close(sql) close(sql)

NAME
close —close cursor

SYNTAX

closecursor-name

DESCRIPTION
The close statement terminates the specified curdidre access method automatically releases resources
associated with the closed cursofhe commit and rollback statements, angrepare statement
automatically close all cursors.
Once you hee dosed a cursgryou cannot issue gmore fetch statements agnst that cursor unless you
explicitly re-open it with anotheopenstatement. Recordselected for that cursarective st are no longer
awailable to your programThe actve st of the cursor is said to Baridefined:

ARGUMENTS
cursor-nameldentifies the cursor youamt to close.

EXAMPLE
The following example declares a cursapens it, accesses records in its\ectet, and then closes the
cursor:

sql _8a. epas
program mapper (i nput_output);
exec sql
begi n decl are section;
exec sql
end decl are section;

var
statecode : array [1l..2] of char;
cityname : array [1..15] of char;
begi n
exec sql

decl are bigcities cursor for
select city, state fromcities
wher e popul ati on > 1000000;

exec sql
open bigcities;

close(sql) close(sql)

exec sql
fetch bigcities into :citynane, :statecode;

witeln (" ’);
while (sqglcode = 0) do
begi n
witeln (cityname, ' is in ', statecode);
exec sql
fetch bigcities into :citynane, :statecode;
end;

exec sql

close higcities;
exec sql

rol | back rel ease;
end.

SEE ALSO
See the entries in this chapter for:

. open
. commit
. rollback
DIAGNOSTICS
The access method returns errors if:

. You fetch bgond the last record of an aai®t, automatically closes the cursor and returns an
end-of-file error

. You try to close a cursor that has not been opened, returns an error

The following values may be returned $QLCODE:

. SQLCODE < (ndicates that the statement did not complete.
. SQLCODE = (Gndicates success.
. SQLCODE > 0 and < 10ihdicates an informational message @armng.

See Chapter 6 for a discussion of error handling.

commit(sql) commit(sql)

NAME
commit —write changes to database
SYNTAX
commit [work] [releasé
DESCRIPTION
Thecommit statement:
. Ends the current transaction
. Makes the transactiom'changes visible to other users
. Closes open cursors
. Does not d&ct the contents of hosariables
ARGUMENTS

work An optional noiseord.

releaseBreaks your prograre’mnnection to the attached database, thus making system resoaiiedxea
to other users.

EXAMPLE
The following program illustrates the use of multiple cursors in a single transaction, terminated by a single
commit that males all changes permanent:

sql _110a. epas
program updat e_census (i nput_out put);

exec sql
i ncl ude sql ca;
var
newcity, oldcity : array [1..15] of char;
state : array [1..2] of char;
first : bool ean;
option : char;
begi n

wite ('Enter the city nane that”s changing: ');

readln (oldcity);

wite ('Enter the new city nane: ’);

readln (newcity);

witeln ('Changing ’, oldcity, ' to ', newity, ' in all relations’);

commit(sql) commit(sql)

exec sql
decl are cities_cursor cursor for
sel ect state fromcities
where city = :oldcity
for update of city;

exec sql
decl are tourismcursor cursor for
sel ect state fromtourism
where city = :oldcity
for update of city;

exec sql
decl are ski _areas_cursor cursor for
sel ect state from ski_areas
where city = :oldcity
for update of city;

exec sql

open ski _areas_cursor;
exec sql

open tourismcursor;
exec sql

open cities_cursor;

first :=true;
whil e sql code = 0 do begin
if not first then
begi n
wite ('Change ', oldcity, state, ' in cities?);
readl n (option);
if (option ="'y") then
exec sqgl update cities
set city = :newcity
where current of cities_cursor;

end;
exec sql
fetch cities_cursor into :state;
first := fal se;
end;

sql code := 0;

first := true;

whil e sql code = 0 do begin
if not first then
begi n

commit(sql) commit(sql)

wite ('Change ', oldcity, state, ' in tourisnP ’);
readl n (option);
if (option ="'y") then

exec sql
update tourism
set city = :newcity
where current of tourismcursor;
end;
exec sql
fetch tourismecursor into :state;
first := fal se;
end;
sql code := 0;
first := true;

whil e sql code = 0 do begin
if not first then
begi n
wite ('Change ', oldcity, state, ' in ski areas? ’);
readl n (option);
if (option ="'y") then

exec sql
updat e ski _areas
set city = :newcity
where current of ski_areas_cursor;
end;
exec sql
fetch ski_areas_cursor into :state;
first := fal se;
end;
exec sql
cl ose ski _areas_cursor;
exec sql
cl ose tourismcursor;
exec sql

close cities_cursor;
exec sql
commit rel ease;

end.

SEE ALSO
See the entry in this chapter foilback.

commit(sql) commit(sql)

DIAGNOSTICS
The following values may be returned $)LCODE:
. SQLCODE < (ndicates that the statement did not complete.
. SQLCODE = (Gndicates success.
. SQLCODE > 0 and < 10ihdicates an informational message armng.
. SQLCODE = 100ndicates the end of the adist.

See Chapter 6 for a discussion of error handling.

declare(sql) declare(sql)

NAME
declare cursor —define cursor
SYNTAX
declare cursor-namecursor for select-statement
[for update ofdatabase-field-commaligt
[order by sort-key-commalisf
sort-key ::= field-refelence] asc| desc]
field-refeence::= { database-fieldinteger }
DESCRIPTION
The declare aursor declaration defines a cursor by associating a name with thes aeti of records
determined by gelectstatement.
ARGUMENTS

cursor-nameProvides a name for the cursor you are declaring.
select-statemem selectstatement that specifies search conditions to determine the sttof the cursor

order by Specifies the order in which the reted records are to be deéred to the programYou can sort
records by named fields in the source relation(s) or bintager that references by position one of the
fields in theselectstatement.

for update Indicates that your program may update one or more fields of records in the stti
Standard restricts you to updating only the listed fieldseher, does not enforce this restriction.

