
based_on(gdml) based_on(gdml)

NAME
based_on −declare program variable

SYNTAX

BASIC syntax:
based_on[dbhandle.]relation-name.field-name variable-name[,variable-name]

C syntax:
based_on[dbhandle.]relation-name.field-name host-expression;

host-exp ::= { host-exp-commalist| variable-name|
*variable-name| function() }

COBOL syntax:
level variable-namebased_on[dbhandle.]relation-name.field-name

FORTRAN syntax:
based_on[dbhandle.]relation-name.field-name variable-name;

Pascal syntax:
variablebased_on[dbhandle.]relation-name.field-name

variable::= { variable-name: |type-name: | function(argument-commalist) }

PL/I syntax:
based_on[dbhandle.]relation-name.field-name variable-name;

DESCRIPTION
The based_onclause declares a program variable by referencing a database field.The preprocessor
supplies the host variable with all the attributes defined for the database field.

ARGUMENTS
variableNames a host language variable that inherits the characteristics of a database field.

In Pascal, you cannot use thebased_onclause in a parameter list for a routine.Instead, declare a type and
then declare the formal parameter to be that type.

dbhandleSpecifies the source of the database field.The database handle must have been declared in an
earlierdatabasestatement.

relation-name.field-nameSpecifies the relation and field on which to base the host variable.

EXAMPLE
The following example shows two based_ondeclarations as they would appear in aC program:

1

based_on(gdml) based_on(gdml)

based_on states.state_name state_name;

based_on states.capitol capitol_city;

The following example shows thebased_ondeclaration as it would appear in a Pascal program:

var state : based_on states.state;

SEE ALSO
Host language documentation for declaration of variables.

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

2

boolean-expression(gdml) boolean-expression(gdml)

NAME
boolean-expression −relationship between value expressions

SYNTAX

boolean-expression::= { [not] conditional-expression|
conditional-expressionand conditional-expression|
conditional-expressionor conditional-expression}

conditional-expression::= { comparison-condition| between-condition|
starting-condition | containing-condition|
matching-condition | not-condition | unique-condition}

DESCRIPTION
A boolean-expressionevaluates to true, false, or missing.It describes the characteristics of a single value
expression (for example, a missing value) or the relationship between two value expressions (for example,x
is greater thany).

The order of precedence for evaluating compound Boolean expressions isnot, and, andor.

ARGUMENTS
comparison-conditionDescribes the characteristics of a single expression. Theformat of thecomparison-
conditionfollows:

Syntax: comparison-condition of Boolean Expression

value-expression-1 relational-operator value-expression-2

Therelational-operator can be any of the operators in the following table:

1

boolean-expression(gdml) boolean-expression(gdml)

Operator Relationship

eqor = or == equal

neor <> or != not equal

gt or > greater than

geor >= greaterthan or equal

lt or < less than

le or <= lessthan or equal

between-conditionTests whether a value expression,value-expression-1, occurs between two other value
expressions,value-expression-2andvalue-expression-3. This test is inclusive of the boundary values. The
format of thebetween-conditionfollows:

Syntax: between-condition of Boolean Expression

value-expression-1[not] between
value-expression-2and value-expression-3

containing-conditionTests for the presence ofstring (case-insensitive) anywhere invalue-expression. It
evaluates to true ifstring is contained invalue-expression. If the value ofvalue-expressionis missing, the
result is missing.The format of thecontaining-conditionfollows:

Syntax: containing-condition of Boolean Expression

value-expression-1[not] containing value-expression-2

starting-conditionTests for the presence ofstring (case-sensitive) at the beginning ofvalue-expression. It
evaluates to true if the first characters ofvalue-expressionmatchstring. The search is case-sensitive. The

2

boolean-expression(gdml) boolean-expression(gdml)

format of thestarting-conditionfollows:

Syntax: starting-condition Boolean Expression

value-expression-1[not] starting with value-expression-2

matching-conditionTests for the presence ofwildcarded-string, a string that can contain the wildcard
characters* and?. The asterisk matches an unspecified run of characters, while the question mark matches
a single character. This test is caseinsensitive. The format of thematching-conditionfollows:

Syntax: matching-condition of Boolean Expression

value-expression-1[not] matching value-expression-2

missing-conditionTests for the absence of a value indbfield-expression. It is true if the value ofdbfield-
expressionis missing.The format of themissing-conditionfollows:

Syntax: missing-condition of Boolean Expression

dbfield-expression[not] missing

Unless you specify otherwise in the field’s definition, blanks are returned for numbers, characters, and
dates, and nothing is returned for blobs.See for more information about defining alternate missing values.

any-conditionTests for the existence of at least one qualifying record in a relation or relations.This
expression is true if the record stream specified byrse includes at least one record.If you addnot, the
expression is true if there areno records in the record stream.The format of theany-conditionfollows:

Syntax: any-condition of Boolean Expression

[not] any rse

You might want to useany instead of joining records if all you want to do is establish that a record exists.
As soon finds one record that meets the search criteria, it stops, whereas a join would continue until it found
all qualifying records.

unique-conditionTests for the existence of exactly one qualifying record.This expression is true if the
record stream specified byrse consists of only one record.If you addnot, the condition is true if there is
more than one record in the record stream or if the record stream is empty. The format of theunique-
conditionfollows:

3

boolean-expression(gdml) boolean-expression(gdml)

Syntax: unique-condition of Boolean Expression

[not] unique rse

EXAMPLES
The following statement looks for cities with populations between 100,000 and 250,000:

for c in cities with c.population between 100000 and 250000

writeln (c.city, c.state, c.population);

end_for;

The following statement looks for cities with the substring ‘‘ville’ ’ somewhere in their name:

for c in cities with c.city containing ’ville’

writeln (c.city, c.state);

end_for;

The following statement looks for cities that start with the stringNew:

for c in cities with c.city starting with ’New’

writeln (c.city, c.state);

end_for;

The following statement looks for cities with the string ‘‘ton’’ f ollowing any number of other characters:

for c in cities with c.city matching ’*ton*’

writeln (c.city, c.state);

end_for;

The following statement looks for states with the state abbreviation equal to ‘‘N’ ’ f ollowed by exactly one character:

for c in cities with c.city matching ’N?’

writeln (c.city, c.state);

end_for;

The following statement looks for states that have a missing value for theCAPITOL field:

for s in states with s.capitol missing

writeln (s.state_name);

end_for;

4

boolean-expression(gdml) boolean-expression(gdml)

The following statement prints the name of any state for which there are cities stored:

. gdml_120a.epas

for s in states with any c in cities with

c.state = s.state

writeln (s.state_name);

end_for;

The following query prints the names of states that have only one ski area:

. gdml_120b.epas

for s in states with unique ski in ski_areas with

ski.state = s.state

writeln (s.state_name);

end_for;

SEE ALSO
See the entries in this chapter for:

• value-expression

• rse in this chapter.

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

5

close_blob(gdml) close_blob(gdml)

NAME
close_blob −close blob field

SYNTAX

close_blobblob-variable[on-error]

on-error ::= on_error statement...end_error

DESCRIPTION
The close_blobstatement closes an open blob field and releases system resources associated with blob
retrieval or update.

You should close the blob as soon as you finish reading or writing.If you fail to close a blob to which you
wrote data, you will not be able to make the blob permanent.Closing a blob is especially important when
you access remote databases.Because remote interface buffers segment transfer between participating
nodes, it may truncate the last segment you write unless you explicitly signal that the blob is closed.

Once you close a blob, you cannot read from or write to that blob without re-opening it with anopen_blob
or for b lob statement.

ARGUMENTS
blob-variableA temporary name used for name recognition.It is associated with individual segments in
the field and is used very much like a context variable. You must have assigned the blob variable in an
earliercreate_blobor open_blobstatement.

on-error Specifies the action to be performed if an error occurs during the close operation.

EXAMPLE
The following program creates a record stream from two relations, opens a blob field, reads segments from
the blob field, and then closes the blob field:

. gdml_119a.epas

program update_guide (input, output);

database atlas = filename ’atlas.gdb’;

begin

ready atlas;

start_transaction;

for s in states cross t in tourism over state sorted by s.state

begin

writeln (s.state_name, ’ ’ , t.city);

1

close_blob(gdml) close_blob(gdml)

open_blob b in t.office

get_segment b;

while (gds_$status [2] = 0) or (gds_$status [2] = gds_$segment) do

begin

write (b.segment:b.length);

get_segment b;

end;

writeln;

close_blob b;

end;

end_for;

commit;

finish atlas;

end.

SEE ALSO
For some guidance on the best approach to processing blobs, see Chapter 6.See also the entries in this
chapter for:

• open_blob

• on_error

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

2

commit(gdml) commit(gdml)

NAME
commit −write changes to database

SYNTAX

commit [transaction-handle] [on-error]

on-error ::= on_error statement...end_error

DESCRIPTION
Thecommit statement ends a transaction and makes the transaction’s changes visible to other users.

