, and
you have a fairly new monitor that can handle a large range of frequencies and resolutions, then it is fairly
straight forward. Usually, in that case, if it doesn't work, it is most likely the wrong X server for that card.

When an X server doesn't work with your card, it is usually pretty obvious. Either the X server won't start, or
the display will be incorrect.

When the workstation is ready to start the X server, it calls the startx script, which starts the X server on
the local workstation, with a −query option pointing to a server, where a display manager, such as XDM,
GDM or KDM is running.

Because the X server is started by the startx script, which is itself started by the init program, when it fails,
init will attempt to run it again. init will continue this loop of trying to run the X server 10 times, then give
up, because it thinks that it is respawning too quickly. After it finally gives up, the error message from the X
server should be left on the screen.

Waiting for the X server to fail 10 times can be rather irritating, so a simple way to avoid the repeated failures
is to start the workstation in runlevel 3, so that the X server is NOT started automatically. Instead, when you
boot the workstation, you will get a bash prompt. From the bash prompt, you can start the X server manually
with the following command:

sh /tmp/start_ws

The X server will attempt to start, then when it fails, it will return back to the bash prompt, so you can see
what the reason for the failure is.

7.6. Troubleshooting the Display manager

The display manager is the daemon that runs on the server, waiting for an X server to make contact with it.
Once contact has been made, it will display a login dialog box on the screen, offering the user a chance to log
into the server.

The three most common display managers are:

LTSP − Linux Terminal Server Project − v4.1

7.5. Troubleshooting the Xserver 34

XDM − It's been around forever. It is included with the standard X windows system.•
GDM − The 'Gnome Display Manager'. This is part of the Gnome package.•
KDM − The 'KDE Display Manager'. This is part of the K Desktop system.•

Most recent GNU/Linux distributions include all three display managers.

7.6.1. Grey screen with large X cursor

This indicates that the X server is running, but it has not been able to make contact with a display manager.
Some possible reasons for that are:

The display manager may not be running1.

On recent versions of Redhat (7.0 and above), the display manager is started from init. In the
/etc/inittab file, there is a line that looks like this:

x:5:respawn:/etc/X11/prefdm −nodaemon

The prefdm script will make the determination of which display manager to run.

The default display manager depends on which packages have been installed. If Gnome is installed,
then GDM is the default display manager. If Gnome is not installed, then the prefdm script will check
to see if KDE is installed. If it is, then KDM will be the default display manager. If KDE also is not
installed, then XDM will be the default display manager.

Using the netstat command, you should be able to see if there is a display manager running. On the
server, run the following command:

netstat −ap | grep xdmcp

You should see results showing that there is a process listening on the xdmcp port (177).

udp 0 0 *:xdmcp *:* 1493/gdm

This shows clearly that gdm is running with a PID of 1493, and it is listening on the xdmcp port.

If you see a line like the one shown above, indicating that there is definately a display manager
listening, then you need to make sure that the workstation is sending the XDMCP query to the correct
server.

In the lts.conf file, you can have an entry which specifies the IP address of the server that is
running the display manager. the entry is optional, but if present, should look like this:

XDM_SERVER = 192.168.0.254

of course, the IP address for your network may be different than the example above.

If the 'XDM_SERVER' entry is not present, it will then use the value of the 'SERVER' entry, if
present. If that is not present, then it will use 192.168.0.254.

Which ever way it is specified, you just need to make sure that the IP address is actually the correct
address of the server running the display manager.

The display manager may be configured to ignore requests from remote hosts.2.

LTSP − Linux Terminal Server Project − v4.1

7.6. Troubleshooting the Display manager 35

If you've determined that the display manager is running, then it is possible that it has been configured
to ignore XDMCP requests from remote hosts. You will need to check the configuration files of the
particular running display manager, to determine if it is configured properly.

XDM♦

The default configuration for Redhat is to disable the ability for workstations to get login
access from XDM. The ltsp_initialize script will take care of enabling this for you, but if it's
not working, you should check the /etc/X11/xdm/xdm−config file. Look for an entry
that looks like this:

DisplayManager.requestPort: 0

This entry MUST be commented out in order for XDM to listen on port 177 for remote
requests.

Another configuration file is also important for XDM to serve up remote login requests.
There is a file called /etc/X11/xdm/Xaccess that MUST have a line that starts with an
asterisk '*'. the line is normally included in the file, but Redhat leaves the line commented out.
the ltsp_initialize script will fix the line for you, but if XDM doesn't seem to be working, you
should check this file. A valid line should look like this:

* #any host can get a login window

KDM♦

Newer versions of KDM have a file called kdmrc. Different Linux distributions store that file
in different locations. For Redhat 7.2, it is /etc/kde/kdm/kdmrc. For the other distros, you
should run the locate command to find out where it is stored.

The entry that controls whether remote workstations can get a login is in the [Xdmcp]
section. Make sure that the Enable entry is set to true.

Older versions of KDM use the XDM configuration files, located in /etc/X11/xdm.

GDM♦

GDM uses a different set of configuration files. They are located in the /etc/X11/gdm
directory.

The main file to look at is the gdm.conf file. Look for the [xdmcp] section. you should see
an entry within that section called 'Enable'. It must be set to '1' or 'true', depending on the
version of GDM. Here is an example:

[xdmcp]
Enable=true
HonorIndirect=0
MaxPending=4
MaxPendingIndirect=4
MaxSessions=16
MaxWait=30
MaxWaitIndirect=30
Port=177

LTSP − Linux Terminal Server Project − v4.1

7.6. Troubleshooting the Display manager 36

Notice the 'Enable=true' line. Older versions of GDM use '0' and '1' to signify whether to
Disable or Enable the remote XDMCP. Newer versions use 'false' and 'true'.