EXAMPLE
The folloving example declares a cursor a search condition and a sorting clause:

. sql _116a. epas
program sql (input, output);
exec sql
i ncl ude sql ca;

var

statecode : array [1l..2] of char;
cityname : array [1..15] of char;
m n_pop . integer32;
option : char;

begi n

declare(sql) declare(sql)

m n_pop := 100;
(* the crude way *)

exec sql
delete fromcities
wher e popul ation < :mn_pop;

exec sql
rol | back;

(* with finesse *)

exec sql
declare small _cities cursor for
select city, state
fromcities
wher e popul ation < :mn_pop;
exec sql
open small _cities;
exec sql
fetch small _cities into :citynane, :statecode;

whi l e sql code = 0 do
begi n
wite ('"Elimnate ’, cityname, ' ', statecode, '? ");
readl n (option);
if (option ="'Y) or (option ="'y’) then
exec sql
delete fromcities
where current of small _cities;
exec sql
fetch small _cities into :citynane, :statecode;
end;

exec sql

close small _cities;
exec sql

rol | back rel ease;

end.

The follonving example declares a cursor fordwelations:

declare(sql) declare(sql)

sql _31a. epas
program sql (input, output);
exec sql
i ncl ude sql ca;

var
city, lat, long : array [1..15] of char;
state : array [1..20] of char;

begi n

exec sql

declare city_state_join cursor for
select c.city, s.state_nanme, c.latitude, c.longitude
fromcities c, states s where c.state = s.state
order by s.state, c.city;

exec sql
open city_state_join;
exec sql
fetch city_state_join into :city, :state, :lat, :long;

while (sqglcode = 0) do begin
witeln (city, state, lat, long);
exec sql
fetch city_state_join into :city, :state, :lat, :long;

end;
exec sql
rol | back rel ease;

end.

The follonving program declares a cursor with the union of three relations.

sql _31c. epas
program sql (input, output);
exec sql
i ncl ude sql ca;

var
city : array [1l..25] of char;
state : array [1l..2] of char;

declare(sql) declare(sql)

begi n

exec sql
declare all_cities cursor for
select city, state fromcities
uni on
select city, state from ski_areas
uni on
sel ect capitol, state from states
order by 2, 1;
exec sql
open all _cities;
exec sql
fetch all _cities into :city, :state;

while (sqglcode = 0) do begin
witeln (city, state);
exec sql
fetch all _cities into :city, :state;

end;
exec sql
rol | back rel ease;

end.
SEE ALSO
See the entry faselectin this chapter
DIAGNOSTICS
The following values may be returned $QLCODE:
. SQLCODE < (ndicates that the statement did not complete.
. SQLCODE = (Gndicates success.
. SQLCODE > 0 and < 10ihdicates an informational message @armng.

See Chapter 6 for a discussion of error handling.

delete(sql) delete(sql)

NAME
delete —erase record
SYNTAX
delete from relation-namg alias]
[where predicate| where aurr ent of cursornamé
DESCRIPTION
Thedeletestatement erases one or more records in a relation or in the sttf a cursor:
If you do not preide a search conditiomvbere...), all records in the specified relation are deletgel very
careful with this option.
ARGUMENTS
relation-nameSpecifies the relation from which a record is to be deleted.
alias Qualifies field references with an identifier that indicates the source reldti@ralias can be useful
if the predicatereferences fields from didrent relations.
Thealias can contain up to 31 alphanumeric characters, dollar signs ($), and underscokesmgver, it
must start with an alphabetic character (A—Z, a—&Xcept forC programsgpre is not sensitie o the
case of the aliasi-or example, it treat® andb as the same charactdfor C programs, you can control the
case sensitity of the alias with theither_caseswitch when you preprocess your program.
where predicateDetermines the record to be deleted.
where aurr ent Specifies that the current record of the\ectet is to be deletedThis form ofdeletemust
follow:
. The declaration of the cursor withdaclare aursor statement
. The opening of that cursor with apen statement
. The retriwal of a record from the acte st of that cursor with getch statement
EXAMPLES
The following statement erases the entire relation nawiedA GES (which does not»ast in the sample
database):
. tcs:

del ete_2.epas in a manner of speaking
exec sqgl delete fromyvill ages;

delete(sql) delete(sql)

The following program deletes all records framies with a population less than that of the hastiableMIN_POP:

sql _116a. epas
program sql (input, output);
exec sql
i ncl ude sql ca;

var
statecode : array [1..2] of char;
cityname : array [1..15] of char;
m n_pop : integer32;
option . char;

begi n

m n_pop := 100;

(* the crude way *)

exec sql
delete fromcities
wher e popul ation < :mn_pop;

exec sql
rol | back;

(* with finesse *)

exec sql
decl are small _cities cursor for
select city, state
fromcities
wher e popul ation < :mn_pop;
exec sql
open small _cities;
exec sql
fetch snmall _cities into :citynane, :statecode;

whil e sql code = 0 do
begi n
wite ('Elimnate ’, cityname, ' ', statecode, '? ");
readl n (option);
if (option ="'Y) or (option ="'y’) then
exec sql

delete(sql) delete(sql)

delete fromcities
where current of small _cities;
exec sql
fetch snmall _cities into :citynane, :statecode;
end;

exec sql

close small _cities;
exec sql

rol | back rel ease;

end.
SEE ALSO
See the entries in this chapter for:
. predicate
. declare aursor
. open
. fetch
. select
DIAGNOSTICS
The following values may be returned $QLCODE:
. SQLCODE < (ndicates that the statement did not complete.
. SQLCODE = (Gndicates success.
. SQLCODE > 0 and < 10ihdicates an informational message @armng.

See Chapter 6 for a discussion of error handling.