The commit statement affects all databases in the transaction, writing to the database(s) all changes made
during the transaction.It flushes all modified buffers and closes any record streams that are open.

ARGUMENTS
transaction-handleSpecifies the transaction you want to commit. If the transaction you want to commit
has a transaction handle associated with it, you must use that handle when you commit the transaction.

If you do not specify a transaction handle on acommit statement, commits the ‘‘default’’ t ransaction. The
default transaction is what starts when you use astart_transaction statement without a handle.

on-error Specifies the action to be performed if an error occurs during the commit operation.

EXAMPLE
The following Pascal example starts an unnamed transaction, performs some unspecified data manipulation,
and then writes the changes to the database:

start_transaction concurrency;

.

.

.

commit;

The following Pascal program starts two separate transactions, one to get a badge number, and the other to store a new employee. This

simplified program contains no error handling.

. gdml_122a.epas

program map (input_output);

database db = filename ’emp.gdb’;

type badge_type = based on badge_num.badge;

1

commit(gdml) commit(gdml)

var

store_emp_tr : gds_$handle := nil;

to_be_stored : integer;

function get_badge : badge_type;

var

get_badge_tr : gds_$handle;

begin

get_badge_tr := nil;

start_transaction get_badge_tr;

for (transaction_handle get_badge_tr) b in badge_num

get_badge := b.badge;

modify b using

b.badge := b.badge + 1;

end_modify;

end_for;

commit get_badge_tr;

end; { function get_badge }

begin

ready;

start_transaction store_emp_tr;

write (’Enter the number of new employees: ’);

readln (to_be_stored);

while to_be_stored > 0 do

begin

store (transaction_handle store_emp_tr) e in employees using

e.badge := get_badge;

write (’Enter first name: ’);

readln (e.first_name);

write (’Enter last name: ’);

readln (e.last_name);

write (’Enter supervisor’’ s id: ’);

readln (e.supervisor);

write (’Enter department: ’);

readln (e.department);

end_store;

to_be_stored := to_be_stored - 1;

end;

commit store_emp_tr;

finish;

end.

2

commit(gdml) commit(gdml)

SEE ALSO
See the entries in this chapter for:

• start_transaction

• transaction-handle

• on_error

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

3

create_blob(gdml) create_blob(gdml)

NAME
create_blob −create blob

SYNTAX

create_blobblob-variablein dbfield-expression[on-error]

on-error ::= on_error statement...end_error

DESCRIPTION
Thecreate_blobstatement creates a blob.

ARGUMENTS
blob-variableA temporary name used for name recognition.It is associated with individual segments in
the field and is used much like a context variable.

dbfield-expressionA value expression that identifies a field containing blob data.

on-error Specifies the action to be performed if an error occurs during the creation of the blob field.

EXAMPLE
The following example creates a record stream, creates a blob field, and writes segments to the blob field:

. blob_6.epas

program store_tour (input_output);

database db = filename ’atlas.gdb’;

var i : integer;

var statecode based_on states.state

.sp

begin

store t in tourism using

write (statecode)

t.state :=

t.date_modified.char [6] := ’TODAY’;

create_blob b in t.blurb;

writeln (’Enter new blurb one line at a time’);

writeln (’ A line containing ’’ -30-’’ ends input’);

readln (b.segment);

while (b.segment <> ’-30-’) do

begin

for i := sizeof (b.segment) downto 1 do

if b.segment[i] <> ’ ’ then exit;

i := i + 1;

1

create_blob(gdml) create_blob(gdml)

b.segment[i] := chr(10);

b.length := i;

put_segment b;

readln (b.segment);

end;

close_blob b;

end_store;

rollback;

finish;

end.

SEE ALSO
For some guidance on the best approach to processing blobs, see Chapter 6 in this manual.See also the
entries in this chapter for:

• on_error

• value-expression

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

2

database(gdml) database(gdml)

NAME
database −declare database

SYNTAX

database database-handle= [declaration-scope]
[compiletime] [filename] database-filespec

[runtime [filename] { database-filespec| host-variable}]

declaration-scope::= { static | extern }

DESCRIPTION
Thedatabasedeclaration specifies the database to be accessed by a program or program module.Because
thedatabasedeclaration identifies the source of metadata, it must precede any database access.However,
it is theready statement or equivalent action that actually opens the database for access.

The database declaration optionally supports the specification of aruntime database. However, the
runtime database is more appropriately referenced in (and opened by) theready statement. For example,
your program may access a number of databases that use common metadata, but contain different data.
Applications of this type includeCAD/CAM and test control systems, in which a boilerplate database
supplies metadata (for example, relations for wing struts and other aircraft assemblies) while instances of
that database contain actual data (individual databases forIL-62, IL-70, andIL-82 aircraft designs).The use
of the boilerplate database for metadata helps ensure that you are keeping track of the same data for all your
aircraft designs.

However, if you find that the runtime database is always the same, and different from the compiletime
database, you can add theruntime clause to thedatabase declaration. If you choose only one
compiletime identifier, gpre uses that identifier for both compilation and runtime unless you provide a
runtime file in theready statement.

ARGUMENTS
database-handleDeclares a name that you can use when you have to reference multiple databases in a
program.

N O T E

Many of the examples in this manual use the database handleDB, which is a reserved word in VAX COBOL.
You cannot use reserved words as database handles.

declaration-scopeDeclares the scope of the handle specified by thedatabase-handleclause. Ifyou do not
specify a declaration scope, the scope of the handle defaults toglobal.

1

database(gdml) database(gdml)

If you specifystatic, the scope is the module containing thedatabasedeclaration.

If you specifyextern, the handle will correspond to one in another module with aglobal scope.

If all database handles in a module have the same scope, the handle for the default transaction will also
have that scope; otherwise, the handle for the default transaction will have aglobal scope.

database-filespecSpecifies the database from which the preprocessor reads the metadata.The database-
filespeccan be:

• A filename enclosed in single (’) or double (") quotation marks, depending on your host
language conventions.

• A logical name that resolves to a quoted file specification.

The file specification can contain the full pathname, including the name of the node on which the database
is stored. If you are in a directory other than the one that contains the database file, the file specification
mustinclude the pathname.If the database is on another node, thefilespecmust include the node name and
pathname. You can define a link or logical name for the database file.

File specifications for remote databases have the following form:

Syntax: Remote Database File Specification

VMS to ULTRIX:
node-name::filespec

VMS to non-VMS and non-ULTRIX:
node-namêfilespec

Within Apollo DOMAIN:
//node-name/filespec

All Else:
node-name:filespec

Make sure that what follows the colon is a valid file specification on the target system; use brackets,
slashes, and spaces as appropriate.

EXAMPLE
The following Pascal program includes two databasedeclarations:

program mapper (input, output);

database atlas =

2

database(gdml) database(gdml)

compiletime filename ’atlas.gdb’;

database gazetteer =

compiletime filename ’/usr/gds/examples/atlas.gdb’;

begin

ready atlas;

ready gazetteer;

for s in atlas.states sorted by s.state

begin

writeln (s.state);

for c in gazetteer.cities with c.state = s.state

writeln (c.city, c.latitude, c.longitude);

end_for;

end;

end_for;

end.

SEE ALSO
See the entry forready in this chapter.

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

3

erase(gdml) erase(gdml)

NAME
erase −delete record

SYNTAX

erasecontext-variable[on-error]

on-error ::= on_error statement...end_error

DESCRIPTION
Theerasestatement removes records from an open record stream.

You cannot erase records from views or joins.Rather, you must erase them through the source relations.

ARGUMENTS
context-variable Specifies the record stream from which to erase the record(s).You must declare the
context-variablein a for or start_streamstatement.

on-error Specifies the action to be performed if an error occurs during the erase operation.

EXAMPLE
The following statements prompt for a field value and then delete records with that value:

var statecode: based_on states.state;

.

.

.

write (’State to depopulate: ’);

readln (statecode);

for c in cities with c.state = statecode

erase c;

end_for;

SEE ALSO
See the entries in this chapter for:

• on_error

• for

• start_stream

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

1

fetch(gdml) fetch(gdml)

NAME
fetch −advance record stream pointer

SYNTAX

fetch stream-name[at endstatement...end_fetch] [on-error]

on-error ::= on_error statement...end_error

DESCRIPTION
The fetch statement advances the record stream pointer to the next record in a record stream, thus selecting
the current record of that stream for whatever retrieval or manipulation operation you choose.

Thefetch statement:

• Can be used only in a record stream created by astart_streamstatement.

• Must precede any other statement that affects the current record.