If the Display manager is definately running, and it is listening for requests from remote workstations,
it may be a simple problem that the display manager is unable to map the IP address to a hostname.
The workstation either needs to be listed in the /etc/hosts file, or it needs to be correctly setup in
the DNS tables.

3.

LTSP − Linux Terminal Server Project − v4.1

7.6. Troubleshooting the Display manager 37

Chapter 8. Kernels
There are a few decisions that need to be made about the kernel that is run on the workstation. You need to
decide whether you want to run one of the standard kernels available for download, or build your own. And,
you need to decide if you want to display the graphic screen, complete with the progress bar which, which is
made possible by the Linux Progress Patch (LPP).

8.1. Standard LTSP supplied kernels

The kernel package that is available with LTSP actually includes two kernels. One has the Linux Progress
Patch already applied and configured, and the other does not have the patch applied.

Both of the kernels already have the NFS Swap patch applied.

8.2. Build your own kernel

There are two ways to configure a kernel for LTSP. The default method is to use something called an 'Initial
Ram Disk', or initrd for short. The initrd image is a small filesystem that is appended to the kernel. The initrd
filesystem image is loaded into memory, and once the kernel is booted, it will mount the ramdisk as its root
filesystem. There are a couple of advantages of using an initrd image. First, we can compile the network
drivers as modules and load the correct module during bootup. This allows a single kernel which will support
virtually all network cards. The other advantage is that we can run the DHCP client as a "user−land" program
rather than in kernel−space. Running the client in user−land provides better control over the options requested
and received from the server. Also, it makes the kernel slightly smaller. The other way to configure the kernel
is without the initrd. Building a kernel without an initrd requires that the specific network card driver be
statically linked into the kernel, and it also requires that IP−Autoconfig and "Root filesystem on NFS" are set
when building the kernel. The advantage of not using an initrd is that the kernel is slightly smaller, and it will
boot slightly faster. once the workstation is up and running, there is virtually no difference in how the
workstation functions.

The standard kernel for LTSP includes an Initial Ramdisk (initrd) that takes care of detecting the network
card, and making a user−space DHCP request. A major goal for the image was to make it as small as possible.
So, we chose the uClinux libc replacement library, and busybox for the utilities that we need during the boot.

If you want to build your own kernels, you should download the ltsp_initrd_kit package. It contains the root
filesystem hierarchy, and a script for building the image.

8.2.1. Obtaining the source for the kernel

When building a custom kernel, it's usually a good idea to start with fresh kernel sources direct from the
ftp.kernel.org site. The reason for this is that the distributions, like Redhat, apply many patches to their
kernel sources, leaving you with a set of source code that really doesn't match that of the official kernel.

Download the kernel source package of your choice, and save it in the /usr/src directory. The kernels are
located in the /pub/linux/kernel directory of the ftp.kernel.org ftp server. You will need to grab a
recent 2.4.x series kernel, because you need to include devfs support.

Also, if you want to include support for swapping over NFS or the Linux Progress Patch (LPP), you will need
to make sure that you get the patches and kernel sources that are all the same. At the time of this writing, the

Chapter 8. Kernels 38

2.4.9 kernel is the latest to support those features.

For our example, we will use the 2.4.9 kernel. The entire path is
ftp://ftp.kernel.org/pub/linux/kernel/v2.4/linux−2.4.9.tar.bz2

Unpack the kernel sources in the /usr/src directory. You need to be careful, because when you un−tar the
package, it will be in a directory called linux. You may already have a directory called linux with a
different set of source code, and you don't want to clobber it. So, check for an existing directory, and if it is
there, rename it to something else before unpacking the sources.

The source package we downloaded had been compressed with the bzip2 compression utility. So, we need to
uncompress it before we feed it to the tar program. You can use the following command to unpack it:

bunzip2 <linux−2.4.9.tar.bz2 | tar xf −

When the unpacking completes, you will have a directory called linux containing the entire source tree. At
this point, I usually like to rename the directory to something more meaningful.

mv linux linux−2.4.9

Once the directory has been renamed, then change into the new directory:

cd linux−2.4.9

I usually like to modify the Makefile before I start configuring the new kernel. Near the top of the file is a
variable named EXTRAVERSION. I set this to 'ltsp−1', so that the actual version number of the kernel will
be '2.4.9−ltsp−1', which makes it easier to identify the kernel later. The top of the Makefile should look like
this when you are done:

VERSION = 2
PATCHLEVEL = 4
SUBLEVEL = 9
EXTRAVERSION = −ltsp−1

KERNELRELEASE=$(VERSION).$(PATCHLEVEL).$(SUBLEVEL)$(EXTRAVERSION)

8.2.2. Kernel Patches

After unpacking the kernel, you may have various patches you want to apply. For example, the NFS Swap
patch or the Linux Progress Patch. These patches MUST be applied before configuring the kernel.

8.2.2.1. NFS Swap patch

The NFS Swap patch will allow the workstation kernel to use a swapfile located on an NFS server. While it
usually recommended to have enough memory in the workstation to not require swapping, it can sometimes
be difficult to add more memory, especially on older computers. So, the ability to swap over NFS can make an
otherwise unuseable computer actually useable.

If the current directory is /usr/src/linux−2.4.9, and the patch is in /usr/src, you can do the following to test the
patch:

patch −p1 −−dry−run <../linux−2.4.9−nfs−swap.diff

This will test the patch, to make sure it can be applied cleanly. If it finishes with no errors, then you can apply
the patch without the −−dry−run option.

