
The XSB System

Version 3.3.x

Volume 1: Programmer’s Manual

xsb

Terrance Swift David S. Warren

Konstantinos Sagonas

Juliana Freire

Prasad Rao

Baoqiu Cui

Ernie Johnson

Luis de Castro

Rui F. Marques

Diptikalyan Saha

Steve Dawson

Michael Kifer

February 8, 2012

Credits

Day-to-day care and feeding of XSB including bug fixes, ports, and configuration man-
agement is currently done by David Warren and Terrance Swift with the help of Michael
Kifer. In the past Kostis Sagonas, Prasad Rao, Steve Dawson, Juliana Freire, Ernie
Johnson, Baoqiu Cui, Bart Demoen and Luis F. Castro have provided tremendous
help.

In Version 3.3, the core engine development of the SLG-WAM has been mainly imple-
mented by Terrance Swift, Kostis Sagonas, Prasad Rao, Juliana Freire, Ernie Johnson,
Luis Castro and Rui Marques. The breakdown, very roughly, was that Terrance Swift
wrote the initial tabling engine, the SLG-WAM, and its built-ins; and leads the current
development of the tabling subsystem. Prasad Rao reimplemented the engine’s tabling
subsystem to use tries for variant-based table access and Ernie Johnson extended and
refactored these routines in a number of ways, including adding call subsumption. Kostis
Sagonas implemented most of tabled negation. Juliana Freire revised the table schedul-
ing mechanism starting from Version 1.5.0 to create the batched and local scheduling
that is currently used. Baoqiu Cui revised the data structures used to maintain delay
lists, and added attributed variables to the engine. Luis Castro rewrote the emulator
to use jump tables and wrote a heap-garbage collector for the SLG-WAM. Rui Mar-
ques was responsible for the concurrency control algorithms used for shared tables, and
mainly responsible for making the XSB engine multi-threaded. The incremental table
maintenance subsystem was designed and implemented by Diptikalyan Saha.

Other engine work includes the following. Memory expansion code for WAM stacks
was written by Ernie Johnson, Bart Demoen and David S. Warren. Heap garbage
collection was written by Luis de Castro, Kostis Sagonis and Bart Demoen. Atom space
garbage collection was written by David Warren; table garbage collection was written
by Terrance Swift based in part on space reclamation code written by Prasad Rao. Rui
Marques rewrote much of the engine to make it compliant with 64-bit architectures.
Assert and retract code was based on code written by Jiyang Xu; it significantly revised
by David S. Warren, who added alternative, multiple, and star indexing and by Terrance
Swift who implemented dynamic clause garbage collection. Trie assert/retract code, and
trie interning code was written by Prasad Rao, as was most code for reclaiming table
space. The current version of findall/3 was re-written from scratch by Bart Demoen,
as was XSB’s throw and catch mechanism. 64-bit floats were added by Charles Rojo.
Walter Wilson has written several of XSB’s builtin predicates.

In terms of core system Prolog code, Kostis Sagonas was responsible for HiLog compi-
lation and associated built-ins as well as coding or revising many standard predicates.
Steve Dawson implemented Unification Factoring. The revision of XSB’s I/O into ISO-
compatable streams was done by Michael Kifer and Terrance Swift. The auto table

and suppl table directives were written by Kostis Sagonas. The DCG expansion mod-
ule was written by Kostis Sagonas for non-tabled code and by Baoqiu Cui, Terrance
Swift and David Warren for tabled code. The handling of the multifile directive
was written by Baoqiu Cui. C.R. Ramakrishnan wrote the mode analyzer for XSB.
Michael Kifer implemented the storage module. The multi-threaded API was written

2

by Terrance Swift and Rui Marques.

Michael Kifer has been in charge of XSB’s installation procedures, rewritng parts of
the XSB code to make XSB configurable with GNU’s Autoconf, implementing XSB’s
package system, and integrated GPP with XSB’s compiler. GPP, the source code pre-
processor used by XSB, was written by Denis Auroux, who also wrote the GPP manual
reproduced in Appendix A.

The starting point of XSB (in 1990) was PSB-Prolog 2.0 by Jiyang Xu. PSB-Prolog in
its turn was based on SB-Prolog, primarily designed and written by Saumya Debray,
David S. Warren, and Jiyang Xu. Thanks are also due to Weidong Chen for his work on
Prolog clause indexing for SB-Prolog, to Richard O’Keefe, who contributed the Prolog
code for the Prolog reader and the C code for the tokenizer, and to Ciao Prolog whose
write term/[2,3] we use.

... Now what did I forget this time ?

Contents

1 Introduction 1

1.1 Using This Manual . 5

2 Getting Started with XSB 7

2.1 Installing XSB under UNIX . 7

2.1.1 Possible Installation Problems . 10

2.2 Installing XSB under Windows . 11

2.2.1 Using Cygnus Software’s CygWin32 . 11

2.2.2 Using Microsoft Visual C++ . 11

2.3 Invoking XSB . 14

2.4 Compiling XSB programs . 15

2.5 Sample XSB Programs . 15

2.6 Exiting XSB . 16

3 System Description 17

3.1 Entering and Exiting XSB from the Command Line 17

3.2 The System and its Directories . 18

3.3 How XSB Finds Files: Source File Designators . 19

3.4 The Module System of XSB . 20

3.5 Standard Predicates in XSB . 25

3.6 The Dynamic Loader and its Search Path . 26

3.6.1 Changing the Default Search Path and the Packaging System 26

3.6.2 Dynamically loading predicates in the interpreter 28

3.7 Command Line Arguments . 28

3.8 Memory Management . 32

i

CONTENTS ii

3.9 Compiling, Consulting, and Loading . 34

3.9.1 Static Code . 34

3.9.2 Dynamic Code . 35

3.9.3 The multifile directive . 36

3.10 The Compiler . 36

3.10.1 Invoking the Compiler . 36

3.10.2 Compiler Options . 38

3.10.3 Specialization . 43

3.10.4 Compiler Directives . 45

3.10.5 Inline Predicates . 51

3.11 A Note on ISO Compatibility . 51

4 Syntax 53

4.1 Terms . 53

4.1.1 Integers . 53

4.1.2 Floating-point Numbers . 54

4.1.3 Atoms . 54

4.1.4 Variables . 55

4.1.5 Compound Terms . 55

4.1.6 Lists . 56

4.2 From HiLog to Prolog . 58

4.3 Operators . 59

5 Using Tabling in XSB: A Tutorial Introduction 63

5.1 Tabling in the Context of a Prolog System . 63

5.2 Definite Programs . 64

5.2.1 Call Variance vs. Call Subsumption . 67

5.2.2 Table Scheduling Strategies . 70

5.2.3 Interaction Between Prolog Constructs and Tabling 71

5.2.4 Potential Pitfalls in Tabling . 74

5.3 Normal Programs . 75

5.3.1 Stratified Normal Programs . 75

5.3.2 Non-stratified Programs . 78

CONTENTS iii

5.3.3 On Beyond Zebra: Implementing Other Semantics for Non-stratified Programs 82

5.4 Answer Subsumption . 84

5.4.1 Types of Answer Subsumption . 84

5.4.2 Examples of Answer Subsumption . 86

5.4.3 Term-Sets . 88

5.5 Subgoal Abstraction . 91

5.5.1 Declaring Subgoal Abstraction . 92

5.6 Incremental Table Maintenance . 93

5.6.1 Examples . 93

5.6.2 Predicates for Incremental Table Maintenance 96

5.6.3 Shorthand for Complex Table and Dynamic Declarations 98

5.6.4 Incremental Tabling using Interned Tries . 99

5.7 Compatability of Tabling Modes and Predicate Attributes 100

6 Standard Predicates and Predicates of General Use 103

6.1 Input and Output . 103

6.1.1 I/O Stream Implementation . 104

6.1.2 ISO Streams . 105

6.1.3 DEC-IO Style File Handling . 111

6.1.4 Character I/O . 113

6.1.5 Term I/O . 117

6.1.6 Special I/O . 125

6.2 Interactions with the Operating System . 130

6.2.1 The path sysop/2 interface . 132

6.3 Evaluating Arithmetic Expressions through is/2 . 133

6.3.1 Evaluable Functors for Arithmetic Expressions 134

6.4 Convenience . 137

6.5 Negation and Control . 138

6.6 Unification and Comparison of Terms . 140

6.6.1 Sorting of Terms . 144

6.7 Meta-Logical . 145

6.8 Cyclic Terms . 157

CONTENTS iv

6.8.1 Unification with and without Occurs Check 157

6.8.2 Cyclic Terms . 158

6.9 Manipulation of Atomic Terms . 159

6.10 All Solutions and Aggregate Predicates . 169

6.11 Meta-Predicates . 174

6.12 Information about the System State . 179

6.13 Execution State . 192

6.14 Asserting, Retracting, and Other Database Modifications 199

6.14.1 Reading Dynamic Code from Files . 207

6.14.2 The storage Module: Associative Arrays and Backtrackable Updates 210

6.15 Tabled Predicate Manipulations . 212

6.15.1 Declaring and Modifying Tabled Predicates 214

6.15.2 Predicates for Table Inspection . 216

6.15.3 Deleting Tables and Table Components . 228

7 Multi-Threaded Programming in XSB 235

7.1 Getting Started with Multi-Threading . 235

7.2 Communication among Threads . 237

7.3 Thread Statuses: Joinable and Detached Threads . 239

7.4 Prolog Message Queues . 241

7.5 Thread Cancellation and Signalling . 242

7.6 Performance and other Considerations . 243

7.7 Examples of Multi-Threaded Programs in XSB . 244

7.8 Configuring the Multi-threaded Engine under Windows 244

7.9 Predicates for Multi-Threading . 247

7.9.1 Predicates for Thread Synchronization and Communication 253

8 Storing Facts in Tries 260

8.1 Examples of Using Tries . 261

8.2 Predicates for Tries . 263

9 Hooks 269

9.1 Adding and Removing Hooks . 269

CONTENTS v

9.2 Hooks Supported by XSB . 270

10 Debugging 271

10.1 Prolog-style Tracing and Debugging . 271

10.2 Low-Level Tracing . 275

10.3 Analyzing the Execution of Tabled Programs . 275

10.3.1 Tracing a tabled evaluation through forest logging 276

11 Definite Clause Grammars 282

11.1 General Description . 282

11.2 Translation of Definite Clause Grammar rules . 283

11.2.1 Definite Clause Grammars and Tabling . 285

11.3 Definite Clause Grammar predicates . 286

11.4 Two differences with other Prologs . 289

12 Exception Handling 291

12.1 Representations of ISO Errors . 294

12.2 Predicates to Throw and Handle Errors . 295

12.2.1 Predicates to Throw Errors . 295

12.2.2 Predicates to Handle Errors . 297

12.3 Convenience Predicates . 298

12.4 Backtraces . 299

13 Restrictions and Current Known Bugs 300

13.1 Current Restrictions . 300

13.2 Known Bugs . 301

A GPP - Generic Preprocessor 302

A.1 Description . 302

A.2 Syntax . 303

A.3 Options . 303

A.4 Syntax Specification . 306

A.5 Evaluation Rules . 309

A.6 Meta-macros . 310

CONTENTS vi

A.7 Examples . 313

A.8 Advanced Examples . 318

A.9 Author . 320

Chapter 1

Introduction

XSB is a research-oriented, commercial-grade Logic Programming system for Unix and Windows-
based platforms. In addition to providing nearly all functionality of ISO-Prolog, XSB includes the
following features:

• Evaluation of queries according to the Well-Founded Semantics [76] through full SLG resolu-
tion (tabling with negation). XSB’s tabling implementation supports incremental tabling, as
well as call and answer subsumption.

• A fully multi-threaded engine with thread-shared static code, and that allows dynamic code
and tables to be thread-shared or thread-private. This engine fully supports the draft ISO
standard for multi-threading [35].

• Constraint handling for tabled programs based on an engine-level implementation of anno-
tated variables and various costraint packages, including clpqr for handling real constraints,
and bounds a simple finite domain constraint library.

• A package for Constraint Handling Rules [30] which can be used to implement user-written
constraint libraries.

• A variety of indexing techniques for asserted code including variable-depth indexing on several
alternate arguments, fixed-depth indexing on combined arguments, trie-indexing.

• A set of mature packages, to extend XSB to evaluate F-logic [39] through the FLORA-2
package (distributed separately from XSB), to model check concurrent systems through the
XMC system, to manage ontologies through the Cold Dead Fish package, to support literate
programming through the xsbdoc package, and to support answer set programming through
the XASP package among other features.

• A number of interfaces to other software systems, such a C, Java, Perl, ODBC, SModels [53],
and Oracle.

• Fast loading of large files by the load dync predicate, and by other means.

• A compiled HiLog implementation;

1

CHAPTER 1. INTRODUCTION 2

• Backtrackable updates through XSB’s storage module that support the semantics of trans-
action logic [6].

• Extensive pattern matching packages, and interfaces to libwww routines, all of which are
especially useful for Web applications.

• A novel transformation technique called unification factoring that can improve program speed
and indexing for compiled code;

• Macro substitution for Prolog files via the xpp preprocessor (included with the XSB distri-
bution).

• Preprocessors and Interpreters so that XSB can be used to evaluate programs that are based
on advanced formalisms, such as extended logic programs (according to the Well-Founded
Semantics [2]); Generalized Annotated Programs [40].

• Source code availability for portability and extensibility under the GNU General Public Li-
brary License.

Though XSB can be used as a Prolog system, we avoid referring to XSB as such, because of the
availability of SLG resolution and the handling of HiLog terms. These facilities, while seemingly
simple, significantly extend its capabilities beyond those of a typical Prolog system. We feel that
these capabilities justify viewing XSB as a new paradigm for Logic Programming. We briefly discuss
some of these features; others are discussed in Volumes 1 and 2 of the XSB manual, as well as the
manuals for various XSB packages such as FLORA, XMC, Cold Dead Fish, xsbdoc, and XASP.

Well-Founded Semantics To understand the implications of SLG resolution [15], recall that
Prolog is based on a depth-first search through trees that are built using program clause resolution
(SLD). As such, Prolog is susceptible to getting lost in an infinite branch of a search tree, where
it may loop infinitely. SLG evaluation, available in XSB, can correctly evaluate many such logic
programs. To take the simplest of examples, any query to the program:

:- table ancestor/2.

ancestor(X,Y) :- ancestor(X,Z), parent(Z,Y).

ancestor(X,Y) :- parent(X,Y).

will terminate in XSB, since ancestor/2 is compiled as a tabled predicate; Prolog systems, however,
would go into an infinite loop. The user can declare that SLG resolution is to be used for a predicate
by using table declarations, as here. Alternately, an auto table compiler directive can be used
to direct the system to invoke a simple static analysis to decide what predicates to table (see
Section 3.10.4). This power to solve recursive queries has proven very useful in a number of areas,
including deductive databases, language processing [41, 42], program analysis [21, 16, 7], model
checking [56] and diagnosis [31]. For efficiency, we have implemented SLG at the abstract machine
level so that tabled predicates will be executed with the speed of compiled Prolog. We finally
note that for definite programs SLG resolution is similar to other tabling methods such as OLDT
resolution [75] (see Chapter 5 for details).

CHAPTER 1. INTRODUCTION 3

Example 1.0.1 The use of tabling also makes possible the evaluation of programs with non-
stratified negation through its implementation of the well-founded semantics [76]. When logic pro-
gramming rules have negation, paradoxes become possible. As an example consider one of Russell’s
paradoxes — the barber in a town shaves every person who does not shave himself — written as a
logic program.

:- table shaves/2.

shaves(barber,Person):- person(Person), tnot(shaves(Person,Person)).

person(barber).

person(mayor).

Logically speaking, the meaning of this program should be that the barber shaves the mayor, but the
case of the barber is trickier. If we conclude that the barber does not shave himself our meaning
does not reflect the first rule in the program. If we conclude that the barber does shave himself, we
have reached that conclusion using information beyond what is provided in the program. The well-
founded semantics, does not treat shaves(barber,barber) as either true or false, but as undefined.
Prolog, of course, would enter an infinite loop. XSB’s treatment of negation is discussed further in
Chapter 5.

Multi-threading From Version 3.0 onward, XSB has been thoroughly revised to support multi-
threading using POSIX or Windows threads. Detached XSB threads can be created to execute
specific tasks, and these threads will exit when the query succeeds (or fails, or throws an exception)
and all thread memory reclaimed. While a thread’s execution state is, of course, private, it shares
many resources with other threads, such as static code and I/O streams. Dynamic code and tables
can be either thread-shared or thread-provate by default or by explicit declaration.

Constraint Support XSB supports logic-based constraint handling at a low level through at-
tributed variables and associated packages (e.g. setarg/3. In addition, constraints may be handled
through Constraint Handling Rules. Constraint logic programs that use attributed variables may
be tabled; those that use Constraint Handling Rules may be efficiently tabled if the CHRd package
is used. Constraint programming in XSB is mainly covered in Volume 2.

Indexing Methods Data oriented applications may require indices other than Prolog’s first
argument indexing. XSB offers a variety of indexing techniques for asserted code. Clauses can be
indexed on a group of arguments or on alternative arguments. For instance, the executable directive
index(p/4,[3,2+1]) specifies indexes on the (outer functor symbol of) the third argument or on
a combination of (the outer function symbol of) the second and first arguments. If data is expected
to be structured within function symbols and is in unit clauses, the directive i ndex(p/4,trie)

constructs an indexing trie of the p/4 clauses using a depth-first, left-to-right traversal through
each clause. Representing data in this way allows discrimination of information nested arbitrarily
deep within clauses. Advantages of both kinds of indexing can be combined via star-indexing.
Star-indexing indicates that up to the first 5 fields in an argument will be used for indexing (the

CHAPTER 1. INTRODUCTION 4

ordering of the fields is via a depth-first traversal). For instance, index(p/4,[*(4),3,2+1]) acts
as above, but looks within 4th argument of p/4 before examining the outer functor of argument
3 (and finally examining the outer functors of arguments 2 and 1 together. Using such indexing,
XSB routinely performs efficiently intensive analyses of in-memory knowledge bases with millions
of highly structured facts. Indexing techniques for asserted code are covered in Section 6.14.

Interfaces A number of interfaces are available to link XSB to other systems. In UNIX systems
XSB can be directly linked into C programs; in Windows-based system XSB can be linked into C
programs through a DLL interface. On either class of operating system, C functions can be made
callable from XSB either directly within a process, or using a socket library. XSB can also inter-
communicate with Java through the InterProlog interface 1 or using YJXSB. Within Interprolog,
XSB and Java can be linked either through Java’s JNI interface, or through sockets. XSB can
access external data in a variety of ways: through an ODBC interface, through an Oracle interface,
or through a variety of mechanisms to read data from flat files. These interfaces are all described
in Volume 2 of this manual.

Fast Loading of Code A further goal of XSB is to provide in implementation engine for both
logic programming and for data-oriented applications such as in-memory deductive database queries
and data mining [60]. One prerequisite for this functionality is the ability to load a large amount
of data very quickly. We have taken care to code in C a compiler for asserted clauses. The result is
that the speed of asserting and retracting code is faster in XSB than in any other Prolog system of
which we are aware, even when some of the sophisticated indexing mechanisms described above are
employed. At the same time, because asserted code is compiled into SLG-WAM code, the speed of
executing asserted code in XSB is faster than that of many other Prologs as well. We note however,
that XSB does not follow the ISO-semantics of assert [45].

HiLog XSB also supports HiLog programming [13, 63]. HiLog allows a form of higher-order
programming, in which predicate “symbols” can be variable or structured. For example, definition
and execution of generic predicates like this generic transitive closure relation are allowed:

closure(R)(X,Y) :- R(X,Y).

closure(R)(X,Y) :- R(X,Z), closure(R)(Z,Y).

where closure(R)/2 is (syntactically) a second-order predicate which, given any relation R, returns
its transitive closure relation closure(R). XSB supports reading and writing of HiLog terms,
converting them to or from internal format as necessary (see Section 4.2). Special meta-logical
standard predicates (see Section 6.7) are also provided for inspection and handling of HiLog terms.
Unlike earlier versions of XSB (prior to version 1.3.1) the current version automatically provides
full compilation of HiLog predicates. As a result, most uses of HiLog execute at essentially the
speed of compiled Prolog. For more information about the compilation scheme for HiLog employed
in XSB see [63].

HiLog can also be used with tabling, so that the program above can also be written as:

1InterProlog is available at www.declarativa.com/InterProlog/default.htm.

www.declarativa.com/InterProlog/default.htm

CHAPTER 1. INTRODUCTION 5

:- hilog closure.

:- table apply/3.

closure(R)(X,Y) :- R(X,Y).

closure(R)(X,Y) :- closure(R)(X,Z), R(Z,Y).

as long as the underlying relations (the predicate symbols to which R will be unified) are also
declared as Hilog. For example, if a/2 were a binary relation to which the closure predicate would
be applied, then the declaration :- hilog a. would also need to be included.

Unification Factoring For compiled code, XSB offers unification factoring, which extends clause
indexing methods found in functional programming into the logic programming framework. Briefly,
unification factoring can offer not only complete indexing through non-deterministic indexing au-
tomata, but can also factor elementary unification operations. The general technique is described
in [20], and the XSB directives needed to use it are covered in Section 3.10.

XSB Packages Based on these features, a number of sophisticated packages have been imple-
mented using XSB. For instance, XSB supports a sophisticated object-oriented interface called
Flora. Flora (http://flora.sourceforge.net) is available as an XSB package and is described
in its own manual, available from the same site from which XSB was downloaded. Another pack-
age, XMC http://www.cs.sunnysb.edu/~lmc depends on XSB to perform sophisticated model-
checking of concurrent systems. Within the XSB project, the Cold Dead Fish package supports
maintenance of, and reasoning over ontologies; xsbdoc supports literate programming in XSB, and
XASP provides an interface to Smodels to support Answer Set programming. XSB packages also
support Perl-style pattern matching and POSIX-style pattern matching. In addition, experimental
preprocessing libraries currently supported are Extended logic programs (under the well-founded
semantics), and Annotated Logic Programs. These latter libraries are described in Volume 2 of
this manual.

1.1 Using This Manual

We adopt some standard notational conventions, such as the name/arity convention for describing
predicates and functors, + to denote input arguments, - to denote output arguments, ? for argu-
ments that may be either input or output and # for arguments that are both input and output (can
be changed by the procedure). See Section 3.10.4 for more details. . Also, the manual uses UNIX
syntax for files and directories except when it specifically addresses other operating systems such
as Windows.

Finally, we note that XSB is under continuous development, and this document —intended
to be the user manual— reflects the current status (Version 3.3) of our system. While we have
taken great effort to create a robust and efficient system, we would like to emphasize that XSB is
also a research system and is to some degree experimental. When the research features of XSB —
tabling, HiLog, and Indexing Techniques — are discussed in this manual, we also cite documents
where they are fully explained. All of these documents can be found without difficulty on the web.

http://flora.sourceforge.net
http://www.cs.sunnysb.edu/~lmc

CHAPTER 1. INTRODUCTION 6

While some of Version 3.3 is subject to change in future releases, we will try to be as upward-
compatible as possible. We would also like to hear from experienced users of our system about
features they would like us to include. We do try to accommodate serious users of XSB whenever
we can. Finally, we must mention that the use of undocumented features is not supported, and at
the user’s own risk.

Chapter 2

Getting Started with XSB

This section describes the steps needed to install XSB under UNIX and under Windows.

2.1 Installing XSB under UNIX

If you are installing on a UNIX platform, the version of XSB that you received may not include all
the object code files so that an installation will be necessary. The easiest way to install XSB is to
use the following procedure.

1. Decide in which directory in your file system you want to install XSB and copy or move XSB
there.

2. Make sure that after you have obtained XSB, you have uncompressed it by following the
instructions found in the file README.

3. Note that after you uncompress and untar the XSB tar file, a subdirectory XSB will be created
in the current directory. All XSB files will be located in that subdirectory. In the rest of this
manual, we use $XSB DIR to refer to this subdirectory. Note the original directory structure of
XSB must be maintained, namely, the directory $XSB DIR should contain all the subdirectories
and files that came with the distribution. In particular, the following directories are required
for XSB to work: emu, syslib, cmplib, lib, packages, build, and etc.

4. Change directory to $XSB DIR/build and then run these commands:

configure

makexsb

This is it!

In addition, it is now possible to install XSB in a shared directory (e.g., /usr/local) for
everyone to use. In this situation, you should use the following sequence of commands:

7

CHAPTER 2. GETTING STARTED WITH XSB 8

configure --prefix=$SHARED XSB

makexsb

makexsb install

where $SHARED XSB denotes the shared directory where XSB is installed. In all cases, XSB
can be run using the script

$XSB DIR/bin/xsb

However, if XSB is installed in a central location, the script for general use is:

<central-installation-directory>/<xsb-version>/bin/xsb

Important: The XSB executable determines the location of the libraries it needs based on the
full path name by which it was invoked. The “smart script” bin/xsb also uses its full path name to
determine the location of the various scripts that it needs in order to figure out the configuration
of your machine. Therefore, there are certain limitations on how XSB can be invoked.

Here are some legal ways to invoke XSB:

1. invoking the smart script bin/xsb or the XSB executable using their absolute or relative path
name.

2. using an alias for bin/xsb or the executable.

3. creating a new shell script that invokes either bin/xsb or the XSB executable using their full
path names.

Here are some ways that are guaranteed to not work in some or all cases:

1. creating a hard link to either bin/xsb or the executable and using it to invoke XSB. (Symbolic
links should be ok.)

2. changing the relative position of either bin/xsb or the XSB executable with respect to the
rest of the XSB directory tree.

The configuration script allows many different options to be specified. A full listing can be
obtained by typing $XSB DIR/build/configure --help.

Type of Machine. The configuration script automatically detects your machine and OS type,
and builds XSB accordingly. On 64-bit platforms, the default compilation of XSB will reflect
the default for the C compiler (e.g. gcc) on that platform. Moreover, you can build XSB for
different architectures while using the same tree and the same installation directory provided,
of course, that these machines are sharing this directory, say using NFS or Samba. All you
will have to do is to login to a different machine with a different architecture or OS type, and
repeat the above sequence of commands – or configure with different parameters.

The configuration files for different architectures reside in different directories, and there is
no danger of an architecture conflict. In fact, you can keep using the same ./bin/xsb script

CHAPTER 2. GETTING STARTED WITH XSB 9

regardless of the architecture. It will detect your configuration and will use the right files for
the right architecture!

If XSB is being built on a machine running Windows in which Cygwin is installed, Cygwin
and Windows are treated as separate operating systems, as their APIs are completely differ-
ent. If no previous configuration has been made, the configure script will attempt to use gcc

and other Unix facilities, and therefore will compile the system under Cygwin. If this behav-
ior is not desired, the option --with-wind (equivalently, --with-os=wind) uses a Window
compiler and API. If a user wants to ensure the Cygwin compiler is used (say after a previous
configuration for Windows), the option -without-wind can be used. See Section 2.2.2 for
more details.

Choice of the C Compiler and compiler-related options On Unix systems, XSB is devel-
oped and tested mainly using gcc. Accordingly, the configure script will attempt to use gcc,
if it is available. Otherwise, it will revert to cc or acc. Some versions of gcc are broken for
particular platforms or gcc may not have been installed; in which case you would have to give
configure an additional directive --with-cc (or --with-acc). If you must use some special
compiler, use --with-cc=your-own-compiler. You can also use the --with-optimization

option to change the default C compiler optimization level. (or --disable-optimization

to disable all compiler optimizations). --enable-debug is mainly a devlopment option that
allows XSB to be debugged using gdb – there are many other compiler-based options op-
tions. Type configure --help to see them all. Also see the file $XSB_DIR/INSTALL for more
details.

Word Size XSB’s configuration script checks whether the default compilation mode of a platform
is 32- or 64-bits, and will build a version of XSB accoringly. Some platforms, however, support
both 32-bit and 64-bit compilation. On such a platform, a user can explicitly specify the type
of compilation using the options with-bits32 and with-bits64.

XSB and Site-specific Information Using the option --prefix=PREFIX installs architecture-
independent files in the directory PREFIX, e.g. /usr/local, which can be useful if XSB is
to be shared at a site. Using the option --site-prefix=DIR installs site-specific libraries in
DIR/site. Other options indicate directories in which to search for site-specific static and
dynamic libraries, and for include files.

Multi-threading Version 3.0 of XSB was the first version that supports multi-threading. On
some platforms, the multi-threaded engine is slightly slower than the single-threaded engine,
mostly due to its need for concurrency control. To obtain the benefits of multiple threads on
a platform that supports either POSIX or Windows threads (i.e. nearly all platforms) users
must configure XSB with the directive enable-mt (see Section 7.8 for instructions specific to
Windows. The multi-threaded engine works with other configuration options, multi-threading
can be compiled with batched or local scheduling, with the ODBC or Interprolog interfaces,
and so on.

Interfaces Certain interfaces must be designated at configuration time, including those to Oracle,
ODBC, Smodels, Tck/Tk, and Libwww. However, the XSB-calling-C interface interface does
not need to be specified at configuration time. If you wish to use the InterProlog Java interface
that is based on JNI, you must specify this at configuration time; otherwise if you wish to use

CHAPTER 2. GETTING STARTED WITH XSB 10

the sockets-based Interprolog interface, it does not need to be specified at configuration time.
See Volume 2 and the InterProlog site www.declarativa.com for details of specific interfaces

While the XSB configuration mechanism can detect most include and library paths, use of
certain interfaces may require information about particular directories. In particular the
--with-static-libraries option might be needed if compiling with support for statically
linked packages (such as Oracle) or if your standard C libraries are in odd places. Alter-
nately, dynamic libraries on odd places may need to be specified at configuration time using
the --with-dynamic-libraries option. and finally, the --with-includes option might be
needed if your standard header files (or your jni.h file) are in odd places, or if XSB is
compiled with ODBC support. Type configure --help for more details.

Type of Scheduling Strategy. The ordering of operations within a tabled evaluation can dras-
tically affect its performance. XSB provides two scheduling strategies: Batched Evaluation
and Local Evaluation. Local Evaluation ensures that, whenever possible, subgoals are fully
evaluated before there answers are returned, and provides superior behavior for programs in
which tabled negation is used. Batched Evaluation evaluates queries to reduce the time to
the first answer of a query. Both evaluation methods can be useful for different programs.
Since Version 2.4, Local Evaluation has been the default evaluation method for XSB. Batched
Evaluation can be chosen via the --enable-batched-scheduling configure option. Detailed
explanations of the scheduling strategies can be found in [27], and further experimentation
in [11].

Other options are of interest to advanced users who wish to experiment with XSB, or to use
XSB for large-scale projects. In general, however users need not concern themselves with these
options.

2.1.1 Possible Installation Problems

Lack of Space for Optimized Compilation of C Code When making the optimized version
of the emulator, the temporary space available to the C compiler for intermediate files is sometimes
not sufficient. For example on one of our SPARCstations that had very little /tmp space the "-O4"

option could not be used for the compilation of files emuloop.c, and tries.c, without changing the
default tmp directory and increasing the swap space. Depending on your C compiler, the amount
and nature of /tmp and swap space of your machine you may or may not encounter problems. If
you are using the SUN C compiler, and have disk space in one of your directories, say dir, add the
following option to the entries of any files that cannot be compiled:

-temp=dir

If you are using the GNU C compiler, consult its manual pages to find out how you can change
the default tmp directory or how you can use pipes to avoid the use of temporary space during
compiling. Usually changing the default directory can be done by declaring/modifying the TMPDIR

environment variable as follows:

setenv TMPDIR dir

CHAPTER 2. GETTING STARTED WITH XSB 11

Missing XSB Object Files When an object (*.xwam) file is missing from the lib directories
you can normally run the make command in that directory to restore it (instructions for doing so
are given in Chapter 2). However, to restore an object file in the directories syslib and cmplib,
one needs to have a separate Prolog compiler accessible (such as a separate copy of XSB), because
the XSB compiler uses most of the files in these two directories and hence will not function when
some of them are missing. For this reason, distributed versions normally include all the object files
in syslib and cmplib.

XSB on 64-bit platforms XSB has been fully tested on 64-bit Debian Linux, 64-bit and Mac
OS X. However, the sockets library may have problems in Version 3.3. If this limitation prove a
problem, please contact xsb-development@lists.sourceforge.net 1.

Typically, if the 64-bit system generates 32-bit code by default, XSB will run just as in 32-bit
mode (including 64-bit floats). 64-bit compilation can be forced for XSB by configuring with the
option --with-bits64, and in a similar manner 32-bit compilation can be forced with the option
--with-bits32. Users who employ either option should be aware of issues that may arise when
linking XSB to external C code.

• When XSB calls C code the C file must have been compiled with the same memory option as
XSB. This is done automatically if the C file is compiled via a call from XSB’s compiler, but
must be handled by the user otherwise. For instance, if XSB were configured --with-bits32

on a 64-bit machine defaulting to 64-bits, then C files called by XSB require the -m32 option
in gcc (if not compiled by XSB).

• The appropriate memory option must be used when embedding XSB into a C or Java process.
For instance, if a XSB is to be linked into a 32-bit application on a 64-bit platform defaulting
to 64-bits, XSB must be configured --with-bits32, and the linking of xsb.o/so to the calling
program must specify -m32.

2.2 Installing XSB under Windows

2.2.1 Using Cygnus Software’s CygWin32

This is easy: just follow the Unix instructions. This is the preferred way to run XSB under
Windows, because this ensures that all features of XSB are available.