ARGUMENTS
stream-nameSpecifies the stream from which to fetch records.You must open the stream with a
start_streamstatement.

statementSpecifies or host language statements to be executed on each record in the stream.

on-error Specifies the action to be performed if an error occurs during the fetch operation.

at end Specifies the action to be taken when the program reaches the end of the stream.If you include
more than onestatement, you must separate them using the host language convention.

EXAMPLE
The following program demonstrates the use of thestart_stream statement in a loop that may be
terminated by user interaction:

. gdml_130a.epas

program map (input_output);

database db = filename ’atlas.gdb’;

var end_of_stream : boolean;

genug : char;

begin

start_stream geodata using c in cities

sorted by c.latitude, c.longitude;

1

fetch(gdml) fetch(gdml)

end_of_stream := false;

fetch geodata

at end end_of_stream := true;

end_fetch;

while not end_of_stream do begin

writeln (c.latitude, c.longitude, c.altitude,

c.city, c.state);

write (’Seen enough? (Y/N) ’);

readln (genug);

if genug = ’Y’ then

end_of_stream := true;

fetch geodata

at end begin

end_of_stream := true;

writeln (’Sorry, there is no more.’);

end;

end_fetch;

end;

end_stream geodata;

commit;

finish;

end.

SEE ALSO
See the entries in this chapter for:

• start_stream

• on_error

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

2

finish(gdml) finish(gdml)

NAME
finish −close database

SYNTAX

finish [database-handle-commalist] [on-error]

on-error ::= on_error statement...end_error

DESCRIPTION
The finish statement closes either the default database (that is, a database opened without a database
handle) or a specific database identified by a database handle.

ARGUMENTS
database-handleSpecifies which open database or databases you want to close.A databasedeclaration
declares this handle.

• If you use the optionaldatabase-handleclause, the database handle must have been
previously associated with a database in thedatabasedeclaration. Thisclause lets you
close specific databases if you are using multiple databases in your program.

• If you do not specify a database handle, thefinish statement commits the default
transaction. Ifyou want to close a specific database, you must first commit or roll back
the transaction.

• Non-default transactions that have not been committed are automatically rolled back by a
finish statement.

on-error Specifies the action to be performed if an error occurs during the finish operation.

EXAMPLE
The following statement closes any open databases:

finish;

The following statements close the databases identified by the handle:

finish atlas;

finish mapper;

finish your_broccoli;

SEE ALSO
See the entries in this chapter for:

• on_error

1

finish(gdml) finish(gdml)

• database

• commit

• rollback

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

2

for(gdml) for(gdml)

NAME
for −loop structure

SYNTAX

for [request-option] rse
statement...
end_for [on-error]

on-error ::= on_error statement...end_error

DESCRIPTION
The for statement executes a statement or group of statements once for each record in a stream formed by a
record selection expression.

You can nestfor loops to display a hierarchy of records or to join relations across databases.

ARGUMENTS
request-optionSpecifies a transaction handle and/or request handle that determine the transaction and/or
request in which thefor loop executes.

rseSpecifies the record selection criteria used to create the record stream.

The scope of a context variable declared in therse is the statement in which it was declared.Therefore,
you can re-use a context variable from afor statement when you end the for loop withend_for and begin a
new record stream with afor or start_streamstatement.

You cannot reference more than one database in a record selection expression. Therefore,use nestedfor
loops to join relations across databases.

on-error Specifies the action to be performed if an error occurs during thefor loop.

statementSpecifiesGDML or host language statements to be executed within thefor loop. Thestatements
you include in afor loop are subject to the following rules:

• You can nestfor statements within otherfor statements.

• If you include more than onestatement, you must separate them using the host language
convention.

• If you use otherGDML statements in the for loop, those statements can use the context
variables declared in thefor statement or in an outer statement, as well as contexts
declared in the currentfor statement.

1

for(gdml) for(gdml)

EXAMPLE
The following statements retrieve records through afor loop:

for c in cities with population gt 1000000

writeln (c.city, c.state, c.population);

end_for;

The following statements join two relations using afor loop:

for c in cities cross s in states with c.state = s.state

writeln (c.city, s.state_name, c.population);

end_for;

The following statements use an outerfor loop to create a record stream from which astore statement takes some values, host

variables supply some values, and unreferenced fields are set to missing:

for oldcity in cities with oldcity.city = hostvar1

store newcity in cities using

newcity.city = hostvar2;

newcity.state = oldcity.state;

newcity.population = oldcity.population * hostvar3;

newcity.altitude = oldcity.altitude;

end_store;

end_for;

The following example lists employees by department:

. gdml_136a.epas

program print_depts (input, output);

database db = filename ’emp.gdb’;

begin

for d in departments sorted by d.dept_name

begin

writeln (d.department, ’ manager: ’, d.manager);

for e in employees with e.department = d.department

sorted by e.badge

writeln (’ ’ , last_name, first_name);

end_for;

end_for;

end.

2

for(gdml) for(gdml)

The next example demonstrates the way to join relations across databases.It uses two copies of the sample atlas databases, one of

which is in your current directory and the other in the examples directory provided with The statements display values from the

STATESrelation in one copy of the atlas database, and values stored in another database fromCITIES in those
states. Thejoin term is theSTATE field in both relations.

program mapper (input, output);

database atlas =

compiletime filename ’atlas.gdb’;

database gazetteer =

compiletime filename ’/usr/gds/examples/atlas.gdb’;

begin

ready atlas;

ready gazetteer;

for s in atlas.states sorted by s.state

begin

writeln (s.state);

for c in gazetteer.cities with c.state = s.state

writeln (c.city, c.latitude, c.longitude);

end_for;

end;

end_for;

finish atlas;

finish gazetteer;

end.

The following program hires everybody’s offspring and assigns them new badge numbers.Note that each request (that is, eachfor and

store) must use the same request options, even though they are nested.The modify statement is not a separate request and does not

require a transaction handle.The outerfor statement is in the default transaction so that it will not read the newly stored records and

start prompting for employee grandchildren.

. gdml_137a.epas

program nested_for (input, output);

database db = filename ’emp.gdb’;

var

update_tr : gds_$handle := nil;

check : char;

fnl, lnl : integer;

3

for(gdml) for(gdml)

begin

ready;

start_transaction update_tr consistency read_write reserving

badge_num, employees for protected write;

start_transaction;

for e in employees

fnl := 1;

while (e.first_name [fnl] <> ’ ’) do

fnl := fnl + 1;

lnl := 1;

while (e.last_name [lnl] <> ’ ’) do

lnl := lnl + 1;

write (’Should we hire ’, e.first_name:fnl,

e.last_name:lnl-1, ’’’ s kid? ’);

readln (check);

if (check = ’y’) or (check = ’Y’) then

begin

for (transaction_handle update_tr) b in badge_num

begin

store (transaction_handle update_tr) n_e in employees using

begin

write (’What’’ s the kid’’ s first name? ’);

readln (n_e.first_name);

n_e.last_name := e.last_name;

write (’What’’ s the kid’’ s date of birth? ’);

readln (n_e.birth_date.char[20]);

n_e.badge := b.badge + 1;

n_e.department := ’NEP’;

n_e.supervisor := 13;

end;

end_store;

modify b using

b.badge := b.badge + 1;

end_modify;

end;

end_for;

end;

end_for;

commit update_tr;

commit;

finish;

4

for(gdml) for(gdml)

end.

SEE ALSO
See the entries in this chapter for:

• request-option

• rse

• on_error

• for b lob

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

5

for blob(gdml) for blob(gdml)

NAME
for blob −access blob field

SYNTAX

for blob-variablein dbfield-expression[on-error]
statement...
end_for

on-error ::= on_error statement...end_error

DESCRIPTION
Thefor b lob statement retrieves data from a field that contains blob data.

The for b lob statement is the easiest way to access blobs.You should use it when you process whole
segments of a blob field or the entire contents of the blob buffer, without calling special formatting routines.

To read or write a blob field with thefor b lob statement:

• Construct a loop with the ‘‘other’’ for statement. Thisouter for loopcreates a record stream.

• Construct a loop with thefor b lob statement. Thisinner loopswings through the blob, returning a
segment at a time.

• Perform whatever action(s) you want to the blob under the control of the inner loop.

• Return control to the outer loop when you are finished with the blob field.

ARGUMENTS
blob-variableA temporary name used for name recognition.It is associated with individual segments in
the field and is used very much like a context variable.

dbfield-expressionA value expression that identifies a field containing blob data.

on-error Specifies the action to be performed if an error occurs during thefor loop.

statementAny valid host language or statement.Use host language punctuation to terminate each
statement.

