
Files

This script consists of six files, five of which are under the library/class blendercal:

� cal3d-export.py: Main script. Depending on whether the user starts
the script in “batch” or “gui” mode, cal3d-export.py will either use the
parameters provided by the commandline, or call the gui for configuration,
before calling the Cal3DExport method with the provided configuration.

� blendercal/ init .py: Contains an exception method for a more
graceful handling of exceptions, and a ParseArgs method which is called
either directly from cal3d-export.py (batch mode) or from bcgui.py
(gui mode). ParseArgs is responsible for parsing a list of arguments com-
ing from either the command line or the gui.

� blendercal/bcconf.py: Contains the globals used by the script for con-
figuration

� blendercal/bcdata.py: Most notably contains the methods SkeletonData,
which parses armature data from Blender, MeshData, which parses the
Mesh Object data from Blender, and AnimationData, which parses the
animations. And finally, ExportData, which takes care of the final export
from the native datastructure into Cal3D XML.

� blendercal/bcgui.py: Initiated from cal3d-export.py, if the script is
started from the Blender GUI. Provides a GUI for setting up an export.

� blendercal/bcobject.py: Contains all the classes for the native datas-
tructure of the script.

The Native Datastructure

The native datastructure consists of a group of classes in bcobject.py. These
classes are instantiated and linked in the bcdata.py script. Each class signifies
a part of the Cal3D XML structure, and has an XML method which outputs the
data to a string in that structure.

LOD

Level Of Detail calculations are tricky, and this implementation admittedly still
has a bug or two, which I will describe further down. I believe the framework
is good, though. And provided these bugs can be ironed out, it becomes very
easy to change and tweak the formula which decides the weight of each edge.

The LOD is implemented in the SubMesh class in bcobject.py

Temporary LOD Datastructure

To create a proper LOD algorithm, a temporary datastructure was needed.
The original datastructure didn’t suffice, because we might need to temporarily
modify the structure on the fly, and this datastructure would also need some
slightly different information, like actual edges, and various other attributes.

1



The easiest thing to do, was to create a specialized temporary datastructure,
which implements the classes, LODVertex, LODFace and LODEdge.

After having failed trying to create a model where the datastructure had to
be modified for each collapse (all the modifications simply became too complex
to keep track of), the implementation was mostly rewritten to a model where
each vertex now contain a link to the vertex it has collapsed to, and a link to
the vertex/vertices that has collapsed to it.

The coordinates of the vertex can then be found using the getloc method
of LODVertex. The structure became significantly simpler to keep track of, but
still a bit unweildy, as can be seen from the many get* methods needed in the
classes. Weight calculations can be based on the adjacent faces of an edge, and
all the other properties of the edge and its vertices. Each time a face or an edge
becomes part of a collapse, they must be “refactored”. So the area of the faces,
lenghts of the edges and so on, is recalculated.

The LOD Method

The steps for the LOD method goes as follows:

1. Create temporary datastructure (LODVerts, LODFaces, LODEdges)

2. Calculate initial weights of all edges (method RefactorWeight in LODEdge
decides the weight of any given edge). And order list of edges after these
weights.

3. Start collapsing edges. Beginning with those with the heighest weight.
Each time an edge is collapsed, refactor areas, lenghts and weights of all
affected faces and edges.

4. Save the collapsed vertices and faces backwards, in the order they were
collapsed. The number of collapsed faces for each vertex collapse must be
correct.

2