2.2.2 Using Microsoft Visual C++

1. XSB will unpack into a subdirectory named xsb. Assuming that you have XSB.ZIP in the
$XSB DIR directory, you can issue the command

unzip386 xsb.zip

164-bit XSB was broken in a recent releases prior to Version 3.1 because for a time the developers did not have
access to a 64-bit machine.

CHAPTER 2. GETTING STARTED WITH XSB 12

which will install XSB in the subdirectory xsb.

2. If you decide to move XSB to some other place, make sure that the entire directory tree is
moved — XSB executable looks for the files it needs relatively to its current position in the
file system.

You can compile XSB under Microsoft Visual C++ compiler by following these steps:

1. Download the free of charge Microsoft Visual C++ Express Edition from

http://www.microsoft.com/express/vc/

By default, this program is installed in C:\Program Files\Microsoft Visual Studio 10.0,
and we shall assume this directory below (at the time of this writing, the latest version was
10.0, but the version number may change).

2. Go to Start Menu then Control Panel then System (depending on your version of Windows,
the System panel might not be directly inside Control Panel, but one or two levels below.
Then click “Change Settings,” select the “Advanced” tab, and then click the “Environment
Variables” button. In the panel that is now selected, choose the PATH variable and click
Edit. At the end of the string that represents the value of PATH, add

;C:\Program Files\Microsoft Visual Studio 10.0\VC\BIN

On a 64-bit machine, add both of these:

;C:\Program Files\Microsoft SDKs\Windows\v7.1\bin

;C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\BIN

Note: to compile XSB as 64 bit application you must install Microsoft Windows SDK found at
http://msdn.microsoft.com/en-us/windows/bb980924.aspx. The version numbers, v7.1
and 10.0, may vary, of course.

Visual C++ has a command file called vcvars32.bat, which you should find and drag
into the command window (and press Return). This will set all the necessary environ-
ment variables. On a 64 bit machine, this command file is called vcvarsx86 amd64.bat

or vcvarsx86 ia64.bat — whichever is appropriate for your configuration. In Visual Studio
Express 9.0, these files are in

C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\BIN\vcvars32.bat

C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\BIN\ia64\vcvarsx86_ia64.bat

C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\BIN\amd64\vcvarsx86_amd64.bat

At some point, Microsoft eliminated vcvarsx86 * in Visual Studio 10.0 and introduced
SetEnv.cmd instead, requiring the users to download Microsoft Windows SDK. This com-
mand file is usually found in

http://msdn.microsoft.com/en-us/windows/bb980924.aspx

CHAPTER 2. GETTING STARTED WITH XSB 13

C:\Program Files\Microsoft SDKs\Windows\v7.1\bin\SetEnv.cmd

As far as we know, SetEnv.cmd is the only file from the entire SDK that is necessary to build
XSB as a 64-bit application. For 32 bit applications, the file

C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\BIN\vcvars32.bat

is still there and installation does not require the Windows SDK.

3. cd $XSB DIR\build

4. On a 32 bit machine, type:
makexsb ["CFG=opt"] ["ORACLE=yes"] ["MY LIBRARY DIRS=libs"] ["MY INCLUDE DIRS=opts"]

• The items in square brackets are optional and usually are not necessary.

• The options for CFG are: release (default) or debug. The latter is used when you want
to compile XSB with debugging enabled.

• The ORACLE parameter (default is “no”) compiles XSB with native support for Oracle
DBMS. If ORACLE is specified, you must also specify the necessary Oracle libraries
using the parameter SITE LIBS. Native Oracle support is rarely used and ODBC is the
recommended way to connect to databases.

• MY LIBRARY DIRS is used to specify the external libraries and libs there has the form
/LIBPATH:"libdir1" /LIBPATH:"libdir2"

• MY INCLUDE DIRS is used to specify additional directories for included files. Here opts

has the form /I"incdir1" /I"incdir2"

Instead of specifying the options on command line, it might be more convenient, however, to
create the file

XSB\build\windows\custom_settings.mak

and put the options there. For instance,

XSB_INTERPROLOG=yes

MY_INCLUDE_DIRS=/I"C:\Program Files\Java\jdk1.6.0_26\include" \

/I"C:\Program Files\Java\jdk1.6.0_26\include\win32"

MY_LIBRARY_DIRS=/LIBPATH:"C:\pthreads\pthreadVC1.lib" /libpath:"C:\oracle"

ORACLE=yes

5. The above command will compile XSB as requested and will put the XSB executable and its
DLL in:

$XSB DIR\config\x86-pc-windows\bin\xsb.exe
$XSB DIR\config\x86-pc-windows\bin\xsb.dll

6. On a 64 bit machine, use makexsb64 instead of makexsb. The compiled code will be installed
in

$XSB DIR\config\x64-pc-windows\bin\xsb.exe
$XSB DIR\config\x64-pc-windows\bin\xsb.dll

CHAPTER 2. GETTING STARTED WITH XSB 14

The custom settings.mak file must be in

XSB\build\windows64\custom_settings.mak

Make sure you do not misspell the name of that file or else none of the specified options will take
effect!

Note: if you compiled XSB with one set of parameters and then want to recompile with a
different set, it is recommended that you run

makexsb clean

in between the compilations (or makexsb64 clean in the 64-bit case). This also applies to recom-
pilations for 32/64 bits.

2.3 Invoking XSB

Under Unix, XSB can be invoked by the command:

$XSB DIR/bin/xsb

if you have installed XSB in your private directory. If XSB is installed in a shared directory (e.g.,
$SHARED XSB for the entire site (UNIX only), then you should use

$SHARED XSB/bin/xsb

In both cases, you will find yourself in the top level interpreter. As mentioned above, this script
automatically detects the system configuration you are running on and will use the right files and
executables. (Of course, XSB should have been built for that architecture earlier.)

Under Windows, you should invoke XSB by typing:

$XSB DIR\bin\xsb

This script tries to find the XSB executable and invoke it. If, for some reason, it fails to do so, the
user should call the executable directly.

$XSB DIR\config\x86-pc-windows\bin\xsb.exe

You may want to make an alias such as xsb to the above commands, for convenience, or you
might want to put the directory where the XSB command is found in the $PATH environment
variable. However, you should not make hard links to this script or to the XSB executable. If you
invoke XSB via such a hard link, XSB will likely be confused and will not find its libraries. That
said, you can create other scripts and call the above script from there.

ISO“standard” Prolog predicates are supported by XSB, in addition to many other predicates:
so those of you who consider yourselves champion entomologists, can try to test them for bugs now.
Details are in Chapter 6.

CHAPTER 2. GETTING STARTED WITH XSB 15

2.4 Compiling XSB programs

One way to compile a program from a file, such as myfile.P in the current directory and load it
into memory, is to type the query:

[my_file].

where my_file is the name of the file. Chapter 3 contains a full discussion of the compiling and
consulting.

If you are eccentric (or you don’t know how to use an editor) you can also compile and load
predicates input directly from the terminal by using the command:

[user].

A CTRL-d or the atom end_of_file followed by a period terminates the input stream.

2.5 Sample XSB Programs

There are several sample XSB source programs in the directory: $XSB DIR/examples illustrating
a number of standard features, as well as a number of non-standardized or XSB-specific features
including plain tabling, incremental tabling, tabling with negation, attributed variables, annotated
programs, constraint handling rules, XSB embedded in a C program, XSB calling C functions,
sockets, and various semantic web appliation

Hence, a sample session might look like (the actual times shown below may vary and some extra
information is given using comments after the % character):

my_favourite_prompt> cd $XSB_DIR/examples

my_favourite_prompt> $XSB_DIR/bin/xsb

XSB Version 3.1 (Incognito) of August 10, 2007

[i386-apple-darwin8.9.1; mode: optimal; engine: slg-wam; scheduling: local; word size: 32]

| ?- [queens].

[queens loaded]

yes

| ?- demo.

% output from queens program

Time used: 0.4810 sec

yes

| ?- statistics.

memory (total) 1906488 bytes: 203452 in use, 1703036 free

permanent space 202552 bytes

glob/loc space 786432 bytes: 432 in use, 786000 free

global 240 bytes

CHAPTER 2. GETTING STARTED WITH XSB 16

local 192 bytes

trail/cp space 786432 bytes: 468 in use, 785964 free

trail 132 bytes

choice point 336 bytes

SLG subgoal space 0 bytes: 0 in use, 0 free

SLG unific. space 65536 bytes: 0 in use, 65536 free

SLG completion 65536 bytes: 0 in use, 65536 free

SLG trie space 0 bytes: 0 in use, 0 free

(call+ret. trie 0 bytes, trie hash tables 0 bytes)

0 subgoals currently in tables

0 subgoal check/insert attempts inserted 0 subgoals in the tables

0 answer check/insert attempts inserted 0 answers in the tables

Time: 0.610 sec. cputime, 18.048 sec. elapsetime

yes

| ?- halt. % I had enough !!!

End XSB (cputime 1.19 secs, elapsetime 270.25 secs)

my_favourite_prompt>

2.6 Exiting XSB

If you want to exit XSB, issue the command halt. or simply type CTRL-d at the XSB prompt. To
exit XSB while it is executing queries, strike CTRL-c a number of times.

Chapter 3

System Description

Throughout this chapter, we use $XSB_DIR to refer to the directory in which XSB was installed.

3.1 Entering and Exiting XSB from the Command Line

After the system has been installed, the emulator’s executable code appears in the file:

$XSB_DIR/bin/xsb

If, after being built, XSB is later installed at a central location, $SHARED_XSB, the emulators
executable code appears in

$SHARED_XSB/bin/xsb

Either of these commands invokes XSB’s top-level interpreter, which is the most common way of
using XSB.

XSB can also directly execute object code files from the command line interface. Suppose you
have a top-level routine go in a file foo.P that you would like to run from the UNIX or Windows
command line. As long as foo.P contains a directive, e.g. :- go., and foo.P has been compiled
to an object file (foo.xwam), then

$XSB_DIR/bin/xsb foo

will execute go (and any other directives), loading the appropriate files as needed 1. In fact the
command $XSB_DIR/bin/xsb is equivalent to the command:

$XSB_DIR/bin/xsb -B $XSB_DIR/syslib/loader.xwam

1In XSB, all extensions except ’.pl’ — (default ’.P’, ’.H’, ’.xwam’, ’.D’ (output by mode inferencing), and ’.A’
(assembly dump) — are defined in C and Prolog code using macros in $XSB DIR/emu/extensions xsb.h and can be
changed by a user if desired. Of course, such a step should not be taken lightly, as it can cause severe compatibility
problems.

17

CHAPTER 3. SYSTEM DESCRIPTION 18

There is one other way to execute XSB from a command line. Using the -e command-line option
any goal can be can be executed, up to 1024 characters. For instance

$XSB_DIR/bin/xsb -e "writeln(’hello world’),halt."

writes “hello world” and exits XSB. Within the 1024 character limit, any query or command can
be executed, including consulting files, so this method is actually quite general footnoteVarious
options can suppress XSB’s startup and end messages, as discussed below..

There are several ways to exit XSB. A user may issue the command halt. or end_of_file.,
or simply type CTRL-d at the XSB prompt. To interrupt XSB while it is executing a query, strike
CTRL-c.

3.2 The System and its Directories

When installed, the XSB system resides in a single directory that contains several subdirectories.
For completeness, we review the information in all subdirectories. Normally, only the documen-
tation and files in the Prolog subdirectories, particularly examples, lib, and packages will be of
interest to users.

1. bin contains scripts that call XSB executables for various configurations.

2. build contains XSB configuration scripts. You may already be familiar with the build

directory, which is used to build XSB.

3. config contains executables and other files specific to particular configurations.

4. docs contains the user manuals and other documentation, including the technical documen-
tation manual for developers.

5. emu contains the C source code for the XSB emulator, for I/O and for various interfaces.

6. etc contains miscellaneous files used by XSB.

7. examples contains some examples for Prolog, tabling, HiLog and various interfaces.

8. cmplib contains Prolog source and object code for the compiler.

9. gpp contains a copy of the Gnu pre-processor used to preprocess Prolog files.

10. lib contains Prolog source and object code for extended libraries.

11. packages The directory packages contains the various applications, such as FLORA, the
XMC model checker and many others. These applications are written in XSB and can be
quite useful, but are not part of the XSB system per se.

12. Prolog includes contains include files for the Prolog libraries, which are preprocessed using
GPP.

CHAPTER 3. SYSTEM DESCRIPTION 19

13. syslib contains Prolog source and object code for core XSB libraries.

All Prolog source programs are written in XSB, and all object (byte code) files contain SLG-WAM
instructions that can be executed by the emulator. These byte-coded instructions are machine-
independent, so usually no installation procedure is needed for the byte code files.

If you are distributing an application based on XSB and need to cut down space, the packages,
examples and docs directories are not usually needed (unless of course you are using one of the
packages in your application). lib may not be needed, (most core system files are in syslib) nor
are Prolog source files necessary. Unless your application needs to rebuild XSB, the emu and build

directories do not need to be distributed.

3.3 How XSB Finds Files: Source File Designators

Three files are associated with Prolog source code in XSB 2.

• A single source file, whose name is the base file name plus an optional extension suffix .P or
.pl.

• An object (byte-code) file, whose name consists of the base file name plus the suffix .xwam.

• An optional header file, whose name is the base file name plus the suffix “.H”. When used,
the header file normally contains file-level declarations and directives while the source file
usually contains the actual definitions of the predicates defined in that module. However,
such information can be equivalently put into the .P (or .pl file.

Most of the XSB system predicates for compiling, consulting, and loading code, such as consult/[1,2],
compile/[1,2], load dyn/1 and others are somewhat flexible in how they designate the file of in-
terest. Each of these predicates take as input a source file designator which can be a base file name,
a source file name; or the relative or absolute paths to a base or source file name. Unfortunately,
the exact semantics of a file designator differs among system predicates in Version 3.3, as well as
among platforms.

In general, however, when given a source file designator, system predicates perform name res-
olution. There are two steps to name resolution: determining the proper directory prefix and
determining the proper file extension. When FileName is absolute (i.e. it contains a path from
the file to the root of the file system) determining the proper directory prefix is straightforward. If
FileName is relative, i.e. it contains a ’/’ in Unix or ’/’ in Windows, FileName is expanded to a
directory prefix in an OS-dependent way, resolving symbols like ’.’, ’..’ and ’~’ when applica-
ble. However, the user may also enter a name without any directory prefix. In this case, XSB tries
to determine the directory prefix using a set of diretories it knows about: those directories in the
dynamic loader path (see Section 3.6). As it searches through directory prefixes, different forms of
the file name may be checked. If the source file designator has no extension the loader first checks
for a file in the directory with the .P extension, (or .c for foreign modules) before searching for a

2Other types of files may be associated with foreign code — see Volume 2.

CHAPTER 3. SYSTEM DESCRIPTION 20

file without the extension, and finally for a file with a .pl extension. Note that since directories in
the dynamic loader path are searched in a predetermined order (see Section 3.6), if the same file
name appears in more than one of these directories, the first one encountered will be used.

3.4 The Module System of XSB

XSB has been designed as a module-oriented Prolog system. Modules provide a small step towards
logic programming “in the large” that facilitates the construction of large programs or projects from
components that are developed, compiled and tested separately. Also, module systems support the
principle of information hiding and can provide a basis for data abstraction. The module system of
XSB is file based – one module per file – and flat – modules cannot be nested. In addition, XSB’s
module system is to some extent atom-based, where any symbol in a module can be imported,
exported or be a local symbol, as opposed to the predicate-based ones where this can be done
only for predicate symbols 3. As we will discuss, this leads to certain differences of XSB’s module
system from those of some other Prologs, and to certain incompatabilities with the ISO standard
for modules (which is not supported by most Prologs). At the same time, XSB’s module system has
enough commonalities with those of other Prologs to be able to support Prolog commons libraries.

Module Syntax By default, files are not treated as modules. In order for a file to be treated as
a module, it must contain one or more module/2 or export/1 declarations, which specify that a
set of symbols appearing in that module is visible and therefore can be used by any other module.
In XSB, the module name must be equal to the base file name in which the module is defined.
Any file (either module or not) may also contain use module/2 or import/1 declarations, which
allow symbols defined in and exported by other modules to be used in the current module. In
addition, a module can also contain local declarations, which specify that a set of symbols is visible
by this module only, and therefore cannot be accessed by any other module. Module declarations
can appear anywhere in the source or header files and have the following forms:

:- export sym1, ..., syml.

:- import sym1, ..., symn from module.

:- import sym from module as sym′.

:- local sym1, ..., symm.

where symi has the form functor/arity, and module is a Prolog atom representing a module name.

In XSB, the declaration

:- module(filename,[sym1, ..., syml.]).

can be seen as syntactic sugar for

:- export sym1, ..., syml.

as long as the filename is the same as the name of the file in which it was contained. Similarly,

3Operator symbols can be exported as any other symbols, but their precedence must be redeclared in the importing
module.

CHAPTER 3. SYSTEM DESCRIPTION 21

:- use module(module,[sym1, ..., syml.]).

is treated as semantically equivalent to

:- import sym1, ..., symn from module.

Accordingly, use module/2 and module/1 can be used interchangibly with import/2 and export/1.
However the declaration

:- use module(module).

which is often used in other Prolog systems, is not equivalent to an XSB import statement, as each
XSB import statement must explicitly declare a list of predicates that are used from each module.
Such a declaration will raise a compilation error.

The declaration

:- import sym from module as sym′.

allows a predicate to be imported from a module, but renamed as sym′ within the importing module.
Such a feature is useful when porting a library written for another Prolog (e.g. a constraint library)
to XSB.

For modules, the base file name is stored in its byte code file, so that renaming a byte-code file
for a mule may cause problems, as the renaming will not affect the information within the byte-code
file. However, byte code files generated for non-modules can be safely renamed.

Module Semantics In XSB’s atom-based module system, the name of each predicate and func-
tion symbol p/n is identified as if it were prefixed with its module name (i.e. base file name). Hence
the occurrence of p/n in two different modules, m1 and m2 are distinct symbols that can be denoted
as m1:p/n and m2:p/n.

Normally, only exported symbols can be imported; if a non-exported symbol p/2 is imported
from a module m1 by module m2 an environment conflict warning will be issued as soon as m1 and
m2 are loaded in the same session – i.e. the conflict is detected at run-time. When a non-module
file is loaded, its predicates and symbols are loaded into the module usermod, which is the working
module of the XSB command-line interpreter and C-calling XSB interface. Dynamically asserted
code is also loaded into usermod by default. Currently the following set of rules is used to determine
the module prefix of a symbol:

• A predicate symbol p/n is defined in a module m if m contains a clause with head p/n or
a dynamic declaration for p/n. Any predicate symbol p/n defined in a module m, whether
exported or not, can be called by prepending the module prefix using the :/2 functor, e.g.
m:p(A,...). For brevity, we call this an explicit module call to p/n. The following example
illustrates these principles.

CHAPTER 3. SYSTEM DESCRIPTION 22

Exported and Non-Exported Predicates

m1

:- export p/2.

exported(a,b).

local(c,d).

| ?- exported(X,Y).

X = a

Y = b

yes

| ?- local(X,Y).

/* Existence Error */

| ?- m1:local(X,Y).

X = c

Y = d

yes

• Every predicate symbol defined in a module is assumed by default to be local to a module
unless it is declared otherwise by an export or import declaration. Symbols that are local to
a given module are not visible to other modules except through explicit module calls. The
following example shows how different declarations for dynamic predicates within a module
may be global (usermod) or local. Calls to statically defined predicates behave similarly.

CHAPTER 3. SYSTEM DESCRIPTION 23

Visibility of Dynamic Predicates

m1 m2

:- export p1/2, p2/2, p3/2, p4/2.

:- dynamic d1/2.

:- import d2/2 from usermod.

p10:- a1.

p1(X,Y):- assert(d1(X,Y)).

p2(X,Y):- d1(X,Y).

p2(X,Y):- assert(d2(X,Y)).

p3(X,Y):- d2(X,Y).

| ?- [m1].

[m1 loaded]

yes

| ?- p1(a,b).

yes

| ?- p2(X,Y).

X = a

Y = b

yes

| ?- d1(X,Y).

/* Existence Error */

| ?- m1:d1(X,Y).

X = a

Y = b

yes

| ?- p3(1,2).

yes

| ?- p4(X,Y).

X = 1

Y = 2

yes

| ?- d2(X,Y).

X = 1

Y = 2

yes

• Functors that occur as literals in the bodies of clauses, are treated as predicate symbols.

– Standard predicates are taken to be a part of usermod, and are implicitly imported
into user-defined modules. Standard predicates include ISO predicates along with many
other XSB predicates for tabling, indexing and other functions. The current listing of
standard predicates can be found in the index of this manual under Standard predicates.

CHAPTER 3. SYSTEM DESCRIPTION 24

– Other predicates are taken to be local to the module in which they occur.

• Functors that do not occur as literals in the body of clauses in a module are taken to be
structure symbols. These symbols are assumed to be global and do not require an explicit
module call to be used, unless declared otherwise through a local/1 declaration. In addition,
terms that are dynamically created by standard predicates such as read/1, functor/3,

’=..’/2, etc) are taken to be structure symbols and are contained in usermod.

• All atoms are assumed to be global and do not require an explicit module call to be used.
This can occasionally lead to unexpected results if a token is used both as an atom and a
0-ary function symbol. In the following table, the query ?- p10 will call a1/0, while ?- p11.

will throw an existence error.

Atoms and 0-ary Predicates

m1 m2

:- export p10/0, p11/0.

:- import a1/0 from m2.

p10:- a1.

p11:- atom_chars(A1,[a,’1’]),

call(A1).

:- export a1/0.

a1:- writeln(found_a1).

For clarity, we state a few consequences of these rules.

• In Version 3.3, a module cannot export predicate symbols that are imported from other
modules. This happens because an import declaration is considered a request for permission
to use a symbol from a module where its definition and an export declaration appear.

• The implicit module for a particular symbol appearing in a module must be uniquely deter-
mined. As a consequence, a symbol of a specific functor/arity cannot be declared as both
exported and local, or (as just discussed) both exported and imported from another module,
or declared to be imported from more than one module, etc. These types of environment
conflicts are detected at compile-time and abort the compilation.

• If a module m1 imports a predicate p/n from a module m2, but m2 does not export p/n, nothing
is detected at the time of compilation. As discussed above, if p/n is defined in m2 a runtime
warning about an environment conflict will be issued. However, if p/n is not defined in m2, a
runtime existence error will be thrown 4.

• Only one definition of a symbol p/n can appear in a module, without being explicitly asso-
ciated with a module using the :/2 functor. Accordingly only one default definition of p/n
can be loaded into the interpreter’s module (usermod). An attempt to load a module that
redefines p/n results in a warning to the user and the newly loaded symbol redefines the
definition of the previously loaded one.

4This behavior can be altered through the Prolog flag unknown.

CHAPTER 3. SYSTEM DESCRIPTION 25

Usage inference and the module system The import and export statements of a module
M are used by the compiler for inferring usage of predicates. At compilation time, if a predicate
P/N occurs as callable in the body of a clause defined in M , but P is neither defined in M nor
imported into M from some other module, a warning is issued that P/N is undefined. Here “occurs
as callable” means that P/N is found as a literal in the body of a clause, or within a system meta-
predicate, such as assert/1, findall/3, etc. Currently, occurrences of a term inside user-defined
meta-predicates are not considered as callable by XSB’s usage inference algorithm. Alternatively,
if P/N is defined in M , it is used if P/N is exported by M , or if P/N occurs as callable in a
clause for a predicate that is used in M . The compiler issues warnings about all unused predicates
in a module. On the other hand, since all modules are compiled separately, the usage inference
algorithm has no way of checking whether a predicate imported from a given module is actually
exported by that module.

Usage inference can be highly useful during code development for ensuring that all predicates
are defined within a set of files, for eliminating dead code, etc. In addition, import and export
declarations are used by the xsbdoc documentation system to generate manuals for code 5. For
these reasons, it is sometimes the case that usage inference is desired even in situations where a
given file is not ready to be made into a module, or it is not appropriate for the file to be a module
for some other reason. In such a case the directives document export/1 and document import/1

can be used, and have the same syntax as export/1 and import/1, respectively. These directives
affect only usage inference and xsbdoc. A file is treated as a module if and only if it includes an
export/1 statement, and only import/1 statements affect dynamic loading and name resolution
for predicates.

3.5 Standard Predicates in XSB

Whenever XSB is invoked, a large set of standard predicates are defined and can be called from
the interpreter or other interface 6. These predicates include the various ISO predicates [33], along
with predicates for tabling, I/O, for interaction with the operating system, for HiLog, and for much
other functionality. Standard predicates are listed in this manual under the index heading Standard
predicates and at an implementation level are declared in the file $XSB DIR/syslib/std xsb.P. If
a user wishes to redefine a standard predicate, she has several choices. First, the appropriate fact
in $XSB DIR/syslib/std xsb.P should be commented out. Once this is done, a user may define
the predicate as any other user predicate. Alternately, the compiler option allow redefinition

can be used to allow the compiler to redefine a standard predicate (Section 3.10.2). If a user wants
to make a new definition or new predicate standard, the safest course is to put the predicate into a
module in the lib directory, and add or modify an associated fact in $XSB DIR/syslib/std xsb.P.

5Further information on xsbdoc can be found in $XSB DIR/packages/xsbdoc.
6Such predicates are sometimes called “built-ins” in other Prologs.

CHAPTER 3. SYSTEM DESCRIPTION 26

3.6 The Dynamic Loader and its Search Path

XSB differs from some other Prolog system in its ability to dynamically load modules. In XSB, the
loading of user modules and Prolog libraries (such as the XSB compiler) is delayed until predicates
in them are actually needed, saving program space for large Prolog applications. Dynamic loading
is done by default, unlike other systems where it is not the default for non-system libraries.

When a predicate imported from another module (see Section 3.4) is called during execution,
the dynamic loader is invoked automatically if the module is not yet loaded into the system, The
default action of the dynamic loader is to search for the byte code file of the module first in the
system library directories (in the order lib, syslib, and then cmplib), and finally in the current
working directory. If the module is found in one of these directories, then it will be loaded (on
a first-found basis). Otherwise, an error message will be displayed on the current error stream
reporting that the module was not found. Because system modules are dynamically loaded, the
time it takes to compile a file is slightly longer the first time the compiler is invoked in a session
than for subsequent compilations.

3.6.1 Changing the Default Search Path and the Packaging System

library directory(+Path)

The default search path of the dynamic loader is based on the dynamic predicate library directory/1

so it can easily be changed. For instance, to make sure a user’s home directory is loaded, the goal
assert(library directory(’ /’)) needs to be executed from the command line or from within
a program. If you always want XSB to search particular directories, the easiest way is to have a file
named .xsb/xsbrc.P in the user’s home directory. User-supplied library directories are searched
by the dynamic loader before searching the default library directories. The .xsb/xsbrc.P file,
which is automatically consulted by the XSB interpreter, might look like the following:

:- assert(library_directory(’~/’)).

:- assert(library_directory(’/usr/lib/sbprolog’)).

After loading the module of the above example the user’s home directory is searched first,
then "/usr/lib/sbprolog/", and finally XSB’s system library directories (lib, syslib, cmplib)
as well as the current working directory. XSB also uses library directory/1 for internal pur-
poses. For instance, before the user’s .xsb/xsbrc.P is consulted, XSB puts the packages di-
rectory and the directory .xsb/config/$CONFIGURATION on the library search path. The direc-
tory .xsb/config/$CONFIGURATION is used to store user libraries that are machine or OS depen-
dent. ($CONFIGURATION for a machine is something that looks like sparc-sun-solaris2.6 or
pc-linux-gnu, and is selected by XSB automatically at run time). If a user wished, say, to search
the current working directory before her home directory, she could simply add

:- asserta(library_directory(’./’)).

CHAPTER 3. SYSTEM DESCRIPTION 27

to her .xsb/xsbrc.P file (or anywhere else). The file .xsb/xsbrc.P is not limited to setting the
library search path. In fact, arbitrary Prolog code can go there so that XSB can be initialized in
any manner desired.

We emphasize that in the presence of a .xsb/xsbrc.P file it is the user’s responsibility to
avoid module name clashes with modules in XSB’s system library directories. Such name clashes
can cause unexpected behavior as system code may try to load a user’s predicates. The list of
module names in XSB’s system library directories can be found by looking through the directories
$XSB DIR/{syslib,cmplib,lib}.

Apart from the user libraries, XSB now has a simple packaging system. A package is an
application consisting of one or more files that are organized in a subdirectory of one of the XSB
system or user libraries. The system directory $XSB_DIR/packages has a number examples of such
packages, many of which are documented in Volume 2 of this manual, or contain their own manuals.
Packages are convenient as a means of organizing large XSB applications, and for simplifying user
interaction with such applications. User-level packaging is implemented through the predicate

bootstrap_userpackage(+LibraryDir, +PackageDir, +PackageName).

which must be imported from the packaging module.

To illustrate, suppose you wanted to create a package, foobar, inside your own library, my lib.
Here is a sequence of steps you can follow:

1. Make sure that my lib is on the library search path by putting an appropriate assert statement
in your xsbrc.P.

2. Make a subdirectory ~/my_lib/foobar and organize all the package files there. Designate
one file, say, foo.P, as the entry point, i.e., the application file that must be loaded first.

3. Create the interface program ~/my_lib/foobar.P with the following content:

:- bootstrap_userpackage(’~/my_lib’, ’foobar’, foobar), [foo].

The interface program and the package directory do not need to have the same name, but it
is convenient to follow the above naming schema.

4. Now, if you need to invoke the foobar application, you can simply type [foobar]. at the
XSB prompt. This is because both and ~/my_lib/foobar have already been automatically
added to the library search path.

5. If your application files export many predicates, you can simplify the use of your package by
having ~/my_lib/foobar.P import all these predicates, renaming them, and then exporting
them. This provides a uniform interface to the foobar module, since all the package predicates
are can now be imported from just one module, foobar.

CHAPTER 3. SYSTEM DESCRIPTION 28

In addition to adding the appropriate directory to the library search path, the bootstrap_userpackage/3
predicate also adds information to the predicate package_configuration/3, so that other appli-
cations could query the information about loaded packages.

Packages can also be unloaded using the predicate unload_package/1. For instance,

:- unload_package(foobar).

removes the directory ~/my_lib/foobar from the library search path and deletes the associated
information from package_configuration/3.

Finally, if you have developed and tested a package that you think is generally useful and you
would like to distribute it with XSB, please contact xsb-development@sourceforge.net.

3.6.2 Dynamically loading predicates in the interpreter

Modules are usually loaded into an environment when they are consulted (see Section 3.9). Specific
predicates from a module can also be imported into the run-time environment through the standard
predicate import PredList from Module. Here, PredList can either be a Prolog list or a comma
list. (The import/1 can also be used as a directive in a source module (see Section 3.4).

We provide a sample session for compiling, dynamically loading, and querying a user-defined
module named quick sort. For this example we assume that quick sort.P is a file in the current
working directory, and contains the definitions of the predicates concat/3 and qsort/2, both of
which are exported.

| ?- compile(quick_sort).

[Compiling ./quick_sort]

[quick_sort compiled, cpu time used: 1.439 seconds]

yes

| ?- import concat/3, qsort/2 from quick_sort.

yes

| ?- concat([1,3], [2], L), qsort(L, S).

L = [1,3,2]

S = [1,2,3]

yes.

The standard predicate import/1 does not load the module containing the imported predicates,
but simply informs the system where it can find the definition of the predicate when (and if) the
predicate is called.

3.7 Command Line Arguments

There are several command line options for the emulator. The general synopsis obtained by the
command $XSB DIR/bin/xsb --help is:

CHAPTER 3. SYSTEM DESCRIPTION 29

xsb [flags] [-l]

xsb [flags] module

xsb [flags] -B boot_module [-D cmd_loop_driver] [-t]

xsb [flags] -B module.suffix -d

xsb [-h | -v | --help | --version]

module:

Module to execute after XSB starts up.

Module should have no suffixes, and either be an absolute pathname

the file module.xwam must be on the library search path.

boot_module:

This is a developer’s option.

The -B flags tells XSB which bootstrapping module to use instead

of the standard loader. The loader must be specified using its

full pathname, and boot_module.xwam must exist.

module_to_disassemble:

This is a developer’s option.

The -d flag tells XSB to act as a disassembler.

The -B flag specifies the module to disassemble.

cmd_loop_driver:

The top-level command loop driver to be used instead of the

standard one. Usually needed when XSB is run as a server.

-B : specify the boot module to use in lieu of the standard loader

-D : Sets top-level command loop driver to replace the default

-t : trace execution at the SLG-WAM instruction level

(for this to work, build XSB with the --debug option)

-d : disassemble the loader and exit

-v, --version : print the version and configuration information about XSB

-h, --help : print this help message

Flags:

-e goal : evaluate goal when XSB starts up

-p : enable Prolog profiling through use of profile_call/1

-l : the interpreter prints unbound variables using letters

--nobanner : don’t show the XSB banner on startup

--quietload : don’t show the ‘module loaded’ messages

--noprompt : don’t show prompt (for non-interactive use)

-S : set default tabling method to call-subsumption

--max_subgoal_depth N : set maximum tabled subgoal depth to N (default is maximum integer)

--max_subgoal_action A : set action on maximum subgoal depth: e(rror)/a(bstract)/w(arn)

--max_tries N : allow up to N tries for interning terms

--max_threads N : maintain information for up to N threads (MT engine only)

--max_mqueues N : allow up to N message queues (MT engine only)

--shared_predicates : make predicates thread-shared by default

-g gc_type : choose heap garbage collection ("indirection","none" or "copying")

-c N [unit] : initially allocate N units (default KB) for the trail/choice-point stack

-m N [unit] : initially allocate N units (default KB) for the local/global stack

-o N [unit] : initially allocate N units (default KB) for the SLG completion stack

-r : turn off automatic stack expansion

-T : print a trace of each called predicate

CHAPTER 3. SYSTEM DESCRIPTION 30

unit: k/K memory in kilobytes; m/M in megabytes; g/G in gigabytes

Command-line Options These options tend to be most useful for developers.