FETCH(sql) FETCH(sql)

NAME
fetch —adance cursor

SYNTAX

fetch cursor-name]into host-item-commalikt
host-item::= :host-variable

DESCRIPTION
Thefetch statement achnces the position of the cursor to thetmmecord of the acte st.
If the fetch statement immediately folles anopenstatement, the cursor is set before the first record in that
cursor Thefetch statement adnces the cursor to the first record.
If you try to fetch bgond the last record in the aati ®t, automatically closes the cursor and returns an
end-of-file message.
Once thefetch statement has adwaced the curspit writes the fields of that record into the listed host
variables. Becausthe selectsubstatement in théeclare aursor statement licitly lists database field
names, you must makare that the hostariables correspondxactly to the order of declaration in the
cursor the datatypes, and lengths of the database fi€ldsexample, if you vant to fetch a database field
of 10 characters that appears as the third item in the cursor declaratierauneatkat the hostariable:
. Is dso a tet field with a minimum of 10 characters
. Appears in the third position of the hostiable list
If you want to update or delete a record in a cussative ®t, you must first fetch itYou can then use the
update statement to modify one or more of its fielues, or use théeletestatement to erase it.
If you want to loop through the records selected by the cuesatose thefetch statement in a host
language looping construct.

ARGUMENTS
cursor-nameSpecifies the open cursor from which yoanito fetch records.
host-itemSpecifies a host languagariable into which fields from records in the eetset of the cursor
will be fetched. Theinto list is not required if théetch gets records to be deleted or updatedyever, if
you display the record before you delete or update it, you nedatdHest.

EXAMPLE
The folloving example declares a cursapens it, accesses records in its\actet, and then closes the
cursor:

. sql _8a. epas
program mapper (i nput_output);

FETCH(sql) FETCH(sql)

exec sql

begi n decl are section;
exec sql

end decl are section;

var
statecode : array [1..2] of char;
cityname : array [1..15] of char;
begi n
exec sql

decl are bigcities cursor for
select city, state fromcities
wher e popul ati on > 1000000;

exec sql
open bigcities;
exec sql
fetch bigcities into :citynanme, :statecode;

witeln (");
while (sqglcode = 0) do
begi n
witeln (cityname, ' is in ', statecode);
exec sql
fetch bigcities into :citynane, :statecode;
end;

exec sql

close bhigcities;
exec sql

rol | back rel ease;
end.

The follonving program gtract uses &tch statement in a loop that modifies records:

sql _120a. epas
program popupdat e (i nput_out put);
exec sql
begi n decl are section;
exec sql
end decl are section;

FETCH(sql) FETCH(sql)

var
statecode, st array [1..2] of char;
cityname : array [1..15] of char;
multiplier : integer32;
pop, new_pop : integer32;

begi n

wite ('Enter state with popul ati on needi ng adjustnent: ');
readl n (statecode);

exec sql
decl are pop_nod cursor for
select city, state, population fromcities
where state = :statecode
for update of popul ation;

exec sql
open pop_nod;
exec sql
fetch pop_nod into :citynane, :st, :pop;

witeln (");
while (sqglcode = 0) do
begi n
wite ('Change for ', citynaneg,
st, ' (5 => 5%bigger; -5 => 5%snaller): ');
readln (rmultiplier);
new_pop := trunc (pop * (multiplier + 100) / 100);

witeln (' old population: ', pop, ' new popul ation: ', new_pop);
exec sql
update cities
set popul ati on = : new_pop
where current of pop_nod;
exec sql
fetch pop_nod into :citynane, :st, :pop;
end;
exec sql
cl ose pop_nod;
exec sql

rol | back rel ease;
end.

FETCH(sql)

SEE ALSO

See the entries in this chapter for:

DIAGNOSTICS

open
declare aursor
select

update

delete

whenever

The following values may be returned $QLCODE:

SQLCODE < (ndicates that the statement did not complete.
SQLCODE = (Gndicates success.

SQLCODE > 0 and < 10ihdicates an informational message @armng.

SQLCODE = 100ndicates the end of the adist.

See Chapter 6 for a discussion of error handling.

FETCH(sql)

insert(sql) insert(sql)

NAME
insert —store a record
SYNTAX
insert into relation-name database-field-commaljst
{ valuesinsert-item-commaligtselect-statement
insert-item::= { constan{ host-variable null }
DESCRIPTION
Theinsert statement stores aweecord into the specified relation.
You can assign field alues by inserting alues, by picking up alues from an »@sting record, or by a
combination of both.
ARGUMENTS

relation-nameSpecifies the relation into which yowant to store a merecord.
database-field.ists the field irrelation-namefor which you are pnading a \alue.

by itself does not support manipulation of the blob datatyfoel can store a nullatue for a blob field, it
you must use ogdscalls if you want to do apthing else with blobs.

If the field you are assigning is a date, you cannot handle the field directly with Instead, you must use date
handling functions such agds $encode dateand gds_$decode_datdo corvert your eternal date
representation to a hosanable in the date format (that is, an array af 82-bit integers). Theruse the
assignment to assign the hoatigble to the database field.

NOTE

The database field list is optiondf.it is omitted, \alues are assigned to all the fields in the relation in their
normal order Leaving out the field list imotrecommended because changes to the relation, such as adding
or reordering fields, will cause the assignment list to change withawrting when the program is xte
precompiled wittgpre.

insert-itemProvides a alue fordatabase-field The \alue can be a constant, hoatigable, omull.

select-statemerbpecifies that thealues for the ne record are to come from the record identified by a
selectstatement.

insert(sql) insert(sql)

EXAMPLES
The folloving program stores a record, assigning quoted constants fordiakby

sql _125a. epas
program sql (input, output);
exec sql
i ncl ude sql ca;

begi n

exec sql
insert into river_states
(river, state)
val ues ('Croton’, 'NY’);

exec sql
rol | back rel ease;

end.