EXAMPLE
The following statements create a record stream, display several structured fields from those records, and
display a blob from each of those records:

for tour in tourism sorted by tour.state

writeln (tour.city, tour.state, tour.zip);

writeln;

1

for blob(gdml) for blob(gdml)

for blob in tour.guidebook

write (blob.segment:blob.length);

end_for; {blob loop}

writeln;

end_for; {for loop}

The following program copies a blob to another database by retrieving it in afor b lob statement:

. gdml_139a.epas

program update_guide (input, output);

database atlas = filename ’atlas.gdb’;

database guide = filename ’coastal_guide.gdb’;

begin

start_transaction;

for t in atlas.tourism

begin

store new in guide.tourism using

new.state := t.state;

new.city := t.city;

new.zip := t.zip;

create_blob n_guide in new.guidebook;

for o_guide in t.guidebook

n_guide.segment := o_guide.segment;

n_guide.length := o_guide.length;

put_segment n_guide;

end_for;

close_blob n_guide;

end_store;

end;

end_for;

commit;

finish;

end.

SEE ALSO
For more guidance on processing blobs, see Chapter 6 of this manual.See also the entries in this chapter
for:

• on_error

• value-expression

2

for blob(gdml) for blob(gdml)

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

3

get_segment(gdml) get_segment(gdml)

NAME
get_segment −retrieve blob segment

SYNTAX

get_segmentblob-variable[on-error]

on-error ::= on_error statement...end_error

DESCRIPTION
The get_segmentstatement reads a portion of a blob field.Before you can read a blob, you must open it
with anopen_blobstatement.

ARGUMENTS
blob-variableA temporary name used for name recognition.It is associated with individual segments in
the field and is used like a context variable. You must have assigned the blob variable in an earlier
open_blobstatement.

on-error Specifies the action to be performed if an error occurs during the get operation.

EXAMPLE
The following example creates a record stream, opens a blob field, and reads segments from the blob field:

for tour in tourism cross s in states over state

sorted by s.state

writeln (tour.zip, s.state_name, s.area);

open_blob b in tour.guidebook;

get_segment b;

while (gds_$status [2] = 0) or

(gds_$status [2] = gds_$segment) DO

begin

write (b.segment : b.length);

get_segment b;

end;

close_blob b;

writeln;

end_for;

SEE ALSO
For some guidance on the best approach to processing blobs, see Chapter 6 in this manual.See also the
entries in this chapter for:

• open_blob

1

get_segment(gdml) get_segment(gdml)

• close_blob

• on_error

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

2

modify(gdml) modify(gdml)

NAME
modify −change field value

SYNTAX

modify context-variableusing
statement...
end_modify [on-error]

on-error ::= on_error statement...end_error

DESCRIPTION
Themodify statement updates a field or fields in a record from a record stream.

You cannot modify records through views. Rather, you must modify them through the source relations.

If the field you want to modify contains blob data, use theput_segmentstatement to modify it.

ARGUMENTS
context-variable Specifies the record stream from which the record is to be modified.You must declare
context-variablein a for or start_streamstatement.

on-error Specifies the action to be performed if an error occurs during the modify operation.

statementSpecifies the action to be taken in modifying the record(s).The statements are typically
assignments. Ifyou include more than onestatement, you must separate them using the host language
convention.

EXAMPLE
The following statements increase the value of thePOPULATION field in all cities in a given state:

var statecode : based_on states.state;

write (’State code [2 characters, uppercase]: ’);

readln (statecode);

for c in cities with c.state = statecode

modify c using

c.population := c.population * 1.2;

end_modify;

end_for;

SEE ALSO
See the entries in this chapter for:

1

modify(gdml) modify(gdml)

• on_error

• for

• start_stream

• put_segment

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

2

on_error(gdml) on_error(gdml)

NAME
on_error −error handling

SYNTAX

on_error
statement...
end_error

DESCRIPTION
Theon_error clause specifies the action the program will take if an error occurs during the execution of the
associated operation.

All statements can include anon_error clause; thedatabasedeclaration cannot.

ARGUMENTS
statementA host language or statement.If you include more than onestatement, you must separate them
using the host language convention.

EXAMPLE
The following program changes the type of ski areas, using reasonable error handling.It prompts for the
name of a database and reprompts if there is an error during theready statement. Themodification takes
place in a subroutine that returns the status of the change.Validation errors are handled in the routine, thus
avoiding restarting either the transaction or thefor loop. Deadlocksare handled by the main routine, which
rolls back and retries.Other errors print the status, rollback and exit.

. gdml_145a.epas

program ski_areas (input_output);

database db = filename ’atlas.gdb’;

type

name = based on ski_areas.name;

a_type = based on ski_areas.type;

var

more : char := ’y’;

area_name : name;

area_type : a_type;

stat : integer;

function modify_type (area_name : name; area_type : a_type) : integer;

label

re_mod;

1

on_error(gdml) on_error(gdml)

begin

modify_type := gds_$true;

start_transaction;

for ski in ski_areas with ski.name = area_name

re_mod:

modify ski using

ski.type := area_type;

end_modify

on_error

begin

if gds_$status [2] = gds_$not_valid then

begin

writeln (’Type must be N, A, or B’);

write (’Enter new area type: ’);

readln (area_type);

goto re_mod;

end

else if gds_$status [2] <> gds_$deadlock then

gds_$print_status (gds_$status);

modify_type := gds_$false;

rollback;

return;

end;

end_error;

end_for

on_error

if gds_$status [2] <> gds_$deadlock then

gds_$print_status (gds_$status);

modify_type := gds_$false;

end_error;

commit;

end;

function open_database : integer;

var

filename : array [1..40] of char;

begin

open_database := 0;

write (’Please enter pathname of database (’’ quit’’ to exit): ’);

readln (filename);

if filename = ’quit’ then

open_database := -1

2

on_error(gdml) on_error(gdml)

else begin

ready filename as db

on_error

begin

writeln (’Error during database open. Status follows.’);

gds_$print_status (gds_$status);

writeln;

open_database := 1;

end;

end_error;

end;

end;

begin

repeat

begin

stat := open_database;

if stat = -1 then

begin

writeln (’Toodles, kid!’);

return;

end;

end;

until (stat = 0);

while more = ’y’ do

begin

write (’Enter ski_area name: ’);

readln (area_name);

write (’Enter new area type: ’);

readln (area_type);

stat := modify_type (area_name, area_type);

while stat = gds_$false do

begin

if gds_$status [2] = gds_$deadlock then

stat := modify_type (area_name, area_type)

else

begin

writeln (’Farewell, cruel world...’);

finish;

return;

end;

end;

write (’Enter "y" to change another record: ’);

3

on_error(gdml) on_error(gdml)

readln (more);

end;

finish;

end.

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

4

open_blob(gdml) open_blob(gdml)

NAME
open_blob −open blob field for access

SYNTAX

open_blobblob-variablein dbfield-expression[on-error]

on-error ::= on_error statement...end_error

DESCRIPTION
Theopen_blobstatement opens a blob so that its data may be retrieved.

You can process blobs by using the following statements:

• create_blob

• for b lob

• open_blob

• get_segmentandput_segment

• close_blob

This approach is most useful when you process a blob field, look at what is in the data, and make decisions
based on the contents.

ARGUMENTS
blob-variableDeclares a temporary name to be used for name recognition.It is associated with individual
segments in the field and is used like a context variable.

dbfield-expressionA value expression that identifies a field containing blob data.The context variable must
be assigned in an outerfor loop orstart_streamstatement.

on-error Specifies the action to be performed if an error occurs during the blob operation.

EXAMPLE
The following example creates a record stream from two relations, opens a blob field, and reads segments
from the blob field:

for tour in tourism cross s in states over state

sorted by s.state

writeln (tour.zip, s.state_name, s.area);

open_blob b in tour.guidebook;

get_segment b;

1

open_blob(gdml) open_blob(gdml)

while (gds_$status [2] = 0) DO

begin

write (b.segment : b.length);

get_segment b;

end;

close_blob b;

writeln;

end_for;

SEE ALSO
For more guidance on processing blobs, see Chapter 6 of this manual.See also the entries in this chapter
for:

• on_error

• for b lob

• close_blob

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

2

prepare(gdml) prepare(gdml)

NAME
prepare −prepare to commit transaction

SYNTAX

prepare [transaction-handle] [on-error]

on-error ::= on_error statement...end_error

DESCRIPTION
Theprepare statement signals your intention to commit either the default transaction (that is, a transaction
you start without declaring a handle) or the transaction specified by the optional transaction handle.

The prepare statement executes the first phase of a two-phase commit.The access method polls all
participants and waits for replies from each.It checks to see that no other database activity can affect the
transaction. Theprepare statement is particularly useful for transactions that access multiple databases or
for transactions that involve both database and non-database activity.

If the statement completes successfully, guarantees that acommit statement will execute successfully if the
disk is still intact.