-t Traces through code at SLG-WAM instruction level. This option is intended for developers and
is not fully supported. It is also not available when the system is being used at the non-debug
mode (see Section 10).

-D Tells XSB to use a top-level command loop driver specified here instead of the standard XSB
interpreter. This is most useful when XSB is used as a server.

-d Produces a disassembled dump of byte code file to stdout and exits.

Flags The order in which flags appear makes no difference.

General Flags

-e goal Pass goal to XSB at startup. This goal is evaluated right before the first prompt is
issued. For instance, xsb -e "write(Hello!’), nl.”’ will print a heart-warming message
when XSB starts up.

-p Enables the engine to collect information that can be used for profiling. See Volume 2 of
this manual for details.

-l Forces the interpreter to print unbound variables as letters, as opposed to the default
setting which prints variables as memory locations prefixed with an underscore. For
example, starting XSB’s interpreter with this option will print the following:

| ?- Y = X, Z = 3, W = foo(X,Z).

Y = A

X = A

Z = 3

W = foo(A,3)

as opposed to something like the following:

| ?- Y = X, Z = 3, W = foo(X,Z).

Y = _h118

X = _h118

Z = 3

W = foo(_h118,3);

--nobanner Start XSB without showing the startup banner. Useful in batch scripts and for
interprocess communication (when XSB is launched as a subprocess). For instance,

CHAPTER 3. SYSTEM DESCRIPTION 31

xsb -e "writeln(’hello world’),halt."

[xsb_configuration loaded]

[sysinitrc loaded]

XSB Version 3.1 (Incognito) of August 10, 2007

[i386-apple-darwin8.9.1; mode: optimal; engine: slg-wam; scheduling: local; word size:

Evaluating command line goal:

| ?- writeln(’hello world’),halt.

| ?- hello world

End XSB (cputime 0.02 secs, elapsetime 0.02 secs)

Prints out quite a bit of verbiage. Using the --nobanner option reduces this verbiage
somewhat.

xsb --nobanner -e "writeln(’hello world’),halt."

[xsb_configuration loaded]

[sysinitrc loaded]

Evaluating command line goal:

| ?- writeln(’hello world’),halt.

| ?- hello world

--quietload Do not tell when a new module gets loaded. Again, is quseful in non-interactive
activities and for interprocess communication. Continuing our example:

xsb --quietload --nobanner -e "writeln(’hello world’),halt."

| ?-

| ?- hello world

--noprompt Do not show the XSB prompt. This is useful only in batch mode and in inter-
process communication when you do not want the prompt to clutter the picture. Putting
all this together, we finally get:

xsb --noprompt --quietload --nobanner -e "writeln(’hello world’),halt."

hello world

So that XSB can be used to write reasonable scripts.

--max threads N Allows XSB to maintain information for up to N threads. This means that
XSB can currently run N threads that are active, or that are inactive, non-detached, and
not yet joined. Has no effect if the engine has been configured without multi-threading.

-S Indicates that tabled predicates are to be evaluated using subsumption-based tabling
as a default for tabled predicates whose tabling method is not specified by using table

CHAPTER 3. SYSTEM DESCRIPTION 32

Predspec as subsumptive or table Predspec as variant(see Section 6.15.1). If this
option is not specified, variant-based tabling will be used as the default tabling method
by XSB.

--shared predicates In the multi-threaded engine, makes all predicates thread-shared by
default; has no effect in the single-threaded engine.

-T Generates a trace at entry to each called predicate (both system and user-defined). This
option is available mainly for people who want to modify and/or extend XSB, and it
is not the normal way to trace XSB programs. For the latter, the standard predicates
trace/0 or debug/0 should be used (see Chapter 10). Note: This option is not available
when the system is being used at the non-tracing mode (see Section 10).

--max subgoal depth N : set maximum tabled subgoal depth to N (default is maximum
integer). This flag sets the depth of a subgoal upon which an action may be taken (such
as throwing an error, abstracting, or issuing a warning.

--max subgoal action A : set action on maximum subgoal depth: e(rror)/a(bstract)/w(arn)

Memory Management Flags

-g gc type Chooses the heap garbage collection strategy that is employed; choice of the
strategy is between the default indirection; copying, which is not fully supported;
or none. See [10] for a description of the indirection garbage collector, and [23] for the
copying garbage collector.

-c size [units] Allocates initial size units of space to the trail/choice-point stack area. The
trail stack grows upward from the bottom of the region, and the choice point stack
grows downward from the top of the region. If units is not provided or is k or K, the
size is allocated in kilobytes; if m or M in megabytes; and if g or G in gigabytes. Because
this region is expanded automatically, this option is rarely needed. If this option is not
speficied the default initial size is 768 KBytes.

-m size [units] Allocates initial size units of space to the local/global stack area. The global
stack grows upward from the bottom of the region, and the local stack grows downward
from the top of the region. If units is not provided or is k or K, the size is allocated
in kilobytes; if m or M in megabytes; and if g or G in gigabytes. Because this region is
expanded automatically, this option is rarely needed. If this option is not specified the
default initial size is 768 KBytes.

-o size [units] Allocates initial size units of space to the completion stack area. If units is
not provided or is k or K, the size is allocated in kilobytes; if m or M in megabytes; and if
g or G in gigabytes. Because this region is expanded automatically, this option is rarely
needed. If this option is not specified the default initial size is 768 KBytes.

-r Turns off automatic stack expansion. This can occasionally be useful for isolating memory
management problems.

3.8 Memory Management

All execution stacks are automatically expanded in Version 3.3, including the local stack/heap
region, the trail/choice point region, and the completion stack region. Execution stacks increase

CHAPTER 3. SYSTEM DESCRIPTION 33

their size until it is not possible to do so with available system memory. At that point XSB tries
to find the maximal amount of space that will still fit in system memory. For the main thread,
each of these regions begin with an initial value set by the user at the command-line or with a
default value (see Section 3.7). When a thread is created within an XSB process, the size of the
thread’s execution stacks may be set by thread create/3, otherwise the default values indicated
in Section 3.7 are used. Once XSB is running, these default values may be modified using the
appropriate Prolog flags (see Section 6.12). In addition, whenever a thread exits, memory specific
to that thread is reclaimed.

Heap garbage collection is automatically included in XSB [10, 23]. (To change the algorithm
used for heap garbage collection or to turn it off altogether, see the predicate garbage collection/1

or Section 3.7 for command-line options). In Version 3.3 the default behavior is indirect garbage
collection. Starting with Version 3.0, heap garbage collection may automatically invokes garbage
collection of XSB’s “string” table, which stores Prolog’s atomic constants. Expansion and garbage
collection of execution stacks can occur when multiple threads are active; however atom garbage
collection will not be invoked if there is more than one active XSB thread.

The program area (the area into which XSB byte-code is loaded) is also dynamically expanded
as needed. For dynamic code (created using assert/1, or standard predicates such as load dyn/1

and load dync/1) index size is also automatically reconfigured. Space reclaimed for dynamic code
depends on several factors. If there is only one active thread, space is reclaimed for retracted
clauses and abolished predicates as long as (1) there are no choice points that may backtrack into
the retracted or abolished code, and (2) if the dynamic predicate is tabled, all of its tables are
completed. Otherwise, the code is marked for later garbage collection. If more than one thread is
active, private predicates behave as just described, however space reclamation for shared predicates
will be delayed until there is a single active thread. See Section 6.14 for details.

Space for tables is dynamically allocated as needed and reclaimed through use of abolish all tables/0,
abolish table pred/1, abolish table call/1 and other predicates. As with dynamic code, space
for tables may be reclaimed immediately or marked for later garbage collection depending on
whether choice points may backtrack into the abolished tables, on the number of active threads,
etc. Tabling also includes various stacks used to copy information into or out of tables, most of
which are dynamically allocated and expanded. These stacks may be thread-private or shared
among threads: space for thread-private stacks is reclaimed when a thread exits. See Section 6.15.3
for details.

Perhaps more than a standard Prolog system, XSB is used to evaluate queries in knowledge
representation languages that have a higher level of declarativity than Prolog and as a result may
consume a great deal of space. If XSB needs memory that is unobtainable from the operating
sytsem, it will usually abort with a resource error, and become ready for a new query from its
command line or API. In such a case, a user or program can use statistics/[0,1,2] to investigate
whether and how XSB is consuming memory. Other options to bounding memory include the use
of bounded call/4 or the use of the max memory flag. Use of the max memory flag is recommended
in cases where XSB is embedded in a C program through the C/XSB interface, or is embedded in
or communicating with a java program through Interprolog. In such a case, XSB will abort with a
resource error whenever a memory allocation would exceed the user-defined threshold 7.

7In rare cases, XSB will exit if the inability to allocate more memory will leave it in an inconsistent state (e.g. if

CHAPTER 3. SYSTEM DESCRIPTION 34

3.9 Compiling, Consulting, and Loading

Like other Prologs, XSB provides for both statically compiled code and dynamically asserted code.
Static compiled code may be more optimized than asserted code, particularly for clauses that have
large bodies, but certain types of indexing, such as trie and star indexing are (currently) available
only for dynamically asserted predicates (see index/2).

3.9.1 Static Code

In XSB, there is no difference between compiled and consulted static code: “compiling” in XSB
means creation of a file containing SLG-WAM byte-code; “consulting” means loading such a byte-
code file, after compiling it (if the source file was altered later than the object file).

consult(+Files,+OptionList)

consult(+Files)

[+Files]

The standard predicate consult/[1,2] is the most convenient method for entering static
source code rules into XSB’s database 8. Files is either s source file designator (see Section 3.3)
or a list of source file designators, and Options is a list of options to be passed to XSB’s
compiler if the file needs to be compiled (see Section 3.10). consult(Files) is defined as
consult(Files,[]), as is [Files].

Consulting a file File (module) conceptually consists of the following five steps which are
described in detail in the following paragraphs.

Name Resolution: determine the file that File designates, including directory and drive
location and extension, as discussed in Section 3.3.

Compilation: if the source file or header has changed later than the object file (or if there is
no byte-code file) compile the file using compile/2 with the options specified, creating
a byte-code file. This strategy is used whether the source file is Prolog, C, or C++.

Loading: load the byte-code file into memory.

Importing: if the file is a module, import any exported predicates of that module to usermod.

Query Execution: execute any queries that the file may contain, i.e. any terms with prin-
cipal functor ’?-’/1, or with the principal functor ’:-’/1 and that are not directives
like the ones described in Section 3.10. The queries are executed in the order in which
they appear in the source file.

Error conditions for consult(+File,+Options) are as follows:

• File is not instantiated

– instantiation error

XSB cannot allocate needed memory during heap garbage collection).
8In XSB, reconsult/[1,2] is defined to have the same actions as consult/[1,2].

CHAPTER 3. SYSTEM DESCRIPTION 35

• File is not an atom

– type error(atom,File)

• File does not exist in the current set of library directories

– existence error(file,File)

• File has an object code extension (e.g. .xwam)

– permission error(compile,file,File)

• File has been loaded previously in the session and there is more than one active thread.

– misc error

Error conditions of compiler options are determined by compile/2 which consult/[1,2]

calls.

In addition, ensure loaded/[1,2] acts much like consult/[1,2]

ensure loaded(+FileName) ISO
This predicate checks to see whether the object file for FileName is newer than the source
code and header files for FileName, and compiles FileName if not. If FileName is loaded into
memory, ensure loaded/1 does not reload it, unlike consult/1 which will always reload.
In addition, ensure loaded/2 can be used to load a file with dynamic code. It is fully
documented in Section 6.14.1.

3.9.2 Dynamic Code

In XSB, most source code file can also be “consulted” dynamically via the predicates load dyn/[1,2],
load dync/[1,2] and ensure loaded/2. These predicates act as consult/2 in that if a given file
File has already been dynamically loaded, old versions of predicates defined in File will be re-
tracted and their new definitions made to correspond to those in File (except for predicates in
which a multifile/1 declaration is present in File). Dynamic loading can be performed using
XSB’s reader of canonical terms (which does not include operators, but does allow list and comma-
list notation) via load dync/2; dynamic loading using XSB’s general reader for Hilog terms is
performed via load dyn/2.

The predicates mentioned above are described more fully in Chapter 6. Here, we simply compare
the tradeoffs of static and dynamic loading.

• Advantages for Dynamic Loading

– For large files, containing 104 − 107 clauses, dynamic loading is much faster than XSB’s
compiler, especially when the canonical reader is used.

– Dynamically loaded files have advantages of dynamic code including star-, trie, com-
pound, and alternate indexes, as well as being modifiable via assert and retract.

• Advantages for Static Compilation

CHAPTER 3. SYSTEM DESCRIPTION 36

– Although dynamically loaded predicates are compiled into SLG-WAM code, compiled
static clauses are more optimized than dynamically predicates, particularly when the
clauses have large bodies or when arithmetic is used. For facts and pure binary predicates
(those containing a single literal in their body) however, static and dynamic byte code
is essentially the same.

– Dynamic loading does not allow module/export declarations, mode declarations, or uni-
fication factoring. It does however, allow files to import predicates, allows tabling and
dynamic declarations (except for auto table and suppl table, and operator declara-
tions (when a canonical read is not used).

3.9.3 The multifile directive

The default action upon loading a file or module is to delete all previous byte-code for predicates
defined in the file. If this is not the desired behavior, the user may add to the file a declaration

:- multifile Predicate List .

where Predicate List is a list of predicates in functor/arity form. The effect of this declaration is
to delete only those clauses of predicate/arity that were defined in the file itself. If a predicate
P is to be treated as multifile, the multifile/1 directive for P must appear in all files that contain
clause definitions for P . If P is dynamic, this means that the multifile declaration for P must
appear in files defining P whether they are compiled and consulted, or dynamically loaded via
load dyn/[1,2] or load dync/[1,2].

3.10 The Compiler

The XSB compiler translates XSB source files into byte-code object files. It is written entirely
in Prolog. Both the sources and the byte code for the compiler can be found in the XSB system
directory cmplib. Prior to compiling, XSB filters the programs through GPP, a preprocessor
written by Denis Auroux (auroux@math.polytechnique.fr). This preprocessor maintains high degree
of compatibility with the C preprocessor, but is more suitable for processing Prolog programs. The
preprocessor is invoked with the compiler option xpp_on as described below. The various features
of GPP are described in Appendix A.

XSB also allows the programmer to use preprocessors other than GPP. However, the modules
that come with XSB distribution require GPP. This is explained below (see xpp_on/1 compiler
option).

The following sections describe the various aspects of the compiler in more detail.

3.10.1 Invoking the Compiler

In addition to invoking the compiler through consult/[1,2], the compiler can be invoked directly
at the interpreter level (or in a program) through the Prolog predicates compile/[1,2].

CHAPTER 3. SYSTEM DESCRIPTION 37

compile(+Files,+OptionList)

compile(+Files)

compile/2 compiles all files specified, using the compiler options specified in OptionList (see
Section 3.10.2 below for the precise details.) Files is either an absolute or relative filename,
or a ground list of absolute or relative file names; and OptionList is a ground list of compiler
options. Since options can be set globally via the predicate set global compiler options/1,
each option in OptionsList can optionally be prefixed by + or -, indicating that the option
is to be turned on, or off, respectively. (No prefix turns the option on.)

| ?- compile(Files).

is just a notational shorthand for the query:

| ?- compile(Files, []).

For a given, File to be compiled, the source file name corresponding to File is obtained by
concatenating a directory prefix and the extension .P, .pl or other filenames as discussed in
Section 3.3. The directory prefix must be in the dynamic loader path (see Section 3.6). Note
that these directories are searched in a predetermined order (see Section 3.6), so if a module
with the same name appears in more than one of the directories searched, the compiler will
compile the first one it encounters. In such a case, the user can override the search order
by providing an absolute path name. If File contains no extension, an attempt is made to
compile the file File.P, File.pl, or other extensions before trying compiling the file with
name File.

We recommend use of the extension .P for Prolog source file to avoid ambiguity. Optionally,
users can also provide a header file for a module (denoted by the module name suffixed by
.H). In such a case, the XSB compiler will first read the header file (if it exists), and then
the source file. Currently the compiler makes no special treatment of header files. They are
simply included in the beginning of the corresponding source files, and code can, in principle,
be placed in either.

The result of the compilation (an SLG-WAM object code file) is stored in (〈filename〉.xwam),
but compile/[1,2] does not load the object file it creates. (The standard predicate consult/[1,2]
loads the object file into the system, after recompiling the source file if needed.) The object
file created is always written into the directory where the source file resides: the user must
therefore have write permission in that directory to avoid an error.

If desired, when compiling a module (file), clauses and directives can be transformed as they
are read. This is indeed the case for definite clause grammar rules (see Chapter 11), but it can
also be done for clauses of any form by providing a definition for predicate term expansion/2

(see Section 11.3).

Predicates compile/[1,2] can also be used to compile foreign language modules. In this
case, the names of the source files should have the extension .c and a .P file must not exist.
A header file (with extension .H) must be present for a foreign language module (see the
chapter Foreign Language Interface in Volume 2).

Error Cases In the cases below, File refers to an element of Files if Files is a list and
otherwise refers to Files itself.

• Files is a variable, or a list containing a variable element.

CHAPTER 3. SYSTEM DESCRIPTION 38

– instantiation error.

• File is a neither an atom nor a list of atoms.

– type error(atom or list of atoms,File)

• File does not exist in the current set of library directories

– existence error(file,File)

• File has an object code extension (e.g. .xwam)

– permission error(compile,file,File)

• File has been loaded previously in the session and there is more than one active thread.

– misc error

• OptionList is a partial list or contains an option that is a variable

– instantiation error

• OptionList is neither a list nor a partial list

– type error(list,OptionsList)

• OptionList contains an option, Option not described in Section 3.10.2

– domain error(xsb compiler option,Option)

3.10.2 Compiler Options

Compiler options can be set in three ways: from a global list of options (set global compiler options/1),
from the compilation command (compile/2 and consult/2), and from a directive in the file to be
compiled (see compiler directive compiler options/1).

set global compiler options(+OptionsList)

OptionsList is a list of compiler options (described below). Each can optionally be prefixed
by + or -, indicating that the option is to be turned on, or off, respectively. (No prefix turns
the option on.) This evaluable predicate sets the global compiler options in the way indicated.
These options will be used in any subsequent compilation, unless they are reset by another
call to this predicate, overridden by options provided in the compile invocation, or overridden
by options in the file to be compiled.

The following options are currently recognized by the compiler:

singleton warnings off Does not print out any warnings for singleton variables during compi-
lation. This option can be useful for compiling XSB programs that have been generated by
some other program.

optimize When specified, the compiler tries to optimize the object code. In Version 3.3, this option
optimizes predicate calls, among other features, so execution may be considerably faster for
recursive loops. However, due to the nature of the optimizations, the user may not be able
to trace all calls to predicates in the program. As expected, the compilation phase will also
be slightly longer. For these reasons, the use of the optimize option may not be suitable for
the development phase, but is recommended once the code has been debugged.

CHAPTER 3. SYSTEM DESCRIPTION 39

allow redefinition By default the compiler refuses to compile a file that contains clauses that
would redefine a standard predicate (unless the sysmod option is in effect.) By specifying this
option, the user can direct the compiler to quietly allow redefinition of standard predicates.

xpp on Filter the program through a preprocessor before sending it to the XSB compiler. By
default (and for the XSB code itself), XSB uses GPP, a preprocessor developed by Denis
Auroux (auroux@math.polytechnique.fr) that has high degree of compatibility with the C
preprocessor, but is more suitable for Prolog syntax. In this case, the source code can include
the usual C preprocessor directives, such as #define, #ifdef, and #include. This option
can be specified both as a parameter to compile/2 and as part of the compiler options/1

directive inside the source file. See Appendix A for more details on GPP.

When an #include "file" statement is encountered, XSB directs the GPP preprocessor to
search for the files to include in the directories $XSB_DIR/emu and $XSB_DIR/prolog_includes.
However, additional directories can be added to this search path by asserting into the predi-
cate gpp_include_dir/1, which must be imported from module parse 9.

Note that when compiling XSB programs, GPP searches the current directory and the di-
rectory of the parent file that contains the include-directive last. If you want additional
directories to be searched, then the following statements must be executed:

:- import gpp_include_dir/1 from parse.

:- assert(gpp_include_dir(’some-other-dir’)).

If you want Gpp to search directories in a different order, gpp options/1 can be used (see
below).

Note: if you assert something into this predicate then you must also retractall(gpp include dir())

after that or else subsequent Prolog compilations might not work correctly.

XSB predefines the constant XSB PROLOG, which can be used for conditional compilation.
For instance, you can write portable program to run under XSB and and other prologs that
support C-style preprocessing and use conditional compilation to account for the differences:

#ifdef XSB_PROLOG

XSB-specific stuff

#else

other Prolog’s stuff

#endif

common stuff

gpp options This dynamic predicate must be imported from module parse. If some atom is
asserted into gpp options then this atom is assumed to be the list of command line options to
be used by the preprocessor (only the first asserted atom is ever considered). If this predicate
is empty, then the default list of options is used (which is ’-P -m -nostdinc -nocurinc’,

9For compatability, XSB also supports the ISO predicate include/1 which also allows extra files to be included
during compilation.

CHAPTER 3. SYSTEM DESCRIPTION 40

meaning: use Prolog mode and do not search the standard C directories and the directory of
the parent file that contains the include-instruction).

As mentioned earlier, when XSB invokes Gpp, it uses the option -nocurinc so that Gpp
will not search the directory of the parent file. If a particular application requires that
the parent file directory must be searched, then this can be accomplished by executing
assert(gpp options(’-P -m -nostdinc’)).

Note: if you assert something into this predicate then you must also retractall(gpp options())

after that or else subsequent Prolog compilations might not work correctly.

xpp dump This causes XSB to dump the output from the GPP preprocessor into a file. If the file
being compiled is named file.P then the dump file is named file.P gpp. This option can
be included in the list of options in the compiler options/1 directive, but usually it is used
for debugging, as part of the compile/2 predicate. If xpp dump is specified directly in the file
using compiler options/1 directive, then it should not follow the gpp on option in the list
(or else it will be ignored).

Note: multiple occurrences of xpp on and xpp dump options are allowed, but only the first
one takes effect—all the rest are ignored!

xpp on/N and xpp dump/N

XSB also allows one to filter program files through a series of external preprocessors in addition
to or instead of GPP. This can be specified with the unary versions of xpp on and xpp dump:

xpp_on(spec1,...,specN)

xpp_dump(spec1,...,specN)

Each spec1, ..., specN is a preprocessor specification of the form preprocessor name or
preprocessor name(options). The preprocessor name is an atom or a function symbol and
options must be an atom. If preprocessor name is gpp, then the GPP preprocessor will
be invoked. Note that gpp can appear anywhere in the aforesaid sequence of specs (or not
appear at all), so it is possible to preprocess XSB files before and/or after (or instead of)
GPP. Note that xpp on(gpp) and xpp dump(gpp) are equivalent to the earlier 0-ary compiler
options xpp on and xpp dump, respectively.

To use a preprocessor other than GPP two things must be done:

• A 4-ary Prolog predicate must be provided, which takes three input arguments and
produces a syntactically correct shell (Unix or Windows) command for invoking the
preprocessor in its fourth argument. The preprocessor must be taking its input either
from the standard input or from a file and send the post-processed result to the standard
output. The arguments to the shell-command-producing predicate are as follows:

– File: this is the XSB input file to be processed. Usually this argument is left unused,
but might be useful for producing error messages or debugging.

– Preprocessor name: this is the name under which the preprocessor is registered (see
below). It is the same as processor name referred to above. This name is up to
the programmer; it is to be used to refer to the preprocessor (it does not need to
be related in any way to the shell-command-producing predicate or to the OS’s
pathname for the preprocessor).

CHAPTER 3. SYSTEM DESCRIPTION 41

– Options: these are the command-line options that the preprocessor might need. If
the preprocessor spec mentioned above is foo(bar) then the preprocessor name
(argument 2) would be bound to foo and options (argument 3) to bar.

– Shell command: this is the only output argument. It is supposed to be the shell
command to be used to invoke the preprocessor. The shell command must not
include the file name to be processed—that name is added automatically as the last
option to the shell command.

• The preprocessor must be registered using the following query:

:- import register_xsb_preprocessor/2 from parse.

?- register_xsb_preprocessor(preproc_name,preproc_predicate(_,_,_,_)).

Here preproc name is the user-given name for the preprocessor and preproc predicate

is the 4-ary shell-command-producing predicate described earlier.

The registration query must be executed before the start of the preprocessing of the
input XSB file. Clearly, this implies that the shell-command-producing predicate must
be in a different file than the one being preprocessed.

Note: one cannot register the same preprocessor twice. The second time the same name is
used, it is ignored. However, it is possible to register the same shell-command-producing
predicate twice, if the user registers them under different preprocessor names.

The difference between xpp on/N and xpp dump/N is that the latter also saves the output of
each preprocessing stage in a separate file. For instance, if the XSB file to be preprocessed is
abc.P and the xpp dump/N option has the form xpp dump(foo,gpp,bar) then three files will
be produced: abc.P foo, abc.P gpp, abc.P bar, each containing the result of the respective
stage in preprocessing.

Here is an example. Suppose that foobar.P includes the definition of the following predicate

make_append_cmd(_File,_Name,Options,ResultingCmd) :-

fmt_write_string(ResultingCmd, ’"/bin/cat" "%s"’, arg(Options)).

and also has the following registration query:

?- parse:register_xsb_preprocessor(appendfile,make_append_cmd(_,_,_,_)).

Suppose that the file abc.P includes the following compiler directive:

:- compiler_options([xpp_on(appendfile(’data.P’),gpp)]).

If the file foobar.P is loaded before compiling abc.P then the file data.P will be first appended
to foobar.P and then the result will be processed by GPP. The final result will be parsed
and compiled by XSB.

Note that although the parameters File and Name are not used by make append cmd/4 in
our example, when this predicate is called they will be bound to foobar.P and appendfile,
respectively, and could be used for various purposes.

CHAPTER 3. SYSTEM DESCRIPTION 42

quit on error This causes XSB to exit if compilation of a program end with an error. This option
is useful when running XSB from a makefile, when it is necessary to stop the build process
after an error has been detected. For instance, XSB uses this option during its own build
process.

auto table When specified as a compiler option, the effect is as described in Section 3.10.4. Briefly,
a static analysis is made to determine which predicates may loop under Prolog’s SLD evalua-
tion. These predicates are compiled as tabled predicates, and SLG evaluation is used instead.

suppl table The intention of this option is to direct the system to table for efficiency rather than
termination. When specified, the compiler uses tabling to ensure that no predicate will depend
on more than three tables or EDB facts (as specified by the declaration edb of Section 3.10.4).
The action of suppl table is independent of that of auto table, in that a predicate tabled
by one will not necessarily be tabled by the other. During compilation, suppl table occurs
after auto table, and uses table declarations generated by it, if any.

spec repr When specified, the compiler performs specialization of partially instantiated calls by
replacing their selected clauses with the representative of these clauses, i.e. it performs folding
whenever possible. In general specialization with replacement is correct only under certain
conditions. XSB’s compiler checks for sufficient conditions that guarantee correctness, and
if these conditions are not met, specialization with replacement is not performed for the
violating calls.

spec off When specified, the compiler does not perform specialization of partially instantiated
calls.

unfold off When specified, singleton sets optimizations are not performed during specialization.
This option is necessary in Version 3.3 for the specialization of table declarations that select
only a single chain rule of the predicate.

spec dump Generates a module.spec file, containing the result of specializing partially instantiated
calls to predicates defined in the module under compilation. The result is in Prolog source
code form.

ti dump Generates a module.ti file containing the result of applying unification factoring to pred-
icates defined in the module under compilation. The result is in Prolog source code form. See
page 49 for more information on unification factoring.

ti long names Used in conjunction with ti dump, generates names for predicates created by uni-
fication factoring that reflect the clause head factoring done by the transformation.

modeinfer This option is used to trigger mode analysis. For each module compiled, the mode
analyzer creates a module.D file that contains the mode information.

Warning: Occasionally, the analysis itself may take a long time. As far as we have seen,
the analysis times are longer than the rest of the compilation time only when the module
contains recursive predicates of arity ≥ 10. If the analysis takes an unusually long time (say,
more than 4 times as long as the rest of the compilation) you may want to abort and restart
compilation without modeinfer.

CHAPTER 3. SYSTEM DESCRIPTION 43

mi warn During mode analysis, the .D files corresponding to the imported modules are read in.
The option mi warn is used to generate warning messages if these .D files are outdated —
i.e., older than the last modification time of the source files.

mi foreign This option is used only when mode analysis is performed on XSB system modules.
This option is needed when analyzing standard and machine in syslib.

sysmod Mainly used by developers when compiling system modules and used for boot-strapping. If
specified, standard predicates (see /$XSB DIR/syslib/std xsb.P) are automatically available
for use only if they are primitive predicates (see the file $XSB DIR/syslib/machine.P for a
current listing of primitive predicates.) When compiling in this mode, non-primitive standard
predicates must be explicitly imported from the appropriate system module. Also standard
predicates are permitted to be defined.

verbo Compiles the files (modules) specified in “verbose” mode, printing out information about
the progress of the compilation of each predicate.

profile This option is usually used when modifying the XSB compiler. When specified, the
compiler prints out information about the time spent in certain phases of the compilation
process.

asm dump, compile off Generates a textual representation of the SLG-WAM assembly code and
writes it into the file module.A where module is the name of the module (file) being compiled.

Warning: This option was created for compiler debugging and is not intended for general
use. There might be cases where compiling a module with these options may cause generation
of an incorrect .A and .xwam file. In such cases, the user can see the SLG-WAM instructions
that are generated for a module by compiling the module as usual and then using the -d

module.xwam command-line option of the XSB emulator (see Section 3.7).

index off When specified, the compiler does not generate indices for the predicates compiled.

3.10.3 Specialization

From Version 1.4.0 on, the XSB compiler automatically performs specialization of partially instan-
tiated calls. Specialization can be thought as a source-level program transformation of a program
to a residual program in which partially instantiated calls to predicates in the original program are
replaced with calls to specialized versions of these predicates. The expectation from this process is
that the calls in the residual program can be executed more efficiently that their non-specialized
counterparts. This expectation is justified mainly because of the following two basic properties of
the specialization algorithm:

Compile-time Clause Selection The specialized calls of the residual program directly select (at
compile time) a subset containing only the clauses that the corresponding calls of the original
program would otherwise have to examine during their execution (at run time). By doing so,
laying down unnecessary choice points is at least partly avoided, and so is the need to select
clauses through some sort of indexing.

CHAPTER 3. SYSTEM DESCRIPTION 44

Factoring of Common Subterms Non-variable subterms of partially instantiated calls that are
common with subterms in the heads of the selected clauses are factored out from these terms
during the specialization process. As a result, some head unification (get * or unify *) and
some argument register (put *) WAM instructions of the original program become unneces-
sary. These instructions are eliminated from both the specialized calls as well as from the
specialized versions of the predicates.

Though these properties are sufficient to get the idea behind specialization, the actual specialization
performed by the XSB compiler can be better understood by the following example. The example
shows the specialization of a predicate that checks if a list of HiLog terms is ordered:

ordered([]).

ordered([X]).

ordered([X,Y|Z]) :-

X @=< Y, ordered([Y|Z]).

−→

ordered([]).

ordered([X]).

ordered([X,Y|Z]) :-

X @=< Y, $ordered(Y, Z).

:- index $ordered/2-2.

$ordered(X, []).

$ordered(X, [Y|Z]) :-

X @=< Y, $ordered(Y, Z).

The transformation (driven by the partially instantiated call ordered([Y|Z])) effectively allows
predicate ordered/2 to be completely deterministic (when used with a proper list as its argument),
and to not use any unnecessary heap-space for its execution. We note that appropriate :- index

directives are automatically generated by the XSB compiler for all specialized versions of predicates.

The default specialization of partially instantiated calls is without any folding of the clauses
that the calls select. Using the spec repr compiler option (see Section 3.10.2) specialization with
replacement of the selected clauses with the representative of these clauses is performed. Using this
compiler option, predicate ordered/2 above would be specialized as follows:

ordered([]).

ordered([X|Y]) :- _$ordered(X, Y).

:- index _$ordered/2-2.

_$ordered(X, []).

_$ordered(X, [Y|Z]) :- X @=< Y, _$ordered(Y, Z).

We note that in the presence of cuts or side-effects, the code replacement operation is not always
sound, i.e. there are cases when the original and the residual program are not computationally
equivalent (with respect to the answer substitution semantics). The compiler checks for sufficient
(but not necessary) conditions that guarantee computational equivalence, and if these conditions
are not met, specialization is not performed for the violating calls.

The XSB compiler prints out messages whenever it specialises calls to some predicate. For
example, while compiling a file containing predicate ordered/1 above, the compiler would print
out the following message:

CHAPTER 3. SYSTEM DESCRIPTION 45

% Specialising partially instantiated calls to ordered/1

The user may examine the result of the specialization transformation by using the spec dump

compiler option (see Section 3.10.2).