The following statement stores ameecord intoSTATESUSING host &riables andiull as sources foralues:

sql _123b. epas
program sql (input, output);
exec sql
i ncl ude sql ca;

var
state : array [1..2] of char;
state_nane : array [1l..20] of char;
capi tol : array [1..15] of char;
date : gds_$quad;
date_array : gds_$tm
begi n
date_array.tmsec : = 0;
date_array.tmmin := O;
date_array.tm hour := 0;
date_array.tmnday := 1;
date_array.tmunon : = 1;
date_array.tmyear := 90;

date_array.tmwday := 0;

insert(sql) insert(sql)

date_array.tmyday := 0;
date_array.tm.isdst := 0;

gds_$encode_date (date_array, date);

state := 'QU;
state_name : = 'Guam,
capitol := 'Agana’;
exec sql

insert into states
(state, state_nane, area, capitol, statehood)
val ues (:state, :state_name, null, :capitol, :date);

exec sql

commit rel ease;

end.

The follonving program stores a werecord using alues from anasting record and thealue of a hostariable for assignments:

sql _123c. epas
program sql (input, output);
exec sql
i ncl ude sql ca;

var
villeancienne : array [1..15] of char;
villenouvelle : array [1..15] of char;
begi n

wite ('Enter city to clone: ");
readl n (villeancienne);

wite ('Enter new nanme for city: ");
readln (villenouvelle);

exec sqgl insert into cities (city, state, popul ation,
altitude, latitude_degrees, |atitude_m nutes,
I atitude_conpass, |ongitude_degrees, |ongitude_m nutes,
| ongi t ude_conpass)
select :villenouvelle, state, popul ation,
altitude, latitude_degrees, |atitude_m nutes,

insert(sql) insert(sql)

I atitude_conpass, |ongitude_degrees, |ongitude_m nutes,
| ongi t ude_conpass
fromcities where city = :villeancienne;
end.

The follonving program uses the non-recommended form ofrtéert statement, in which the database field list is omitted:

sql _123d. epas
program sql (input, output);
exec sql
i ncl ude sql ca;

var
state : array [1..2] of char;
state_nane : array [1l..20] of char;
capi tol : array [1..15] of char;
begi n
state := 'QU;
state_name : = 'Guam,
capitol := 'Agana’;
exec sql
insert into states
val ues (:state, :state_nane, null, null, :capitol);
exec sql

commit rel ease;

end.
SEE ALSO
See the entry faselectin this chapter
DIAGNOSTICS
The following values may be returned $QLCODE:
. SQLCODE < (ndicates that the statement did not complete.
. SQLCODE = (Gndicates success.
. SQLCODE > 0 and < 10ihdicates an informational message @armng.

See Chapter 6 for a discussion of error handling.

open(sql) open(sql)

NAME
open —actiate cursor

SYNTAX

opencursorname

DESCRIPTION
The open statement actates a cursor This statement causes the access methodaoate the search
conditions associated with the specified curgamce the access method has determined the set of records
that satisfies the querny activates the cursor and mek the selected records thactive st” of that cursar

The access method then places the cursor itself before the first record inuwhesdctif you want to
retrieve a update records in that set, use fatch statement. Oncgou open the curspthe firstfetch
statement operates on thery first record in the ast ®t. Subsequerfétch statements adwnce the cursor
through the results table associated with that cursor

The access method does not xaraine the hostariables or &lues passed to the search conditions until
you close the cursor and re-open @hanges you makto their values are not reflected in the getiet

until you close and re-open the curstéf someone else accesses the database after you open a cursor
malkes changes, and commits them, thevactt may be ditrent the net time you open that cursor if you
commit your transaction.

If you need a stable agé ®t, use theonsistencyoption of thestart_transaction statement.

ARGUMENTS
cursor-nameSpecifies the declared cursor yoantito access.

EXAMPLE
The folloving example declares a cursapens it, accesses records in its\actet, and then closes the
cursor:

. sql _8a. epas
program mapper (i nput_output);
exec sql
begi n decl are section;
exec sql
end decl are section;

var

statecode : array [1l..2] of char;
cityname : array [1..15] of char;
begi n

open(sql)

exec sql
decl are bigcities cursor for
select city, state fromcities
wher e popul ati on > 1000000;

exec sql
open bigcities;
exec sql
fetch bigcities into :citynanme, :statecode;

witeln (" ’);
while (sqglcode = 0) do

SEE ALSO

DIAGNOSTICS

begi n
witeln (cityname, ' is in ', statecode);
exec sql
fetch bigcities into :citynane, :statecode;
end;
exec sql
close higcities;
exec sql
rol | back rel ease;
end.
See the entries in this chapter for:
. declare aursor
. fetch
. close
. commit
. rollback
. whenever
The following values may be returned 8QLCODE:
. SQLCODE < (ndicates that the statement did not complete.
. SQLCODE = (Gndicates success.
. SQLCODE > 0 and < 10ihdicates an informational message @armng.

See Chapter 6 for a discussion of error handling.

open(sql)

predicate(sql) predicate(sql)

NAME
predicate —specify Booleaxgression
SYNTAX
predicate ::= { condition | condition and predicate |
condition or predicate| not predicate}
condition ::= { compae-condition| between-conditior]
like-condition| in-condition | exsts-condition| (predicate)}
DESCRIPTION
The predicateclause is used to select the records to fexi@d by the statementt is used in thevhere
clause of theleleteandupdate statements and in tlselect-gpression
ARGUMENTS

compae-conditionThe compae-conditiondescribes the characteristics of a single scadpression (for
example, a missing or nullaue) or the relationship betweenotwcalar epressions (for ample,x is
greater thary).

Syntax: compare-condition of Predicate

{ scalarexpression comparison-op&ior scalarexpression|
scalarexpression comparison-opgtor (column-selectygression) |
scalarexpressionis [not] null }

comparison-opetor:={=| = | < | < | <= |>| >]| >= }

column-selectsgression ::=
select [distinct] scalarexpression fom-clause[whele-clausg

between-conditiofhe between-conditiospecifies an incluge range of alues to match.