ARGUMENTS
transaction-handleSpecifies which transaction to prepare to commit.If the transaction you want to commit
has a transaction handle associated with it, you must use that handle on theprepare and subsequent
commit statements.

If you do not specify a handle on theprepare statement, prepares the ‘‘default’’ t ransaction. Thedefault
transaction is what gets started when you use astart_transaction statement without a handle.

on-error Specifies the action to be performed if an error occurs during the prepare operation.

EXAMPLE
The following extract includes apreparestatement with anon_error clause:

prepare zip_code_update

on_error

begin

writeln (’Something failed during prepare’);

gds_$print_status (gds_$status);

writeln (’Starting rollback...’);

rollback zip_code_update;

goto failure;

end

end_error;

1

prepare(gdml) prepare(gdml)

commit zip_code_update;

SEE ALSO
See the entries in this chapter for:

• commit

• on_error

• transaction-handle

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

2

put_segment(gdml) put_segment(gdml)

NAME
put_segment −write a blob segment

SYNTAX

put_segmentblob-variable[on-error]

on-error ::= on_error statement...end_error

DESCRIPTION
Theput_segmentstatement writes a portion of a blob field.

Before you can write a blob field, you must create it with acreate_blobstatement.

ARGUMENTS
blob-variableA temporary name used for name recognition.It is associated with individual segments in
the field and is used much like a context variable. You must have assigned the blob variable in an earlier
open_blobstatement.

on-error Specifies the action to be performed if an error occurs during the put operation.

EXAMPLE
The following statements create a record stream, create a blob field, and write segments to the blob field:

. {blob_3.epas}

store tour in tourism using

write (’Enter state code: ’);

readln (tour.state)

write (’Enter zip code: ’);

readln (tour.zip)

write (’Enter city: ’);

readln (tour.city)

create_blob b in tour.guidebook;

writeln (’Enter new blurb one line at a time’);

writeln (’ A line containing ’’ -30-’’ ends input’);

readln (b.segment);

while (b.segment <> ’-30-’) do

begin

for i := sizeof (b.segment) downto 1 do

if b.segment[i] <> ’ ’ then exit;

i := i + 1;

b.segment[i] := chr(10);

b.length := i;

1

put_segment(gdml) put_segment(gdml)

put_segment b;

readln (b.segment);

end;

close_blob b;

end_store;

The following program copies the contents of a blob field from one database to another:

. gdml_139a.epas

program update_guide (input, output);

database atlas = filename ’atlas.gdb’;

database guide = filename ’coastal_guide.gdb’;

begin

start_transaction;

(* copy a blob to another database by retrieving it in a blob for *)

for t in atlas.tourism

begin

store new in guide.tourism using

new.state := t.state;

new.city := t.city;

new.zip := t.zip;

create_blob n_guide in new.guidebook;

for o_guide in t.guidebook

n_guide.segment := o_guide.segment;

n_guide.length := o_guide.length;

put_segment n_guide;

end_for;

close_blob n_guide;

end_store;

end;

end_for;

commit;

finish;

end.

SEE ALSO
For some guidance on the best approach to processing blobs, see Chapter 6 in this manual.See also the
entries in this chapter for:

2

put_segment(gdml) put_segment(gdml)

• on_error

• open_blob

• close_blob

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

3

ready(gdml) ready(gdml)

NAME
ready −open database

SYNTAX

ready { dbhandle-commalist| runtime-file } [on-error]

dbhandle::= { database-handle| runtime-file as database-handle}

runtime-file ::= { database-filespec| host-variable }

on-error ::= on_error statement...end_error

DESCRIPTION
Theready statement opens one or more databases for access.When it encounters aready statement,

• Initializes itself internally. The initialization sets up data structures and allocates dynamic
memory.

• Looks at the file name of the database and determines if the file is stored on the originating node (a
local database) or on another node (aremote database). provides transparent access to remote
databases.

• Opens the database file and looks at the header page.Assuming that the header page identifies the
file as containing a valid, unbroken database with the correct version of the on-disk structure,
permits further access.Otherwise, it returns an error.

Depending on the switches you set when preprocessing the program withgpre, you may not have to issue a
ready statement to access a database.By default, gpre generates aready if one is needed so that the
database is automatically readied the first time your program refers to that database.However, if you
specify themanual switch when you preprocess the program,gpre does not generateready (and
start_transaction) statements. Theadvantage to using themanual switch is that preprocessed code is
smaller and simpler.

Finally, you should close each database with afinish statement when you are done with it.This practice
saves system resources.

ARGUMENTS
dbhandleReferences either a database assigned a handle in adatabasedeclaration or a database you
specify withdatabase-filespecand to which you assign a database handle.Thedatabase-filespecmust be a
quoted file specification or a logical name that resolves to a quoted file specification.

In the case of a handle assigned in a previous databasedeclaration, the database you ready for runtime
access is the same as the one you declared for compiletime access.

The file specification can contain the full pathname, including the name of the node on which the database
is stored. If you are in a directory other than the one that contains the database file, the file specification

1

ready(gdml) ready(gdml)

mustinclude the pathname.If the database is on another node, thefilespecmust include the node name and
pathname. You can define a link or logical name for the database file.

File specifications for remote databases have the following form:

Syntax: Remote Database File Specification

VMS to ULTRIX:
node-name::filespec

VMS to non-VMS and non-ULTRIX:
node-namêfilespec

Within Apollo DOMAIN:
//node-name/filespec

All Else:
node-name:filespec

Make sure that what follows the colon is a valid file specification on the target system; use brackets,
slashes, and spaces as appropriate.

runtime-fileReadies the named database file.You can use this option if your program accesses only one
database.

The file specification can contain the full pathname, including the name of the node on which the database
is stored.See the discussion ofdbhandlefor information about accessing remote databases.

on-error Specifies the action to be performed if an error occurs during the ready operation.

EXAMPLES
The following sequence declares a database and readies it:

. gdml_156a.epas

program atlas (input_output);

database atlas = filename ’atlas.gdb’;

begin

ready atlas;

start_transaction;

.

.

.

rollback;

2

ready(gdml) ready(gdml)

finish atlas;

end.

Another option is to assign the database handle in theready statement. For example, the following sequence declares a compiletime

database and readies different databases for runtime access:

. gdml_156a.epas

program ski_areas (input_output);

database atlas = filename ’atlas.gdb’;

var

filename : array [1..40] of char;

open_database : boolean;

begin

repeat

begin

open_database := true;

write (’Please enter pathname of database (’’ quit’’ to exit): ’);

readln (filename);

if filename = ’quit’ then

begin

writeln (’Toodles, kid!’);

return;

end;

ready filename as atlas

on_error

begin

writeln (’Error during database open. Status follows.’);

gds_$print_status (gds_$status);

writeln;

open_database := false;

end;

end_error;

end;

until open_database;

(* do work *)

finish;

end.

3

ready(gdml) ready(gdml)

SEE ALSO
See the entries in this chapter for:

• on_error

• database

• finish

• gpre

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

4

release_requests(gdml) release_requests(gdml)

NAME
release_requests −release resources

SYNTAX

release_requests[[for] database-handle] [on-error]

on-error ::= on_error statement...end_error

DESCRIPTION
The release_requestsstatement frees the memory used by the execution tree of all compiled requests for a
database and sets the request handles to null.

In most programs, the program logic involves loops that can re-use requests.Therefore, saves requests in
their compiled and optimized form.However, if your program finishes and re-readies databases, requests
must be re-compiled.Thefinish statement automatically marks requests from that module as obsolete and
ensures that they will be re-compiled when, and if, they are re-used.

Large programs consisting of separately compiled modules sometimes have requests in modules that do not
contain afinish statement. Inthose cases, you can use therelease_requestsstatement to release resources
and ensure re-compilation.You must include therelease_requestsstatement in one externally callable
subroutine in each module that contains a database request.Before you execute afinish statement, call
each of the ‘‘release’’ subroutines to release resources allocated in its module.

ARGUMENTS
database-handleSpecifies the database whose requests you want to release.If you do not specify a
database handle, the database software releases requests associated with all open databases.

on-error Specifies the action to be performed if an error occurs during thefor loop.

EXAMPLES
The following program calls one external routine to perform an action and another to release resources
associated with the request:

. gdml_160a.epas

program driver (input, output);

database atlas = filename "atlas.gdb";

procedure worker; EXTERN;

procedure worker_release; EXTERN;

var quit : array [1..4] of char;

begin

1

release_requests(gdml) release_requests(gdml)

repeat

begin

ready atlas;

worker;

worker_release;

finish;

write (’Done yet (’’ yes’’ to stop): ’);

readln (quit);

end

until quit = ’yes’;

end.