Finally, we have to mention that for technical reasons beyond the scope of this document,
specialization cannot be transparent to the user; predicates created by the transformation do appear
during tracing.

3.10.4 Compiler Directives

Consider a directive

:- foo(a).

That occurs in a file that is to be compiled. There are two logical interpretations of such a directive.

1. foo(a) is to be executed upon loading the file; or

2. foo(a) provides information used by the compiler in compiling the file.

By default, the interpretation of a directive is as in case (1) except in the case of the compiler
directives listed in this section, which as their name implies, are taken to provide information to the
compiler. Some of the directives, such as the mode/1 directive, have no meaning as an executable
directive, while others, such as import/2 do. In fact as an executable directive import/2 imports
predicates into usermod. For such a directive, a statement beginning with ?-, such as

?- import foo/1 from myfile.

indicates that the directive should be executed upon loading the file, and should have no meaning
to the compiler. On the other hand, the statement

:- import foo/1 from myfile.

Indicates that foo/1 terms in the file to be compiled are to be understood as myfile:foo/1. In
other words, the statement is used by the compiler and will not be executed upon loading. For
non-compiler directives the use of ?- and :- has no effect — in both cases the directive is executed
upon loading the file.

The following compiler directives are recognized in Version 3.3 of XSB

Including Files in a Compilation

include(+FileName) ISO

CHAPTER 3. SYSTEM DESCRIPTION 46

The ISO directive

:- include(FileName)

Causes the compiler to act as if the code from FileName were contained at the position
where the directive was encountered. XSB’s preprocessor can perform the same function via
the command #include FileName and can support more sophisticated substitutions, but
include/1 should be used if code portability is desired.

Mode Declarations

The XSB compiler accepts mode declarations of the form:

:- mode ModeAnnot1, . . . , ModeAnnotn.

where each ModeAnnot is a mode annotation (a term indicator whose arguments are elements of
the set {+,-,#,?}). From Version 1.4.1 on, mode directives are used by the compiler for tabling
directives, a use which differs from the standard use of modes in Prolog systems10. See Section 3.10.4
for detailed examples.

Mode annotations have the following meaning:

+ This argument is an input to the predicate. In every invocation of the predicate, the argument
position must contain a non-variable term. This term may not necessarily be ground, but the
predicate is guaranteed not to alter this argument).

:- mode see(+), assert(+).

- This argument is an output of the predicate. In every invocation of the predicate the argument
position will always be a variable (as opposed to the # annotation below). This variable is
unified with the value returned by the predicate. We note that Prolog does not enforce the
requirement that output arguments should be variables; however, output unification is not
very common in practice.

:- mode cputime(-).

This argument is either:

• An output argument of the predicate for which a non-variable value may be supplied
for this argument position. If such a value is supplied, the result in this position is
unified with the supplied supplied value. The predicate fails if this unification fails. If a
variable term is supplied, the predicate succeeds, and the output variable is unified with
the return value.

:- mode ’=’(#,#).

• An input/output argument position of a predicate that has only side-effects (usually by
further instantiating that argument). The # symbol is used to denote the ± symbol that
cannot be entered from the keyboard.

10The most common uses of mode declarations in Prolog systems are to reduce the size of compiled code, or to
speed up a predicate’s execution.

CHAPTER 3. SYSTEM DESCRIPTION 47

? This argument does not fall into any of the above categories. Typical cases would be the following:

• An argument that can be used both as input and as output (but usually not with both
uses at the same time).

:- mode functor(?,?,?).

• An input argument where the term supplied can be a variable (so that the argument can-
not be annotated as +), or is instantiated to a term which itself contains uninstantiated
variables, but the predicate is guaranteed not to bind any of these variables.

:- mode var(?), write(?).

We try to follow these mode annotation conventions throughout this manual.

Finally, we warn the user that mode declarations can be error-prone, and since errors in mode
declarations do not show up while running the predicates interactively, unexpected behavior may
be witnessed in compiled code, optimized to take modes into account (currently not performed by
XSB). However, despite this danger, mode annotations can be a good source of documentation,
since they express the programmer’s intention of data flow in the program.

Tabling Directives

Memoization is often necessary to ensure that programs terminate, and can be useful as an opti-
mization strategy as well. The underlying engine of XSB is based on SLG, a memoization strategy,
which, in our version, maintains a table of calls and their answers for each predicate declared as
tabled. Predicates that are not declared as tabled execute as in Prolog, eliminating the expense of
tabling when it is unnecessary.

The simplest way to use tabling is to include the directive

:- auto table.

anywhere in the source file. auto table declares predicates tabled so that the program will termi-
nate.

To understand precisely how auto table does this, it is necessary to mention a few properties
of SLG. For programs which have no function symbols, or where function symbols always have a
limited depth, SLG resolution ensures that any query will terminate after it has found all correct
answers. In the rest of this section, we restrict consideration to such programs.

Obviously, not all predicates will need to be tabled for a program to terminate. The auto table

compiler directive tables only those predicates of a module which appear to static analysis to contain
an infinite loop, or which are called directly through tnot/1. It is perhaps more illuminating to
demonstrate these conditions through an example rather than explaining them. For instance, in
the program.

:- auto_table.

p(a) :- s(f(a)).

CHAPTER 3. SYSTEM DESCRIPTION 48

s(X) :- p(f(a)).

r(X) :- q(X,W),r(Y).

m(X) :- tnot(f(X)).

:- mode ap1(-,-,+).

ap1([H|T],L,[H|L1]) :- ap1(T,L,L1).

:- mode ap(+,+,-).

ap([],F,F).

ap([H|T],L,[H|L1]) :- ap(T,L,L1).

mem(H,[H|T]).

mem(H,[_|T]) :- mem(H,T).

The compiler prints out the messages

% Compiling predicate s/1 as a tabled predicate

% Compiling predicate r/1 as a tabled predicate

% Compiling predicate m/1 as a tabled predicate

% Compiling predicate mem/2 as a tabled predicate

Terminating conditions were detected for ap1/3 and ap/3, but not for any of the other predi-
cates.

auto table gives an approximation of tabled programs which we hope will be useful for most
programs. The minimal set of tabled predicates needed to ensure termination for a given program
is undecidable. It should be noted that the presence of meta-predicates such as call/1 makes any
static analysis useless, so that the auto table directive should not be used in such cases.

Predicates can be explicitly declared as tabled as well, through the table/1. When table/1 is
used, the directive takes the form

:- table(F/A).

where F is the functor of the predicate to be tabled, and A its arity.

Another use of tabling is to filter out redundant solutions for efficiency rather than termination.
In this case, suppose that the directive edb/1 were used to indicate that certain predicates were
likely to have a large number of clauses. Then the action of the declaration :- suppl table in the
program:

:- edb(r1/2).

:- edb(r2/2).

:- edb(r3/2).

:- suppl_table.

CHAPTER 3. SYSTEM DESCRIPTION 49

join(X,Z):- r1(X,X1),r2(X1,X2),r3(X2,Z).

would be to table join/2. The suppl table directive is the XSB analogue to the deductive database
optimization, supplementary magic templates [5]. suppl table/0 is shorthand for suppl table(2)

which tables all predicates containing clauses with two or more edb facts or tabled predicates. By
specifying suppl table(3) for instance, only predicates containing clauses with three or more edb

facts or tabled predicates would be tabled. This flexibility can prove useful for certain data-intensive
applications.

Indexing Directives

The XSB compiler by default generates an index on the principal functor of the first argument of
a predicate. Indexing on the appropriate argument of a predicate may significantly speed up its
execution time. In many cases the first argument of a predicate may not be the most appropriate
argument for indexing and changing the order of arguments may seem unnatural. In these cases,
the user may generate an index on any other argument by means of an indexing directive. This is
a directive of the form:

:- index Functor/Arity-IndexArg.

indicating that an index should be created for predicate Functor/Arity on its IndexArgth argu-
ment. One may also use the form:

:- index(Functor/Arity, IndexArg, HashTableSize).

which allows further specification of the size of the hash table to use for indexing this predicate if
it is a dynamic (i.e., asserted) predicate. For predicates that are dynamically loaded, this directive
can be used to specify indexing on more than one argument, or indexing on a combination of
arguments (see its description on page 203). For a compiled predicate the size of the hash table is
computed automatically, so HashTableSize is ignored.

All of the values Functor, Arity, IndexArg (and possibly HashTableSize) should be ground in
the directive. More specifically, Functor should be an atom, Arity an integer in the range 0..255,
and IndexArg an integer between 0 and Arity. If IndexArg is equal to 0, then no index is created
for that predicate. An index directive may be placed anywhere in the file containing the predicate
it refers to.

As an example, if we wished to create an index on the third argument of predicate foo/5, the
compiler directive would be:

:- index foo/5-3.

Unification Factoring

When the clause heads of a predicate have portions of arguments common to several clauses,
indexing on the principal functor of one argument may not be sufficient. Indexing may be improved
in such cases by the use of unification factoring. Unification Factoring is a program transformation

CHAPTER 3. SYSTEM DESCRIPTION 50

that “factors out” common parts of clause heads, allowing differing parts to be used for indexing,
as illustrated by the following example:

p(f(a),X) :- q(X).

p(f(b),X) :- r(X).
−→

p(f(X),Y) :- $p(X,Y).

$p(a,X) :- q(X).

$p(b,X) :- r(X).

The transformation thus effectively allows p/2 to be indexed on atoms a/0 and b/0. Unification
Factoring is transparent to the user; predicates created by the transformation are internal to the
system and do not appear during tracing.

The following compiler directives control the use of unification factoring 11:

:- ti(F/A). Specifies that predicate F/A should be compiled with unification factoring enabled.

:- ti off(F/A). Specifies that predicate F/A should be compiled with unification factoring dis-
abled.

:- ti all. Specifies that all predicates defined in the file should be compiled with unification
factoring enabled.

:- ti off all. Specifies that all predicates defined in the file should be compiled with unification
factoring disabled.

By default, higher-order predicates (more precisely, predicates named apply with arity greater than
1) are compiled with unification factoring enabled. It can be disabled using the ti off directive. For
all other predicates, unification factoring must be enabled explicitly via the ti or ti all directive.
If both :- ti(F/A). (:- ti all.) and :- ti off(F/A). (:- ti off all.) are specified, :-

ti off(F/A). (:- ti off all.) takes precedence. Note that unification factoring may have no
effect when a predicate is well indexed to begin with. For example, unification factoring has no
effect on the following program:

p(a,c,X) :- q(X).

p(b,c,X) :- r(X).

even though the two clauses have c/0 in common. The user may examine the results of the
transformation by using the ti dump compiler option (see Section 3.10.2).

Other Directives

XSB has other directives not found in other Prolog systems.

:- hilog atom1, . . . , atomn.

Declares symbols atom1 through atomn as HiLog symbols. The hilog declaration should
appear before any use of the symbols. See Chapter 4 for a purpose of this declaration.

11Unification factoring was once called transformational indexing, hence the abbreviation ti in the compiler direc-
tives

CHAPTER 3. SYSTEM DESCRIPTION 51

:- ldoption(Options).
This directive is only recognized in the header file (.H file) of a foreign module. See the
chapter Foreign Language Interface in Volume 2 for its explanation.

:- compiler options(OptionsList).
Indicates that the compiler options in the list OptionsList should be used to compile this
file. This must appear at the beginning of the file. These options will override any others,
including those given in the compilation command. The options may be optionally prefixed
with + or - to indicate that they should be set on or off. (No prefix indicates the option
should be set on.)

3.10.5 Inline Predicates

Inline predicates represent “primitive” operations in the (extended) WAM. Calls to inline predicates
are compiled into a sequence of WAM instructions in-line, i.e. without actually making a call to
the predicate. Thus, for example, relational predicates (like >/2, >=/2, etc.) compile to, essentially,
a subtraction followed by a conditional branch. As a result, calls to inline predicates will not
be trapped by the debugger, and their evaluation will not be visible during a trace of program
execution. Inline predicates are expanded specially by the compiler and thus cannot be redefined
by the user without changing the compiler. The user does not need to import these predicates from
anywhere. There are available no matter what options are specified during compiling.

Table 3.1 lists the inline predicates of XSB Version 3.3. Those predicates that start with _$ are
internal predicates that are also expanded in-line during compilation.

’=’/2 ’<’/2 ’=<’/2 ’>=’/2 ’>’/2

’=:=’/2 ’=\=’/2 is/2 ’@<’/2 ’@=<’/2

’@>’/2 ’@>=’/2 ’==’/2 ’\==’/2 fail/0

true/0 var/1 nonvar/1 halt/0 ’!’/0

min/2 max/2 ’><’/2 **/2 sign/1

’ $cutto’/1 ’ $savecp’/1 ’ $builtin’/1

Table 3.1: The Inline Predicates of XSB

We warn the user to be cautious when defining predicates whose functor starts with $ since
the names of these predicates may interfere with some of XSB’s internal predicates. The situation
may be particularly severe for predicates like ’ $builtin’/1 that are treated specially by the XSB
compiler.

3.11 A Note on ISO Compatibility

In Version 3.3, an effort has been made to ensure compatibility with the core Prolog ISO stan-
dard [33]. In this section, we summarize the differences with the ISO standard. XSB implements
almost all ISO built-ins and evaluable functions, although there are certain semantic differences
between XSB’s implementation and that of the ISO standard in certain cases.

CHAPTER 3. SYSTEM DESCRIPTION 52

The main difference of XSB with the ISO standard is in terms of parsing. Version 3.3 of XSB
does not support full ISO syntax 12. In addition, XSB supports only the ASCII character set for
atoms, predicates and functions, so that ISO predicates relating to different character sets, such as
char conversion/2, current char conversion/2 and others are not supported.

Another difference is that XSB does not support the logical update semantics for assert and
retract, but instead supports an immediate semantics. Despite the patholical examples that can
be devised using the immediate semantics, the logical semantics for assert is not often critical for
single-threaded applications. It is however, critical for multi-threaded applications, and XSB will
support this in the future.

A somewhat more minor difference involves XSB’s implementation of ISO streams. XSB can
create streams from several Firstzd class objects, including pipes, atoms, and consoles in addition to
files. However by default, XSB opens streams in binary mode, rather than text mode in opposition
to the ISO standard, which opens streams in text mode. This makes no difference in UNIX or
LINUX, for which text and binary streams are identical, but does make a difference in Windows,
where text files are processed more than binary files.

Most other differences with the core standard are mentioned under portability notes for the
various predicates.

XSB supports most new features mentioned in the revisions to the core standard [34], including
call cleanup/2 and various library predicates such as subsumes/2, numbervars/3 and so on. XSB
also has strong support for the working multi-threading Prolog standard [35], and XSB has been
one of the first Prologs to support this standard. However, because XSB has an atom-based module
system it does not support the ISO standard for Prolog modules.

12XSB also does not support multiple character sets or Unicode, which is perhaps a bigger limitation than the lack
of full ISO syntax.

Chapter 4

Syntax

The syntax of XSB is taken from C-Prolog with extensions to support HiLog [13] 1, which adds
certain features of second-order syntax to Prolog.

4.1 Terms

The data objects of the HiLog language are called terms. A HiLog term can be constructed from
any logical symbol or a term followed by any finite number of arguments. In any case, a term is
either a constant, a variable, or a compound term.

A constant is either a number (integer or floating-point) or an atom. Constants are definite
elementary objects, and correspond to proper nouns in natural language.

4.1.1 Integers

The printed form of an integer in HiLog consists of a sequence of digits optionally preceded by a
minus sign (’-’). These are normally interpreted as base 10 integers. It is also possible to enter
integers in other bases (2 through 36); this can be done by preceding the digit string by the base
(in decimal) followed by an apostrophe (’). If a base greater than 10 is used, the characters A-Z

or a-z are used to stand for digits greater than 9.

Using these rules, examples of valid integer representations in XSB are:

1 -3456 95359 9’888 16’1FA4 -12’A0 20’

representing respectively the following integers in decimal base:

1 -3456 95359 728 8100 -120 0

Note that the following:

1Sporadic attempts are made to make XSB ISO-compliant, contact us if you have a problem with syntax.

53

CHAPTER 4. SYNTAX 54

+525 12’2CF4 37’12 20’-23

are not valid integers of XSB.

A base of 0 (zero) will return the ASCII code of the (single) character after the apostrophe; for
example,

0’A = 65

4.1.2 Floating-point Numbers

A HiLog floating-point number consists of a sequence of digits with an embedded decimal point,
optionally preceded by a minus sign (’-’), and optionally followed by an exponent consisting of
uppercase or lowercase ’E’ and a signed base 10 integer.

Using these rules, examples of HiLog floating point numbers are:

1.0 -34.56 817.3E12 -0.0314e26 2.0E-1

Note that in any case there must be at least one digit before, and one digit after, the decimal point.

4.1.3 Atoms

A HiLog atom is identified by its name, which is a sequence of up to 1000 characters (other than
the null character). Just like a Prolog atom, a HiLog atom can be written in any of the following
forms:

• Any sequence of alphanumeric characters (including ’ ’), starting with a lowercase letter.

• Any sequence from the following set of characters (except of the sequence ’/*’, which begins
a comment):

+ - * / \ ^ < > = ‘ ~ : . ? @ # &

• Any sequence of characters delimited by single quotes, such as:

’sofaki’ ’%’ ’_$op’

If the single quote character is to be included in the sequence it must be written twice. For
example:

’don’’t’ ’’’’

CHAPTER 4. SYNTAX 55

• Any of the following:

! ; [] {}

Note that the bracket pairs are special. While ’[]’ and ’{}’ are atoms, ’[’, ’]’, ’{’, and
’}’ are not. Like Prolog, the form [X] is a special notation for lists (see Section 4.1.6), while
the form {X} is just “syntactic sugar” for the term ’{}’(X).

Examples of HiLog atoms are:

h foo ^=.. ::= ’I am also a HiLog atom’ []

4.1.4 Variables

Variables may be written as any sequence of alphanumeric characters (including ’ ’) beginning
with either a capital letter or ’ ’. For example:

X HiLog Var1 _3 _List

If a variable is referred to only once in a clause, it does not need to be named and may be
written as an anonymous variable, represented by a single underscore character ’ ’. Any number
of anonymous variables may appear in a HiLog clause; all of these variables are read as distinct
variables. Anonymous variables are not special at runtime.

4.1.5 Compound Terms

Like in Prolog, the structured data objects of HiLog are compound terms (or structures). The
external representation of a HiLog compound term comprises a functor (called the principal functor
or the name of the compound term) and a sequence of one or more terms called arguments. Unlike
Prolog where the functor of a term must be an atom, in HiLog the functor of a compound term
can be any valid HiLog term. This includes numbers, atoms, variables or even compound terms.
Thus, since in HiLog a compound term is just a term followed by any finite number of arguments,
all the following are valid external representations of HiLog compound terms:

foo(bar) prolog(a, X) hilog(X)

123(john, 500) X(kostis, sofia) X(Y, Z, Y(W))

f(a, (b(c))(d)) map(double)([], []) h(map(P)(A, B))(C)

Like a functor in Prolog, a functor in HiLog can be characterized by its name and its arity
which is the number of arguments this functor is applied to. For example, the compound term
whose principal functor is ’map(P)’ of arity 2, and which has arguments L1, and L2, is written as:

map(P)(L1, L2)

CHAPTER 4. SYNTAX 56

As in Prolog, when we need to refer explicitly to a functor we will normally denote it by the
form Name/Arity. Thus, in the previous example, the functor ’map(P)’ of arity 2 is denoted by:

map(P)/2

Note that a functor of arity 0 is represented as an atom.

In Prolog, a compound term of the form p(t1, t2, . . . , tk) is usually pictured as a tree in which
every node contains the name p of the functor of the term and has exactly k children each one of
which is the root of the tree of terms t1, t2, . . . , tk.

For example, the compound term

s(np(kostis), vp(v(loves), np(sofia)))

would be pictured as the following tree:
s

/ \

np vp

| / \

| v np

| | |

kostis loves sofia

The principal functor of this term is s/2. Its two arguments are also compound terms. In illustra-
tion, the principal functor of the second argument is vp/2.

Likewise, any external representation of a HiLog compound term t(t1, t2, . . . , tk) can be pictured
as a tree in which every node contains the tree representation of the name t of the functor of the
term and has exactly k children each one of which is the root of the tree of terms t1, t2, . . . , tk.

Sometimes it is convenient to write certain functors as operators. Binary functors (that is,
functors that are applied to two arguments) may be declared as infix operators, and unary functors
(that is, functors that are applied to one argument) may be declared as either prefix or postfix
operators. Thus, it is possible to write the following:

X+Y (P;Q) X<Y +X P;

More about operators in HiLog can be found in section 4.3.

4.1.6 Lists

As in Prolog, lists form an important class of data structures in HiLog. They are essentially
the same as the lists of Lisp: a list is either the atom ’[]’, representing the empty list, or else
a compound term with functor ’.’ and two arguments which are the head and tail of the list
respectively, where the tail of a list is also a list. Thus a list of the first three natural numbers is
the structure:

CHAPTER 4. SYNTAX 57

.

/ \

1 .

/ \

2 .

/ \

3 []

which could be written using the standard syntax, as:

.(1,.(2,.(3,[])))

but which is normally written in a special list notation, as:

[1,2,3]

Two examples of this list notation, as used when the tail of a list is a variable, are:

[Head|Tail] [foo,bar|Tail]

which represent the structures:

. .

/ \ / \

Head Tail foo .

/ \

bar Tail

respectively.

Note that the usual list notation [H|T] does not add any new power to the language; it is
simply a notational convenience and improves readability. The above examples could have been
written equally well as:

.(Head,Tail) .(foo,.(bar,Tail))

For convenience, a further notational variant is allowed for lists of integers that correspond to
ASCII character codes. Lists written in this notation are called strings. For example,

"I am a HiLog string"

represents exactly the same list as:

[73,32,97,109,32,97,32,72,105,76,111,103,32,115,116,114,105,110,103]

CHAPTER 4. SYNTAX 58

4.2 From HiLog to Prolog

From the discussion about the syntax of HiLog terms, it is clear that the HiLog syntax allows the
incorporation of some higher-order constructs in a declarative way within logic programs. As we
will show in this section, HiLog does so while retaining a clean first-order declarative semantics.
The semantics of HiLog is first-order, because every HiLog term (and formula) is automatically
encoded (converted) in predicate calculus in the way explained below.

Before we briefly explain the encoding of HiLog terms, let us note that the HiLog syntax is a
simple (but notationally very convenient) encoding for Prolog terms, of some special form. In the
same way that in Prolog:

1 + 2

is just an (external) shorthand for the term:

+(1, 2)

in the presence of an infix operator declaration for + (see section 4.3), so:

X(a, b)

is just an (external) shorthand for the Prolog compound term:

apply(X, a, b)

Also, in the presence of a hilog declaration (see section 3.10.4) for h, the HiLog term whose external
representation is:

h(a, h, b)

is a notational shorthand for the term:

apply(h, a, h, b)

Notice that even though the two occurrences of h refer to the same symbol, only the one where h

appears in a functor position is encoded with the special functor apply/n, n ≥ 1.

The encoding of HiLog terms is performed based upon the existing declarations of hilog symbols.
These declarations (see section 3.10.4), determine whether an atom that appears in a functor
position of an external representation of a HiLog term, denotes a functor or the first argument of
a set of special functors apply. The actual encoding is as follows:

• The encoding of any variable or parameter symbol (atom or number) that does not appear
in a functor position is the variable or the symbol itself.

CHAPTER 4. SYNTAX 59

• The encoding of any compound term t where the functor f is an atom that is not one of the
hilog symbols (as a result of a previous hilog declaration), is the compound term that has
f as functor and has as arguments the encoding of the arguments of term t. Note that the
arity of the compound term that results from the encoding of t is the same as that of t.

• The encoding of any compound term t where the functor f is either not an atom, or is an atom
that is a hilog symbol, is a compound term that has apply as functor, has first argument
the encoding of f and the rest of its arguments are obtained by encoding of the arguments of
termt. Note that in this case the arity of the compound term that results from the encoding
of t is one more than the arity of t.

Note that the encoding of HiLog terms described above, implies that even though the HiLog
terms:

p(a, b)

h(a, b)

externally appear to have the same form, in the presence of a hilog declaration for h but not for
p, they are completely different. This is because these terms are shorthands for the terms whose
internal representation is:

p(a, b)

apply(h, a, b)

respectively. Furthermore, only h(a,b) is unifiable with the HiLog term whose external represen-
tation is X(a, b).

We end this short discussion on the encoding of HiLog terms with a small example that illus-
trates the way the encoding described above is being done. Assuming that the following declarations
of parameter symbols have taken place,

:- hilog h.

:- hilog (hilog).

before the compound terms of page 55 were read by XSB, the encoding of these terms in predicate
calculus using the described transformation is as follows:

foo(bar) prolog(a,X)

apply(hilog,X) apply(123,john,500)

apply(X,kostis,sofia) apply(X,Y,Z,apply(Y,W))

f(a,apply(b(c),d)) apply(map(double),[],[])

apply(apply(h,apply(map(P),A,B)),C)

4.3 Operators

From a theoretical point of view, operators in Prolog are simply a notational convenience and add
absolutely nothing to the power of the language. For example, in most Prologs ’+’ is an infix
operator, so

CHAPTER 4. SYNTAX 60

2 + 1

is an alternative way of writing the term +(2, 1). That is, 2 + 1 represents the data structure:

+

/ \

2 1

and not the number 3. (The addition would only be performed if the structure were passed as an
argument to an appropriate procedure, such as is/2).

However, from a practical or a programmer’s point of view, the existence of operators is highly
desirable, and clearly handy.

Prolog syntax allows operators of three kinds: infix, prefix, and postfix. An infix operator
appears between its two arguments, while a prefix operator precedes its single argument and a
postfix operator follows its single argument.

Each operator has a precedence, which is an integer from 1 to 1200. The precedence is used to
disambiguate expressions in which the structure of the term denoted is not made explicit through
the use of parentheses. The general rule is that the operator with the highest precedence is the
principal functor. Thus if ’+’ has a higher precedence than ’/’, then the following

a+b/c a+(b/c)

are equivalent, and both denote the same term +(a,/(b,c)). Note that in this case, the infix form
of the term /(+(a,b),c) must be written with explicit use of parentheses, as in:

(a+b)/c

If there are two operators in the expression having the same highest precedence, the ambiguity
must be resolved from the types (and the implied associativity) of the operators. The possible types
for an infix operator are

yfx xfx xfy

Operators of type ’xfx’ are not associative. Thus, it is required that both of the arguments of the
operator must be subexpressions of lower precedence than the operator itself; that is, the principal
functor of each subexpression must be of lower precedence, unless the subexpression is written in
parentheses (which automatically gives it zero precedence).

Operators of type ’xfy’ are right-associative: only the first (left-hand) subexpression must
be of lower precedence; the right-hand subexpression can be of the same precedence as the main
operator. Left-associative operators (type ’yfx’) are the other way around.

An atom named Name can be declared as an operator of type Type and precedence Precedence

by the command;

CHAPTER 4. SYNTAX 61

op(+Precedence,+Type,+Name) ISO

The same command can be used to redefine one of the predefined XSB operators (obtainable via
current op/3). However, it is not allowed to alter the definition of the comma (’,’) operator. An
operator declaration can be cancelled by redeclaring the Name with the same Type, but Precedence
0.

As a notational convenience, the argument Name can also be a list of names of operators of the
same type and precedence.

It is possible to have more than one operator of the same name, so long as they are of different
kinds: infix, prefix, or postfix. An operator of any kind may be redefined by a new declaration of
the same kind. For example, the built-in operators ’+’ and ’-’ are as if they had been declared
by the command:

:- op(500, yfx, [+,-]).

so that:

1-2+3

is valid syntax, and denotes the compound term:

(1-2)+3

or pictorially:

+

/ \

- 3

/ \

1 2

In XSB, the list functor ’.’/2 is one of the standard operators, that can be thought as declared
by the command:

:- op(661, xfy, .).

So, in XSB,

1.2.[]

represents the structure

CHAPTER 4. SYNTAX 62

.

/ \

1 .

/ \

2 []

Contrasting this picture with the picture above for 1-2+3 shows the difference between ’yfx’

operators where the tree grows to the left, and ’xfy’ operators where it grows to the right. The
tree cannot grow at all for ’xfx’ type operators. It is simply illegal to combine ’xfx’ operators
having equal precedences in this way.

If these precedence and associativity rules seem rather complex, remember that you can always
use parentheses when in any doubt.

In Version 3.3 of XSB the possible types for prefix operators are:

fx fy hx hy

and the possible types for postfix operators are:

xf yf

We end our discussion about operators by mentioning that prefix operators of type hx and
hy are proper HiLog operators. The discussion of proper HiLog operators and their properties is
deferred for the manual of a future version.

Chapter 5

Using Tabling in XSB: A Tutorial
Introduction

XSB has two ways of evaluating predicates. The default is to use Prolog-style evaluation, but
by using various declarations a programmer can also use tabled resolution which can provide a
different, more declarative programming style than Prolog. In this section we discuss various
aspects of tabling and their implementation in XSB. Our aim in this section is to provide a user
with enough information to be able to program productively with tables in XSB. It is best to read
this tutorial with a copy of XSB handy, since much of the information is presented through a series
of exercises.

For the theoretically inclined, XSB uses SLG resolution which can compute queries to non-
floundering normal programs under the well-founded semantics [76], and is guaranteed to terminate
when these programs have the bounded term-depth property. This tutorial covers only enough of
the theory of tabling to explain how to program in XSB. For those interested, the web site contains
papers covering in detail various aspects of tabling (often through the links for individuals involved
in XSB). An overview of SLG resolution, and practical evaluation strategies for it, are provided
in [15, 68, 62, 28]. The engine of XSB, the SLG-WAM, is an extension of the WAM [80, 1], and is
described in [59, 57, 27, 61, 14, 22, 36, 18, 19, 11, 50, 71, 51, 73] as it is implemented in Version 3.3
and its performance analyzed. Examples of large-scale applications that use tabling are overviewed
in [41, 42, 16, 21, 56, 7, 17, 31, 72].

5.1 Tabling in the Context of a Prolog System

Before describing how to program using tabling it is perhaps worthwhile to review some of the
goals of XSB’s implementation of tabling. Among them are:

1. To execute tabled predicates at the speed of compiled Prolog.

2. To ensure that the speed of compiled Prolog is not slowed significantly by adding the option
of tabling.

63

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 64

3. To ensure that the functionality of Prolog is not compromised by support for tabling.

4. To provide Prolog functionality in tabled predicates and operators whenever it is semantically
sensible to do so.

5. To provide standard predicates to manipulate tables taken as data structures in themselves.

Goals 1 and 2 are addressed by XSB’s engine, which in Version 3.3 is based on a virtual machine
called the SLG-WAM. The overhead for SLD resolution using this machine is small, and usually
less than 5%. Thus when XSB is used simply as a Prolog system (i.e., no tabling is used), it
is reasonably competitive with other Prolog implementations based on a WAM emulator written
in C or assembly. For example, when compiled as a threaded interpreter (see Chapter 3) XSB
Version 3.3 is about two times slower than Quintus 3.1.1 or emulated SICStus Prolog 3.1. Goals
3, 4 and 5 have been nearly met, but there are a few instances in which interaction of tabling with
a Prolog construct has not been accomplished, or is perhaps impossible. Accordingly we discuss
these instances throughout this chapter. XSB is still under development however, so that future
versions may support more transparent mixing of Prolog and tabled code.

5.2 Definite Programs

Definite programs, also called Horn Clause Programs, are Prolog programs without negation or
aggregation. In XSB, this means without the \+/1, fail if/1, not/1, tnot/1, setof/3, bagof/3,
tt findall/3 or other aggregation operators. Consider the Prolog program

path(X,Y) :- path(X,Z), edge(Z,Y).

path(X,Y) :- edge(X,Y).

together with the query ?- path(1,Y). This program has a simple, declarative meaning: there is
a path from X to Y if there is a path from X to some node Z and there is an edge from Z to Y,
or if there is an edge from X to Y. Prolog, however, enters into an infinite loop when computing
an answer to this query. The inability of Prolog to answer such queries, which arise frequently,
comprises one of its major limitations as an implementation of logic.

A number of approaches have been developed to address this problem by reusing partial answers
to the query path(1,Y) [25, 75, 4, 77, 78]. The ideas behind these algorithms can be described
in the following manner. Calls to tabled predicates, such as path(1,Y) in the above example,
are stored in a searchable structure together with their proven instances. This collection of tabled
subgoals paired with their answers, generally referred to as a table, is consulted whenever a new
call, C, to a tabled predicate is issued. If C is sufficiently similar to a tabled subgoal S, then the
set of answers, A, associated with S may be used to satisfy C. In such instances, C is resolved
against the answers in A, and hence we refer to the call C as a consumer of A (or S). If there is no
such S, then C is entered into the table and is resolved against program clauses as in Prolog — i.e.,
using SLD resolution. As each answer is derived during this process, it is inserted into the table
entry associated with C if it contains information not already in A. In this second case, we refer
to C as a generator, or producer , as resolution of C in this manner produces the answers stored
in its table entry. If the answer is in fact added to this set, then it is additionally scheduled to be

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 65

returned to all consumers of C. If instead it is rejected as redundant, then the evaluation simply
fails and backtracks to generate more answers.

Notice that since consuming subgoals resolve against unique answers rather than repeatedly
against program clauses, tabling will terminate whenever

1. a finite number of subgoals are encountered during query evaluation, and

2. each of these subgoals has a finite number of answers.