Format: between-condition of Predicate

database-fieldnot] betweenscalarexpression-1
and scalarexpression-2

like-conditionMatches a string with the whole or part of a fieddlre. Theest is case-sensig.

predicate(sql) predicate(sql)

Format: lik e-condition of Predicate

database-fieldnot] lik e scalarexpression

The scalarexpressionusually represents an alphanumeric literal, and can contain wildcard characters.
Wildcard characters are:

. The underscore, _, that matches a single character

. The percent sign, %, that matchesy asquence of characters, including nonéou
should bgin and end wildcard searches with the percent sign so that you match leading
or trailing blanks.

in-conditionLists a set of scalaxpressions as possiblalues.

Format: in-condition of Pr edicate

scalarexpression[not] in (set-of-scalas)
set-of-scalas ::= { constant-commalis{ column-selectxgression}

column-selectsgression ::=
select [distinct] scalarexpression fom-clause[whele-clausg

exsts-conditionTests for the ristence of at least one qualifying record identified byslectsubquery
Because theexsts-condition uses the parenthesizesklect statement only to retrve a ecord for
comparison purposes, it requires only wildcard (*) field selection.

A predicate containing aexsts-conditionis true if the set of records specified bglect-&pression
includes at least one recordf. you addnot, the predicate is true if there ame records that satisfy the
subquery

Format: exists-condition of Predicate

[not] exists (select* whele-clausg

EXAMPLES
The following cursor retriees dl fields from CITIES records for which thé?OPULATION field is not
missing:

sql _130a. epas
exec sql
decl are i nhabited cursor for

predicate(sql) predicate(sql)

select city, state, popul ation
fromcities
where popul ation is not null

The following cursor retriges theciTy andSTATE fields from cities with populations between 100000 and 125000:

sql _130a. epas
exec sql
decl are midsized_cities cursor for
select city, state
fromcities
wher e popul ation between 100000 and 125000;

The following cursor retrieves the caplToL andSTATE from STATESrecords in which th€APITOL
field contains the stringville’’ preceded or follewed by ay humber of characters:

sql _130a. epas
exec sql
declare ville cursor for
sel ect capitol, state
from states
where capitol like "Wille%;

SEE ALSO
See the entries in this chapter for:
. select-gpression
. scalarexpression
. delete
. update
DIAGNOSTICS

See Chapter 6 for a discussion of error handling.

rollback(sql) rollback(sql)

NAME
rollback —undo transaction
SYNTAX
rollback [work] [releasé
DESCRIPTION
Therollback statement restores the database to its state prior to the current trandaetsmcloses open
Cursors.
ARGUMENTS
work An optional noiseord.
releaseBreaks your prograre’cmnnection to the attached database, thus making system resoaiieddea
to other users.
EXAMPLE
The folloving non-working code gtract includes avhenever statement and the rollback routine to which it
branches:

sql _131a. epas
program updat e_census (i nput_out put);

| abel
error, warn, termnate;

war n:
(* since no warnings are defined, fall into error *)
error:
witeln ("Encountered SQL error code ', sql code);
witeln ('Expanded error listing: ");
gds_S$print_status (gds_$status);
if (sqlcode = -16) then
begin
exec sql
rol | back;
work ();
end
el se
exec sql
rol | back rel ease;

rollback(sql)

termnate:
end.
SEE ALSO
See the entries in this chapter for:
. commit
. whenever
DIAGNOSTICS
The following values may be returned $QLCODE:
. SQLCODE < (ndicates that the statement did not complete.
. SQLCODE = (Gndicates success.
. SQLCODE > 0 and < 10ihdicates an informational message @armng.

See Chapter 6 for a discussion of error handling.

rollback(sql)

scalarexpression(sql) scalaxpression(sql)

NAME
scalarexpression —calculatingalue

SYNTAX

scalarexpression::= [+ | -] scalarvalue [arithmetic-opeator scalarexpressiof

scalarvalue ::= { field-expression| constant-gpression|
statistical-function| (scalarexpression }

arithmetic-opeator ::= { + | - | * | / }

DESCRIPTION
The scalarexpressionis a symbol or string of symbols used in predicates to calculatédua. vuseghe
result of the gpression whenxecuting the statement in which thepeession appears.

You can add (+), subtract (-), multiply (*), andvitle (/) scalar epressions. Arithmetioperations are
evduated in the normal ordeiYou can use parentheses to change the ordeslof&on.

ARGUMENTS
field-expressionReferences a database fielthe format of thdield-expressionfollows:

Syntax: field-expression of Scalar Expession

[database-handlg [relation-name| view-name| alias. |database-field

The optionalrelation-name view-name or alias, each folloved by a required period (.), specifies the
relation, viev, or adias (synoym for a relation or vi&) in which the field is locatedThe alias is assigned
to a relation or a vig in aselect-&pression

Use the optionallatabase-handlenly if you hare declared a database handle witleady statement.

constant-gpressionA string of ASCII digits interpreted as a number or as a stringSgfil characters. The
format of theconstant-gpressionfollows:

scalarexpression(sql) scalaxpression(sql)

Syntax: constant-expession Scalar Expession

{ integer-string | decimal-string| float-string | ascii-string }

Integer numeric strings are written as signed or unsigned decimgkist&vithout decimal pointskFor
example, the follwing are intgers:-14, 0, 9and +47.

Decimal numeric strings are written as signed or unsigned decimgeiistevith decimal pointsFor
example, the follaing are decimal stringsi4.3, 0.021,9.0,and +47.9.

Floating numeric strings are written in scientific notation (thatEidorma). A number in scientific
notation consists of a decimal string mantissa, the [Eftand a signed inger exponent. Br example, the
following are floating numeric§.12E+7and7.12E-7

Character strings are written usiAgClII printing characters enclosed in single () or double () quotation
marks. ASCII printing characters are:

. Uppercase alphabetig:—Z

. Lowercase alphabetiec—z

. Numerals0—9

. Blank space and tab

. Special characters: ! @ #$ %~ & * () _-+E[]1{}<>;:""\|/?.,

statistical-functionAn expression that calculates a singiue from the &lues of a field in a relation, vie
or join. The format of thestatistical-functiorfollows:

Syntax: statistical-function Scalar Expression

{ count (*) |
function-name(scalarexpression |
function-name(distinct) field-expression}

function-name::= {\ count | sum | avg | max | min }

Supported statistical functions are:

. count (*) returns the number of records in a relation and automatically eliminates
duplicatesdistinct is not needed.