The following module is called by the preceding program:

. gdml_160b.epas

module worker;

database atlas = EXTERN filename ’atlas.gdb’;

procedure worker_release;

begin

release_requests;

end;

procedure worker;

var

i : integer;

begin

i := 0;

start_transaction;

for s in states

i := i + 1;

end_for;

commit;

writeln (’There are ’, i, ’ states’);

end;

SEE ALSO
See the entry forfinish in this chapter.

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

2

request-option(gdml) request-option(gdml)

NAME
request-option −request and variable selection

SYNTAX

request-option::= (option-commalist)

option ::= { level integer-expression |
transaction_handle host-variable |
request_handle host-variable }

DESCRIPTION
The request-optionis an optional clause that lets you specify the instantiation (recursion) level of a request,
transaction, or request itself that will be affected by the statement.

does not support recursion; if you are using statements in your program, do not involve any operations in a
recursive request.

ARGUMENTS
level integer-expressionSpecifies the instantiation level of a request.

transaction_handlehost-variableSpecifies a transaction handle for the transaction in which the statement
executes.

request_handlehost-variableSpecifies a request handle for the request in which the statement executes.

EXAMPLES
The following program produces a horizontal organization chart with the president at the top left and the
rest of the company moving to the right:

. gdml_161a.epas

program map (input_output);

database db = filename ’emp.gdb’;

type

badge_type = based on employees.badge;

var

level : integer;

blanks : array [1..40] of char := [* of ’ ’];

procedure print_next (lev : integer; super : badge_type);

var

1

request-option(gdml) request-option(gdml)

offset : integer;

begin

for (level lev) e in employees with e.supervisor = super

offset := (lev) * 4;

writeln (blanks : offset,

’....’, e.first_name : -1,

’ ’ , e.last_name);

print_next (lev+1, e.badge);

end_for;

end; { procedure print next }

begin

ready;

start_transaction;

writeln (’ Employee Roster’);

writeln;

for e in employees with e.supervisor missing

writeln (e.first_name : -1, ’ ’ , e.last_name);

print_next (0, e.badge);

end_for;

commit;

finish;

end.

The following program starts a namedconsistencymode transaction to update theBADGErelation:

. gdml_164a.epas

program get_badge (input, output);

database emp = filename ’emp.gdb’;

var

get_badge_tr : gds_$handle;

begin

get_badge_tr := nil;

start_transaction get_badge_tr

consistency read_write reserving

badge_num for protected write;

for (transaction_handle get_badge_tr) b in badge_num

get_badge := b.badge;

modify b using

b.badge := b.badge + 1;

end_modify;

end_for;

2

request-option(gdml) request-option(gdml)

commit get_badge_tr;

end.

The following program hires everybody’s offspring and assigns them new badge numbers.Note that each request (that is, eachfor and

store) must use the same request options, even though they are nested.The modify statement is not a separate request and does not

require a transaction handle.The outerfor statement is in the default transaction so that it will not read the newly stored records and

start prompting for employee grandchildren.

. gdml_137a.epas

program nested_for (input, output);

database db = filename ’emp.gdb’;

var

update_tr : gds_$handle := nil;

check : char;

fnl, lnl : integer;

begin

ready;

start_transaction update_tr consistency read_write reserving

badge_num, employees for protected write;

start_transaction;

for e in employees

fnl := 1;

while (e.first_name [fnl] <> ’ ’) do

fnl := fnl + 1;

lnl := 1;

while (e.last_name [lnl] <> ’ ’) do

lnl := lnl + 1;

write (’Should we hire ’, e.first_name:fnl, e.last_name:lnl-1,

’’’ s kid? ’);

readln (check);

if (check = ’y’) or (check = ’Y’) then

begin

for (transaction_handle update_tr) b in badge_num

begin

store (transaction_handle update_tr) n_e in employees using

begin

write (’What’’ s the kid’’ s first name? ’);

readln (n_e.first_name);

n_e.last_name := e.last_name;

3

request-option(gdml) request-option(gdml)

write (’What’’ s the kid’’ s date of birth? ’);

readln (n_e.birth_date.char[20]);

n_e.badge := b.badge + 1;

n_e.department := ’NEP’;

n_e.supervisor := 13;

end;

end_store;

modify b using

b.badge := b.badge + 1;

end_modify;

end;

end_for;

end;

end_for;

commit update_tr;

commit;

finish;

end.

SEE ALSO
See the entries in this chapter for:

• transaction_handle

• for ,

• start_stream

• store

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

4

rollback(gdml) rollback(gdml)

NAME
rollback −undo changes made during transaction

SYNTAX

rollback [transaction-handle] [on-error]

on-error ::= on_error statement...end_error

DESCRIPTION
The rollback statement restores the database to its state prior to the current transaction.It affects all
databases in the transaction, discarding all modified buffers and closing any open record streams.

The rollback statement ends a transaction and undoes all changes made to the database since the most
recentstart_transaction statement or since the start of the transaction specified by the transaction handle.

ARGUMENTS
transaction-handleSpecifies the transaction you want to roll back.If the transaction you want to roll back
has a transaction handle associated with it, you must use that handle when you roll back the transaction.

If you do not specify a transaction handle on arollback statement, commits the ‘‘default’’ t ransaction. The
default transaction is what gets started when you use astart_transaction statement without a handle.

on-error Specifies the action to be performed if an error occurs during the rollback operation.

EXAMPLES
The following statements modify theBADGE relation, but rollback the transaction if there is an error:

. gdml_166a.epas

for (transaction_handle get_badge_tr) b in badge_num

get_badge := b.badge;

modify b using

b.badge := b.badge + 1;

end_modify on_error

if gds_$status [2] = gds_$deadlock then

get_badge := 0

else get_badge := -1;

rollback get_badge_tr;

return;

end_error;

end_for;

1

rollback(gdml) rollback(gdml)

SEE ALSO
See the entries in this chapter for:

• start_transaction

• transaction-handle

• on_error

DIAGNOSTICS
A rollback statement cannot fail.

2

rse(gdml) rse(gdml)

NAME
rse −search condition and other activities

SYNTAX

[first-clause] record-source[with-clause] [reduced-clause] [sorted-clause]

record-source::= { relation-clause| cross-source}

relation-clause::= [context-variable in] relation-name

cross-source::= relation-clausecrossrecord-source

DESCRIPTION
Therse (record selection expression) clause specifies the search and delivery conditions for record retrieval.

ARGUMENTS
first-clauseLimits the records in a stream to the number you specify with an integer. The format of the
first-clausefollows:

Syntax: first-clause of RSE

first integer

Any fractional portion of the integer is truncated.Unless you sort the record stream when you use thefirst-
clause, integer random records are returned.

relation-clauseIdentifies the target relation.The format of therelation-clausefollows:

Syntax: relation-clause of RSE

context-variablein [database-handle.]relation-name

The context variable is used for name recognition, and is associated with a relation.A context variable can
contain up to 31 alphanumeric characters, dollar signs ($), and underscores (_).However, it must start with
an alphabetic character.

Except forC programs,gpre is not sensitive to the case of the context variable. For example, it treatsB and
b as the same character. For C programs, you can control case sensitivity of context variables with the
either_caseswitch when you preprocess your program.

The optionaldatabase-handleidentifies the database for multiple database access.

1

rse(gdml) rse(gdml)

cross-clausePerforms a join operation.The format of thecross-clausefollows:

Syntax: relation-clause of RSE

crossrelation-clause[over field-name-commalist]

Thecross-clausejoins records from two or more different relations in the same database.The relationship
can be based on the equality of common fields (equijoin), inequalities (non-equijoin), or where no
relationship exists (cross product).Unlike most other clauses of the record selection expression, thecross-
clausecan be repeated to include as many relations as are necessary.

Theover clause is semantically equivalent to awith-clausethat equates a field in one relation with a field in
another. The field-namemust be exactly the same in both relations.Otherwise, you must use thewith-
clause, even if both fields are based on the same field.

with-clauseSpecifies a search condition or combination of search conditions.The format of thewith-
clausefollows:

Syntax: with-clause of RSE

with boolean-expression

When you pass the search conditions to the access method, it evaluates the condition for each record that
might possibly qualify. Conceptually, performs a record-by-record search, comparing the value you
supplied with the value in the database field you specified.If the two values are in the relationship
indicated by the operator you specified (for example, equals), the search condition evaluates to ‘‘true’’ and
that record becomes part of the record stream.The search condition can result in a value of ‘‘true,’’
‘‘ false,’’ o r ‘‘missing’’ f or each record.

reduced-clausePerforms a project operation, retrieving only the unique values for a field.The format of
thereduced-clausefollows:

Syntax: reduced-clause of RSE

reduced[to] dbfield-expression-commalist

dbfield-expression::= [context-variable.]field-name

When you ask for a record stream projected on a field, the access method considers a list of fields and
eliminates records that do not have a unique combination of values for the listed fields.

When you reduce a record stream, you an only reference fields that were mentioned in thereducedclause.