Indeed, it can be proven that for any program with the bounded term depth property — roughly,
where all terms generated in a program have a maximum depth — SLG computation will terminate.
These programs include the important class of Datalog programs.

Predicates can be declared tabled in a variety of ways. A common form is the compiler directive

:- table P1, . . . , Pn.

where each Pi is a predicate indicator or callable term. More generally

:- table P1, . . . , Pn as Options.

allows a user to specify different types of tabling through Options along with other properties of
the designated predicates For static predicates, these directives must be added to the file containing
the clauses of the predicate(s) to be tabled, and the directives cause the predicates to be compiled
with tabling 1. For dynamic predicates, the executable directives

?- table P1, . . . Pn.

and
?- table P1, . . . , Pn as Options.

cause a Pi to be tabled (with the appropriate options) if no clauses have been asserted for Pi.

Exercises Unless otherwise noted, the file $XSB DIR/examples/table examples.P contains all
the code for the running examples in this section. Invoke XSB with its default settings (i.e., don’t
supply additional options) when working through the following exercises.

Exercise 5.2.1 Consult $XSB DIR/examples/table examples.P into XSB and and try the goal

?- path(1,X).

and continue typing ;<RETURN> until you have exhausted all answers. Now, try rewriting the path/2

predicate as it would be written in Prolog — and without a tabling declaration. Will it now terminate
for the provided edge/2 relation? (Remember, in XSB you can always hit <ctrl>-C if you go into
an infinite loop). 2

1In Version 3.3, tabling does not work together with multi-file predicates.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 66

The return of answers in tabling aids in filtering out redundant computations – indeed it is
this property which makes tabling terminate for many classes of programs. The same generation

program furnishes a case of the usefulness of tabling for optimizing a Prolog program.

Exercise 5.2.2 If you are still curious, load in the file cyl.P in the $XSB_DIR/examples directory
using the command.

?- load_dync(cyl.P).

and then type the query

?- same_generation(X,X),fail.

Now rewrite the same generation/2 program so that it does not use tabling and retry the same
query. What happens? (Be patient — or use <ctrl>-C). 2

Exercise 5.2.3 The file table examples.P contains a set of facts

ordered_goal(one).

ordered_goal(two).

ordered_goal(three).

ordered_goal(four).

Clearly, the query ?- ordered goal(X) will return the answers in the expected order. table examples.P

also contains a predicate

:- table table_ordered_goal/1.

table_ordered_goal(X):- ordered_goal(X).

which simply calls ordered goal/1 and tables its answers (tabling is unnecessary in this case, and
is only used for illustration). Call the query ?- table ordered goal(X) and backtrack through the
answers. In what order are the answers returned?

The examples stress two differences between tabling and SLD resolution beyond termination prop-
erties. First, that each solution to a tabled subgoal is returned only once — a property that is
helpful not only for path/2 but also for same generation/2 which terminates in Prolog. Second,
because answers are sometimes obtained using program clauses and sometimes using the table,
answers may be returned in an unaccustomed order.

Tabling Dynamic Predicates Dynamic predicates may be tabled just as static predicates, as
the following exercise shows.

Exercise 5.2.4 For instance, restart XSB and at the prompt type the directive

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 67

?- table(dyn_path/2).

and

?- load_dyn(dyn_examples).

Try the queries to path/2 of the previous examples. Note that it is important to dynamically load
dyn examples.P — otherwise the code in the file will be compiled without knowledge of the tabling
declaration. 2

In general, as long as the directive table/1 is executed before asserting (or dynamically loading)
the predicates referred to in the directive, any dynamic predicate can be tabled.

Letting XSB Decide What to Table Other tabling declarations are also provided. Often it is
tedious to decide which predicates must be tabled. To address this, XSB can automatically table
predicates in files. The declaration auto table chooses predicates to table to assist in termination,
while suppl table chooses predicates to table to optimize data-oriented queries. Both are explained
in Section 3.10.2. 2.

5.2.1 Call Variance vs. Call Subsumption

The above description gives a general characterization of tabled evaluation for definite programs
but glosses over certain details. In particular, we have not specified the criteria for

• Call Similarity – whereby a newly issued subgoal S is determined to be “sufficiently similar”
to a tabled subgoal Stab so that S can use the answers from the table of Stab rather than
re-deriving its own answers. In the first case where S uses answers of a tabled subgoal it
is termed a consumer; in the second case when S produces its own answers it is called a
generator or producer.

• Answer Similarity – whereby a derived answer to a tabled subgoal is determined to contain
information similar to that already in the set of answers for that subgoal.

Different measures of similarity are possible. XSB’s engine supports two measures for call similarity:
variance and subsumption. XSB’s engine supports a variance-based measure for answer similarity,
but allows users to program other measures in certain cases. We discuss call similarity here, but
defer the discussion of answer similarity until Section 5.4.

2The reader may have noted that table/1, is referred to as a directive, while auto table/0 and suppl table/0

were referred to as declarations. The difference is that at the command line, user can execute a directive but not a
compiler declaration.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 68

Determining Call Similarity via Variance By default, XSB determines that a subgoal S is
similar to a tabled subgoal Stab if S is a variant of Stab, that is if S and Stab are identical up to
variable renaming 3. As an example p(X,Y,X) is a variant of p(A,B,A), but not of p(X,Y,Y),
or p(X,Y,Z). Under variance-based call similarity, or call variance, when a tabled subgoal S is
encountered, a search for a table entry containing a variant subgoal Stab is performed. Notice that
if Stab exists, then all of its answers are also answers to S, and therefore will be resolved against
it. Call variance was used in the original formulation of SLG resolution [15] for the evaluation of
normal logic programs according to the well-founded semantics and interacts well with many of
Prolog’s extra-logical constructs.

Determining Call Similarity via Subsumption Call similarity can also be based on call
subsumption. A term T1 subsumes a term T2 if T2 is more specific than T1

4. Furthermore,
we say that T1 properly subsumes T2 if T2 subsumes T1, but is not a variant of T1. Under call
subsumption, when a tabled subgoal S is encountered, a search is performed for a table entry
containing a subsuming subgoal Stab. Notice that, if such an entry exists, then its answer set A
logically contains all the solutions to satisfy C. The subset of answers A′ ⊆ A which unify with C
are said to be relevant to C.

Notice that call subsumption permits greater reuse of computed results, thus avoiding even
more program resolution, and thereby can lead to time and space performances superior to call
variance. In addition, beginning with Version 3.2, call-subsumption based tabling fully supports
well-founded negation under the default local scheduling strategy. However, there are downsides
to this paradigm. First of all, subsumptively tabled predicates do not interact well with certain
Prolog constructs with which variant-tabled predicates can (see Example 5.2.4 below). Second, call
subsumption does not yet support calls with tabled attributed variables or answer subsumption 5.

Example 5.2.1 The terms T1: p(f(Y),X,1) and T2: p(f(Z),U,1) are variants as one can be
made to look like the other by a renaming of the variables. Therefore, each subsumes the other.
The term t3: p(f(Y),X,1) subsumes the term t4: p(f(Z),Z,1). However, they are not variants.
Hence t3 properly subsumes t4. 2

The above examples show how a variant-based tabled evaluation can reduce certain redundant
subcomputations over SLD. However, even more redundancy can be eliminated, as the following
example shows.

Exercise 5.2.5 Begin by abolishing all tables in XSB, and then type the following query

?- abolish_all_tables.

?- path(X,Y), fail.

3Formally, S and Stab are variants if they have an mgu θ such that the domain and range of θ1 consists only of
variables.

4Formally, T1 subsumes T2 if there is a substitution θ whose domain consists only of variables from T1 such that
T1θ = T2.

5Beginning with Version 3.2, XSB supports attributed variables in answers under call subsumption, although not
in calls.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 69

Notice that only a single table entry is created during the evaluation of this query. You can check
that this is the case by invoking the following query

?- get_calls_for_table(path/2,Call).

Now evaluate the query

?- path(1,5), fail.

and again check the subgoals in the table. Notice that two more have been added. Further notice
that these new subgoals are subsumed by that of the original entry. Correspondingly, the answers
derived for these newer subgoals are already present in the original entry. You can check the answers
contained in a table entry by invoking get returns for call/2 on a tabled subgoal. For example:

?- get_returns_for_call(p(1,_),Answer).

Compare these answers to those of p(X,Y) and p(1,5). Notice that the same answer can, and in
this case does, appear in multiple table entries.

Now, let’s again abolish all the tables and change the evaluation strategy of path/2 to use
subsumption.

?- abolish_all_tables.

?- table path/2 as subsumptive.

And re-perform the first few queries:

?- path(X,Y),fail.

?- get_calls_for_table(path/2,Call).

?- path(1,5).

?- get_calls_for_table(path/2,Call).

Notice that this time the table has not changed! Only a single entry is present, that for the original
query p(X,Y).

When using call subsumption, XSB is able to recognize a greater range of “redundant” queries
and thereby make greater use of previously computed answers. The result is that less program
resolution is performed and less redundancy is present in the table. However, subsumption is not a
panacea. The elimination of redundant answers depends upon the presence of a subsuming subgoal
in the table when the call to p(1,5) is made. If the order of these queries were reversed, one would
find that the same entries would be present in this table as the one constructed under variant-based
evaluation.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 70

Declarations for Call Variance and Call Subsumption By default tabled predicate use call
variance. However, call subsumption can be made the default by giving XSB the -S option at
invocation (refer to Section 3.7). More versatile constructs are provided by XSB so that the tabling
method can be selected on a per predicate basis. Use of the directive

table p/n as subsumptive

or

table p/n as variant

described in Section 6.15.1, ensures that a tabled predicate is evaluated using the desired strat-
egy regardless of the default tabling strategy.

5.2.2 Table Scheduling Strategies

Recall that SLD resolution works by selecting a goal from a list of goals to be proved, and selecting
a program clause C to resolve against that goal. During resolution of a top level goal G, if the
list of unresolved goals becomes empty, G succeeds, while if there is no program clause to resolve
against the selected goal from the list resolution against G fails. In Prolog clauses are selected in
the order they are asserted, while literals are selected in a left-to-right selection strategy. Other
strategies are possible for SLD, and in fact completeness of SLD for definite programs depends on
a non-fixed literal selection strategy. This is why Prolog, which has a fixed literal selection strategy
is not complete for definite programs, even when they have bounded term-depth.

Because tabling uses program clause resolution, the two parameters of clause selection and
literal selection also apply to tabling. Tabling makes use of a dynamic literal selection strategy for
certain non-stratified programs (via the delaying mechanism described in Section 5.3.2), but uses
the same left-to-right literal selection strategy as Prolog for definite programs. However, in tabling
there is also a choice of when to return derived answers to subgoals that consume these answers.
While full discussion of scheduling strategies for tabling is not covered here (see [27]) we discuss
two scheduling strategies that have been implemented for XSB Version 3.3 6.

• Local Scheduling Local Scheduling depends on the notion of a subgoal dependency graph. For
the state of a tabled evaluation, a non-completed tabled subgoal S1 directly depends on a
non-completed subgoal S2 when S2 is in the SLG tree for S1 – that is when S2 is called by
S1 without any intervening tabled predicate. The edges of the subgoal dependency graph are
then these direct dependency relations, so that the subgoal dependency graph is directed. As
mentioned, the subgoal dependency graph reflects a given state of a tabled evaluation and so
may changed as the evaluation proceeds, as new tabled subgoals are encountered, or encoun-
tered in different contexts, as tables complete, and so on. As with any directed graph, the
subgoal dependency graph can be divided up into strongly connected components, consisting
of tabled subgoals that depend on one another. Local scheduling then fully evaluates each
maximal SCC (a SCC that does not depend on another SCC) before returning answers to

6Many other scheduling strategies are possible. For instance, [29] describes a tabling strategy implemented for the
SLG-WAM that emulates magic sets under semi-naive evaluation. This scheduling strategy, however, is not available
in Version 3.3 of XSB.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 71

any subgoal outside of the SCC 7.

• Batched Scheduling Unlike Local Scheduling, Batched Scheduling allows answers to be re-
turned outside of a maximal SCC as they are derived, and thus resembles Prolog’s tuple at a
time scheduling.

Both Local and Batched Scheduling have their advantages, and we list points of comparison.

• Time for left recursion Batched Scheduling is somewhat faster than Local Scheduling for
left recursion as Local Scheduling imposes overhead to prevent answers from being returned
outside of a maximal SCC.

• Time to first answer Because Batched Scheduling returns answers out of an SCC eagerly, it
is faster to derive the first answer to a tabled predicate.

• Stack space Local evaluation generally requires less space than batched evaluation as it fully
explores a maximal SCC, completes the SCC’s subgoals, reclaims space, and then moves on
to a new SCC.

• Integration with cuts As discussed in Exercise 5.2.6 and throughout Section 5.2.3, Local
Scheduling integrates better with cuts, although this is partly because tabled subgoals may
be fully evaluated before the cut takes effect.

• Efficiency for call subsumption Because Local Evaluation completes tables earlier than Batched
Evaluation it may be faster for some uses of call subsumption, as subsumed calls can make
use of completed subsuming tables.

• Negation and tabled aggregation As will be shown below, Local Scheduling is superior for
tabled aggregation as only optimal answers are returned out of a maximal SCC. Local Schedul-
ing also can be more efficient for non-stratified negation as it may allow delayed answers that
are later simplified away to avoid being propagated.

On the whole, advantages of Local Scheduling outweigh the advantages of Batched Scheduling,
and for this reason Local Scheduling is the default scheduling strategy for Version 3.3 of XSB. XSB
can be configured to use batched scheduling via the configuration option --enable-batched-scheduling

and remaking XSB. This will not affect the default version of XSB, which will also remain available.

5.2.3 Interaction Between Prolog Constructs and Tabling

Tabling integrates well with most non-pure aspects of Prolog. Predicates with side-effects like
read/1 and write/1 can be used freely in tabled predicates as long as it is remembered that only
the first call to a goal will execute program clauses while the rest will look up answers from a table.
However, other extra-logical constructs like the cut (!) pose greater difficulties. Tabling with
call subsumption is also theoretically precluded from correct interaction with certain meta-logical
predicates.

7XSB’s implementation maintains a slight over-approximation of SCCs – see [27].

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 72

Cuts and Tabling The semantics for cuts in Prolog is largely operational, and is usually defined
based on an ordered traversal of an SLD search tree. Tabling, of course, has a different operational
semantics than Prolog – it uses SLG trees rather than SLD trees, for instance – so it is not surprising
that the interaction of tabling with cuts is operational. In Prolog, the semantics for a cut can be
expressed in the following manner: a cut executed in the body of a predicate P frames from the
top (youngest end) of the choice point stack down to and including the call for P . In XSB a
cut is allowed to succeed as long as it does not cut over a choice point for a non-completed tabled
subgoal, otherwise, the computation aborts. This means, among other matters, that the validity of
a cut depends on the scheduling strategy used for tabling, that is on the strategy used to determine
when an answer is to be returned to a consuming subgoal. Scheduling strategy was discussed
Section 5.2.2: for now, we assume that XSB’s default local scheduling is used in the examples for
cuts.

Exercise 5.2.6 Consider the program

:- table cut_p/1, cut_q/1, cut_r/0, cut_s/0.

cut_p(X) :- cut_q(X), cut_r.

cut_r :- cut_s.

cut_s :- cut_q(_).

cut_q(1). cut_q(2).

What solutions are derived for the goal ?- cut p(X)? Suppose that cut p/1 were rewritten as

cut_p(X) :- cut_q(X), once(cut_r).

How should this cut over a table affect the answers generated for cut p/1? What happens if you
rewrite cut p/1 in this way and compile it in XSB? 2

In Exercise 5.2.6, cut p(1) and cut p(2) should both be true. Thus, the cut in the literal
once(cut r) must not inadvertently cut away solutions that are demanded by cut p/1. In the
default local scheduling of XSB Version 3.3 tabled subgoals are fully evaluated whenever possible
before returning any of their answers. Thus the first call cut q(X) in the body of the clause for
cut p/1 is fully evaluated before proceeding to the goal once(cut r). Because of this any choice
points for cut q(X) are to a completed table. For other scheduling strategies, such as batched
scheduling, non-completed choice points for cut p/1 may be present on the choice point stack so
that the cut would be disallowed. In addition, it is also possible to construct examples where a cut
is allowed if call variance is used, but not if call subsumption is used.

Example 5.2.2 A further example of using cuts in a tabled predicate is a tabled meta-interpreter.

:- table demo/1.

demo(true).

demo((A,B)) :- !, demo(A), demo(B).

demo(C) :- call(C).

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 73

More elaborate tabled meta-interpreters can be extremely useful, for instance to implement various
extensions of definite or normal programs. 2

In XSB’s compilation, the cut above is compiled so that it is valid to use with either local or
batched (a non-default) evaluation. An example of a cut that is valid neither in batched nor in
local evaluation is as follows.

Example 5.2.3 Consider the program

:- table cut_a/1, cut_b/1.

cut_a(X):- cut_b(X).

cut_a(a1).

cut_b(X):- cut_a(X).

cut_b(b1).

For this program the goal ?- cut a(X) produces two answers, as expected: a1 and b1. However,
replacing the first class of the above program with

cut_a(X):- once(cut_b(X)).

will abort both in batched or in local evaluation. 2

To summarize, the behavior of cuts with tables depends on dynamic operational properties, and
we have seen examples of programs in which a cut is valid in both local and batched scheduling,
in local but not batched scheduling, and in neither batched nor local scheduling. In general, any
program and goal that allows cuts in batched scheduling will allow them in local scheduling as well,
and there are programs for which cuts are allowed in local scheduling but not in batched.

Finally, we note that in Version 3.3 of XSB a “cut” over tables implicitly occurs when the user
makes a call to a tabled predicate from the interpreter level, but does not generate all solutions.
This commonly occurs in batched scheduling, but can also occur in local scheduling if an exception
occurs. In such a case, the user will see the warning "Removing incomplete tables..." appear.
Any complete tables will not be removed. They can be abolished by using one of XSB’s predicates
for abolishing tables.

Call Subumption and Meta-Logical Predicates Meta-logical predicates like var/1 can be
used to filter the choices made during an evaluation. However, this is dangerous when used in
conjunction with call subsumption, since call subsumption assumes that if a specific relation holds —
e.g., p(a) — then a more general query — e.g., p(X) — will also hold.

Example 5.2.4 Consider the following simple program

p(X) :- var(X), X = a.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 74

to which the queries

?- p(X).

?- p(a).

are posed. Let us compare the outcome of these queries when p/1 is (1) a Prolog predicate, (2) a
variant-tabled predicate, and (3) a subsumptive-tabled predicate.

Both Prolog and variant-based tabling yield the same solutions: X = a and no, respectively.
Under call subsumption, the query ?- p(X). likewise results in the solution X = a. However, the
query ?- p(a). is subsumed by the tabled subgoal p(X) — which was entered into the table when
that query was issued — resulting in the incorrect answer yes. 2

As this example shows, incorrect answers can result from using meta-logical with subsumptive
predicates in this way.

5.2.4 Potential Pitfalls in Tabling

Over-Tabling While the judicious use of tabling can make some programs faster, its indiscrimi-
nate use can make other programs slower. Naively tabling append/3

append([],L,L).

append([H|T],L,[H|T1]) :- append(T,L,T1).

is one such example. Doing so can, in the worst case, copy N sublists of the first and third
arguments into the table, transforming a linear algorithm into a quadratic one.

Exercise 5.2.7 If you need convincing that tabling can sometimes slow a query down, type the
query:

?- genlist(1000,L), prolog_append(L,[a],Out).

and then type the query

?- genlist(1000,L), table_append(L,[a],Out).

append/3 is a particularly bad predicate to table. Type the query

?- table_append(L,[a],Out).

leaving off the call to genlist/2, and backtrack through a few answers. Will table append/3 ever
succeed for this predicate? Why not?

Suppose DCG predicates (Section 11) are defined to be tabled. How is this similar to tabling
append? 2

We note that XSB has special mechanisms for handling tabled DCGs. See Section 11 for details.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 75

Tabled Predicates and Tracing Another issue to be aware of when using tabling in XSB is
tracing. XSB’s tracer is a standard 4-port tracer that interacts with the engine at each call, exit,
redo, and failure of a predicate (see Chapter 10). When tabled predicates are traced, these events
may occur in unexpected ways, as the following example shows.

Exercise 5.2.8 Consider a tabled evaluation when the query ?- a(0,X) is given to the following
program

:- table mut_ret_a/2, mut_ret_b/2.

mut_ret_a(X,Y) :- mut_ret_d(X,Y).

mut_ret_a(X,Y) :- mut_ret_b(X,Z),mut_ret_c(Z,Y).

mut_ret_b(X,Y) :- mut_ret_c(X,Y).

mut_ret_b(X,Y) :- mut_ret_a(X,Z),mut_ret_d(Z,Y).

mut_ret_c(2,2). mut_ret_c(3,3).

mut_ret_d(0,1). mut_ret_d(1,2). mut_ret_d(2,3).

mut ret a(0,1) can be derived immediately from the first clause of mut ret a/2. All other answers
to the query depend on answers to the subgoal mut ret b(0,X) which arises in the evaluation of
the second clause of mut ret a/2. Each answer to mut ret b(0,X) in turn depends on an answer
to mut ret a(0,X), so that the evaluation switches back and forth between deriving answers for
mut ret a(0,X) and mut ret b(0,X).

Try tracing this evaluation, using creep and skip. Do you find the behavior intuitive or not? 2

5.3 Normal Programs

Normal programs extend definite programs to include default negation, which posits a fact as false if
all attempts to prove it fail. As shown in Example 1.0.1, which presented one of Russell’s paradoxes
as a logic program, the addition of default negation allows logic programs to express contradictions.
As a result, some assertions, such as shaves(barber,barber) may be undefined, although other
facts, such as shaves(barber,mayor) may be true. Formally, the meaning of normal programs may
be given using the well-founded semantics and it is this semantics that XSB adopts for negation (we
note that in Version 3.3 the well-founded semantics is implemented only for variant-based tabling).

5.3.1 Stratified Normal Programs

Before considering the full well-founded semantics, we discuss how XSB can be used to evaluate
programs with stratified negation. Intuitively, a program uses stratified negation whenever there
is no recursion through negation. Indeed, most programmers, most of the time, use stratified
negation.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 76

Exercise 5.3.1 The program

win(X):- move(X,Y),tnot(win(Y)).

is stratified when the move/2 relation is a binary tree. To see this, load the files tree1k.P and
table examples.P from the directory $XSB DIR/examples and type the query

?- win(1).

win(1) calls win(2) through negation, win(2) calls win(4) through negation, and so on, but no
subgoal ever calls itself recursively through negation.

The previous example of win/1 over a binary tree is a simple instance of a stratified program,
but it does not even require tabling. A more complex example is presented below.

Exercise 5.3.2 Consider the query ?- lrd s to the following program

lrd_p:- lrd_q,tnot(lrd_r),tnot(lrd_s).

lrd_q:- lrd_r,tnot(lrd_p).

lrd_r:- lrd_p,tnot(lrd_q).

lrd_s:- tnot(lrd_p),tnot(lrd_q),tnot(lrd_r).

Should lrd s be true or false? Try it in XSB. Using the intuitive definition of “stratified” as not
using recursion through negation, is this program stratified? Would the program still be stratified if
the order of the literals in the body of clauses for lrd p, lrd q, or lrd r were changed?

The rules for p, q and r are involved in a positive loop, and no answers are ever produced. Each
of these atoms can be failed, thereby proving s. Exercise 5.3.2 thus illustrates an instance of how
tabling differs from Prolog in executing stratified programs since Prolog would not fail finitely for
this program 8.

Completely Evaluated Subgoals Knowing when a subgoal is completely evaluated can be
useful when programming with tabling. Simply put, a subgoal S is completely evaluated if an
evaluation can produce no more answers for S. The computational strategy of XSB makes great
use of complete evaluation so that understanding this concept and its implications can be of great
help to a programmer.

Consider a simple approach to incorporating negation into tabling. Each time a negative goal
is called, a separate table is opened for the negative call. This evaluation of the call is carried on to
termination. If the evaluation terminates, its answers if any, are used to determine the success of
failure of the calling goal. This general mechanism underlies early formulations for tabling stratified
programs [38, 66]. Of course this method may not be efficient. Every time a new negative goal

8LRD-stratifiedstratification may be reminiscent of the Subgoal Dependency Graphs of Section 5.2.2 but differ in
several respects, most notably in that stratification considers only cycles through negative dependencies.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 77

is called, a new table must be started, and run to termination. We would like to use information
already derived from the computation to answer a new query, if at all possible — just as with
definite programs.

XSB addresses this problem by keeping track of the state of each subgoal in the table. A call
can have a state of complete, incomplete or not yet called. Calls that do have table entries may be
either complete or incomplete. A subgoal in a table is marked complete only after it is determined
to be completely evaluated; otherwise the subgoal is incomplete. If a tabled subgoal is not present
in the table, it is termed not yet called. XSB contains predicates that allow a user to examine the
state of a given table (Section 6.15).

Using these concepts, we can overview how tabled negation is evaluated for stratified programs.
If a literal tnot(S) is called, where S is a tabled subgoal, the evaluation checks the state of S. If
S is complete the engine simply determines whether the table contains an answer for S. Otherwise
the engine suspends the computation path leading to tnot(S) until S is completed (and calls S

if necessary). Whenever a suspended subgoal tnot(S) is completed with no answers, the engine
resumes the evaluation at the point where it had been suspended. We note that because of this
behavior, tracing programs that heavily use negation may produce behavior unexpected by the
user.

tnot/1 vs. ′\ +′/1 Subject to some semantic restrictions, an XSB programmer can intermix
the use of tabled negation (tnot/1) with Prolog’s negation (′\ +′/1, or equivalently fail if/1

or not/1). These restrictions are discussed in detail below — for now we focus on differences in
behavior or these two predicates in stratified programs. Recall that ′\ +′ (S) calls S and if S has a
solution, Prolog executes a cut over the subtree created by ′\ +′ (S), and fails. tnot/1 on the other
hand, does not execute a cut, so that all subgoals in the computation path begun by the negative
call will be completely evaluated. The major reason for not executing the cut is to ensure that XSB
evaluates ground queries to Datalog programs with negation with polynomial data complexity. As
seen [15], this property cannot be preserved if negation “cuts” over tables.

There are other small differences between tnot/1 and ′\ +′/1 illustrated in the following exer-
cise.

Exercise 5.3.3 In general, making a call to non-ground negative subgoal in Prolog may be unsound
(cf. [47]), but the following program illustrates a case in which non-ground negation is sound.

ngr_p:- \+ ngr_p(_).

ngr_p(a).

One tabled analog is

:- table ngr_tp/1.

ngr_tp(a).

ngr_tp:- tnot(ngr_tp(_)).

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 78

Version 3.3 of XSB will flounder on the call to ngr tp, but not on the call to ngr p/0. On the
other hand if sk not/1 is used

ngr_skp:- sk_not(ngr_tp(_)).

the non-ground semantics is allowed.

sk not/1 works by asserting a new tabled subgoal, abstractly

:- table ’_$ngr_tp’

’_$skolem_ngr_tp’ :- ngr_tp(_).

to avoid the problem with variables. In addition, since sk not/1 creates a new tabled predicate, it
can be used to call non-tabled predicates as well, ensuring tabling.

The description of tnot/1 in Section 6.5 describes other small differences between ′\ +′/1 and
tnot/1 as implemented in XSB. Before leaving the subject of stratification, we note that the
concepts of stratification also underly XSB’s evaluation of tabled findall: tfindall/3. Here, the
idea is that a program is stratified if it contains no loop through tabled findall (See the description
of predicate tfindall/3 on page 172).

5.3.2 Non-stratified Programs

As discussed above, in stratified programs, facts are either true or false, while in non-stratified
programs facts may also be undefined. XSB represents undefined facts as conditional answers.

Conditional Answers

Exercise 5.3.4 Consider the behavior of the win/1 predicate from Exercise 5.3.1.

win(X):- move(X,Y),tnot(win(Y)).

when the when the move/2 relation is a cycle. Load the file $XSB_DIR/examplescycle1k.P into
XSB and again type the query ?- win(1). Does the query succeed? Try tnot(win(1)).

Now query the table with the standard XSB predicate get residual/2, e.g. ?- get residual(win(1),X).
Can you guess what is happening with this non-stratified program?

The predicate get residual/2 (Section 6.15) unifies its first argument with a tabled subgoal
and its second argument with the (possibly empty) delay list of that subgoal. The truth of the
subgoal is taken to be conditional on the truth of the elements in the delay list. Thus win(1)

is conditional on tnot(win(2)), win(2) in tnot(win(3)) and so on until win(1023) which is
conditional on win(1).

From the perspective of the well-founded semantics, win(1) is undefined. Informally, true
answers in the well-founded semantics are those that have a (tabled) derivation. False answers are

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 79

those for which all possible derivations fail — either finitely as in Prolog or by failing positive loops.
win(1) fits in neither of these cases – there is no proof of win(1), yet it does not fail in the sense
given above and is thus undefined.

However this explanation does not account for why undefined answers should be represented
as conditional answers, or why a query with a conditional answer and its negation should both
succeed. These features arise from the proof strategy of XSB, which we now examine in more
detail.

Exercise 5.3.5 Consider the program

:- table simpl_p/1,simpl_r/0,simpl_s/0.

simpl_p(X):- tnot(simpl_s).

simpl_s:- tnot(simpl_r).

simpl_s:- simpl_p(X).

simpl_r:- tnot(simpl_s),simpl_r.

Try the query ?- simpl p(X). If you have a copy of XSB defined using Batched Scheduling load
the examples program and query ?- simpl p(X) – be sure to backtrack through all possible answers.
Now try the query again. What could possibly account for the difference in behavior between Local
and Batched Scheduling?

At this point, it is worthwhile to examine closely the evaluation of the program in Exercise
5.3.5. The query simpl p(X) calls simpl s and simpl r and executes the portion of the program
shown below in bold:

simpl p(X):- tnot(simpl s).

simpl s:- tnot(simpl r).
simpl s:- simpl p(X).

simpl r:- tnot(simpl s),simpl r.

Based on evaluating only the bold literals, the three atoms are all undefined since they are neither
proved true, nor fail. However if the evaluation could only look at the literal in italics, simpl r,
it would discover that simpl r is involved in a positive loop and, since there is only one clause for
simpl r, the evaluation could conclude that the atom was false. This is exactly what XSB does, it
delays the evaluation of tnot(simpl s) in the clause for simpl r and looks ahead to the next literal
in the body of that clause. This action of looking ahead of a negative literal is called delaying. A
delayed literal is moved into the delay list of a current path of computation. Whenever an answer is
derived, the delay list of the current path of computation is copied into the table. If the delay list is
empty, the answer is unconditional; otherwise it is conditional. Of course, for definite programs any
answers will be unconditional — we therefore omitted delay lists when discussing such programs.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 80

In the above program, delaying occurs for the negative literals in clauses for simpl p(X),
simpl s, and simpl r. In the first two cases, conditional answers can be derived, while in the
third, simpl r will fail as mentioned above. Delayed literals eventually become evaluated through
simplification. Consider an answer of the form

simpl_p(X):- tnot(simpl_s)|

where the | is used to represent the end of the delay list. If, after the answer is copied into the table,
simpl s turns out to be false, (after being initially delayed), the answer can become unconditional.
If simpl s turns out to be true, the answer should be removed, it is false.

In fact, it is this last case that occurs in Exercise 5.3.5. The answer

simpl_p(X):- tnot(simpl_s)|

is derived, and returned to the user (XSB does not currently print out the delay list). The answer
is then removed through simplification so that when the query is re-executed, the answer does not
appear.

We will examine in detail how to alter the XSB interface so that evaluation of the well-founded
semantics need not be confusing. It is worthwhile to note that the behavior just described is
uncommon.

Version 3.3 of XSB handles dynamically stratified programs through delaying negative literals
when it becomes necessary to look to their right in a clause, and then simplifying away the delayed
literals when and if their truth value becomes known. However, to ensure efficiency, literals are
never delayed unless the engine determines them to not to be stratified under the LRD-stratified
evaluation method.

When Conditional Answers are Needed A good Prolog programmer uses the order of literals
in the body of a clause to make her program more efficient. However, as seen in the previous section,
delaying can break the order that literals are evaluated within the body of a clause. It then becomes
natural to ask if any guarantees can be made that XSB is not delaying literals unnecessarily.

Such a guarantee can in fact be made, using the concept of dynamic stratification [55]. Without
going into the formalism of dynamic stratification, we note that a program is dynamically stratified
if and only if it has a two-valued model. It is also known that computation of queries to dynamically
stratified programs is not possible under any fixed strategy for selecting literals within the body
of a clause. In other words, some mechanism for breaking the fixed-order literal selection strategy
must be used, such as delaying.

However, by redefining dynamic stratification to use an arbitrary fixed-order literal selection
strategy (such as the left-to-right strategy of Prolog), a new kind of stratification is characterized,
called Left-to-Right Dynamic Stratification, or LRD-stratification. LRD-stratified is not as powerful
as dynamic stratification, but is more powerful than other fixed-order stratification methods, and
it can be shown that for ground programs, XSB delays only when programs are not LRD-stratified.
In the language of [62] XSB is delay minimal.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 81

Programming in the Well-founded Semantics XSB delays literals for non-LRD-stratified
programs and later simplifies them away. In Local Scheduling, all simplification will be done before
the first answer is returned to the user. In Batched Scheduling it is usually better to make a
top-level call for a predicate, p as follows:

?- p,fail ; p.

when the second p in this query is called, all simplification on p will have been performed. However,
this query will succeed if p is true or undefined.