LTSP − Linux Terminal Server Project − v4.1

8.2. Build your own kernel 39

patch −p1 <../linux−2.4.9−nfs−swap.diff

8.2.2.2. Linux Progress Patch (LPP)

The Linux Progress Patch (LPP) will allow you to configure a graphic logo to display during the boot process.
The normal kernel boot messages are redirected to another tty screen, and special instructions are added to the
boot scripts to cause the Progress bar to reflect how far along the boot process is.

Like the NFS Swap patch, you can test the LPP patch by issuing this command:

patch −p1 −−dry−run <../lpp−2.4.9

If the test completes successfully, then you can apply the patch with:

patch −p1 <../lpp−2.4.9

8.2.3. Configuring kernel options

You can now run the kernel configuration program of your choice. Available choices are:

make xconfig•

This will invoke the X Windows version of the kernel configuration utility.

make menuconfig•

This will invoke the curses based version of the kernel configuration utility.

make config•

This will invoke the simple line−at−a−time version of the kernel configuration utility.

8.2.3.1. Kernel configuration for use with an initrd

Configuring the kernel for use with an initrd requires the following options to be set:

File systems −> /dev filesystem support•

/dev file system support must be enabled. This is selected in the 'File systems' section. Do NOT
specify 'Automatically mount at boot'. The mount will be performed by the /linuxrc script.

Block devices −> RAM disk support•

LTSP workstations require that the kernel support a RAM disk. this is set in the 'Block devices'
section.

Block devices −> Initial RAM disk (initrd) support•

This must also be enabled.

Processor type and features −> Processor family•

LTSP − Linux Terminal Server Project − v4.1

8.2. Build your own kernel 40

You need to make sure that the kernel you build can actually run on the CPU in the workstation. This
is done in the 'Processor type and features' section. You should also turn off SMP support, unless you
actually have multiple CPUs.

File systems −> Network file systems −> NFS Client support•

The workstation will be mounting its root filesystem via NFS, so NFS client support is required.

That should take care of the required options. You can also turn off many features of the kernel, to reduce the
size of the kernel.

8.2.3.2. Kernel configuration for use without an initrd

Configuring the kernel for use wihout an initrd differs from a kernel with an initrd in a few ways:

Block devices −> RAM disk support•

LTSP workstations require that the kernel support a RAM disk.

Block devices −> Initial RAM disk (initrd) support•

This needs to be disabled.

Networking options −> IP:kernel level autoconfiguration•

This needs to be enabled. This will instruct the kernel to automatically configure the eth0 ethernet
interface, based on values passed on the kernel command line.

It is not necessary to specify the DHCP, BOOTP or RARP options because the Etherboot bootrom has
already done a DHCP or BOOTP request, and it will make the IP parameters available on the kernel
command line. This saves the kernel from going through the trouble of doing its own query.

Network device support −> Ethernet (10 or 100Mbit)•

When not using an initrd, you must choose the specific network card driver that matches the network
card. This MUST be statically linked into the kernel, because the ethernet interface is needed before
mounting the root filesystem. This is a major difference compared to a kernel with an initrd.

File systems −> /dev filesystem support•

As of LTSP version 2.09pre2, devfs support is needed. This is true, regardless of whether an initrd is
used or not.

File systems −> Automatically mount at boot•

When NOT using an initrd, the /dev filesystem must be mounted by the kernel, during the boot
process. So, say 'Y' here.

File systems −> Network file systems −> NFS Client support•

The workstation will be mounting its root filesystem via NFS, so NFS client support is required.

LTSP − Linux Terminal Server Project − v4.1

8.2. Build your own kernel 41

8.2.4. Building the kernel

To make things easier, a copy of the .config file is included in the ltsp_initrd_kit package. You can copy
that to the /usr/src/linux−2.4.9 directory.

Once you are done selecting or de−selecting the kernel options, you need to build the kernel. The following
commands need to be executed to build the kernel:

make dep
make clean
make bzImage
make modules
make modules_install

You can string them all together like this:

make dep && make clean && make bzImage && make modules && make modules_install

The double ampersand (&) means that if the first command completes successfully, then the second command
will be executed. If the second command completes successfully, then the third command will be executed,
and so on.

When the kernel compilation is finished, the new kernel will be sitting in
/usr/src/linux−2.4.9/arch/i386/boot/bzImage.

8.2.5. Tagging the kernel for Etherboot

For Etherboot to handle a Linux kernel, it needs to be prepared. This is called 'Tagging' the kernel. This
process will add some additional code to the kernel that is executed before control is passed to the kernel. The
tool for tagging a kernel is called 'mknbi−linux'.

The ltsp_initrd_kit includes a shell script called buildk that includes all of the commands that you need to
prepare the kernel image for network booting.

LTSP − Linux Terminal Server Project − v4.1

8.2. Build your own kernel 42

Chapter 9. lts.conf entries
When we designed LTSP, one of the issues that we knew we would have to deal with varying hardware
configurations for the workstations. Certainly, whatever combination of processor, network card and video
card available today would not be available in 3 months, when we want to add more workstations to the
network.

So, we devised a way of specifying the configuration of each workstation. The configuration file is called
lts.conf and it lives in the /opt/ltsp/i386/etc directory.

The format of the lts.conf allows for 'default' settings and individual workstation settings. If all of your
workstations are identical, you could specify all of the configuration settings in the '[Default]' section.