2

rse(gdml) rse(gdml)

sorted-clauseOrders the output, returning the record stream sorted by the values of one or more sort keys.
The format of thesorted-clausefollows:

Syntax: sorted-clause of RSE

sorted [by] sort-key-commalist

sort-key::= [ascending| descending] dbfield-expression

dbfield-expression::= context-variable.field-name

You can sort a record stream alphabetically, numerically, by date, and by any combination of these.The
sort-clauselets you have as many sort keys as you want. Generallyspeaking, the greater the number of sort
keys, the longer it takes for the database software to execute the query.

Each sort key can specify whether the sorting order of the sort key is ascending(the default order for the
first sort key) or descending. The sorting order is ‘‘sticky’’; that is, if you do not specify whether a
particular sort key is ascendingor descending, gpre assumes that you want the order specified for the most
recent key. Therefore, if you list several sort keys, but only include the keyword descendingfor the first
key, sorts all keys in descending order.

EXAMPLES
The following query uses afirst-clause, a relation-clause, and a sorted-clauseto display the two
‘‘ youngest’’ states:

for first 2 s in states sorted by descending s.statehood

writeln (s.state_name |

’ was admitted to the Union on ’ | s.statehood);

end_for;

The following query uses two relation-clauseand across-clauseto list a ski area, city, and state in which it is located:

for s in states cross ski in ski_areas over state

writeln (ski.name, ski.city, s.state_name);

end_for;

The following query does the same thing as the preceding query, but uses an explicitly qualified join condition in place of thecross

shortcut:

for s in states cross ski in ski_areas with s.state = ski.state

writeln (ski.name, ski.city, s.state_name);

end_for;

3

rse(gdml) rse(gdml)

The following query uses areduced-clauseto list the states in which there are ski areas:

for ski in ski_areas reduced to ski.state

writeln (ski.state);

end_for;

The following query uses awith-clauseto limit the display cities in Texas for which the value of thePOPULATION field is not
missing:

for c in cities with c.state = ’TX’ and c.population not missing

writeln (c.city, c.population, c.altitude);

end_for;

The following statement displays the names of cities that are larger than the capitols of their states:

. gdml_171a.epas

for s in states cross c in cities over state cross

cs in cities with cs.state = c.state and

cs.city = s.capitol and

cs.population < c.population

sorted by s.state, c.city

writeln (c.city, s.state_name, ’ is larger than ’, s.capitol);

end_for;

The following statement displays only the names of states in which the capitol is not the largest city:

for s in states cross c in cities over state cross

cs in cities with cs.state = c.state and

cs.city = s.capitol and

cs.population < c.population

sorted by s.state

reduced to s.state, s.capitol

writeln (s.state_name, ’ contains cities larger than ’, s.capitol);

end_for;

commit;

finish;

end.

SEE ALSO
See the entries in this chapter for:

• boolean-expression

4

rse(gdml) rse(gdml)

• value-expression

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

5

start_stream(gdml) start_stream(gdml)

NAME
start_stream −create record stream

SYNTAX

start_stream[request-option] stream-name
using rse [on-error]
statement...
end_streamstream-name[on-error]

on-error ::= on_error statement...end_error

DESCRIPTION
Thestart_streamstatement declares and opens a record stream.

You can start a stream with thefor statement or with thestart_stream statement. Thefor statement is
generally recommended.However, you may want to use astart_streamstatement if you are:

• Processing several streams in parallel.

• Processing a stream until some condition is met, and then exiting from the stream.

ARGUMENTS
request-optionSpecifies a transaction handle and/or request handle that determine the transaction and/or
request in which thestart_streamstatement executes.

stream-nameNames the stream.The name can contain up to 31 alphanumeric characters, dollar signs ($),
and underscores (_).

The context of the stream name is the whole module that contains thestart_stream statement, so you
cannot re-use a stream name in the same module.

rseSpecifies the record selection criteria used to create the record stream.

on-error Specifies the action to be performed if an error occurs when you start the stream or when it
terminates. Errorson theend_stream generally occur only in extreme cases, such as a network partition
while the stream is still open.

statementSpecifies or host language statements to be executed within the stream.The statements you
include are subject to the following rules:

• If you include more than onestatement, you must separate them using the host language
convention.

• If you use other statements while the stream is open, those statements can use only the
context variables declared in thestart_stream/end_stream block, in outer blocks, or in

1

start_stream(gdml) start_stream(gdml)

inner blocks.You can re-use the context variables outside those blocks.

EXAMPLE
The following program illustrates the use of thestart_stream statement in a loop that may be terminated
by user interaction:

. gdml_173a.epas

program map (input_output);

database db = filename ’atlas.gdb’;

var end_of_stream : boolean;

genug : char;

begin

start_stream geodata using c in cities

sorted by c.latitude, c.longitude;

end_of_stream := false;

while not end_of_stream do begin

fetch geodata

at end end_of_stream := true;

end_fetch;

if not end_of_stream then

begin

writeln (c.latitude, c.longitude, c.altitude,

c.city, c.state);

write (’Seen enough? (Y/N) ’);

readln (genug);

if genug = ’Y’ then

end_of_stream := true;

end;

end;

end_stream geodata;

commit;

finish;

end.

SEE ALSO
See the entries in this chapter for:

• request-option

• rse

• on_error

2

start_stream(gdml) start_stream(gdml)

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

3

start_transaction(gdml) start_transaction(gdml)

NAME
start_transaction −begin transaction

SYNTAX

start_transaction [transaction-handle]
[concurrency | consistency]
[read_write | read_only]
[wait | nowait]
[reserving-clause]
[on-error]

reserving-clause::= reserving reserved-relation-commalist

reserved-relation::= [database-handle.]relation-name
for [protected] { read | write }

on-error ::= on_error statement...end_error

DESCRIPTION
Thestart_transaction statement begins a group of statements that are executed as one logical unit.

A process can start any number of independent transactions.This capability facilitates the development of
server processes and allows system service routines to use databases without affecting user-level database
activity.

ARGUMENTS
transaction-handleDeclares a name that you can use when you have to reference multiple transactions in a
program.

If you start a transaction without specifying a transaction handle,gpre starts the ‘‘default transaction.’’
There is one default transaction per process.When gpre encounters a subsequent statement without a
transaction handle, it generates a test for the default handle.If there is no default transaction,gpre starts
one. Inany case,gpreapplies statements without transaction handles to the default transaction.

concurrency(default)
consistency The concurrency default provides high throughput and concurrency with generally
satisfactory consistency. No transaction sees any data written by another active transaction.

The consistencyoption provides a high level of database consistency that guarantees that all transactions
are serializable (that is, having the same effect on the database as if all transactions were run sequentially in
some order) at the expense fo concurrency.

To ensure a deadlock-free transaction, use theconsistencyoption and reserve the relations required by the

1

start_transaction(gdml) start_transaction(gdml)

transaction forread or write depending on the mode in which they will be used.However, this option does
not allow concurrent access to the reserved relations.

See Chapter 5 for more information aboutconcurrencyandconsistency.

read_write (default)
read_only The default intention of a transaction is that it will read and write data.You may choose to
declare a transactionread_only to document its behavior or as a check on program logic.

wait (default)
nowait The default action if your program encounters a locked object is to wait until the lock goes away.
The nowait option produces alock_conflicterror whenever a program encounters a locked object. The
nowait option is not recommended because it requires more error handling in a program and can lead to
unnecessary rollbacks.

reserving Lists the relations to be used in the transaction.locks those relations for your access if you
chooseconsistencymode. You must list each relation that the transaction will ‘‘touch’’ (that is, if it is used
at all, in any capacity). Listrelations individually; you can specify different relation locking criteria for
each. However, if you chooseread_only for the transaction (see above), you cannot reserve a relation for
write .

If you have aconcurrency mode transaction, you can optionally reserve a relation forprotected write.
This mode allows other users to read the relation, but prevents them from writing to it.By default,
concurrency mode transactions are reserved for shared access, an access mode that all users write to the
relation.

Theprotected write reserving option is the default forconsistencymode transactions.

To ensure a deadlock-free transaction, use theconsistencyoption and reserve the relations required by the
transaction forread or write depending on the mode in which they will be used.

on-error Specifies the action to be performed if an error occurs when you start the transaction.

EXAMPLE
The following statement starts a transaction that will become the default transaction because there is no
transaction handle:

start_transaction;

The following statement starts a transaction and assigns a transaction handle:

program zip_update (input_output);

database db = filename ’atlas.gdb’;

var

2

start_transaction(gdml) start_transaction(gdml)

zippity_doo_dah : gds_$handle := nil;

begin

. {startran_2.epas}

start_transaction zippity_doo_dah;

.

.

.

commit zippity_doo_dah;

finish;

end.