Exercise 5.3.6 Write a predicate wfs call(+Tpred,?Val) such that if Tpred is a ground call to a
tabled predicate, wfs call(+Tpred,?Val) calls Tpred and unifies Val with the truth value of Tpred
under the well-founded semantics. Hint: use get residual/2.

How would you modify wfs call(?Tpred,?Val) so that it properly handled cases in which Tpred

is non-ground.

Trouble in Paradise: Answer Completion The engine for XSB performs both program clause
and answer resolution, along with delay and simplification. What it does not do is to perform an
operation called answer completion which is needed in certain (pathological?) programs.

Exercise 5.3.7 Consider the following program:

:- table ac_p/1,ac_r/0,ac_s/0.

ac_p(X):- ac_p(X).

ac_p(X):- tnot(ac_s).

ac_s:- tnot(ac_r).

ac_s:- ac_p(X).

ac_r:- tnot(ac_s),ac_r.

Using either the predicate from Exercise 5.3.6 or some other method, determine the truth value of
ac p(X). What should the value be? (hint: what is the value of ac s/1?).

For certain programs, XSB will delay a literal (such as ac p(X) that it will not be able to later
simplify away. In such a case, an operation, called answer completion is needed to remove the
clause

ac_p(X):- ac_p(X)|

Without answer completion, XSB may consider some answers to be undefined rather than false. It
is thus is sound, but not complete for terminating programs to the well-founded semantics. Answer
completion is not available for Version 3.3 of XSB, as it is expensive and the need for answer
completion arises rarely in practice. However answer completion will be included at some level in
future versions of XSB.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 82

5.3.3 On Beyond Zebra: Implementing Other Semantics for Non-stratified Pro-
grams

The Well-founded semantics is not the only semantics for non-stratified programs. XSB can be
used to (help) implement other semantics that lie in one of two classes. 1) Semantics that extend
the well-founded semantics to include new program constructs; or 2) semantics that contain the
well-founded partial model as a submodel.

An example of a semantics of class 1) is (WFSX) [3], which adds explicit (or provable) negation
to the default negation used by the Well-founded semantics. The addition of explicit negation
in WFSX, can be useful for modeling problems in domains such as diagnosis and hierarchical
reasoning, or domains that require updates [43], as logic programs. WFSX is embeddable into
the well-founded semantics; and this embedding gives rise to an XSB meta-interpreter, or, more
efficiently, to the preprocessor described in Section Extended Logic Programs in Volume 2. See [69]
for an overview of the process of implementing extensions of the well-founded semantics.

An example of a semantics of class 2) is the stable model semantics. Every stable model of a
program contains the well-founded partial model as a submodel. As a result, the XSB can be used
to evaluate stable model semantics through the residual program, to which we now turn.

The Residual Program Given a program P and query Q, the residual program for Q and P
consists of all (conditional and unconditional) answers created in the complete evaluation of Q.

Exercise 5.3.8 Consider the following program.

:- table ppgte_p/0,ppgte_q/0,ppgte_r/0,ppgte_s/0,

ppgte_t/0,ppgte_u/0,ppgte_v/0.

ppgte_p:- ppgte_q. ppgte_p:- ppgte_r.

ppgte_q:- ppgte_s. ppgte_r:- ppgte_u.

ppgte_q:- ppgte_t. ppgte_r:- ppgte_v.

ppgte_s:- ppgte_w. ppgte_u:- undefined.

ppgte_t:- ppgte_x. ppgte_v:- undefined.

ppgte_w:- ppgte(1). ppgte_x:- ppgte(0).

ppgte_w:- undefined. ppgte_x:- undefined.

ppgte(0).

:- table undefined/0.

undefined:- tnot(undefined).

Write a routine that uses get residual/2 to print out the residual program for the query ?-

ppgte p,fail. Try altering the tabling declarations, in particular by making ppgte q/0, ppgte r/0,

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 83

ppgte s/0 and ppgte t/0 non-tabled. What effect does altering the tabling declarations have on
the residual program?

When XSB returns a conditional answer to a literal L, it does not propagate the delay list
of the conditional answer, but rather delays L itself, even if L does not occur in a negative loop.
This has the advantage of ensuring that delayed literals are not propagated exponentially through
conditional answers.

Stable Models Stable models are one of the most popular semantics for non-stratified programs.
The intuition behind the stable model semantics for a ground program P can be seen as follows.
Each negative literal notL in P is treated as a special kind of atom called an assumption. To
compute the stable model, a guess is made about whether each assumption is true or false, creating
an assumption set, A. Once an assumption set is given, negative literals do not need to be evaluated
as in the well-founded semantics; rather an evaluation treats a negative literal as an atom that
succeeds or fails depending on whether it is true or false in A.

Example 5.3.1 Consider the simple, non-stratified program

writes manual(terry)-¬writes manual(kostis),has time(terry).

writes manual(kostis)-¬writes manual(terry),has time(kostis).

has time(terry).

has time(kostis).

there are two stable models of this program: in one writes manual(terry) is true, and in another
writes manual(kostis) is true. In the Well-Founded model, neither of these literals is true. The
residual program for the above program is

writes manual(terry)-¬writes manual(kostis).

writes manual(kostis)-¬writes manual(terry).

has time(terry).

has time(kostis).

Computing stable models is an intractable problem, meaning that any algorithm to evaluate
stable models may have to fall back on generating possible assumption sets, in pathological cases.
For a ground program, if it is ensured that residual clauses are produced for all atoms, using the
residual program may bring a performance gain since the search space of algorithms to compute
stable models will be correspondingly reduced. In fact, by using XSB in conjunction with a Stable
Model generator, Smodels [53], an efficient system has been devised for model checking of concurrent
systems that is 10-20 times faster than competing systems [46]. In addition, using the XASP package
(see the separate manual, [12] in XSB’s packages directory) a consistency checker for description
logics has also been created [70].

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 84

5.4 Answer Subsumption

By default XSB adds an answer A to a table T only if A is not a variant of some other answer already
in T , a technique termed answer variance. While answer variance is sufficient to allow tabling to
compute the well-founded semantics and to terminate for programs with bounded term-depth, other
choices of when and how to add an answer can be made. Using partial order answer subsumption,
A would be added to T only if A is maximal with respect to other answers in T according to a given
partial order >O. Furthermore if A is added, any answers in T that A subsumes (i.e., is greater than
in >O) are deleted. When using lattice answer subsumption, A itself may not be added to T , rather
the join is taken of A and another answer A′ in T , with A′ being deleted. Despite its conceptual
simplicity, answer subsumption can be a powerful tool. Partial order answer subsumption allows
a table to retain only answers that are maximal according to a metric or to a preference relation;
lattice answer subsumption can form the basis of multi-valued logics, quantitative logics, and of
abstract interpretations for programs and process logics.

5.4.1 Types of Answer Subsumption

Partial Order Answer Subsumption.

We illustrate the use of partial oder answer subsumption through a shortest-path predicate (Fig-
ure 5.1) that counts the number of edges between two vertices.

sp(X,Y,1):- edge(X,Y).

sp(X,Z,N):- sp(X,Y,N1),edge(Y,Z),N is N1 + 1.

Figure 5.1: A Shortest Path Predicate

As mentioned above, partial-order answer subsumption retains in a table T only those answers
that are maximal according to a given partial order >O. In the case of the shortest-path predicate
of Figure 5.1, sp(A1, A2, A3) >O sp(B1, B2, B3) if, A1 = B1, A2 = B2, and A3 < B3. Note that
that minimal distances are maximal in <O, and that <O is undefined if A3 or B3 is non-numeric.
In XSB, partial order answer subsumption is specified for sp/3 using the declaration

:- table sp(_,_,po(</2)).

In a given state of computation, only those answers that are maximal according to >O are available
for resolution. Thus, for a finite graph with cycles, sp/3 will terminate using answer subsumption,
but not with answer variance. Other partial orders beyond distance metrics may be useful. For
instance, >O may specify a preference ordering between derived atoms so that answer subsumption
provides an alternative to default-based methods for computing preferences.

Lattice Answer Subsumption.

An upper semi-lattice is a partial order for which any two elements have a unique least upper bound.
Because the ordering for the third argument of sp/3 is total, it also forms an upper semi-lattice,

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 85

and so can be computed using lattice answer subsumption. 9. In XSB lattice answer subsumption
for sp/3 is declared as

:- table sp(_,_,lattice(min/3)).

with min/3 defined as min(X,Y,Z):- Z is min(X,Y). Operationally, this means that whenever
an answer sp(A1, A2, A3) is derived, if there is another answer sp(B1, B2, B3) where A1 = B1 and
A2 = B2 the join J3 of A3 and B3 is taken, and only sp(A1, A2, J3) is available for resolution. As
with a partial order, the join operation ensures termination for shortest path over a finite graph
with cycles.

As the following proposition shows, lattice answer subsumption can be modeled either starting
with a lattice, or starting with a function with appropriate properties.

Proposition 5.4.1 Let op be an associative, commutative, and idempotent binary function. Then
there is a partial order P , such that P is an upper semi-lattice with join op.

Conversely, if a function does not have the above properties, it is not suitable for lattice answer
subsumption. Accordingly the aggregate functions count and sum cannot be computed using lattice
answer subsumption 10. Lattice answer subsumption has a variety of applications. [73] shows how it
is used for social-network analysis and Section 5.4.2 shows its use for an application of multi-valued
logics, [69] describes how a similar formalism can implement a quantitative logic, and [58] describes
how XSB’s PITA package is based on answer subsumption (see Volume 2 of this manual).

Partial Order Answer Subsumption with Abstraction.

Computation over an abstract domain may require certain maximal answers to be abstracted. In
many cases, abstraction can be modeled by a join operation, but in others the abstraction represents
an implicit induction step in the following sense. Given a set A of answers, it may be detected
that the program computed does not have a finite model. An abstraction operation then is applied
so that A and its extensions can be symbolically represented by a single answer A. Using answer
subsumption, this abstraction can be taken only if needed during program execution. Abstractly,
partial order answer subsumption with abstraction uses the declaration

:- table p(_,_,po(rel/2,abs/3)).

where rel/2 is a partial order, and abs/3 is the abstraction operation. Section 5.4.2 provides a
detailed example of how such an approach is used to analyze a process logic.

9The terminology lattice answer subsumption is employed even though only the join of the lattice is used.
10Since count and sum are not idempotent their semantics is based on multi-sets, rather than sets. Incorporating

these as tabling features requires modifying their semantics to be set-based, in a manner similar to aggregation ASP
systems.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 86

s3

t1

s1

s2

t2

t3 s4

t4

Figure 5.2: A PT-net and configuration with an infinite number of reachable configurations

5.4.2 Examples of Answer Subsumption

Answer Subsumption and Abstract Interpretation

Net-style formalisms, such as Petri Nets, Workflow Nets, etc. have been used extensively for
process modeling. Reachability is a central problem in analyzing properties of such nets, to which
properties such as liveness, deadlock-freedom, and the existence of home states can be reduced.
However, many interesting net formalisms cannot guarantee a finite number of configurations in a
given net, so abstraction methods must be applied for their analysis.

For instance, the lack of finiteness is a problem in analyzing Place/Transition (PT) Nets. PT
nets have no guard conditions or after-effects, and do not distinguish between token types. However,
PT nets do allow a place to hold more than one token, leading to a potentially infinite number of
configurations. This can be seen in the simple network of Figure 5.2 (from [24]) in which transitions
are denoted by squares and places by circles. Each transition removes one token from the places
that are the sources of its input edges and adds one token to each place at the target of each of its
output edges. Starting from the configuration in Figure 5.2, repeated application of transition t1

leads to place s2 containing an unbounded number of tokens; repeated application of the sequence
t1,t2,t3,t4 leads to place s4 containing an unbounded number of tokens.

Despite such examples, reachability in PT nets is decidable and can be determined using an
abstraction method called ω-sequences, (see e.g. [24]). The main idea in determining ω sequences
is to define a partial order ≥ω on configurations as follows. If configurations C1 and C2 are both
reachable, C1 and C2 have tokens in the same set PL of places, C1 has at least as many tokens in
each place as C2, and there exists a non-empty PLsub ⊆ PL, such that for each pl ∈ Plsub C1 has
strictly more tokens than C2, then C1 >ω C2. When evaluating reachability, if C2 is reached first,
and then C1 was subsequently reached, C1 is abstracted by marking each place in PLsub with the
special token ω which is taken to be greater than any integer. If C1 was reached first and then C2,
C2 is treated as having already been seen.

Tabling combined with partial order answer subsumption requires slightly over 100 lines of code
to model reachability in PT nets using ω-sequences. Due to space restrictions, the program cannot
be fully described here, but the top-level reachability predicate is shown in Figure 5.3. Despite
its succinctness, it can evaluate reachability in networks with millions of states in a few minutes.
This use of tabling to determine reachability in PT nets can be seen as a special case of tabling for
abstract interpretation (cf. [37] and other works). However the framework for answer subsumption
described here allows tabling to be used to efficiently perform abstract interpretation within a

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 87

:- table reachable(_,po(omega_gte/2,omega_abs/3)).

reachable(InConf,NewConf):-

reachable(InConf,NewConf),

hasTransition(Conf,NewConf).

reachable(InConf,NewConf):- hasTransition(InConf,NewConf).

Figure 5.3: Top-level predicate for PT net reachability

general Prolog system

Scalability for multi-valued and quantitative logics

The technique of program justification (cf. e.g. [54]) has been used for debugging tabled programs
that cannot be debugged by traditional means. Here, we consider justification in the context of
the Silk system, currently under development at Vulcan, Inc. Silk is a commercial knowledge
representation and rule system built on top of Flora-2, which is implemented using XSB. One of
the salient features of Silk is its default reasoning, which is based on a parameterized argumentation
theory evaluated under the well-founded semantics [79]. One issue in using Silk is that knowledge
engineers must have a way of understanding the reasoning of the system, a task complicated by
the use of the well-founded semantics and the intricacies of the argumentation theory. We describe
an experimental approach to justification of Silk-style argumentation theories using multi-valued
logics.

As noted in [79], argumentation theories in Silk are usually extensions of the default theories
of Courteous Logic Programs (CLP) and are based on two user-defined predicates: opposes/2 and
overrides/2. Two atoms oppose each other if no model of a program can contain both atoms:
an atom and its explicit negation oppose each other, but opposition can capture many other types
of contradictions. Given two opposing atoms, one atom may override the other, and so be given
preference. For atoms A1 and A2, if A1 and A2 are both derivable and oppose each other but
neither overrides the other, A1 and A2 mutually rebut each other. If in addition A1, say, overrides
A2, A1 refutes A2

11. Within Silk and Flora-2, the compilation of an argumentation theory ensures
that rebutted atoms have an undefined truth value, as do atoms that refute themselves (i.e. if the
overrides/2 predicate is cyclic). However, for justification, it is meaningful to distinguish those
facts that are undefined due to a negative loop in the argumentation theory from those that are
undefined due to a negative loop in the program itself. In addition, it is meaningful to distinguish
an atom that is true because it overrides some other atom, from an atom whose derivation does
not depend on the argumentation theory. Similar distinctions can be made for default false literals
leading to the truth lattice shown in Figure 5.4.

11In [79] argumentation theories are built on named rules, here we base them on derived atoms.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 88

mutually refuted

bottom

mutually rebutted

default refuted falserefuted true

default falsetrue

top

Figure 5.4: A Truth Lattice for a Simplified Version of Courteous Argumentation Theory

5.4.3 Term-Sets

XSB provides support for a programming technique for representing sets of terms, called term-sets.
(While it is not closely related to answer subsumption, it is partially implemented through tabling
and a table declaration, and so this facility is documented here.)

We begin in an example. We can represent a set of Prolog terms by using a particular term of the
form {Var:Goal} where Goal has (only) Var free in it. Then we will use this set-term to represent
the set of terms obtained by evaluating Goal and taking the values of Var that are obtained. I.e.,
they would be the terms in the list L returned by the Prolog call to setof(Var,Goal,L). For
example, the set-term:

{X : member(X,[a,b,c])}

represents the set of terms {a,b,c}.

Now a term-set is a Prolog term that may contain set-terms as subterms. For example,

m({X:member(X,[a,b,c])},g(d,{Y:member(Y,[e,f,g])}),h)

is a term-set, and it represents the set of terms obtained from it by replacing (recursively) any
embeded set-term by a term in that set-term. So the above term-set represents the 9 terms:

m(a,g(d,e),h) m(a,g(d,f),h) m(a,g(d,g),h)

m(b,g(d,e),h) m(b,g(d,f),h) m(b,g(d,g),h)

m(c,g(d,e),h) m(c,g(d,f),h) m(c,g(d,g),h)

This example shows an advantage of this representation. Say a term-set has k sub-set-terms each
of which is of the member form in this example where each member has a list of atoms of length
n. To represent this set of terms explicitly takes O(nk) space, whereas to represent them with the
term-set takes only O(n× k) space. So a term-set representation can take exponentially less space
than an explicit representation.

It is relatively easy to write a predicate, member termset/2, which takes a variable and a
term-set and nondeterministically generates all concrete terms represented by the term-set, called

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 89

extensionalizing the term-set. Some care must be taken since a call to goal to extensionalize a set-
term may itself return a term-set. Also term-sets can be self-recursive and thus represent infinitely
many Prolog terms. For example, consider the term-set:

{X : p(X)} where

p(a).

p(f({X:p(X)})).

This term-set contains the infinitely many terms:

a, f(a), f(f(a)), f(f(f(a))), ...

A particularly intriguing use of term-sets is in conjuntion with tabling. Consider the term-set
{X:p(1,2,X)} where p/3 is tabled. If p(1,2,_} has been called and so its table is filled, then
extensionalizing the previous term-set is just a table lookup; in some sense we can think of such a
term-set a standing for a pointer into a table to a set of terms. This can be elegantly used to solve
an important problem in handling parse trees in context-free parsing.

Consider the following DCG for the language a*:

:- table a/3.

a(a(P1,P2)) --> a(P1),a(P2).

a(a) --> [a].

which recognizes a string and constructs its parse trees.

To generate all answers, this DCG will take time exponential in the length of the input string;
not surprising since there are exponentially many parses. But say we give it an input string of
n a’s followed by one b. In this case it will take exponential time to fail, since it will construct
all the exponentially many partial parse trees. We would like the grammar in this case to fail
in polynomial time. By representing the parse trees as a term-set, while recognizing the string,
and then after the string is recognized, extensionalize the set-term representing the parse trees, we
can get the behavior we want. The set-term representing the parse trees for any grammar will be
constructed in polynomial time; the extensionalization will take exponential time only if there are
exponentially many parses.

We can cause XSB to automatically use the term-set representation by adding to the above
program the declaration:

:- table a(termset,_,_).

which tells XSB to use the term-set representation of the first argument of a/3.

With this declaration, XSB will transform the above program into the following:

:- table a/3.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 90

a(a(P1,P2),S0,S) :- ’_$a’(P1,S0,S1),’_$a’(P2,S1,S).

a(a,S0,S1) --> ’C’(S0,a,S1).

:- table ’_$a’/3 as subsumptive.

’_$a’({X:’_$a’(X,S0,S)},S0,S) :- a(_,S0,S).

A new predicate ’ $a’/3 is introduced, and all calls to the original predicate a/3 are replaced by
calls to the new one. It is defined to call the original a/3 but to return the term-set instead of the
concrete parse tree in the argument declared to be a term-set.

We can see that a call to a/3 in this new program will have exactly as many answers as the
corresponding call to a/2 in the original recognizing DCG, since given values for S0 and S, a call
to ’ $a’/2 returns only one value in its first argument. So a call to a/3 with have the polynomial
complexity of the recognizer. So now with this representation to get the concrete parse tree for a
string, one writes, for example:

| ?- a(Pts,[a,a,a,a,a,a,a],[]), member_termset(Parse,Pts).

which uses the term-set representation while recognizing the input string, and then extensionalizes
it to the produce the actual parse tree. With this way of handling parse trees in arbitrary context-
free grammars, the complexity of parsing to create the term-set is always polynomial, and then
extensionalizing the term-set may be exponential if all parses are desired and there are exponentially
many of them. Of course, if the parsing call to a/3 fails, then there is no extensionalization to do,
and the process is polynomial.

Note that the transformation uses subsumptive tabling for the newly introduced auxiliary pred-
icate. This is important for this example, since the parsing calls to ’ $a’/3 will normally have
S0 bound and S free, yet when extensionalizing the constructed term-set to obtain the parse trees,
the calls will have both S0 and S bound. We do not want to recompute the parse during exten-
sionalizion, which would happen were we to be using variant tabling, and so we use subsumptive
tabling.

Problems in graph traversal provide another example of the effective use of term-sets. For graph
reachability, we have the very familiar:

:- table reach/2.

reach(X,Y) :- edge(X,Y).

reach(X,Y) :- reach(X,Z), edge(Z,Y).

which is linear in the number of edges in the graph. But say that we now want to construct the
path from X to Y when Y is reachable from X. One simple way to do it (collecting the intermediate
nodes in the path in reverse order) is:

:- table path/3.

path(X,Y,[]) :- edge(X,Y).

path(X,Y,[Z|Path]) :- path(X,Z,Path), edge(Z,Y).

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 91

For an acyclic edge graph, this works fine, but for a graph with cycles, this will go into an infinite
loop. Indeed, it must, since in a cyclic graph there are infinitely many different paths between
some nodes. However, we can use term-set to handle this situation more flexibly. We modify the
above program by adding:

:- table path(_,_,termset).

With this declaration, every call to path/3 (for a finite edge graph) will terminate in time linear
in the number of edges. And all the paths will be presented in the term-set returned in the third
argument. Here we have an advantage similar to the one we had in the grammar example above: if
there is no path from our source to our target node, we will find that out in linear time. Without
the term-set declaration, this might take exponential time, while the program builds all the paths
to all the nodes that are reachable from our source node. Also, if we want only one possible
path from our source to our target, we can easily retrieve only one member of the term-set during
extensionalization, and the whole process is still linear.

Now consider what happens with when the graph has cycles. In this case, the term-set may
be recursive and represent the infinitely many paths between nodes. For example, the term-set
representing all paths from a to a in the graph with a single edge from a to a will have the same
structure as the example of an infinite term-set given at the beginning of this subsection. Once the
path term-set is constructed (in time linear in the number of edges for a single source), producing
paths reduces to processing the term-set structure. For example to generate all paths between
nodes which do not contain repeated intermediate nodes, one could write an extensionalization
predicate that passes a list of term-sets in the process of being expanded, and refuse to re-expand
one currently being expanded. This is the technique often used in Prolog without tabling to compute
reachability in cyclic graphs.

All of these examples can be seen as special cases of constructing proof trees or justifications of
goals. Indeed, term-sets could be effectively used in the construction of a justification or explanation
system.

5.5 Subgoal Abstraction

As noted throughout this manual, tabling adds important termination properties to programs and
queries. In this section we state more precisely what these termination properties are, and how the
properties can be strengthened through subgoal abstraction declarations and settings.

Consider a pure definite program in which every predicate is tabled. Such a program would call
each tabled subgoal (up to variance) exactly once if call variance were used, and at most once if call
subsumption were used. In addition, tabling guarantees that each answer will be returned to each
call to a tabled subgoal at most once. This means that there are two sources of non-termination.
Either there can be an infinite number of subgoals, or there can be an infinite number of answers.
Apart from these two cases, a tabled evaluation will be finite and so will terminate. Of course this is
a theoretical argument, and termination could require a long time or a lot of memory; furthermore
we are not considering issues with builtins, arithmetic, etc. 12. For normal programs, the causes of

12Using the forest of trees model of tabling (cf. Section 10.3) non-termination requires that there are an infinite

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 92

non-termination turn out to be basically the same as for definite programs.

If a program produces an infinite number of subgoals but has a finite number of answers, the
program can be made to terminate by abstracting the subgoal. For instance, consider the program
fragment:

p(X) :- p(f(X)).

The goal ?- p(1) can create an infinite number of variant tabled subgoals: p(f(1)), p(f(f(1))),
p(f(f(f(1)))) and so on. Subgoal abstraction allows a goal, like p(f(f(f(1)))) to be rewritten
as p(f(f(X))),X = f(1). If all subgoals that have a term depth (or term size) over a given finite
threshold are abstracted, any query can produce only a finite number of subgoals (since there are
a finite number of predicate, function and constant symbols in any program). If a program is
definite, it can be shown that any query to a program will terminate if that program uses subgoal
abstraction [75]. Subgoal abstraction is done automatically by XSB’s engine under the conditions
described below.

Of course, subgoal abstraction can’t handle cases where there are an infinite number of answers,
as in the program fragment:

p(f(X)) :- p(X).

when givne the query p(X). Subgoal abstraction can also cause problems if used indiscriminately.
if the second argument of the subgoal

?- member(e,[a,b,c,d,e])

is abstracted forming the goal

?- member(e,[a,b,c,X])

a goal that terminates without abstraction will not terminate after abstraction. Note that any
program containing member/2 and at least one constant does not have a finite model. While an
experienced programmer would never want to table member/2, he well may want to table a grammar
or other program that performs recursion through a finite structure.

The implementation of subgoal abstraction in XSB is still in progress. Abstraction is not
currently performed for goals called negatively including tnot/1 and sk not/1; rather, such goals
will throw an exception if they surpass the specified depth.

5.5.1 Declaring Subgoal Abstraction

Subgoal abstraction can be declared to work by default or to work on a specific predicate, or both.
It is important to note that only tabled predicates are affected 13.

Default subgoal abstraction can be declared by setting the Prolog flags

number of trees or that at least one tree have infinite size.
13Currently subgoal abstraction is implemented only for call variance

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 93

• max table subgoal depth to the desired maximal depth; and

• max table subgoal action to abstract

(cf. pg. 180).

Unless otherwise specified, XSB starts up with max table subgoal action is set error and
max table subgoal depth is set to the maximum integer possible on the platform on which XSB
is installed. Under this default behavior, XSB will throw an error if a subgoal has depth greater than
max table subgoal depth. As an alternate to setting flags, XSB can be called with the arguments
--max subgoal action a and --max subgoal depth n where n is the size of the desired depth.

Predicate-level subgoal abstraction is not yet implemented.

5.6 Incremental Table Maintenance

XSB allows the user to declare that the system should incrementally maintain particular tables. An
incrementally maintained table is one that continually contains the correct answers in the presence
of updates to underlying predicates on which the tabled predicate depends. If tables are thought
of as database views, then this subsystem enables what is known in the database community as
incremental view maintenance.

5.6.1 Examples

To demonstrate incremental table maintenance, we consider first the following simple program that
does not use incremental tabling:

:- table p/2.

p(X,Y) :- q(X,Y),Y =< 5.

:- dynamic q/2.

q(a,1).

q(b,3).

q(c,5).

q(d,7).

and the following queries and results:

| ?- p(X,Y),writeln([X,Y]),fail.

[c,5]

[b,3]

[a,1]

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 94

no

| ?- assert(q(d,4)).

yes

| ?- p(X,Y),writeln([X,Y]),fail.

[c,5]

[b,3]

[a,1]

no

| ?-

Here we see that the table for p/2 depends on the contents of the dynamic predicate q/2. We
first evaluate a query, p(X,Y), which creates a table. Then we use assert to add a fact to the
q/2 predicate and re-evaluate the query. We see that the answers haven’t changed, and this is
because the table is already created and the second query just retrieves answers directly from that
existing table. But in this case we have answers that are inconsistent with the current definition
of p/2. I.e., if the table didn’t exist (e.g. if p/2 weren’t tabled), we would get a different answer
to our p(X,Y) query, this time including the [d,4] answer. The usual solution to this problem is
for the XSB programmer to explicitly abolish a table whenever changing (with assert or retract) a
predicate on which the table depends.

By declaring that the tables for p/2 should be incrementally maintained, and using specific
dynamic predicate update operations, the system will automatically keep the tables for p/2 correct.
Consider the program:

:- table p/2 as incremental.

p(X,Y) :- q(X,Y),Y =< 5.

:- dynamic q/2 as incremental.

q(a,1).

q(b,3).

q(c,5).

q(d,7).

in which p/2 is declared to be incrementally tabled (with :- table p/2 as incremental) and
q/2 is declared to be both dynamic and incremental, meaning that an incremental table depends
on it 14. Consider the following goals and execution:

| ?- import incr_assert/1 from increval.

14The declarations use incremental tabling/1 and use incremental dynamic/1 are deprecated in Version 3.3of
XSB – in other words backwards compatability will be maintained for a time, but these declarations will not be
further supported.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 95

yes

| ?- p(X,Y),writeln([X,Y]),fail.

[c,5]

[b,3]

[a,1]

no

| ?- incr_assert(q(d,4)).

yes

| ?- p(X,Y),writeln([X,Y]),fail.

[d,4]

[c,5]

[b,3]

[a,1]

no

| ?-

Here again we call p(X,Y) and generate a table for it and its answers. (We have imported the
incr assert predicate we need to interact with the incremental table maintenance subsystem.)
Then we update q/2 by using the incremental version of assert, incr assert/1. Now when we call
p(X,Y) again, the table has been updated and we get the correct answer.

In this case after every incr assert and/or incr retractall, the tables are incrementally
updated to reflect the change. The system keeps track of what tabled goals depend on what other
tabled goals and (incremental) dynamic goals, and tries to minimize the amount of recomputation
necessary. Incrementally tabled predicates may depend on other tabled predicates. In this case,
those tabled predicates must also be declared as incremental (or opaque). The algorithm used is
described in [65, 64].

We note that there is a more efficient way to program incremental updates when there are
several changes made to the base predicates at one time. In this case the incr assert inval and
incr retractall inval operations should be used for each individual update. These operations
leave the dependent tables unchanged (and thus inconsistent.) Then to update the tables for all
the changes made, the user should call incr table update.

In the current version of XSB, incremental tabling has not yet been ported to the multi-threaded
engine. In addition, incremental tabling only works for stratified predicates that do not involve
conditional answers, and it currently works only for predicates that use both call and answer sub-
sumption. However, incremental tabling does work with trie indexed dynamic code (in addition to
regular dynamic code) and with interned tries as described in Section 5.6.4. The space reclamation
predicates abolish all tables/0 and abolish table call/[1,2] both can be safely used with
incremental tables, but abolish table pred/[1,2] if the predicate it abolishes is incremental.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 96

5.6.2 Predicates for Incremental Table Maintenance

The following directives support incremental tabling based on changes in dynamic code:

table +PredSpecs as incremental Tabling
is a executable predicate that indicates that each tabled predicate specified in PredSpec is to
have its tables maintained incrementally. PredSpec is a list of skeletons, i.e. open terms, or
Pred/Arity specifications. The tables must use call variance and must be thread-private. If
a predicate is already declared as subsumptively tabled, an error is thrown. This predicate,
when called as a compiler directive, implies that its arguments are tabled predicates.

We also note that any tabled predicate that is called by a predicate tabled as incremental
must also be tabled as incremental or as opaque. On the other hand, a dynamic predicate
d/n that is called by a predicate tabled as incremental may or may not need to be declared
as incremental. However if d/n is not declared incremental, then changes to it will not be
propagated to incrementally maintained tables.

dynamic +PredSpecs as incremental Tabling
is an executable predicate that indicates that a predicate is dynamic and used to define an in-
crementally tabled predicate and will be updated using incr assert and/or incr retractall

(or relatives.) This predicate, when called as a compiler directive, implies that its arguments
are dynamic predicates.

table +PredSpecs as opaque Tabling
is an executable predicate that indicates that a predicate is tabled and is used in the definition
of some incrementally tabled predicate but it should not be maintained incrementally. In
this case the system assumes that the programmer will abolish tables for this predicate in
such a way so that re-calling it will always give semantically correct answers. So instead of
maintaining information to support incremental table maintenance, the system re-calls the
opaque predicate whenever its results are required to recompute an answer. One example of an
appropriate use of opaque is for tabled predicates in a DCG used to parse some string. Rather
than incrementally maintain all dependencies on all input strings, the user can declare these
intermediate tables as opaque and abolish them before any call to the DCG. This predicate,
when called as a compiler directive, implies that its arguments are tabled predicates.