If you are programming ind3cal, put a space between the open parenthesis and the
asterisk. Becaudeascal uses the sequencefor comments, dilure to leae a pace will result in a
compilation errar

scalarexpression(sql) scalaxpression(sql)

. count returns the number ofilues for the field.You must specifydistinct.

. sumreturns the sum ofalues for a numeric field in all qualifying records.
. avg returns theeerage \alue for a numeric field in all qualifying records.
. max returns the lagest \alue for the field.

. min returns the smallestlue for the field.

EXAMPLES
The following cursor retriees dl fields from theCITIESrecord that represents the city of Boston:

sql _135a. epas
exec sql
decl are | egune_village cursor for

select city, state, altitude, latitude, |ongitude
fromcities
where city = 'Boston’;

The following cursor retriges elected fields fronciTEsWith a population greater than 1,000,000:

sql _135a. epas
exec sql
decl are big_cities cursor for
select city, state, popul ation
fromcities
wher e popul ati on > 1000000;

The follawing cursor joins records from ti®TIES andSTATESrelations:

sql _135a. epas
exec sql
declare city_states cursor for
select c.city, s.state_nane
fromstates s, cities ¢
where s.state = c.state;

The following program returns a count of records in thelEs relation, the maximum population, and the minimum
population of cities in that relation:

sql _25c. epas
program sql (input, output);

scalarexpression(sql) scalaxpression(sql)

exec sql
i ncl ude sql ca;

var counter : integer32;
m npop, maxpop : integer32;

begi n

exec sql

select count (*), max (population), mn (popul ation)
into :counter, :maxpop, :m npop
fromcities;

witeln ("Count: ', counter);
witeln ('Max Popul ation: ', nmaxpop);
witeln ("M n Popul ation: ', mnpop);
end.

SEE ALSO

See the entry in this chapter fmedicate

select(sql) select(sql)

NAME
select —selecting records

SYNTAX
select-statement= union-epressionordering-claus¢
union-epression::= select-@pressioninto-clausé [union union-epressionh
ordering-clause:= order by sort-key-commalist
sort-key ::= { database-fieldinteger } [asc|desc]
into-clause::= into host-variable-commalist

DESCRIPTION

The selectstatement finds the record(s) of the relations specified ifr ¢ine clause that satisfy thewgn

search condition.

You can use theelectstatement by itself or withindeclare aursor statement:

. Standalone. Ifthe search conditions you specify will return at most one record, you can use the
selectstatement by itselfFor example, the search condition references a field for which duplicate
values hae keen disallaved.
returns an error if there is more than one qualifying record.

Use of the standalorselectrequires thénto clause.

. Within a declare aursor statement. Ifthe search condition identifies an arbitrary number of
records, you must define a cursor for retlie
Remember thaleclare arsor is only declaratie. Before you can retrie records via the cursor
you mustopenit andfetch records sequentially
You cannot use thato clause in aselectstatement that appears in a cursor declaration.

ARGUMENTS

union-pressionCreates dynamic relations by appending relatiohBe source relations should viea
identical structures or at least share some common fields.

ordering-clauseReturns the record stream sorted by thkies of one or mordatabase-fiels. You can
sort a record stream alphabeticatiymerically by date, or by ap combination.

The database-fields called thesort key. You can construct anrdering-clausethat includes as marsort
keys as you want. Generallyspeaking, the greater the number of segskthe longer it tads for to &ecute
the query

select(sql) select(sql)

For each sort ky, you can specify whether the sorting ordeass(ascending, the dadilt order for the first
sort key) or desc(descending). Theorting order is‘sticky’’; that is, if you do not specify whether a
particular sort ky is ascor des¢ assumes that you amt the order specified for the lastyk Therefore, if
you list s@eral sort leys, hut only include the wrd descfor the first ley, sorts all keys in descending order

into-clauseSpecifies the hostaviables into which you will retrie database fieldalues. Yu must predce
each host ariable with a colon (:).The colon is a carention that indicates the follding variable is not a
database field.

You cannot use thato-clausein aselectstatement that appears inside a cursor declaration.

EXAMPLE
The following selectstatement includes amdering-clausewith two sort keys:

sql _137a. epas
exec sql
decl are urban_popul ati on_centers cursor for
select city, state fromcities
order by state, popul ation desc;

The following selectstatement includes anto-clausethat specifies which database fields are put into which hasiles:

sql _137b. epas

exec sql
sel ect population, altitude, latitude, |ongitude
into :pop, :alt, :lat, :long

fromcities
where city = 'Boston’;

This example assumes that you declared thgablesPor ALT, LAT, andLONG to correspond to the database fields
POPULATION, ALTITUDE, LATITUDE, andLONGITUDE from theCITIESrelation.

The following cursor declaration joins records fronotrelations:

sql _138a. epas
exec sql
declare city_state cursor for
select c.city, s.state_nane, c.altitude, c.population
fromcities c, states s where c.state = s.state
order by s.state_nane, c.city;

The folloving cursor declaration retsies the union of twe relations:

select(sql) select(sql)

sql _31c. epas
exec sql
declare all _cities cursor for
select distinct city, state fromcities
uni on
select distinct city, state from ski_areas
uni on
sel ect distinct capitol, state fromstates
order by 2, 1;

The folloving example retriges a ecord fromsTATESUSINGSTATE, a field with unique alues:

sql _138c. epas
exec sql
sel ect state_nane, capitol
into :statename, :capitol
from states
where state = :st;

The follonving example declares a cursor for all items that meet the specified criteria:

sql _138d. epas
exec sql
decl are middl e_anerica cursor for
select city, state, population fromcities
where | atitude_degrees between 33 and 42
and | ongi tude_degrees between 79 and 104;

SEE ALSO
See the entries in this chapter for:
. select-gpression
. open
. fetch
. close
. whenever
DIAGNOSTICS
The following values may be returned $SQLCODE:
. SQLCODE < (ndicates that the statement did not complete.

select(sql) select(sql)

. SQLCODE = (Gndicates success.
. SQLCODE > 0 and < 10ihdicates an informational message @armng.
. SQLCODE = 100ndicates the end of the adist.