9.1. Sample lts.conf file

Here is an example of the lts.conf file:

[Default]
 SERVER = 192.168.0.254
 X_MOUSE_PROTOCOL = "PS/2"
 X_MOUSE_DEVICE = "/dev/psaux"
 X_MOUSE_RESOLUTION = 400
 X_MOUSE_BUTTONS = 3
 USE_XFS = N
 SCREEN_01 = startx

[ws001]
 XSERVER = auto
 X_MOUSE_PROTOCOL = "Microsoft"
 X_MOUSE_DEVICE = "/dev/ttyS1"
 X_MOUSE_RESOLUTION = 50
 X_MOUSE_BUTTONS = 3
 X_MOUSE_BAUD = 1200

[ws002]
 XSERVER = XF86_Mach64

[ws003]
 SCREEN_01 = shell

9.2. Available lts.conf parameters

9.2.1. General parameters

Comments
Comments start with the hash '#' sign and continue through the end of the line.

LTSP_BASEDIR
This indicates where the LTSP root filesystems are located. The default value is /opt/ltsp

SERVER
This is the server that is used for the XDM_SERVER, TELNET_HOST, XFS_SERVER and
SYSLOG_HOST, if any of those are not specified explicitly. If you have one machine that is acting as

Chapter 9. lts.conf entries 43

the server for everything, then you can just specify the address here and omit the other server
parameters. If this value is not set, 192.168.0.254 will be used.

SYSLOG_HOST
If you want to send logging messages to a machine other than the default server, then you can specify
the machine here. If this parameter is NOT specified, then it will use the 'SERVER' parameter
described above.

NFS_SERVER
This specifies the IP address of the NFS server used when the /home filesystem is mounted. The
default is whatever the SERVER is set to.

USE_NFS_SWAP
Set this to Y if you want to turn on NFS swap. The default is N

SWAPFILE_SIZE
This is how you can control the size of the swapfile. The default is 64m.

SWAP_SERVER
The swapfile can exist on any server on the network that is capable of handling it. You can specify the
IP address of that server. The default is whatever the value of NFS_SERVER set to.

NFS_SWAPDIR
The directory on the server that is being exported via NFS. The default is
/var/opt/ltsp/swapfiles. Make sure that the directory is being exported in the
/etc/exports file.

TELNET_HOST
If the workstation is setup to have a character based interface, then the value of this parameter will be
used as the host to telnet into. If this value is NOT set, then it will use the value of SERVER above.

DNS_SERVER
Used to build the resolv.conf file.

SEARCH_DOMAIN
Used to build the resolv.conf file.

SCREEN_01 thru SCREEN_12
Upto 12 screen scripts can be specified for a workstation. This will give you up to 12 sessions on the
workstation, each accessible by pressing the Ctrl−Alt−F1 through Ctrl−Alt−F12 keys.

SCREEN_01 = startx
SCREEN_02 = shell

Currently, possible values include:

startx♦
telnet♦
rdesktop♦
shell♦

Look in the /opt/ltsp/i386/etc/screen.d directory for more screen scripts, or write your
own, and put them there.

LTSP − Linux Terminal Server Project − v4.1

Chapter 9. lts.conf entries 44

MODULE_01 thru MODULE_10
Upto 10 kernel modules can be loaded by using these configuration entries. The entire command line
that you would use when running insmod can be specified here. For example:

MODULE_01 = uart401.o
MODULE_02 = "sb.o io=0x220 irq=5 dma=1"
MODULE_03 = opl3.o

If the value of this parameter is an absolute pathname, then insmod will be used to load the module.
Otherwise, modprobe will be used.

RAMDISK_SIZE
When the workstation boots, it creates a ramdisk and mounts it on the /tmp directory. You can control
the size of the filesystem with this parameter. Specify it in units of kbytes (1024 bytes). To create a
ramdisk of 1 megabyte, specify RAMDISK_SIZE = 1024

If you change the size of the ramdisk here, you will also need to change the size of the ramdisk within
the kernel. This can be compiled in, or if you are using Etherboot or Netboot, you tell the kernel the
ramdisk size when you tag the kernel with mknbi−linux.

The default value for this is 1024 (1 mb)

RCFILE_01 thru RCFILE_10
Additional RC scripts can be executed by the rc.local script. Just put the script in the /etc/rc.d
directory, and specify the name of the script in one of these entries.

SOUND
If the LTSP Sound package is installed, you need to set this entry to Y and it will execute the
rc.sound script to setup the sound card and daemon. The default is N.

9.2.2. X−Windows parameters

XDM_SERVER
If you want to point XDM to a machine other than the default server, then you can specify the server
here. If this parameter is NOT specified, then it will use the 'SERVER' parameter described above.

XSERVER
This defines which X server the workstation will run. For PCI and AGP video cards, this parameter
should not be required. The rc.local script should be able to auto−detect the card. You can also set this
value to auto to indicate that it should attempt to auto−detect the card.

For ISA video cards, or to force a specific X server, you can specify the name of the driver or Xserver
in this entry.

If the value begins with XF86_, then XFree86 3.3.6 will be used. Otherwise, X.org 6.7.0 will be used.
The default value for this is auto.

X_MODE_0 through X_MODE_2
Up to 3 Modelines or resolutions can be configured for the workstation. This entry can take two
different types of values. It can take either a resolution, or a complete modeline.

LTSP − Linux Terminal Server Project − v4.1

9.2. Available lts.conf parameters 45

X_MODE_0 = 800x600

 or

X_MODE_0 = 800x600 60.75 800 864 928 1088 600 616 621 657 −HSync −VSync

If none of the X_MODE_x entries are specified, then it will use the built−in modelines, and the
resolutions of 1024x768, 800x600 and 640x480.