The following predicates are used to manipulate incrementally maintained tables:

incr assert(+Clause) module: increval
is a version of assert/1 for dynamic predicates declared as incremental. This adds the clause
to the database after any other clauses for the same predicate currently in the database. It
then updates all incrementally maintained tables that depend on this predicate.

incr assertz(+Clause) module: increval
is the same as incr assert/1.

incr asserta(+Clause) module: increval
is the same as incr assert/1 except that it adds the clause before any other clauses for the
same predicate currently in the database.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 97

incr retractall(+Clause) module: increval
is a version of retractall/1 for dynamic predicates declared as incremental. This removes
all clauses in the database that match Clause. It then updates all incrementally maintained
tables that depend on this predicate.

incr assert inval(+Clause) module: increval
is similar to incr assert/1 except that it does not update the incrementally maintained
tables, but only marks them as invalid. The tables should be updated by an explicit call
to incr table update/0 (or /1 or /2). This separation of function allows for more efficient
processing of table maintenance after a batch of operations.

incr assertz inval(+Clause) module: increval
is similar to incr assertz/1 except that it does not update the incrementally maintained
tables, but only marks them as invalid. The tables should be updated by an explicit call to
incr table update/0 (or /1 or /2).

incr asserta inval(+Clause) module: increval
is similar to incr asserta/1 except that it does not update the incrementally maintained
tables, but only marks them as invalid. The tables should be updated by an explicit call to
incr table update/0 (or /1 or /2).

incr retractall inval(+Clause) module: increval
is similar to incr retractall/1 except that it does not update the incrementally maintained
tables, but only marks them as invalid. The tables should be updated by an explicit call to
incr table update/0 (or /1 or /2).

incr retract inval(+Clause) module: increval
is similar to retract/1 but is applied to dynamic predicates declared as incremental. It
removes the matching clauses through backtracking and marks the depending tables as invalid.
All invalid tables should be updated by an explicit call to incr table update/0 (or /1 or
/2).

incr table update module: increval
is called after base predicates have been changed (by incr assert inval/1 and/or
incr retractall inval/1 or friends). This predicate updates all the incrementally main-
tained tables whose contents change as a result of those changes to the base predicates.
This update operation is separated from the operations that change the base predicates
(incr assert inval and incr retractall inval) so that a set of base predicate changes
can be processed all at once, which may be much more efficient that updating the tables at
every base update.

incr table update(-GoalList) module: increval
is similar to incr table update/0 in that it updates the incrementally maintained tables
after changes to base predicates. It returns the list of goals to incrementally maintained
tables whose tables were changed in the update process.

incr table update(+SkelList,-GoalList) module: increval
is similar to incr table update/1 in that it updates the incrementally maintained tables

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 98

after changes to base predicates. The first argument is a list of predicate skeletons (open
terms) for incrementally maintained tables. The predicate returns in GoalList a list of goals
whose skeletons appear in SkelList and whose tables were changed in the update process.
So SkelList acts as a filter to restrict the goals that are returned to those of interest. If
SkelList is a variable or the empty list, all affected goals are returned in GoalList.

incr invalidate call(+Goal) module: increval
is used to directly invalidate a call to an incrementally maintained table. Goal is the tabled
call to invalidate. A subsequent invocation of incr table update will cause that tabled
goal to be recomputed and all incrementally maintained tables depending on that goal will be
updated. This predicate can be used if a tabled predicate depends on some external data and
not (only) on dynamic incremental predicates. If, for example, an incrementally maintained
predicate depends on a relation stored in an external relational database (perhaps accessed
through the ODBC interface), then this predicate can be used to invalidate the table when
the external relation changes. The application programmer must know when the external
relation changes and invoke this predicate as necessary.

Error Cases

• Goal is tabled, but not incrementally tabled

– permission error(invalidate,non-incremental predicate,Goal)

incr directly depends(?DependentGoal,?Goal) module: increval
accesses the dependency structures used by the incremental table maintenance subsystem to
provide information about which incremental table calls depend on which others. At least one
of DependentGoal and Goal must be bound. If DependentGoal is bound, then this predicate
will return in Goal through backtracking the goals for all incrementally maintained tables
that tables unifying (?) with DependentGoal directly depend on. If Goal is bound, then it
returns the directly dependent tabled goals in DependentGoal. [check this out...]

incr trans depends(?DependentGoal,?Goal) module: increval
is similar to incr directly depends except that it returns goals according to the transitive
closure of the “directly depends” relation.

5.6.3 Shorthand for Complex Table and Dynamic Declarations

We have a number of variations to how predicates can be tabled in XSB: subsumptive, variant,
incremental, opaque, dynamic, private, and shared. We also have variations in forms of dynamic
predicates: tabled, incremental, private, and shared. XSB extends the table and dynamic compiler
directives with modifiers that allow users to indicate the kind of tabled or dynamic predicate they
want. For example,

:- table p/3,s/1 as subsumptive,private.

:- table q/3 as incremental,variant.

:- dynamic r/2,t/1 as incremental.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 99

The modifiers available for the table compiler directive are subsumptive, variant, (dynamic)
or dyn, incremental, opaque, private, and shared. Not all combinations are meaningful. The
modifiers available for the dynamic compiler directive are tabled, incremental, private, shared.
Again not all combinations are meaningful. We note that

:- table p/3 as dyn.

and

:- dynamic p/3 as tabled.

are equivalent.

5.6.4 Incremental Tabling using Interned Tries

Sometimes it is more convenient or efficient to maintain facts in interned tries rather than as
dynamically asserted facts (cf. Chapter 8). Tables based on interned tries can be automatically
updated when terms are interned or uninterned just as they can be automatically updated when
a fact is asserted or retracted. Consider the example from Section 5.6.1 rewritten to use interned
tries. As usual, in incrementally updated table is declared as such:

:- table p/2 as incremental.

p(X,Y) :- trie_interned(q(X,Y),inctrie),Y =< 5.

However, the declaration for dynamic data changes: rather than using the declaration :- dynamic

q/2 as incremental, a trie is specified as incremental in its creation.

trie_create(Trie_handle,[incremental,alias(inctrie)]),

As described in Chapter 8, the trie handle returned is an integer, but can be aliased just as with
any other trie. The trie may then be initially loaded:

trie_intern(qt(a,1),inctrie),trie_intern(qt(b,3),inctrie),

trie_intern(qt(c,5),inctrie),trie_intern(qt(d,7),inctrie).

At this stage a query to p/2 acts as before:

| ?- p(X,Y),writeln([X,Y]),fail.

[c,5]

[b,3]

[a,1]

The following sequence ensures that p/2 is incrementally updated as inctrie changes:

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 100

| ?- import incr_trie_intern/2.

yes

| ?- incr_trie_intern(inctrie,q(d,4)).

yes

| ?- p(X,Y),writeln([X,Y]),fail.

[d,4]

[c,5]

[b,3]

[a,1]

no

| ?-

The following predicates are used for modifying incremental tries, and can be freely intermixed
with predicates for modifying incremental dynamic code, as well as with predicates for invalidating
or updating tables (Section 5.6.2).

incr trie intern(+TrieIdOrAlias,+Term) module: intern
is a version of trie intern/2 for tries declared as incremental. A call to this predicate interns
Term in TrieIdOrAlias and then updates all incrementally maintained tables that depend
on this trie.

incr trie uninternall(+TrieIdOrAlias,+Term) module: intern
is a version of trie unintern/2 for tries declared as incremental. A call to this predicate
removes all terms unifying with Term in TrieIdOrAlias and then updates all incrementally
maintained tables that depend on this trie.

incr trie intern inval(+TrieIdOrAlias,+Term) module: intern
works for tries declared as incremental in a similar manner as incr trie intern/2 except
that it does not update the incrementally maintained tables, but only marks them as invalid.
The tables should be updated by an explicit call to incr table update/[0,1,2].

incr trie uninternall inval(+TrieIdOrAlias,+Term) module: intern
works for tries declared as incremental in a similar manner as incr trie uninternall/2

except that it does not update the incrementally maintained tables, but only marks them as
invalid. The tables should be updated by an explicit call to incr table update/[0,1,2].

5.7 Compatability of Tabling Modes and Predicate Attributes

As discussed in this chapter, there are several choices for how to table a predicate. Either call
subsumption or call variance may be used, incremental tabling might or might not be used, and
answer subsumption might or might not be used. Furthermore, a tabled predicate, like any other

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 101

predicate, may be static or dynamic and thread shared or thread private. Together, there are 48
different combinations, not all of which are supported in Version 3.3 of XSB. To analyze further,
all combinations are supported for call-variance and for thread private predicates. However, call
subsumption has not been fully integrated with dynamic code or thread shared predicates, and
cannot currently be combined with incremental tabling or with answer subumption. Similarly
incremental tabling is not yet supported in the multi-threaded engine (it is supported for “thread
private” computations only in the sequential engine). The compatabilities are listed in Table 5.1.
Further combinations will be supported in future versions of XSB as resources allow.

The combinations that are supported generally allow full well-founded computation, constrained
variables in calls and answers (including the residual program), and safe space reclamation. The
exceptions are that neither incremental tabling nor answer subsumption support non lrd-stratified
programs; and call subsumption does not yet support attributed variables in calls.

CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 102

variant static private nonincremental no answer subsumption yes
variant static private nonincremental answer subsumption yes
variant static private opaque no answer subsumption yes
variant static private opaque answer subsumption no
variant static private incremental no answer subsumption yes
variant static private incremental answer subsumption no
variant static shared nonincremental no answer subsumption yes
variant static shared nonincremental answer subsumption yes
variant static shared opaque no answer subsumption no
variant static shared opaque answer subsumption no
variant static shared incremental no answer subsumption no
variant static shared incremental answer subsumption no
variant dynamic private nonincremental no answer subsumption yes
variant dynamic private nonincremental answer subsumption yes
variant dynamic private opaque no answer subsumption no
variant dynamic private opaque answer subsumption no
variant dynamic private incremental no answer subsumption no
variant dynamic private incremental answer subsumption no
variant dynamic shared nonincremental no answer subsumption yes
variant dynamic shared nonincremental answer subsumption yes
variant dynamic shared opaque no answer subsumption no
variant dynamic shared opaque answer subsumption no
variant dynamic shared incremental no answer subsumption no
variant dynamic shared incremental answer subsumption no
subsumptive static private nonincremental no answer subsumption yes
subsumptive static private nonincremental answer subsumption yes
subsumptive static private opaque no answer subsumption no
subsumptive static private opaque answer subsumption no
subsumptive static private incremental no answer subsumption no
subsumptive static private incremental answer subsumption no
subsumptive static shared nonincremental no answer subsumption no
subsumptive static shared nonincremental answer subsumption no
subsumptive static shared opaque no answer subsumption no
subsumptive static shared opaque answer subsumption no
subsumptive static shared incremental no answer subsumption no
subsumptive static shared incremental answer subsumption no
subsumptive dynamic private nonincremental no answer subsumption yes
subsumptive dynamic private nonincremental answer subsumption yes
subsumptive dynamic private opaque no answer subsumption no
subsumptive dynamic private opaque answer subsumption no
subsumptive dynamic private incremental no answer subsumption no
subsumptive dynamic private incremental answer subsumption no
subsumptive dynamic shared nonincremental no answer subsumption no
subsumptive dynamic shared nonincremental answer subsumption no
subsumptive dynamic shared opaque no answer subsumption no
subsumptive dynamic shared opaque answer subsumption no
subsumptive dynamic shared incremental no answer subsumption no
subsumptive dynamic shared incremental answer subsumption no

Table 5.1: Support for different tabling modes in XSB Version 3.3

Chapter 6

Standard Predicates and Predicates of
General Use

This chapter describes standard predicates, which are always available to the Prolog interpreter,
and do not need to be imported or loaded explicitly as do other Prolog predicates. By default, it
is a compiler error to redefine standard predicates.

In the description below, certain standard predicates depend on HiLog semantics; the description
of such predicates have the token HiLog at the right of the page. Similarly predicates that depend
on SLG evaluation are marked as Tabling, and predicates whose semantics is defined by the ISO
standard (or whose implementation is reasonably close to that definition) are marked as ISO.
Occasionally, however, we include in this section predicates that are not standard. In such cases
we denote their module in text font towards the middle of the page.

6.1 Input and Output

XSB’s I/O is based on ISO-style streams, although it also supports older DEC-10 style file handling.
The use of streams provides a unified interface to a number of different classes of sources and sinks.
Currently these classes include textual and binary files, console input and output, pipes, and atoms;
in the future sockets and urls may be handled under the stream interface. When streams are opened,
certain actions may occur depending on the class of the source or sink and on the wishes of the
user. For instance when a file F is opened for output mode, an existing file F may be truncated (in
write mode) or not (in append mode). In addition, various operations may or may not be valid
depending on the class of stream. For instance, repositioning is valid for an atom or file but not a
pipe or console.

XSB provides several default I/O streams, which make it easier for a user to embed XSB in
other applications. These streams include the default input and output streams. They also include
the standard error stream, to which XSB writes all error messages. By default the standard error
stream is the same as the standard output stream, but it can be redirected either by UNIX shell-
style I/O redirection or by the predicates file reopen/4 and file clone/3. Similarly there is the

103

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 104

standard warning stream (to which all system warnings are written), the standard message stream,
the standard debugging stream (to which debugging information is written), and the standard
feedback stream (for interpreter prompts, yes/no answers, etc). All of these streams are aliased by
default to standard output, and can be redirected by the predicates the predicates file reopen/4

and file clone/3.

Streams may also be aliased: the default input and output streams can be denoted by user input

and user output and they refer to the standard input and standard output streams of the process
1. Similarly, XSB’s error, warning and message streams uses the aliases user error, user warning

and user message respectively.

Streams are distinguished by their class – whether they are file or atom, etc.; as well as by
various properties. These properties include whether a stream is positionable or not and whether
a (file) stream is textual or binary.

• Console The default streams mentioned above are console streams, which are textual and
not repositionable.

• File A file stream corresponds to an operating system file and is repositionable. On Windows,
binary files and textual files differ, while on UNIX they are the same.

• Atom XSB can read from an atom, just as it can from a file. Atoms are considered to be
textual and repositionable. Writing to atoms via streams is not currently available in XSB,
although the predicate term to atom/[2,3] contains much of the functionality that such
streams would provide.

• Pipe XSB can also open pipes either directly, or as part of its ability to spawn processes.
When made into streams, pipes are textual and not repositionable.

6.1.1 I/O Stream Implementation

A user may note that XSB’s I/O streams are small integers, but they should not be confused
with the file descriptors used by the OS. The OS file descriptors are objects returned by the C
open function; XSB I/O streams indices into the internal XSB table of open files and associated
information. The OS does not know about XSB I/O streams, while XSB (obviously) does know
about the OS file descriptors. An OS file descriptor may be returned by certain predicates (e.g.
pipe open/2 or user-defined I/O). In the former case, a file descriptor can be promoted to XSB
stream by open/{3,4} and in the latter by using the predicate fd2iostream/2.

When it starts, XSB opens a number of standard I/O streams that it uses to print results, errors,
debugging info, etc. The descriptors are described in the file prolog includes/standard.h. This
file provides the following symbolic definitions:

#define STDIN 0

#define STDOUT 1

1For backwards compatibility, the default input stream can also be aliased by user or userin, and the default
output stream by user or userout.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 105

#define STDERR 2

#define STDWARN 3 /* output stream for xsb warnings */

#define STDMSG 4 /* output for regular xsb messages */

#define STDDBG 5 /* output for debugging info */

#define STDFDBK 6 /* output for XSB feedback

(prompt/yes/no/Aborting/answers) */

#define AF_INET 0 /* XSB-side socket request for Internet domain */

#define AF_UNIX 1 /* XSB-side socket request for UNIX domain */

These definitions can be used in user programs, if the following is provided at the top of the source
file:

compiler_options([xpp_on]).

#include "standard.h"

If this header is used, the various streams can be used as any other output stream – e.g. ?-

write(STDWARN,’watch it!’). (Note: the XSB preprocessor is not invoked on clauses typed into
an interactive XSB session, so the above applies only to programs loaded from a file using consult

and such.)

6.1.2 ISO Streams

open(+SourceSink,+Mode,-Stream) ISO
open/1 creates a stream for the source or sink designated in SourceSink, and binds Stream
to a structure representing that stream.

• If SourceSink is an atom, or the term file(File) where File is an atom, the stream
is a file stream. In this case Mode can be

– read to create an input stream. In Windows, whether the file is textual or binary
is determined by the file’s properties.

– write to create an output stream. Any previous file with a similar path is removed
and a (textual) file is created which becomes a record of the output stream.

– write binary to create an output stream. Any previous file with a similar path is
removed and a file is created which becomes a record of the output stream. The file
created is binary in Windows, while in UNIX write binary has the same effect as
write.

– append to create an output stream. In this case the output stream is appended to
the contents of the file, if it exists, and otherwise a new file is created for (textual)
output

– append binary to create an output stream. In this case the output stream is ap-
pended to the contents of the file, if it exists, and otherwise a new file is created for
(binary) output

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 106

• If SourceSink is the term atom(Atom) where Atom is an atom, the stream is an atom
stream. In this case Mode currently can only be read. This stream class, which reads
from interned atoms, is analogous to C’s sscanf() function.

• If SourceSink is the term pipe(FIleDescriptor) where FileDescriptor is an integer,
then a pipe stream is opened in the mode for FileDescriptor.

ISO Compatability Note: This predicate extends the ISO definition of open/3 to include
strings and pipes as well as the file modes write binary and append binary.

Error Cases

• SourceSink or Mode is not instantiated

– instantiation error

• Mode is not a valid I/O mode

– domain error(io mode,Mode)

• SourceSink is a file and cannot be opened, or opened in the desired mode

– permission error(open,file,SourceSink)

open(+File,+Mode,-Stream,+Options) ISO
open/4 behaves as does open/3, but allows a list of options to be given. The current options
are a subset of ISO options and are:

• alias(A) allows the stream to be aliased to an atom A.

• type(T) has no effect on file streams in UNIX, which are always textual, but in Windows
if T is binary a binary file is opened.

Error Cases Error cases are the same as open/3 but with the addition:

• Option list contains an option O that is not a (currently implemented) stream option.

– domain error(stream option,O)

• An element of OptionsList is alias(A) and A is already associated with an existing
thread, queue, mutex or stream

– permission error(create,alias, A)

• An element of OptionsList is alias(A) and A is not an atom

– type error(atom,A)

ISO Compatability Note: The ISO option reposition(Boolean) currently has no effect
on streams, because whether or not the stream is repositionable or not depends on the stream
class. The ISO option eof action(Action) currently has no effect on file streams. If these
options are encountered in Options, a warning is issued to STDWARN.

close(+Stream or alias,+OptionsList) ISO
close/2 closes the stream or alias Stream or alias. OptionsList allows the user to declare
whether a permission error will be raised in XSB upon a resource or system error from the
closing function (e.g. fclose() or other system function). If OptionsList is non-empty and

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 107

contains only terms unifying with force(true) then such an error will be ignored (possibly
leading to unacknowledged loss of data). Otherwise, a permission error is thrown if fclose()
or other system function returns an error condition. If the stream class of Stream or alias

is an atom, then the only action taken is to close the stream itself – the interned atom itself
is not affected.

Error Cases

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable, nor a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open stream

– existence error(stream,Stream or alias)

• OptionList contains an option O that is not a closing option.

– domain error(close option,O)

• OptionList contains conflicting options

– domain error(close option,OptionList)

• Closing the stream produces an error (and OptionsList is a non-empty list containing
terms of the form force(true)).

– permission error(close,file,Stream or alias)

close(+Stream or alias) ISO
close/1 closes the stream or alias Stream or alias.
Behaves as close(Stream or alias,[force(false)]).

set input(+Stream or alias) ISO
Makes file Stream or alias the current input stream.

Error Cases

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable, nor a a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not an open input stream

– existence error(stream,Stream or alias)

set output(+Stream or alias) ISO
Makes file Stream or alias the current output stream.

Error Cases

• Stream or alias is a variable

– instantiation error

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 108

• Stream or alias is neither a variable, nor a a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open output stream

– existence error(stream,Stream or alias)

stream property(?Stream,?Property) ISO
This predicate backtracks through the various stream properties that unify with Property

for the stream Stream. Currently, the following properties are defined.

• stream class(C) gives the stream class for a file: i.e. file, atom, console or pipe.

• file name(F) is a property of Stream, if Stream is a file stream and F is the file name
associate with Stream. The full operating system path is used.

• type(T) is a property of Stream, if Stream is a file stream and T is the file type of
Stream: text or binary.

• mode(M) is a property of Stream, if M represents the I/O mode with which Stream was
opened: i.e. read, write, append, write binary, etc., as appropriate for the class of
Stream.

• alias(A) is a property of Stream, if Stream was opened with alias A.

• input is a property of Stream, if Stream was opened in the I/O mode: read.

• output is a property of Stream, if Stream was opened in the I/O mode: write, append,
write binary, or append binary.

• reposition(Bool) is true, if Stream is repositionable, and false otherwise.

• end of stream(E) returns at if the end of stream condition for Stream is true, and not

otherwise.

• position(Pos) returns the current position of the stream as determined by fseek or
the byte-offset of the current stream within an atom. In either case, if an end-of-stream
condition occurs, the token end of file is returned.

• eof action(Action) is reposition if the stream class is console, eof code if the
stream class is file, and error is the stream class is pipe or atom.

flush output(+Stream or alias) ISO
Any buffered data in Stream or alias gets flushed. If Stream is not buffered (i.e. if it is of
class atom), no action is taken.

Error Cases

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable, nor a a stream term nor an alias.

– domain error(Stream or alias,Stream)

• Stream is not associated with an open output stream

– existence error(Stream or alias,Stream)

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 109

• Flushing (i.e. fflush()) returns an error.

– permission error(flush,stream,Stream)

flush output ISO
Any buffered data in the current output stream gets flushed.

set stream position(+Stream or alias,+Position) ISO
If the stream associated with Stream or alias is repositionable (i.e. is a file or atom), sets
the stream position indicator for the next input or output operation. Position is a positive
integer, taken to be the number of bytes the stream is to be placed from the origin.

Error Cases

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable, nor a a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Position is not instantiated to a positive integer.

– domain error(stream position,Position)

• Stream or alias is not associated with an open stream

– existence error(stream,Stream or alias)

• Stream or alias is not repositionable, or repositioning returns an error.

– permission error(resposition,stream,Stream or alias)

at end of stream(+Stream or alias) ISO
Succeeds if Stream or alias has position at or past the end of stream.

Error Cases

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable, nor a a stream term nor an alias.

– domain error(stream,Stream or alias)

• Stream or alias is not an open stream

– existence error(stream,Stream or alias)

at end of stream ISO
Acts as at end of stream/1 but using the current input stream.

Other Predicates using ISO Streams

file reopen(+FileName,+Mode,+Stream,-RetCode)

Takes an existing I/O stream, closes it, then opens it and attaches it to a file. This can be
used to redirect I/O from any of the standard streams to a file. For instance,

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 110

| ?- file_reopen(’/dev/null’, w, 3, Error).

redirects all warnings to the Unix black hole.

On success, RetCode is 0; on error, the return code is negative.

file clone(+SrcStream,?DestStream,-RetCode)

This is yet another way to redirect I/O. It is a Prolog interface to the C dup and dup2 system
calls. If DestStream is a variable, then this call creates a new XSB I/O stream that is a
clone of SrcStream. This means that I/O sent to either stream goes to the same place. If
DestStream is not a variable, then it must be a number corresponding to a valid I/O stream.
In this case, XSB closes DestStream and makes it into a clone of SrcStream.

For instance, suppose that 10 is a I/O Stream that is currently open for writing to file foo.bar.
Then

| ?- file_clone(10,3,_).

causes all messages sent to XSB standard warnings stream to go to file foo.bar. While this
could be also done with file reopen, there are things that only file clone can do:

| ?- file_clone(1,10,_).

This means that I/O stream 10 now becomes clone of standard output. So, all subsequent
I/O will now go to standard output instead of foo.bar.

On success, RetCode is 0; on error, the return code is negative.

file truncate(+Stream, +Length, -Return) module: file io

The regular file referenced by the StreamStream is chopped to have the size of Length bytes.
Upon successful completion Return is set to zero.

Portability Note: Under Windows (including Cygwin) file truncate/2 is implemented
using chsize(), while on Unix ftruncate() is used. There are minor semantic differences
between these two system calls, which are reflected by the behavior of file truncate/2 on
different platforms.

Error Cases

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable, nor a a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open stream

– existence error(stream,Stream or alias)

• Length is a variable

– instantiation error

• Length is neither a variable nor an integer

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 111

– type error(integer,Length)

tmpfile open(-Stream)

Opens a temporary file with a unique filename. The file is deleted when it is closed or when
the program terminates.

flush all output streams module: error handler

Flushes output streams, both user and system STDOUT, STDERR, etc. This convenience pred-
icate is written as

flush_all_open_streams:-

stream_property(S,mode(X)),(X = append ; X = write),flush_output(S),fail.

flush_all_open_streams.

6.1.3 DEC-IO Style File Handling

see(+File or stream)

Makes File or stream the current input stream.

• If there is an open input stream associated with the file that has File or stream as
its file name, and that stream was opened previously, then it is made the current input
stream.

• Otherwise, the specified file is opened for input and made the current input stream. If
the file does not exist, see/1 throws a permission error.

Note that see/1 is incompatible with ISO aliases – calling see(Alias) with an ISO alias will
try to open a file named Alias rather than using the alias. Also note that different file names
(that is, names which do not unify) represent different input streams (even if these different
file names correspond to the same file).

Error Cases

• File or stream is a variable

– instantiation error

• File or stream is neither a variable nor an atomic file identifier nor a stream identifier.

– domain error(stream or path,F)

• File File or stream is directory or file is not readable.

– permission error(open,file,F)

• File File or stream does not exist.

– existence error(stream or path,F)

seeing(?F)

F is unified with the name of the current input stream. This is exactly the same with predicate
current input/1 described in Section 6.12, and it is only provided for upwards compatibility
reasons.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 112

seen

Closes the current input stream. Current input reverts to ‘‘userin’’ (the standard input
stream).

tell(+F)

Makes file F the current output stream.

• If there is an open output stream associated with F and that was opened previously by
tell/1, then that stream is made the current output stream.

• Otherwise, the specified file is opened for output and made the current output stream.
If the file does not exist, it is created.

Also note that different file names (that is, names which do not unify) represent different
output streams (even if these different file names correspond to the same file).

The implementation of the ISO predicate set output/1, is essentially that of tell/1.

Error Cases

• File or stream is a variable

– instantiation error

• File or stream is neither a variable nor an atomic file identifier nor a stream identifier.

– domain error(stream or path,F)

• File File or stream is directory or file is not readable.

– permission error(open,file,F)

• File File or stream does not exist.

– existence error(stream or path,F)

telling(?F)

F is unified with the name of the current output stream. This predicate is exactly the
same with predicate current output/1 described in Section 6.12, and it is only provided
for upwards compatibility reasons.

told

Closes the current output stream. Current output stream reverts to “userout” (the standard
output stream).

file exists(+F)

Succeeds if file F exists. F must be instantiated to an atom at the time of the call, or an error
message is displayed on the standard error stream and the predicate aborts.

Error Cases

instantiation error F is uninstantiated.

url encode(+Filename,-EncodedFilename)

This predicate is useful when one needs to create a file whose name contains forbidden char-
acters, such as >, <, and the like. It takes a string and encodes any forbidden character using
an appropriate %-sequence of characters that is acceptable as a file name in any OS: Unix,
Windows, or Mac. For instance,

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 113

| ?- url_encode(’http://foo’’>$’,X).

X = http%3a%2f%2ffoo%27%3e%24

url decode(+Filename,-EncodedFilename)

This predicate performs the inverse operation with respect to url encode/2. For instance,

| ?- url_decode(’http%3a%2f%2ffoo%27%3e%24’,X).

X = http://foo’>$

6.1.4 Character I/O

nl ISO
A new line character is sent to the current output stream.

nl(+Stream or alias) ISO
A new line character is sent to the designated output stream.

Error Cases

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable nor a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open stream

– existence error(stream,Stream or alias)

get char(+Stream or alias,?Char) ISO
Unifies Char with the next ASCII character from Stream or alias, advancing the position
of the stream. Char is unified with -1 if an end of file condition is detected.

Error Cases

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable nor a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open input stream

– existence error(stream,Stream or alias)

• Char is not a variable or character.

– domain error(character or variable,Char)

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 114

get char(?Char) ISO
Behaves as get char/2, but reads from the current input stream.

Error Cases

• Char is not a variable or character.

– domain error(character or variable,Char)

get code(+Stream or alias,?Code) ISO
Code unifies with the ASCII code of the next character from Stream or alias. The position
of the stream is advanced.

Error Cases

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable nor a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open input stream

– existence error(stream,Stream or alias)

• Code is not a variable or character code

– domain error(character code or variable,Code)

get code(?Code) ISO
Behaves as get code/2, but reads from the current input stream.

Error Cases

• Code is not a variable or character code

– domain error(character code or variable,Code)

get0(?N)

N is the ASCII code of the next character read from the current input stream (regarded as
a text stream). If the current input stream reaches its end of file, a -1 is returned. This
predicate does not check for errors, so that it is faster (and potentially less safe) than, e.g.
get code/1.

get(?N)

N is the ASCII code of the next non-blank printable character from the current input stream
(regarded as a text stream). If the current input stream reaches its end of file, a -1 is returned.

peek char(+Stream or alias,?Char) ISO
Char is the next ASCII character from Stream or alias. The position in Stream or alias

is unchanged. Char is unified with -1 if an end of file condition is detected.

Error Cases

• Stream or alias is a variable

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 115

– instantiation error

• Stream or alias is neither a variable nor a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open input stream

– existence error(stream,Stream or alias)

• Char is not a variable or character.

– domain error(character or variable,Char)

peek char(?Char) ISO
Char is the next ASCII character from the current input stream. The position in the current
input stream is unchanged. Char is unified with -1 if an end of file condition is detected.

Error Cases

• Char is not a variable or character.

– domain error(character or variable,Char)

peek code(+Stream or alias,?Code) ISO
Code is the next ASCII coder from Stream or alias. The position in Stream or alias is
unchanged. Code is unified with -1 if an end of file condition is detected.

Error Cases

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable nor a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open input stream

– existence error(stream,Stream or alias)

• Code is not a variable or character.

– domain error(character code or variable,Code)

peek code(?Code) ISO
Behaves as peek code/1, but the current input stream is used.

Error Cases

• Char is not a variable or character.

– domain error(character code or variable,Code)

put char(+Stream,+Char) ISO
Puts the ASCII character Char to Stream or alias.

Error Cases

• Stream or alias is a variable

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 116

– instantiation error

• Stream or alias is neither a variable nor a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open input stream

– existence error(stream,Stream or alias)

• Char is a not a character

– type error(character,Char)

put char(+Char) ISO
Puts the ASCII code of the character Char to the current output stream.

Error Cases

• Code is a not a character.

– type error(character,Char)

put code(+Stream,+Code) ISO
Puts the ASCII code of the character Char to Stream or alias.

Error Cases

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable nor a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open input stream

– existence error(stream,Stream or alias)

• Code is a not a character code

– type error(character code,Code)

put code(+Code) ISO
Puts the ASCII code Code to the current output stream. Error Cases

• Code is a not a character code.

– type error(character code,Code)

put(+Code)

Puts the ASCII character code N to the current output stream.

Error Cases

• Code is a not a character code.

– type error(character code,Code)

tab(+N)

Puts N spaces to the current output stream.

Error Cases

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 117

• Code is a not a positiveInteger

– domain error(positiveInteger,Code)

get byte/1 ISO

get byte/2 ISO

put byte/1 ISO

put byte/2 ISO

put byte/1 ISO

put byte/2 ISO
In XSB, these predicates are simply aliases for the associated xxx code predicates and behave
accordingly. This is safe to do since the reader for Version 3.3 of XSB supports only ASCII
character codes, which are themselves single bytes.

6.1.5 Term I/O

read(?Term) ISO
A HiLog term is read from the current or designated input stream, and unified with Term

according to the operator declarations in force. (See Section 4.1 for the definition and syntax
of HiLog terms). The term must be delimited by a full stop (i.e. a “.” followed by a
carriage-return, space or tab). Predicate read/1 does not return until a valid HiLog term is
successfully read; that is, in the presence of syntax errors read/1 does not fail but continues
reading terms until a term with no syntax errors is encountered. If a call to read(Term)

causes the end of the current input stream to be reached, variable Term is unified with the
term end of file. In that case, further calls to read/1 for the same input stream will cause
an error failure.

In Version 3.3, read/[1,2] are non ISO-compliant in how they handle syntax errors or their
behavior when encountering an end of file indicator.

read(+Stream or alias, ?Term) ISO
read/2 has the same behavior as read/1 but the input stream is explicitly designated by
Stream or alias.

Error Cases

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable nor a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open stream

– existence error(stream,Stream or alias)

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 118

read canonical(-Term)

Reads a term that is in canonical format from the current input stream and returns it in Term.
On end-of-file, it returns the atom end of file. If it encounters an error, it prints an error
message on STDERR and returns the atom read canonical error. This is significantly
faster than read/1, but requires the input to be in canonical form.

read canonical(+Stream or alias),-Term)

Behaves as read canonical/1, but reads from Stream or alias.

Error Cases

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable nor a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open input stream

– existence error(stream,Stream or alias)

read term(?Term,?OptionsList) ISO
A term is read from the current input stream as in read/1; but OptionsList is a (possibly
empty) list of read options that specifies additional behavior. The read options include

• variables(Vars): once a term has been read, Vars is a list of the variables in the term,
in left-to-right order.

• variable names(VN List): once a term has been read VN List is a list of non-anonymous
variables in the term. The elements of the list have the form A = V where V is a non-
anonymous variable of the term, and A is the string used to denote the variable in the
input stream.

• singletons(VS List): once a term has been read VN List is a list of the non-anonymous
singleton variables in the term. The elements of the list have the form A = V where V

is a non-anonymous variable of the term, and A is the string used to denote the variable
in the input stream.

Error Cases

• OptionsList is a variable, or is a list containing a variable element.

– instantiation error

• OptionsList contains a non-variable element O that is not a read option.

– domain error(read option,O)

read term(+Stream or alias, ?Term,?OptionsList) ISO
read term/3 has the same behavior as read term/2 but the input stream is explicitly desig-
nated using the first argument.

Error Cases are the same as read term/2, but with the additional errors that may arise in
stream checking.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 119

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable nor a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open stream

– existence error(stream,Stream or alias)

write term(?Term,+Options) ISO
Outputs +Term to the current output stream. Stream (write term/3) according to the list
of write options, Options. The current set of write options which form a superset of the
ISO-standard write options, are as follows:

• quoted(+Bool). If Bool = true, then atoms and functors that can’t be read back by
read/1 are quoted, if Bool = false, each atom and functor is written as its unquoted
name. Default value is false.