See Chapter 6 for a discussion of error handling.

select-&pression(sql) selectxpression(sql)

NAME
select-gpression —selecting records
SYNTAX
select-claus¢whele-clausé[grouping-clausg[having-clausg
DESCRIPTION

Theselect-gpressionspecifies the search and #etiy conditions for record retniel.

ARGUMENTS

select-clausd.ists the fields to be returned and the source relation wr vibe format of theselect-clause
follows:

Syntax: select-clause of Select Expssion

select [distinct] {scalarexpression-commalist * }
from from-item-commalist

from-item::= relation-namealias]

An asterisk can be used in place of the full selection lligs. the preferred form for thexistential qualifier
exists For example:

no_name
select city fromcities ¢
where exists ¢
sel ect * from ski _areas
where city = c.city;

However, the wildcard isdiscouraged for all other uses, because changes to the databazar(fpleeadding or reordering fields),
will cause the program tail after its n&t precompilation.

The optional kyword distinct specifies that only uniquealues are to be returnedonsiders thealues in thescalarexpressionlist
and returns only one setlue for each group of records that meets the selection criteria, andvbabplicate alues for thescalar
expression

The optionalalias is used for name recognition, and is associated with a relafionalias can contain up to 31 characters
alphanumeric characters, dollar signs ($), and underscoresi¢wever, it must start with an alphabetic charact&xcept forC
programsgpreis not sensitie o the case of the aliagzor example, it treat® andb as the same character
For C programs, you can control the case sensitiof the alias with theeither_caseswitch when you
preprocess your program.

select-&pression(sql) selectxpression(sql)

whele-clauseSpecifies search conditions or combinations of search condifidre format of thevhele-
clausefollows:

Syntax: where-clause of Select Exmssion

where predicate

When you specify a search condition or combination of conditions, the conditiealusted for each
record that might qualify .Conceptually performs a record-by-record search, comparing #ilaevyou
supplied with the alue in the database field you specifi¢idthe two values satisfy the relationship you
specified (for gample, equals), the search conditioelgates to‘true” and that record becomes part of the
active ®t. Thesearch condition can result in alwe of ‘true;” “ false; or “missing” for each record.
Such a statement, in which the choice is between the trutiisity fof a proposition, is called 8bolean

test’ and is epressed by predicate See the entry fopredicatein this chapter

grouping-clausePatitions the results of théom-clauseor where-clauseinto control groups, each group
containing all ravs with identical alues for the fields in thgrouping-clausis field list. Aggregates in the
select-clauseandhaving-clauseare computedver each group.The select-clauseeturns one v for each

group.

The aggrgae operations are countqunt), sum 6um), average @vg), maximum (ax), and minimum
(min). Seethe entry forscalarexpressionin this chapter

You can also compute an aggee \alue in theselect-clauseand thehaving-clauseof the select-
expression

Syntax: grouping-clause of Select Exmssion

group by database-field-commalist

The database-fieldpecifies the field thealues of which you ant to group.Each set of &lues for these
fields identifies a groupChapter 3 discusses tgmuping-clausen more detalil.

having-clauseSpecifies search conditions for groups of recoiflylou use thehaving-clauseyou must
first specify agrouping-clause

select-&pression(sql) selectxpression(sql)

Syntax: having-clause of Select Expgssion

having predicate

The having-clauseeliminates groups of records, while thdere-clauseeliminates indridual records.
Generally speaking, you can use subqueries to obtain the same rébalthain adantage to the use of
this clause is bréty. Howeve, some users may find that a morerlbose query with subquery is easier to
understand.

Chapter 3 discusses thaving-clausén more detail.

EXAMPLES
The following cursor projects theKl_AREASrelation on theSTATE field:

sqgl _142a. epas
exec sql
decl are ski _states cursor for
sel ect distinct state from ski_areas;

The following cursor selectsiTiESrecords for which theOPULATION field is not missing:

sqgl _142b. epas
exec sql
decl are inhabited cursor for
select city, state, population fromcities
where popul ation is not null;

The following cursor joins tw relations on theTaTE field for cities whose population is not missing:

sqgl _142c. epas
exec sql
decl are inhabited_join cursor for
select c.city, s.state_name, c.popul ation
fromcities c, states s
where c.state = s.state
and c. popul ation not null;

The following cursor calculates theexage population by state:

sqgl _143a. epas
exec sql

select-&pression(sql) selectxpression(sql)

decl are avg_pop cursor for

sel ect state, avg (popul ati on)
fromcities
group by state;

The follawing cursor preides a total population by state of municipalities stored inahiees relation, lut includes only

those cities for which the latitude and longitude information has been stored, which are located in states
whose names include theomwd “New’”, and where the\erage population of cities in the stateceeds
200,000 people:

sql _143c. epas
exec sql
decl are total _pop cursor for
sel ect sum (c. popul ation), s.state_nane
fromcities c, states s
where s.state_nane |ike '¥%New¥ and
c.latitude is not null and
c.longitude is not null and
c.state = s.state
group by s.state
havi ng avg (popul ati on) > 200000;