If one or more X_MODE_x entries are specified, they will completely override any built−in
modelines.

X_MOUSE_PROTOCOL
Any value that will work for the X.org Pointer Protocol keyword can be put here. Typical values
include "Microsoft" and "PS/2". The default value for this is "PS/2".

X_MOUSE_DEVICE
This is the device node that the mouse is connected to. If it is a serial mouse, this would be a serial
port, such as /dev/ttyS0 or /dev/ttyS1. If it is a PS/2 keyboard mouse, this value would be
/dev/psaux. The default value for this is /dev/psaux.

X_MOUSE_RESOLUTION
This is the 'Resolution' value in the XF86Config file. A typical value for a serial mouse is 50 and a
typical value for a PS/2 mouse would be 400. The default value for this is 400.

X_BUTTONS
This tells the system how many buttons the mouse has. Usually set to 2 or 3. The default value for this
is 3.

X_MOUSE_EMULATE3BTN
This tells the X server to emulate a 3−button mouse by accepting a click of both the right and left
mouse buttons simultaneously. The default value is N.

X_MOUSE_BAUD
For serial mice, this defines the baud rate. The default value for this is 1200.

X_COLOR_DEPTH
This is the number of bits to use for the color depth. Possible values are 8, 15, 16, 24 and 32. 8 bits
will give 256 colors, 16 will give 65536 colors, 24 will give 16 million colors and 32 bits will give 4.2
billion colors! Not all X servers support all of these values. The default value for this is 16

USE_XFS
You have a choice of running the X Font Server (XFS) or reading the fonts through the NFS
filesystem. The font server should provide a simple way of keeping all of the fonts in one place, but
there has been some problems when the number of workstations grows past about 40. The 2 values for
this option are Y and N. The default value is N. If you do want to use a font server, then you can use
the XFS_SERVER entry to specify which host will act as the font server.

XFS_SERVER
If you are using an X Font Server to serve fonts, then you can use this entry to specify the IP address
of the host that is acting as the font server. If this is not specified, it will use the default server, which

LTSP − Linux Terminal Server Project − v4.1

9.2. Available lts.conf parameters 46

is specified with the SERVER entry described above.

X_HORZSYNC
This sets the X.org HorizSync configuration parameter. It defaults to "31−62".

X_VERTREFRESH
This sets the X.org VertRefresh configuration parameter. It defaults to "55−90".

XF86CONFIG_FILE
If you want to create your own complete XF86Config file you can do so and place it in the
/opt/ltsp/i386/etc directory. Then, whatever you decide to call it needs to be entered as a value for
this configuration variable. For example:

XF86CONFIG_FILE = XF86Config.ws004

9.2.3. Touch screen parameters

USE_TOUCH
If you are connecting a touch screen to the workstation, you can enable it by setting this entry to Y. If
enabled, additional configuration entries will configure specific aspects of the touch screen. The
default value is N.

X_TOUCH_DEVICE
A touch screen works like a mouse and usually is interfaced with the workstation through a serial
port. You can specify which serial port with this entry. For example, you could set it equal to
/dev/ttyS0. There is no default value for this entry.

X_TOUCH_MINX
Callibration entry for an EloTouch touch screen. Defaults to 433.

X_TOUCH_MAXX
Callibration entry for an EloTouch touch screen. Defaults to 3588.

X_TOUCH_MINY
Callibration entry for an EloTouch touch screen. Defaults to 569.

X_TOUCH_MAXY
Callibration entry for an EloTouch touch screen. Defaults to 3526.

X_TOUCH_UNDELAY
Callibration entry for an EloTouch touch screen. Defaults to 10.

X_TOUCH_RPTDELAY
Callibration entry for an EloTouch touch screen. Defaults to 10.

9.2.4. Local apps parameters

LOCAL_APPS
If you want the ability to run applications locally on a workstation, set this variable to Y. Several
additional steps must be taken on the server to enable local apps. See the 'Local Apps' section in the

LTSP − Linux Terminal Server Project − v4.1

9.2. Available lts.conf parameters 47

LTSP manual for more information. The default value is N.

NIS_DOMAIN
If you do setup LOCAL_APPS, then you need to have an NIS server on the network. The
NIS_DOMAIN entry is where you specify the NIS domain name. It needs to match a domain name
that has been defined on the NIS server. This is NOT the same thing as an internet DOMAIN. The
default value is ltsp.

NIS_SERVER
Set this to the IP address of your NIS server if you don't want it to send a broadcast looking for an
NIS server.

9.2.5. Keyboard parameters

All of the keyboard support files are copied into the /opt/ltsp/i386 hierarchy, so configuring international
keyboard support is simply a matter of configuring X.org. There are several configuration parameters for this.

The values for the above parameters are from the X.org documentation. Whatever is valid for X.org is valid
for these parameters.

We would like to add documentation to show what values are needed for each type of international keyboard.
If you work with this and can configure your international keyboards, feedback to the ltsp core group would
be greatly appreciated.

XkbTypes
The default value for this is the word 'default'.

XkbCompat
The default value for this is the word 'default'.

XkbSymbols
The default value for this is 'us(pc101)'.

XkbModel
The default value for this is 'pc101'.

XkbLayout
The default value for this is 'us'.

9.2.6. Printer configuration parameters

Upto three printers can be connected to a diskless workstation. A combination of serial and parallel printers
can be configured via the following entries in the lts.conf file:

PRINTER_0_DEVICE
The device name of the first printer. Names such as /dev/lp0, /dev/ttyS0 or /dev/ttyS1 are allowed.