The following statement starts a transaction with areserving clause:

program zip_update (input_output);

database db = filename ’atlas.gdb’;

var

zippity_doo_dah : gds_$handle := nil;

begin

start_transaction zippity_doo_dah

read_write consistency

reserving catalog.catalog_items for write;

SEE ALSO
See the entries in this chapter for:

• prepare

• commit

• rollback

• on_error

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

3

store(gdml) store(gdml)

NAME
store −insert new record

SYNTAX

store [request-option] relation-clauseusing
statement...
end_store [on-error]

on-error ::= on_error statement...end_error

DESCRIPTION
Thestorestatement inserts a new record into a relation.

You cannot store records into views formed from more than a single relation.Rather, you must store them
into the source relations.

ARGUMENTS
request-optionSpecifies a transaction handle and/or request handle that determine the transaction and/or
request in which thestorestatement executes.

If you nest astore statement inside afor loop and use an explicit transaction handle on thefor statement,
you must also use the transaction handle on thestore statement. Otherwise,the store statement will be
executed inside the default transaction.

relation-clauseSpecifies the relation into which the new record is to be stored.See the entry forrse in this
chapter for more information about therelation-clause.

on-error Specifies the action to be performed if an error occurs during the store operation.

statementSpecifies the action to be taken in storing the record(s).The statements are typically
assignments. Ifyou include more than onestatement, you must separate them using the host language
convention.

EXAMPLE
The following statement stores a new record inSKI_AREAS:

store ski in ski_areas using

write (’Name: ’);

readln (ski.name);

write (’City: ’);

readln (ski.city);

write (’State: ’);

1

store(gdml) store(gdml)

readln (ski.state);

write (’Type: ’);

readln (ski.type);

end_store;

The following statements use an outerfor loop to create a record stream from which astore statement takes some values, host

variables supply some values, and unreferenced fields are set to missing:

for oldcity in cities with oldcity.city_name = hostvar1

store newcity in cities using

newcity.city = hostvar2;

newcity.state = oldcity.state;

newcity.population = oldcity.population * hostvar3;

newcity.altitude = oldcity.altitude;

end_store;

end_for;

The following program hires everybody’s offspring and assigns them new badge numbers.Note that each request (that is, eachfor and

store) must use the same request options, even though they are nested.The modify statement is not a separate request and does not

require a transaction handle.The outerfor statement is in the default transaction so that it will not read the newly stored records and

start prompting for employee grandchildren.

. gdml_137a.epas

program nested_for (input, output);

database db = filename ’emp.gdb’;

var

update_tr : gds_$handle := nil;

check : char;

fnl, lnl : integer;

begin

ready;

start_transaction update_tr consistency read_write reserving

badge_num, employees for protected write;

start_transaction;

for e in employees

fnl := 1;

while (e.first_name [fnl] <> ’ ’) do

fnl := fnl + 1;

lnl := 1;

2

store(gdml) store(gdml)

while (e.last_name [lnl] <> ’ ’) do

lnl := lnl + 1;

write (’Should we hire ’, e.first_name:fnl, e.last_name:lnl-1,

’’’ s kid? ’);

readln (check);

if (check = ’y’) or (check = ’Y’) then

begin

for (transaction_handle update_tr) b in badge_num

begin

store (transaction_handle update_tr) n_e in employees using

begin

write (’What’’ s the kid’’ s first name? ’);

readln (n_e.first_name);

n_e.last_name := e.last_name;

write (’What’’ s the kid’’ s date of birth? ’);

readln (n_e.birth_date.char[20]);

n_e.badge := b.badge + 1;

n_e.department := ’NEP’;

n_e.supervisor := 13;

end;

end_store;

modify b using

b.badge := b.badge + 1;

end_modify;

end;

end_for;

end;

end_for;

commit update_tr;

commit;

finish;

end.

SEE ALSO
See the entries in this chapter for:

• request-option

• rse

• on_error

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

3

transaction-handle(gdml) transaction-handle(gdml)

NAME
transaction-handle −identify transaction

SYNTAX

host-variable

DESCRIPTION
Thetransaction-handleclause specifies the name of a transaction in several statements.

If you do not start a transaction with thestart_transaction statement, choosing instead to letgpre start
transactions as needed, you can still specify the transaction under which you want a statement to be
executed by declaring a transaction handle in therequest-optionclause of thefor , store, and start_stream
statements. Ifthat transaction does not exist, gprestarts it.

ARGUMENTS
host-variableA host language program variable that serves as the transaction handle.

• For BASIC, the transaction handle must be declared asLONG and set to 0.

• For C programs, the transaction handle must be declared as a long integer initialized to
null (0).

• For COBOL, the transaction handle must be declared asPIC S(9) COMP.

• For FORTRAN programs, the transaction handle must be declared asI*4 set to 0.

• For Pascal programs, the transaction handle must be explicitly declared in the program as
a pointer to any type and initialized tonil before use.The variablegds_$handleis pre-
declared as a type for Pascal.

• For PL/I, the transaction handle must be declared as a pointer and initialized toNULL() .

EXAMPLE
The following Pascal example starts two named transactions, performs some unspecified data manipulation
in each, then writes the changes for only the specified transaction to the database, and continues with the
other transaction committing it:

start_transaction store_resort;

start_transaction drop_resort;

.

.

.

for (transaction_handle store_resort)

.

.

1

transaction-handle(gdml) transaction-handle(gdml)

.

for (transaction_handle drop_resort)

.

.

.

commit store_resort;

.

.

.

commit drop_resort;

SEE ALSO
See the entries in this chapter for:

• commit

• prepare

• rollback

• start_transaction

• for

• store

• start_stream

• request-option

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

2

value-expression(gdml) value-expression(gdml)

NAME
value-expression −calculating value

SYNTAX

value-expression ::= { arithmetic-expression | dbfield-expression |
numeric-literal-expression | quoted-string-expression |
(value-expression) | - value-expression }

DESCRIPTION
The value-expressionis a symbol or string of symbols from calculates a value. usesthe result of the
expression when executing the statement in which the expression appears.

ARGUMENTS
arithmetic-expressionCombines value expressions and arithmetic operators.The format of thearithmetic-
expressionfollows:

Syntax: arithmetic-expression Value Expression

value-expression-1{ + | - | * | / | } value-expression-2

You can add (+), subtract (-), multiply (*), and divide (/) value expressions in record selection expressions.
Arithmetic operators are evaluated in the normal order. Use parentheses to change the order of evaluation.

dbfield-expressionReferences database fields.This expression can occur in several clauses ofrse and
boolean-expression. The format of thedbfield-expressionfollows:

Syntax: dbfield-expression Value Expression

context-variable.field-name[.null | .datatype]

Thecontext-variablequalifies the database field for multi-relation operations.Declare the context variable
for a relation in therelation-clauseof the record selection expression.

The optional.null qualifier allows access to the null flag for the field.If you reference the null flag in a
store or modify statement, you must set it explicitly. If the null flag remains true (that is, non-zero), the
field will be stored as missing even if you supply a value.

The optional.datatypequalifier lets you ‘‘cast’’ a database field with a datatype other than that with which
it is stored. Gpre automatically takes care of datatype conversion, but you can ‘‘convert’’ a field for the

1

value-expression(gdml) value-expression(gdml)

duration of a request to the datatype of your choice.Chapter 4 discusses casting in more detail and lists the
datatype conversions supported by casting.

numeric-literal-expressionRepresents a decimal number as a string of digits with an optional decimal
point. Theformat of thenumeric-literal-expressionfollows:

Syntax: numeric-literal-expression Value Expression

string[.string]

quoted-string-expressionA string of ASCII characters enclosed in single (’) or double (") quotation marks,
depending on host language requirements.The format of thequoted-string-expressionfollows:

Syntax: quoted-string-expression Value Expression

"string"

ASCII printing characters are:

• Uppercase alphabetic:A—Z

• Lowercase alphabetic:a—z

• Numerals:0—9

• Special characters: ! @ # $ % ˆ & * () _ - + =‘ ˜ [] { } < > ; : ’ " \ | / ? . ,

EXAMPLES
The following statement usesdbfield-expressions to display the city and state, anarithmetic-expressionthat
calculates and displays the altitude in meters, anumeric-literal-expression(0.3048) used in the arithmetic
operation, and two quoted-string-expressions to anglicize the Pascalwriteln display:

for c in cities cross s in states over state

writeln (c.city, s.state_name, ’ is situated at ’,

c.altitude * 0.3048, ’ meters above sea level.’);

end_for;

See any of the other manual pages in this chapter for examples of the value expression.

SEE ALSO
See the entries in this chapter for:

• boolean-expression

2

value-expression(gdml) value-expression(gdml)

• rse

DIAGNOSTICS
See Chapter 8 for a discussion of errors and error handling.

3