The folloving program selects the smallest city in each state that has at leashéwcities with recorded populatio®therwise, a
city would qualify as lagest and smallest because #&sathe only city

sql _143b. epas
program sql (input, output);

exec sql
i ncl ude sql ca;

var
pop : integer32;
city :array [1..15] of char;
state_code : array [1..2] of char;

begi n

exec sql

declare small _cities cursor for
select city, state, popul ation

select-&pression(sql) selectxpression(sql)

fromcities cl
where cl. population = (
sel ect min (popul ation)
fromcities c2
where c2.state = cl.state)
and 2 <= (
select count (*)
fromcities c3
where cl.state = c3.state
and cl.city <> c3.city
and c3. population is not null)
order by cl.state;

exec sql
open small _cities;
exec sql
fetch snmall _cities into :city, :state_code, :pop;

whi l e sql code = 0 do

begi n
witeln ('The smallest city in’, state_code, ' is ’,
city, ' (pop: ', pop, ")');
exec sql
fetch snmall _cities into :city, :state_code, :pop;
end;
exec sql
close small _cities;
exec sql
rol | back rel ease;
end.
SEE ALSO
See the entries in this chapter for:
. predicate
. scalarexpression
. select
DIAGNOSTICS

See Chapter 6 for a discussion of error handling.

update(sql) update(sql)

NAME
update —modify field &lue
SYNTAX
update relation-name
setassignment-commalist
[where predicate| where aurr ent of cursor-name]
assignment = database-field- scalarexpression
DESCRIPTION
The update statement changes thalwes of one or more fields in a record in a relation or in theeasti
of a cursar
If you do not preide a search conditiorwpere...), updates all records mlation-name Be very careful
with this option.
ARGUMENTS
relation-nameSpecifies the relation that contains the record yantwo update.
assignmenAssigns thescalarexpressionto database-field This assignment statement belongs to and not
to the host languageDo not use a host language assignment or equality operator ingsigeate
statement.
If the field you are assigning is a date, you cannot handle the field directly with Instead, you must use date
functions such agds_$encode_datandgds_$decode_datéo corvert your external date representation to
a host variable in the date format (that is, an array af 82-bit integers), and then use the assignment to
assign the alue of the hostariable to the database field.
where predicateSelects the record to modify
where aurr ent of cursornameSpecifies that the current record of thewactet is to be modifiedlf you
use thewhere arr ent of clause, updates only the record at which the cursor is pointihis form of
update must follow:
. The declaration of the cursor wittdaclare aursor statement
. The opening of that cursor with apen statement
. The retri@a of a record from the acte st of that cursor with getch statement
EXAMPLE
The folloving statement updates tROPULATION field of all records fronCITIES that are located in Ne

York:

update(sql) update(sql)

no_namne
exec sqgl update cities
set popul ation = population * 1.03
where state = 'NY’;

The follawing statement modifies tiroPuLATION field of all records in th€ITIES relation:

no_namne
exec sqgl update cities
set popul ation = population * 1.03;

The follonving example declares a cursapens it, fetches a record, and then alters that record:

sql _145c. epas
program popupdat e (i nput_output);
exec sql
begi n decl are section;
exec sql
end decl are section;

var
statecode, st array [1..2] of char;
cityname : array [1..15] of char;
multiplier : integer32;
pop, new_pop : integer32;

begi n

wite ('Enter state with popul ati on needi ng adjustnent: ');

readl n (statecode);

wite ('Percent change (eg 5 => 5% increase; -5 => 5% decrease): ');
readln (rmultiplier);

multiplier := multiplier + 100;

exec sql
decl are pop_nod cursor for
select city, state, population fromcities
where state = :statecode
for update of popul ation;

exec sql
open pop_nod;
exec sql

update(sql) update(sql)

fetch pop_nod into :citynane, :st, :pop;

witeln (" ’);
while (sqglcode = 0) do

begi n
new_pop := trunc ((pop * nmultiplier) / 100);
witeln (cityname, st, ' old population: ', pop,
" new popul ation: ', new_pop);
exec sql
update cities
set popul ati on = : new_pop
where current of pop_nod;
exec sql
fetch pop_nod into :citynane, :st, :pop;
end;
exec sql
cl ose pop_nod;
exec sql
rol | back rel ease;
end.
SEE ALSO
See the entries in this chapter for:
. predicate
. declare aursor
. open
. fetch
. select
. whenever
DIAGNOSTICS
The following values may be returned 8QLCODE:
. SQLCODE < (ndicates that the statement did not complete.
. SQLCODE = (Gndicates success.
. SQLCODE > 0 and < 10ihdicates an informational message @armng.

See Chapter 6 for a discussion of error handling.

wheneer(sql) whenger(sql)

NAME
wheneer —handling &ceptions
SYNTAX
whenever { not found | sqlerror | sglwarning }
goto-statement
DESCRIPTION
Thewhenever statement tests t®QLCODEvalue returned with eachxecution of anSQL statement. |If
the listed condition occurs, thehenever statement performs tigotostatement.
The following values may be returned $QLCODE:
. SQLCODE < (ndicates that the statement did not compl@teese codes are listed belo
. SQLCODE = (Gndicates success.
. SQLCODE > 0 and < 10fnhdicates an informational message @rming.
A whenever statement must precedeyastatements that might result in an error so thawswwhat action
to take in case of error
ARGUMENTS

not found Indicates the end of the input streaihis condition corresponds to t8®LCODEvalue of 100
This option is useful when you are looping through thevaat of a cursor

sqglerror Indicates that the statement did not compl&teis condition corresponds to agasve SQLCODE.

sglwarning Indicates a general systemamuing or informational messag&his condition corresponds to
SQLCODEvalues betweed and99, inclusie.

EXAMPLE
The folloving example demonstrates tkglerror option of thewhenever statement:

. sql _131a. epas
program updat e_census (i nput_out put);

| abel
error, warn, termnate;

war n:
(* since no warnings are defined, fall into error *)
error:
witeln ("Encountered SQL error code ', sql code);

wheneer(sql) whenger(sql)

witeln ('Expanded error listing: ');
gds_$print_status (gds_$status);
if (sqlcode = -16) then
begi n
exec sql
rol | back;
work ();
end
el se
exec sql
rol | back rel ease;

term nate:
end.

DIAGNOSTICS

See Chapter 6 for a discussion of error handlingdn programsSQLCODEvalues, and the corresponding
errors.