PRINTER_0_TYPE
The type of the printer. Valid choices are 'P' or for Parallel, and 'S' for Serial.

LTSP − Linux Terminal Server Project − v4.1

9.2. Available lts.conf parameters 48

PRINTER_0_PORT
The TCP/IP Port number to use. By default, it will use '9100'

PRINTER_0_SPEED
If the printer is serial, this is the setting that will select the baud rate. By default, '9600' will be used.

PRINTER_0_FLOWCTRL
For serial printers, the flow control can be specified. Either 'S' for Software (XON/XOFF) flow
control, or 'H' for Hardware (CTS/RTS) flow control. If neither is specified, 'S' will be used.

PRINTER_0_PARITY
For serial printers, the Parity can be specified. The choices are: 'E'−Even, 'O'−Odd or 'N'−None. If not
specified, 'N' will be used.

PRINTER_0_DATABITS
For serial printers, the number of data bits can be specified. The choices are: '5', '6', '7' and '8'. If not
specified, '8' will be used.

PRINTER_1_DEVICE
Second printer device name

PRINTER_1_TYPE
Second printer device type

PRINTER_1_PORT
Second printer device TCP/IP port

PRINTER_1_SPEED
Second printer baud rate (serial)

PRINTER_1_FLOWCTRL
Second printer flow control (serial)

PRINTER_1_PARITY
Second printer parity (serial)

PRINTER_1_DATABITS
Second printer data bits (serial)

PRINTER_2_DEVICE
Third printer device name

PRINTER_2_TYPE
Third printer device type

PRINTER_2_PORT
Third printer device TCP/IP port

PRINTER_2_SPEED
Third printer baud rate (serial)

LTSP − Linux Terminal Server Project − v4.1

9.2. Available lts.conf parameters 49

PRINTER_2_FLOWCTRL
Third printer flow control (serial)

PRINTER_2_PARITY
Third printer parity (serial)

PRINTER_2_DATABITS
Third printer data bits (serial)

LTSP − Linux Terminal Server Project − v4.1

9.2. Available lts.conf parameters 50

Chapter 10. Local Applications
In an LTSP environment, you have a choice of running the applications locally on the workstation, or
remotely on the server.

By far, the easiest way to setup an LTSP environment is to run the apps on the server. That is, the client
application runs on the server, using the servers' CPU and memory, while it displays its output on the
workstation and uses the workstations' keyboard and mouse.

This is a fundamental capability of X Windows. The workstation works just like a standard X Windows
terminal.

In order for a user to run an application on the workstation, the workstation needs to know some information
about the user. Info such as the following:

User id•
Primary group that the user belongs to•
The users home directory•

LTSP relies on the Network Information Service − NIS, (formerly called Yellow Pages) to make the user and
group information available to the workstations.

10.1. Benefits of running apps locally

There are benefits to running applications on the workstation.

Reduces the load on the server. In large networks with memory intensive applications, such as
Netscape, running the app on the workstation can provide better performance, as long as the
workstation is powerful enough to handle it.

•

Runaway apps will not affect other users.•
Sound support is much easier to configure when the application that plays the sound is running on the
workstation.

•

10.2. Issues with setting up support for local apps

Setting up the ability to run applications locally requires much more.

Greater demand on the workstation. It needs more RAM and a more powerful CPU. 64mb of ram on
the workstation is a pretty good starting point.

•

NIS − To run the apps on the workstation, you first must identify yourself to the workstation. That is,
the workstation needs to know who you are. This requires some form of password authentication. NIS
has been chosen as the method of authenticating users over the network.

•

Additional directories need to be exported from the workstation to mount via NFS.•
Slower startup of applications, because they need to be read via NFS, causing increased network
activity. Also, because each copy of the program is running on its own CPU, you won't get the
advantage of the ability of Linux/Unix to share code segments between multiple instances of the same
program, which would reduce the time it takes for second and succeeding invocations of the program.

•

Chapter 10. Local Applications 51

10.3. Server Configuration for Local Apps

10.3.1. lts.conf entries

A few entries need to be setup in the lts.conf file:

LOCAL_APPS
This must be set to Y. It will cause the following to happen during the workstation boot process:

The /home directory on the server will be mounted via NFS.1.
The /var/yp/nicknames will be created on the workstation.2.
The portmapper will be started on the workstation.3.
xinetd will be started on the workstation.4.
The /etc/yp.conf file will be created on the workstation.5.
The domainname command will be run with the value of the NIS_DOMAIN lts.conf entry.6.
The ypbind will be run on the workstation.7.

NIS_DOMAIN
With NIS, all of the nodes on the network that want to be associated with a specific NIS server need
to belong to the same NIS domain (this is not related in any way to a DNS Domain). You use the
NIS_DOMAIN entry to specify the name of the NIS domain that the workstation will belong to.

NIS_SERVER
NIS will either attempt to bind with a specific NIS server, or it will send a broadcast out to the
network, looking for a server. If you want to choose a specific server, then enter the IP address of that
server in the NIS_SERVER entry.

10.3.2. Network Information Service − NIS

NIS is a Client/Server type of service. On the server, there is a daemon running, that will accept requests from
the clients (workstations). The daemon on the server is called ypserv.

On the workstation, there is a process called ypbind. When the workstation needs to lookup information
about a user, such as verifying a password or finding the users home directory, it will use ypbind to establish a
connection to ypserv, on the server.

If you are already running NIS in your network environment, then there is no need to configure the LTSP
server to also run ypserv. You can just configure the NIS_DOMAINNAME and NIS_SERVER entries in
lts.conf to match your current NIS scheme.

If you are NOT already running NIS in your network, then you will need to configure the server to run
ypserv.

For complete information on setting up an NIS server, refer to the HOWTO document on the LDP site called
The Linux NIS(YP)/NYS/NIS+ HOWTO. Refer to the list of other sources of information at the end of this
document.

LTSP − Linux Terminal Server Project − v4.1

10.3. Server Configuration for Local Apps 52

10.4. Application Configuration

To setup an application to run on the workstation, you need to put all of the components of the application in a
place where the workstation can see it.

With older versions of LTSP (2.08 and earlier), lots of directories were exported on the server and mounted by
the workstation. Directories such as /bin, /usr/bin, /lib and /usr were exposed to the workstation.

The problem with that scheme is that it only works if the workstation and the server are the same architecture.
In fact, even differences, like the server being a Pentium II (i686) and the workstation being a classic Pentium
(i586) can be a problem, because the server will likely have the i686 libraries and not the i386, i486 or i586
libraries.

So, the cleanest way to handle this is to have a complete tree with all of the binaries and libraries that the
workstation will need, independent of the server binaries and libraries.

Configuring an application for local execution requires putting all of the required pieces in the tree. One of the
packages available for download from the LTSP site is the Local netscape package, installs alot of files into
the /opt/ltsp/i386/usr/local/netscape directory. Things like java classes, help files, executable
binary files and scripts are put there.

Netscape doesn't need any additional system libraries, so there is nothing to add to the
/opt/ltsp/i386/lib directory. Many applications do require additional libraries.

So, how can you determine what libraries are needed? That's where the ldd command comes in handy.

Lets assume that you want to setup a certain application to run locally. We'll pick gaim as an example. gaim
is an AOL Instant Messenger client, that will allow you to communicate with other people on AOL forums.

The first thing you need to do is find the gaim executable binary file. On a Redhat 7.2 system, it is located in
the /usr/bin directory.

Once you locate the gaim binary, you can run ldd against it:

[jam@server /]$ ldd /usr/bin/gaim
 libaudiofile.so.0 => /usr/lib/libaudiofile.so.0 (0x40033000)
 libm.so.6 => /lib/i686/libm.so.6 (0x40051000)
 libnsl.so.1 => /lib/libnsl.so.1 (0x40074000)
 libgnomeui.so.32 => /usr/lib/libgnomeui.so.32 (0x4008a000)
 libart_lgpl.so.2 => /usr/lib/libart_lgpl.so.2 (0x4015d000)
 libgdk_imlib.so.1 => /usr/lib/libgdk_imlib.so.1 (0x4016c000)
 libSM.so.6 => /usr/X11R6/lib/libSM.so.6 (0x40191000)
 libICE.so.6 => /usr/X11R6/lib/libICE.so.6 (0x4019a000)
 libgtk−1.2.so.0 => /usr/lib/libgtk−1.2.so.0 (0x401b1000)
 libdl.so.2 => /lib/libdl.so.2 (0x402df000)
 libgdk−1.2.so.0 => /usr/lib/libgdk−1.2.so.0 (0x402e3000)
 libgmodule−1.2.so.0 => /usr/lib/libgmodule−1.2.so.0 (0x40319000)
 libXi.so.6 => /usr/X11R6/lib/libXi.so.6 (0x4031d000)
 libXext.so.6 => /usr/X11R6/lib/libXext.so.6 (0x40325000)
 libX11.so.6 => /usr/X11R6/lib/libX11.so.6 (0x40333000)
 libgnome.so.32 => /usr/lib/libgnome.so.32 (0x40411000)
 libgnomesupport.so.0 => /usr/lib/libgnomesupport.so.0 (0x40429000)
 libesd.so.0 => /usr/lib/libesd.so.0 (0x4042e000)

LTSP − Linux Terminal Server Project − v4.1

10.4. Application Configuration 53

 libdb.so.2 => /usr/lib/libdb.so.2 (0x40436000)
 libglib−1.2.so.0 => /usr/lib/libglib−1.2.so.0 (0x40444000)
 libcrypt.so.1 => /lib/libcrypt.so.1 (0x40468000)
 libc.so.6 => /lib/i686/libc.so.6 (0x40495000)
 libz.so.1 => /usr/lib/libz.so.1 (0x405d1000)
 /lib/ld−linux.so.2 => /lib/ld−linux.so.2 (0x40000000)

The listing above shows all of the libraries that the gaim program is dynamically linked against.

Most programs that use shared libs, rely on the dynamic loader ld−linux to locate and load each of the shared
libraries. Some programs, however, load the libraries manually with the dlopen() function call. For those
applications, ldd will not show the libraries. In that case, strace can be used to trace the execution of the
program, and you will see the dlopen() calls, with the name of the library listed in the arguments.

Once the list of libraries has been collected, the required libraries will need to be copied to the appropriate
places in the /opt/ltsp/i386 tree.

10.5. Launching local applications

In X Windows, programs typically run relative to where the window manager runs. That is, if the window
manager is running on the server, displaying its output on the workstation, then any programs that are
launched, will also run on the server, sending their output to the workstation.

The trick is having the server tell the workstation to launch the program. This is typically done with the rsh
command.

Here's an example of how to run the gaim program on the workstation:

HOST=`echo $DISPLAY | awk −F: '{ print $1 }'`
rsh ${HOST} /usr/bin/gaim −display ${DISPLAY}

The above example can be entered in an xterm window, or it can be put into a shell script, and be launched by
an icon on the desktop.

Launching local Netscape is done in a similar way, but an additional environment variable needs to be set,
before running the program.

HOST=`echo $DISPLAY | awk −F: '{ print $1 }'`
rsh ${HOST} MOZILLA_HOME=/usr/local/netscape \
 /usr/local/netscape/netscape −display ${DISPLAY}

LTSP − Linux Terminal Server Project − v4.1

10.5. Launching local applications 54

Chapter 11. Configuration examples
Almost any aspect of the workstation can be configured with entries in the lts.conf, which is usually
located in the /opt/ltsp/i386/etc directory.

11.1. Serial Mouse

Here is an example of the lts.conf entries for a standard 2−button serial mouse:

X_MOUSE_PROTOCOL = "Microsoft"
X_MOUSE_DEVICE = "/dev/ttyS0"
X_MOUSE_RESOLUTION = 400
X_MOUSE_BUTTONS = 2
X_MOUSE_EMULATE3BTN = Y

11.2. PS/2 Wheel mouse

Here is an example of the lts.conf entries for an Intellimouse:

X_MOUSE_PROTOCOL = "IMPS/2"
X_MOUSE_DEVICE = "/dev/psaux"
X_MOUSE_RESOLUTION = 400
X_MOUSE_BUTTONS = 5
X_ZAxisMapping = "4 5"

11.3. USB printer on a ThinkNic

The ThinkNIC workstation has a USB port, which can be used for attaching a local printer. Here is an
example of the entries required in the lts.conf file:

MODULE_01 = usb−ohci
MODULE_02 = printer
PRINTER_0_DEVICE = /dev/usb/lp0
PRINTER_0_TYPE = S

11.4. Forcing a workstation to load a XFree86 3.3.6 Xserver

By default, X.org 6.7.0 will be used for a workstation. If you want to force the workstation to use an older
XFree86 3.3.6 Xserver, you first need to load the proper 3.3.6 Xserver package. Then, you need to add the
entry in the lts.conf file. This is an example of specifying the SVGA Xserver:

XSERVER = XF86_SVGA

Chapter 11. Configuration examples 55

Chapter 12. Other sources of information

12.1. Online references

The LTSP home page 1.

www.LTSP.org

Diskless−Nodes HOW−TO document for Linux 2.

www.linuxdoc.org/HOWTO/Diskless−HOWTO.html

Etherboot Home Page 3.

etherboot.sourceforge.net

The Rom−O−Matic site 4.

www.Rom−O−Matic.net

X.org Mouse Support 5.

www.xfree86.org/current/mouse.html

XFree86−Video−Timings−HOWTO 6.

www.linuxdoc.org/HOWTO/XFree86−Video−Timings−HOWTO.html

The Linux NIS(YP)/NYS/NIS+ HOWTO 7.

www.linuxdoc.org/HOWTO/NIS−HOWTO.html

12.2. Print publications

1.
Managing NFS and NIS
Hal Stern
O'Reilly & Associates, Inc.
1991
ISBN 0−937175−75−7

2.
TCP/IP Illustrated, Volume 1
W. Richard Stevens
Addison−Wesley
1994
ISBN 0−201−63346−9

3.
Chapter 12. Other sources of information 56

http://www.LTSP.org
http://www.linuxdoc.org/HOWTO/Diskless-HOWTO.html
http://etherboot.sourceforge.net
http://www.rom-o-matic.net
http://www.xfree86.org/current/mouse.html
http://www.linuxdoc.org/HOWTO/XFree86-Video-Timings-HOWTO.html
http://www.linuxdoc.org/HOWTO/NIS-HOWTO.html

X Window System Administrator's Guide
Linda Mui and Eric Pearce
O'Reilly & Associates, Inc.
1993
ISBN 0−937175−83−8
(Volume 8 of the The Definitive Guides to the X Window System)

LTSP − Linux Terminal Server Project − v4.1

Chapter 12. Other sources of information 57

	Table of Contents
	Introduction
	1. Disclaimer
	2. Copyright and License

	Chapter 1. Theory of operation
	1.1. The steps that the workstation will go through
	1.2. Loading the kernel into memory

	Chapter 2. Installing LTSP on the server
	2.1. Installing the LTSP utilities
	2.2. Installing the LTSP client packages
	2.3. Configuring the services needed by LTSP
	2.4. Workstation specific configuration
	2.5. Displaying the current configuration

	Chapter 3. Setting up the workstation
	3.1. Booting with PXE
	3.2. Booting with Etherboot

	Chapter 4. Running the workstation
	Chapter 5. Printing
	5.1. Client side setup
	5.2. Server side setup

	Chapter 6. Screen Scripts
	Chapter 7. Troubleshooting
	7.1. Troubleshooting Etherboot floppy image
	7.2. Troubleshooting DHCP
	7.3. Troubleshooting TFTP
	7.4. Troubleshooting NFS root filesystem
	7.5. Troubleshooting the Xserver
	7.6. Troubleshooting the Display manager

	Chapter 8. Kernels
	8.1. Standard LTSP supplied kernels
	8.2. Build your own kernel

	Chapter 9. lts.conf entries
	9.1. Sample lts.conf file
	9.2. Available lts.conf parameters

	Chapter 10. Local Applications
	10.1. Benefits of running apps locally
	10.2. Issues with setting up support for local apps
	10.3. Server Configuration for Local Apps
	10.4. Application Configuration
	10.5. Launching local applications

	Chapter 11. Configuration examples
	11.1. Serial Mouse
	11.2. PS/2 Wheel mouse
	11.3. USB printer on a ThinkNic
	11.4. Forcing a workstation to load a XFree86 3.3.6 Xserver

	Chapter 12. Other sources of information
	12.1. Online references
	12.2. Print publications