• ignore ops(+Bool). If Bool = true each compound term is output in functional no-
tation; curly brackets and list braces are ignored, as are all explicitly defined operators.
If Bool = false, curly bracketed notation and list notation is enabled when outputting
compound terms, and all other operator notation is enabled. Default value is false.

• numbervars(+Bool). If Bool = true, a term of the form ’$VAR’(N) where N is an
integer, is output as a variable name consisting of a capital letter possibly followed by
an integer. A term of the form ’$VAR’(Atom) where Atom is an atom, is output as
itself (without quotes). Finally, a term of the form ’$VAR’(String) where String is a
character string, is output as the atom corresponding to this character string. If bool
is false this cases are not treated in any special way. Default value is false.

• max depth(+Depth). Depth is a positive integer or zero. If positive, it denotes the depth
limit on printing compound terms. If Depth is zero, there is no limit. Default value is 0
(no limit).

• priority(+Prio) Prio is an integer between 1 and 1200. If the term to be printed has
higher priority than Prio, it will be printed parenthesized. Default value is 1200 (no
term parenthesized).

From the following examples it can be seen that write term/[2,3] can duplicate the behavior
of a number of other I/O predicates such as write/[1,2], writeq/[1,2], write canonical/[1,2],
etc.

| ?- write_term(f(1+2,’A’,"string",’$VAR’(3),’$VAR’(’Temp’),(multifile foo)),[]).

f(1 + 2,A,"string",$VAR(3),$VAR(Temp),(multifile foo))

yes

| ?- write_term(f(1+2,’A’,"string",’$VAR’(3),’$VAR’(’Temp’),(multifile foo)),

[quoted(true)]).

f(1 + 2,’A’,"string",’$VAR’(3),’$VAR’(’Temp’),(multifile foo))

yes

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 120

| ?- write_term(f(1+2,’A’,"string",’$VAR’(3),’$VAR’(’Temp’),(multifile foo)),

[quoted(true),ignore_ops(true),numbervars(true)]).

f(+(1,2),’A’,’.’(115,’.’(116,’.’(114,’.’(105,’.’(110,’.’(103,[])))))),D,Temp,(multifile foo))

yes

| ?- write_term(f(1+2,’A’,"string",’$VAR’(3),’$VAR’(’Temp’),(multifile foo)),

[quoted(true),ignore_ops(true),numbervars(true),priority(1000)]).

f(+(1,2),’A’,’.’(115,’.’(116,’.’(114,’.’(105,’.’(110,’.’(103,[])))))),D,Temp,multifile(foo))

yes

Error Cases

• Options is a variable

– instantiation error

• Options neither a variable nor a list

– type error(list,Options)

• Options contains a variable element, O

– instantiation error

• Options contains an element O that is neither a variable nor a write option.

– domain error(write option,O)

ISO Compatability Note: In Version 3.3, write term/[2,3] do not properly handle op-
erators.

write term(+Stream or alias,?Term,+Options) ISO
Behaves as write term/2, but writes to Stream or alias.

Error Cases are the same as write term/2 but with these additions.

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable nor a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open output stream

– existence error(stream,Stream or alias)

write(?Term) ISO
Semantically, write/1 behaves as if write term/1 were invoked using quoted(false), ignore ops(false),
and numbervars(false). Attributed variables are written according to the value of the Pro-
log flag write attributes (cf. current prolog flag/2).

The HiLog term Term is written to the current output stream, according to the operator
declarations in force. Any uninstantiated subterm of term Term is written as an anonymous
variable (an underscore followed by a token).

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 121

All proper HiLog terms (HiLog terms which are not also Prolog terms) are not written in
their internal Prolog representation. write/1 always succeeds without producing an error.

HiLog (or Prolog) terms that are output by write/1 cannot in general be read back using
read/1. This happens for two reasons:

• The atoms appearing in term Term are not quoted. In that case the user must use
writeq/1 or write canonical/1 described below, which quote around atoms whenever
necessary.

• The output of write/1 is not terminated by a full-stop; therefore, if the user wants the
term to be accepted as input to read/1, the terminating full-stop must be explicitly sent
to the current output stream.

write/1 treats terms of the form ’$VAR’(N), which may be generated by numbervars/[1,3]

specially: it writes ’A’ if N=0, ’B’ if N=1, . . ., ’Z’ if N=25, ’A1’ if N=26, etc. ’$VAR’(-1)

is written as the anonymous variable ’_’.

write(+Stream or alias, ?Term) ISO
write/2 has the same behavior as write/1 but the output stream is explicitly designated
using the first argument.

Error Cases are the same as read term/2, but with the additional errors that may arise in
stream checking.

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable nor a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open output stream

– existence error(stream,Stream or alias)

writeq(?Term) ISO
Acts as write term/1 when defined with the options quoted(true), numbervars(true),
and ignore ops(false). In other words, atoms and functors are quoted whenever necessary
to make the result acceptable as input to read/1 writeq/1 also treats terms of the form
’\VAR’(N) specially, writing A if N= 0, etc., and output is in accordance with current operator
definitions. writeq/1 always succeeds without producing an error.

writeq(+Stream or alias, ?Term) ISO
writeq/2 has the same behavior as writeq/1 but the output stream is explicitly designated
using the first argument.

Error Cases

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable nor a stream term nor an alias.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 122

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open output stream

– existence error(stream,Stream or alias)

write canonical(?Term) ISO
This predicate is provided so that the HiLog term Term, if written to a file, can be read back
using read canonical/[1,2] or read/[1,2] regardless of special characters appearing in
Term or prevailing operator declarations. Like write prolog/1, write canonical/1 writes
all proper HiLog terms to the current output stream using the standard Prolog syntax (see
Section 4.1 on the standard syntax of HiLog terms). write canonical/1 also quotes atoms
and functors as writeq/1 does, to make them acceptable as input of read/1. Except for
list-notation ([]) and infix comma-list notation, operator declarations are not taken into
consideration, so that apart from these exceptions compound terms are written in the form:

〈predicate name〉(〈arg1〉, . . . , 〈argn〉)

Unlike writeq/1, write canonical/1 does not treat terms of the form ’$VAR’(N) spe-
cially. It writes square bracket lists using ’.’/2 and [] (that is, [foo, bar] is written
as ’.’(foo,’.’(bar,[]))).

Finally, write canonical/2 writes attributed variables as simple variables.

ISO Compatability Note: In XSB, list notation and infix comma-list notation are consid-
ered canonical both for reading and writing. We find that this improves readability, and that
these operators are so standard that there is little likelihood that they will not be in effect
by any Prolog reader. We therefore deviate from the ISO standard definition of canonical in
these cases.

write canonical(+Stream or alias, ?Term) ISO
write canonical/2 has the same behavior as write canonical/1 but the output stream is
explicitly designated using the first argument.

Error Cases

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable nor a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open output stream

– existence error(stream,Stream or alias)

writeln(?Term)

writeln(Term) can be defined as write(Term), nl.

writeln(+Stream,?Term)

writeln(Term) can be defined as write(Stream,Term), nl(Stream).

write prolog(?Term) HiLog

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 123

write prolog(+Stream or alias,?Term) HiLog
write prolog/1 acts as write/1 except that any proper HiLog term Term is written us-
ing Prolog syntax – i.e. as a term whose outer functor is apply. write prolog/1 out-
puts Term according to the operator declarations in force. Because of this, it differs from
write canonical/1 described above, despite the fact that both predicates write HiLog terms
as Prolog terms.

write prolog/2 has the same behavior as write prolog/1 but the output stream is explicitly
designated using the first argument. Error Cases for write prolog/2 are the same as for
write/2.

Examples:

| ?- write_prolog(X(a,1+2)).

apply(_h120,a,1 + 2)

yes

| ?- write(X(a,1+2)).

_h120(a,1 + 2)

yes

| ?- write_canonical(X(a,1+2)).

apply(_h120,a,+(1,2))

yes

numbervars(+Term, +FirstN,?LastN,+Options) module: num vars

This predicate provides a mechanism for grounding a (HiLog) term so that it may be analyzed.
Each variable in the (HiLog) term Term is instantiated to a term of the form ’$VAR’(N), where
N is an integer starting from FirstN. FirstN is used as the value of N for the first variable
in Term (starting from the left). The second distinct variable in Term is given a value of N
satisfying "N is FirstN + 1" and so on. The last variable in Term has the value LastN-1.

In numbervars/4, Options can be used to indicate the action to take upon encountering
an attributed variable. Currently, Options must be either be the empty list, or the list
[attvar(Action)] or the term attvar(Action), where Action is

• error Throw a type error if an attributed variable is encountered.

• bind Bind attributed variables by unifying them with terms of the form ’$VAR’(N).

• skip Skip over attributed variables, performing no action on these variables.

Error Cases

• Options is a variable

– instantiation error

• Options is not an empty list, the list [attvar(Action)] or the term attvar(Action)

where Action is one of bind, error or skip:

– domain error

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 124

numbervars(+Term, +FirstN, ?LastN) module: num vars

Acts as numbervars(+Term, +FirstN, ?LastN,attvar(error)).

numbervars(+Term) module: num vars

This predicate is defined as: numbervars(Term, 0,). It is included solely for convenience.

unnumbervars(+Term, +FirstN, ?Copy) module: num vars

This predicate is a partial inverse of predicate numbervars/3. It creates a copy of Term
in which all subterms of the form ’$VAR’(<int>) where <int> is not less than FirstN are
uniformly replaced by variables. ’$VAR’’ subterms with the same integer are replaced by the
same variable. Also a version unnumbervars/2 is provided which calls unnumbervars/3 with
the second parameter set to 0.

Term Writing to Designated I/O Streams

While XSB has standard I/O streams for errors, warnings, messages, and feedback (cf. Sec-
tion 6.1.1), the predicates above write to STDOUT which is the standard output for the process.
Most of the time there is no issue with this as these streams are aliased to STDOUT. However in a
number of circumstances, STDOUT may be redirected: a user may have invoked tell/1, XSB may
be invoked through C or interprolog, etc. In such cases, it may be useful to ensure that output
goes to one of the other I/O streams.

error write(?Message) module: standard
error writeln(?Message) module: standard

These predicates output Message to XSB’s STDERR stream, rather than to XSB’s STDOUT

stream, as does write/1 and writeln/1. In addition, if Message is a list or comma list, the
elements in the comma list are output as if they were concatenated together. Each of these
predicates must be imported from the module standard.

console write(?Message) module: standard
console writeln(?Message) module: standard

As above, but writes to STDFDBK, the console feedback stream.

warning(?Message) module: standard
By default, this predicate outputs Message to XSB’s STDWARN stream, rather than to XSB’s
STDOUT stream, as does write/1 and writeln/1. In addition, if Message is a list or comma
list, the elements in the comma list are output as if they were concatenated together. Each
of these predicates must be imported from the module standard.

The default behavior for warnings can be altered by setting the value of the Prolog flag
warning action to either silent warning which performs no action when warning/1 is
called. or error warning which throws a miscellaneous exception when warning/1 is called
(WARNING: this includes compiler warnings). The default behavior can be restored by
setting warning action to print warning.

message(?Message) module: standard
messageln(?Message) module: standard

As above, but writes to STDMSG the standard stream for messages.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 125

6.1.6 Special I/O

fmt read(+Fmt,-Term,-Ret)

fmt read(+Stream,+Fmt,-Term,-Ret)

These predicates provides a routine for reading data from the current input file (which must
have been already opened by using see/1) according to a C format, as used in the C function
scanf. Fmt must be a string of characters (enclosed in ”) representing the format that will
be passed to the C call to scanf. See the C documentation for scanf for the meaning of this
string. The usual alphabetical C escape characters (e.g., \n) are recognized, but not the octal
or the hexadecimal ones. Another difference with C is that, unlike most C compilers, XSB
insists that a single % in the format string signifies format conversion specification. (Some C
compilers might output % if it is not followed by a valid type conversion spec.) So, to output
% you must type %%. Format can also be an atom enclosed in single quotes. However, in that
case, escape sequences are not recognized and are printed as is.

Term is a term (e.g., args(X,Y,Z)) whose arguments will be unified with the field values read
in. (The functor symbol of Term is ignored.) Special syntactic sugar is provided for the case
when the format string contains only one format specifier: If Term is a variable, X, then the
predicate behaves as if Term were arg(X).

If the number of arguments exceeds the number of format specifiers, a warning is produced
and the extra arguments remain uninstantiated. If the number of format specifiers exceeds
the number of arguments, then the remainder of the format string (after the last matching
specifier) is ignored.

Note that floats do not unify with anything. Ret must be a variable and it will be assigned
a return value by the predicate: a negative integer if end-of-file is encountered; otherwise the
number of fields read (as returned by scanf.)

fmt read cannot read strings (that correspond to the %s format specifier) that are longer than
16K. Attempting to read longer strings will cause buffer overflow. It is therefore recommended
that one should use size modifiers in format strings (e.g., %2000s), if such long strings might
occur in the input.

Error Cases

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable nor a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open output stream

– existence error(stream,Stream or alias)

If the number of arguments in Term is greater than the number of conversion specifiers in Fmt

no error is thrown, but a warning is issued.

fmt write(+Fmt,+Term)

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 126

fmt write(+Stream or alias,+Fmt,+Term)

These predicates provide routines for writing formatted data to a given output stream (fmt write/3)
or the current output stream (fmt write/2).

Fmt should be a Prolog character list (string) or atom. A Prolog character list is preferred,
as space can be more easily reclaimed for character lists than for atoms. Term is a Prolog
term (e.g., args(X,Y,Z)) whose arguments will be output. The number of arguments in
Term should equal the number of conversion specifiers in Fmt. The functor symbol of Term is
ignored 2.

Allowable syntaxes for Fmt reflect the syntax of the C function printf() on a given platform,
with the following exceptions

• The usual alphabetical C escape characters (e.g., \n) are recognized, but not the octal
or the hexadecimal ones.

• %S is supported, in addition to the usual C conversion specifiers. The corresponding
argument can be any Prolog term. This provides an easy way to print the values of
Prolog variables, etc.

• %! is supported and indicates that the corresponding argument is to be ignored and will
generate nothing in the output.

• A single % in the format string must be followed by a conversion operator (e.g. d, s,
etc.). (Some C compilers output % if the percentage character is not followed by a valid
type conversion spec.) However, to output %, fmt write must contain %%.

Example

| ?- fmt_write("%d %f %s %S \n",args(1,3.14159,ready,hello(world))).

1 3.141590 ready hello(world)

yes

XSB also offers an alternate version of formatted output in the format library described in
volume 2. While not as efficient as fmt write/[2,3], the format library is more compatable
with the formatted output found in other Prologs.

Error Cases

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable nor a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open output stream

– existence error(stream,Stream or alias)

• Fmt is uninstantiated or not a character string or atom

2In the case where Fmt contains only a single conversion specifier, Term may be a string, integer or a float, and is
considered to be equivalent to specifying arg(Term).

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 127

– type error(’character string or atom’,Fmt)

• A format specifier in Fmt and its corresponding argument in Term are of incompatable
types.

– misc error

• Term contains fewer arguments than Fmt has format specifiers or Term is uninstantiated

– misc error

If the number of arguments in Term is greater than the number of conversion specifiers in Fmt

no error is thrown, but a warning is issued.

Caution for 64-bit Platforms As discussed, fmt write/[2,3] calls printf() and inherits
the flexibility of that function, but also its “features”. One of these features is that in most 64-
bit platforms, large integers that behave perfectly well otherwise are not printed out properly
by printf() with the %d format – rather another format string needs to be used (such as
%ld on Linux). fmt write/[1,2] recognizes the %ld option and passes it onto fprintf(),
but the proper format string for 64-bit integers may be different on other platforms.

fmt write string(-String,+Fmt,+Term)

This predicate works like the C function sprintf. It takes the format string and substitutes
the values from the arguments of Term (e.g., args(X,Y,Z)) for the formatting instructions %s,
%d, etc. Additional syntactic sugar, as in fmt_write, is recognized. The result is available
in String. Fmt is a string or an atom that represents the format, as in fmt write.

If the number of format specifiers is greater than the number of arguments to be printed, an
error is issued. If the number of arguments is greater, then a warning is issued.

fmt write string requires that the printed size of each argument (e.g., X,Y,and Z above)
must be less than 16K. Longer arguments are cut to that size, so some loss of information is
possible. However, there is no limit on the total size of the output (apart from the maximum
atom size imposed by XSB).

file read line list(-String)

A line read from the current input stream is converted into a list of character codes. This
predicate avoids interning an atom as does file read line atom/3, and so is recommended
when speed is important. This predicate fails on reaching the end of file.

file read line list(Stream or alias,-CharList)

Acts as does file read line list, but uses Stream or atom.

Error Cases

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable nor a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open input stream

– existence error(stream,Stream or alias)

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 128

file read line atom(-Atom)

Reads a line from the current (textual) input stream, returning it as Atom. This predicate
fails on reaching the end of file.

file read line atom(+Stream or alias,-Atom)

Like file read line atom/1 but reads from Stream or alias. Error Cases

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable nor a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open input stream

– existence error(stream,Stream or alias)

file write line(+String, +Offset) module: file io
file write line(+Stream or alias, +String, +Offset) module: file io

These predicates write String beginning with character Offset to the current output stream.
String can be an atom or a list of ASCII character codes. This does not put the newline
character at the end of the string (unless String already had this character). Note that
escape sequences, like \n, are recognized if String is a character list, but are output as is if
String is an atom.

Error Cases

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable nor a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open input stream

– existence error(stream,Stream or alias)

• String is neither a Prolog character list not an atom

– misc error

file getbuf list(+Stream or alias, +BytesRequested, -CharList, -BytesRead) module:
file io

Read BytesRequested bytes from file represented by Stream or alias (which must already
be open for reading) into variable String as a list of character codes. This is analogous to
fread in C. This predicate always succeeds. It does not distinguish between a file error and
end of file. You can determine if either of these conditions has happened by verifying that
BytesRead < BytesRequested.

file getbuf list(+BytesRequested, -String, -BytesRead) module: file io

Like file_getbuf_list/3, but reads from the currently open input stream (i.e., with see/1).

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 129

file getbuf atom(+Stream or alias, +BytesRequested, -String, -BytesRead) module:
file io

Read BytesRequested bytes from file represented by Stream or alias (which must already
be open for reading) into variable String. This is analogous to fread in C. This predicate
always succeeds. It does not distinguish between a file error and end of file. You can determine
if either of these conditions has happened by verifying that BytesRead < BytesRequested.

Note: because XSB does not have an atom table garbage collector yet, this predicate should
not be used to read large files. Use read getbuf list or another predicate in this case.

Error Cases

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable nor a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open input stream

– existence error(stream,Stream or alias)

file getbuf atom(+BytesRequested, -String, -BytesRead) module: file io

Like file_getbuf_atom/4, but reads from the currently open input stream.

file putbuf(+Stream or alias, +BytesRequested, +String, +Offset, -BytesWritten) module:
file io

Write BytesRequested bytes into file represented by I/O port Stream or alias (which must
already be open for writing) from variable String at position Offset. This is analogous to
C fwrite. The value of String can be an atom or a list of ASCII characters.

Error Cases

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable nor a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open input stream

– existence error(stream,Stream or alias)

file putbuf(+BytesRequested, +String, +Offset, -BytesWritten) module: file io

Like file_putbuf/3, but output goes to the currently open output stream.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 130

6.2 Interactions with the Operating System

XSB provides a number of facilities for interacting with the UNIX and Windows operating systems.
This section describes basic facilities for invoking shell commands and file manipulation. Chapter
1 of Volume 2 discusses more advanced commands for process spawning and control, along with
interprocess communication.

shell(+SystemCall)

Calls the operating system with the atom SystemCall as argument, using the libc function
system(). The predicate succeeds if SystemCall is executed successfully, otherwise it fails.
As a notational convenience, the user can also supply SystemCall either as a list. In this
case, elements of the list will be concatenated together to form the system call.

For example, the call:

| ?- shell(’echo $HOME’).

will output in the current output stream of XSB the name of the user’s home directory; while
the call:

| ?- File = ’test.c’, shell([’cc -c ’, File]).

will call the C compiler to compile the file test.c.

Note that in UNIX systems, since system() (and shell/1) executes by forking off a shell
process. Thus it cannot be used, for example, to change the working directory of the program.
For that reason the standard predicate cd/1 described below should be used.

Error Cases

• SystemCall is a variable

– instantiation error

• SystemCall is neither an atom nor a list

– type error(atom or list,SystemCall)

• SystemCall is longer than the maximum command length allowed by shell/1

– resource error(memory)

shell(+SystemCall, -Result)

Calls the operating system with the atom SystemCall as argument, using the libc function
system(). As a notational convenience, the user can also supply SystemCall as a list. In in
this case, elements of the list will be concatenated together to form the system call. shell/2
always succeeds instantiating Result to the exit code of system(). Thus Result will be 0 if
⁀SystemCall executed properly, and non-0 otherwise: the specific return values of system()
may be platform-dependent.

Error Cases

• SystemCall is a variable

– instantiation error

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 131

• SystemCall is neither an atom nor a list

– type error(atom or list,SystemCall)

• Result is not a variable

– type error(variable,Result)

• SystemCall is longer than the maximum command length allowed by shell/2

– resource error(memory)

shell to list(+SystemCall,-StdOut,-ErrOut,-Result)

shell to list(+SystemCall,-StdOut,-Result)

Behaves as shell/2 in its 1st and 4th arguments, and like shell/2 always succeeds. Both
StdOut and ErrOut are lists of lists: each element of the outer list corresponds to a line of
output from SystemCall, while each element of an inner list corresponds to a token in that
line. shell to list/3 is thus a sort of Prolog analog of the shell command ‘SystemCall‘.

Examples:

?- shell_to_list(sw_vers,Stdout,Ret).

Stdout = [[ProductName:,Mac,OS,X],[ProductVersion:,10.4.9],[BuildVersion:,8P2137]]

Ret = 0

?- shell_to_lists(’gcc -c nofile.c’,StdOut,StdErr,Ret).

Stdout = []

StdErr = [[i686-apple-darwin8-gcc-4.0.1:,nofile.c:,No,such,file,or,directory]]

Ret = 256

Error cases are as with shell/2

datime(?Date) module: standard
Unifies Date to the current date, returned as a Prolog term, suitable for term comparison.
Note that datime/1 must be explicitly imported from the module standard.

Example:

> date

Mon Aug 9 16:19:44 EDT 2004

> nxsb1

XSB Version 2.6 (Duff) of June 24, 2003

[i686-pc-cygwin; mode: optimal; engine: slg-wam; gc: indirection; scheduling: local]

| ?- import datime/1 from standard

yes

| ?- datime(F).

F = datime(2004,8,9,20,20,23)

yes

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 132

6.2.1 The path sysop/2 interface

In addition, XSB provides the following unified interface to the operations on files. All these calls
succeed iff the corresponding system call succeeds. These calls work on both Windows and Unixes
unless otherwise noted.

path sysop(isplain, +Path)

Succeeds, if Path is a plain file.

path sysop(isdir, +Path)

Succeeds, if Path is a directory.

path sysop(rename, +OldPath, +NewPath)

Renames OldPath into NewPath.

path sysop(copy, +FromPath, +ToPath)

Copies FromPath into ToPath.

path sysop(rm, +Path)

Removes the plain file Path.

path sysop(rmdir, +Path)

Deletes the directory Path, succeeding only if the directory is empty.

path sysop(rmdir rec, +Path)

Deletes the directory Path along with any of its contents.

path sysop(link, +SrsPath, +DestPath)

Creates a hard link from SrsPath to DestPath. UNIX only.

path sysop(cwd, -Path)

Binds Path to the current working directory.

path sysop(chdir, +Path)

Changes the current working directory to Path.

path sysop(mkdir, +Path)

Creates a new directory, Path.

path sysop(exists, +Path)

Succeeds if the file Path exists.

path sysop(readable, +Path)

Succeeds if Path is a readable file.

path sysop(writable, +Path)

Succeeds if Path is a writable file.

path sysop(executable, +Path)

Succeeds if Path is an executable file.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 133

path sysop(modtime, +Path, -Time)

Returns a list that represents the last modification time of the file. Succeeds if file exists. In
this case, Time is bound to a list [high,low] where low is the least significant 24 bits of the
modification time and high is the most significant bits (25th) and up. Time represents the
last modification time of the file. The actual value is thus high ∗ 224 + low, which represents
the number of seconds elapsed since 00:00:00 on January 1, 1970, Coordinated Universal Time
(UTC).

path sysop(newerthan, +Path1, +Path2)

Succeeds is the last modification time of Path1 is higher than that of Path2. Also succeeds if
Path1 exists but Path2 does not.

path sysop(size, +Path, -Size)

Returns a list that represents the byte size of Path. Succeeds if the file exists. In this case
Size is bound to the list of the form [high,low] where low is the least significant 24 bits of
the byte-size and high is the most significant bits (25th) and up. The actual value is thus
high ∗ 224 + low.

path sysop(tmpfilename, -Name)

Returns the name of a new temporary file. This is useful when the application needs to open
a completely new temporary file.

path sysop(extension, +Name, -Ext)

Returns file name extension.

path sysop(basename, +Name, -Base)

Returns the base name of the file name (i.e., the name sans the directory and the extension).

path sysop(dirname, +Name, -Dir)

Returns the directory portion of the filename. The directory is slash or backslash terminated.

path sysop(isabsolute, +Name)

Succeeds if Name is an absolute path name. File does not need to exist.

path sysop(expand, +Name, -ExpandedName)

Binds ExpandedName to the expanded absolute path name of Name. The file does not need to
exist. Duplicate slashes, references to the current and parent directories are factored out.

6.3 Evaluating Arithmetic Expressions through is/2

Before describing is/2 and the expressions that it can evaluate, we note that in Version 3.3 of
XSB, integers in XSB are represented using a single word of 32 or 64 bits, depending on the
machine architecture. Floating point values are, by default, stored as word-sized references to
double precision values, regardless of the target machine. Direct (non-referenced, tagged) single
precision floats can be activated for speed purposes by passing the option –enable-fast-floats to the
configure script at configuration time. This option is not recommended when any sort of precision

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 134

is desired, as there may be as little as 28 bits available to represent a given number value under a
tagged architecture.

All of the evaluable functors described below throw an instantiation error if one of their evaluated
inputs is a variable, and an evaluation(undefined) error if one of their evaluated inputs is
instantiated but non-numeric. With this in mind, we describe below only their behavior on correctly
typed input.

ISO Compatability Note: In addition, evaluation of arithmetic expressions through is/2

does not check for overflow or underflow. As a result, XSB’s floating point operations do not
conform to IEEE floating point standards, and deviates in this regard from the ISO Prolog standard
(see [33] Section 9) We hope to fix these problems in a future release 3.

is(?Result,+Expression) ISO
is(Result,Expression) is true iff the result of evaluating Expression as a sequence of
evaluable functors unifies with Result. As mentioned in Section 3.10.5, is/2 is an inline
predicate, so calls to is/2 within compiled code will not be visible during a trace of program
execution.

6.3.1 Evaluable Functors for Arithmetic Expressions

+(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns Number1 + Number2,
performing any necessary type conversions.

-(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns Number1 - Number2,
performing any necessary type conversions.

*(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns Number1 * Number2

(i.e. multiplies them), performing any necessary type conversions.

/(+Expr1,Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns Number1 / Number2

(i.e. divides them), performing any necessary type conversions.

div(+Expr1,Expr2) ISO

//(+Expr1,Expr2) Evaluable Functor
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns Number1 // Number2

(i.e. integer division), performing any necessary type conversions, and rounding to 0 if nec-
essary.

Example:

3We also note that the ISO Prolog evaluable functorsfloat integer part/1 (which can be obtained via
truncate/1), float fractional part/1 (which can be obtained via X - truncate(X)), and bitwise complement
(which is implementation dependent in the ISO standard) are not implemented in Version 3.3.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 135

| ?- X is 3/2.

X = 1.5000

yes

| ?- X is 3 // 2.

X = 1

yes

| ?- X is -3 // 2.

X = -1

yes

-(+Expr1) Evaluable Functor (ISO)
If +Expr evaluates to Number, returns -Number1, performing any necessary type conversions.

’∧’(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns the bitwise con-
junction of Number1 and Number2.

’∨’(+Expr1,+Expr2) Evaluable Functor (ISO)

If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns the bitwise disjunc-
tion Number1 and Number2.

’>>’(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns the logical shift
right of Number1, Number2 places.

’<<’(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns the logical shift left
of Number1, Number2 places.

xor(+Expr1,+Expr2) ISO

’><’(+Expr1,+Expr2) Evaluable Functor
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns the bitwise exclusive
or of Number1 and Number2.

min(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns the minimum of
the two.

max(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1, and Expr2 evaluates to Number2, returns the maximum of
the two.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 136

ceiling(+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, ceiling(Number) returns the integer ceiling of Number if Number
is a float, and Number itself if Number is an integer.

float(+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, float(Number) converts Number to a float if Number is an
integer, and returns Number itself if Number is a float.

floor(+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, floor(Number) returns the integer floor of Number if Number
is a float, and Number itself if Number is an integer.

mod(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1 and Expr2 evaluates to Number2 where Number2 is not 0,
mod(Number1,Number2) returns

Number1 − (⌊(Number1/Number2)⌋) × Number2)

rem(+Expr1,+Expr2) Evaluable Functor (ISO)
If +Expr1 evaluates to Number1 and Expr2 evaluates to Number2 where Number2 is not 0,
rem(Number1,Number2) returns

Number1 − (Number1//Number2) × Number2)

Example:

| ?- X is 5 mod 2.

X = 1

yes

| ?- X is 5 rem 2.

X = 1

yes

| ?- X is 5 mod -2.

X = -1

yes

| ?- X is 5 rem -2.

X = 1

yes

round(+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, round(Number) returns the nearest integer to Number if Number
is a float, and Number itself if Number is an integer.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 137

^/2 Evaluable Functor (ISO)
If Expr1 and Expr2 both evaluate to numbers, the infix function ^/2 raises Expr1 to the
Expr2 power. If Expr1 and Expr2 both evaluate to integers, an integer is returned; otherwise
a float is returned.

’**’(+Expr1,+Expr2) Evaluable Functor (ISO)
If Expr1 and Expr2 both evaluate to numbers, the infix function **/2 raises Expr1 to the
Expr2 power. A floating-point number is always returned.

sqrt(+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, sqrt(Number) returns the square root of Number.

truncate(+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, truncate(Number) truncates Number if Number is a float, and
returns Number itself if Number is an integer.

sign(+Expr) Evaluable Functor (ISO)
If +Expr evaluates to Number, sign(Number) returns 1 if Number is greater than 0, 0 if Number
is equal to 0, and -1 if Number is less than 0.

pi Evaluable Functor (ISO)
Evaluates to π within an arithmetic expression.

e Evaluable Functor (ISO)
Evaluates to e, the base of the natural logarithm, within an arithmetic expression.

epsilon Evaluable Functor
Evaluates to epsilon, the difference between the float 1.0 and the first larger floating point
number.

Mathematical Functions from math.h

XSB also allows as evaluable functors, many of the functions from the C library math.h. Functions
included in XSB Version 3.3 are cos/1, sin/1, tan/1, acos/1, asin/1, atan/1, log/1 (natural log-
arithm), log10/1, and atan/2 (also available as atan2/2). For their semantics, see documentation
to math.h.

6.4 Convenience

These predicates are standard and often self-explanatory, so they are described only briefly.

true ISO
Always succeeds.

otherwise

Same as true/0.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 138

fail ISO
Always fails.

false

Same as fail/0.

6.5 Negation and Control

’!’/0 ISO
Cut (discard) all choice points made since the parent goal started execution. Cuts across

tabled predicates are not valid. The compiler checks for such cuts, although whether the
scope of a cut includes a tabled predicate is undecidable in the presence of meta-predicates
like call/1. Further discussion of conditions allowing cuts and of their actions can be found
in Section 5.1.

\+ +P ISO
If the goal P has a solution, fails, otherwise it succeeds. Equivalently, it is true iff call(P)

(see Section 6.11) is false. Argument P must be ground for sound negation as failure, although
no runtime checks are made.

Error Cases

instantiation error P is not instantiated.

type error(callable,P) P is not callable.

fail if(+P)

not +P

Like \+/1 and provided for compatibility with legacy code. Compilation of \+/1 and fail if/1

is optimized by XSB’s compiler, while that of not/1 is not – therefore the first two syntactical
forms are preferred in terms of efficiency, while \+/1 is preferred in terms of portability.

All error cases are the same as call/1 (see Section 6.11).

tnot(+P) Tabling
The semantics of tnot/1 allows for correct execution of programs with according to the well-
founded semantics. P must be a tabled predicate, For a detailed description of the actions of
tabled negation for in XSB Version 3.3 see [59, 61]. Chapter 5 contains further discussion of
the functionality of tnot/1.

Error Cases

• P is not ground (floundering occurs)

– instantiation error

• P is not callable

– type error(callable,P)

• P is not a call to a tabled predicate

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 139

– table error

sk not(+P) Tabling
If +P is a tabled predicate, sk not/1 acts as tnot/1 but permits variables in its subgoal
argument 4. The semantics in the case of unbound variables is as follows:

... :- ..., sk not(p(X)), ...

is equivalent to

... :- ..., tnot(pp), ...

pp :- p(X).

where pp is a new proposition. Thus, the unbound variable X is treated as tnot(∃X(p(X))).

If +P is a non-tabled predicate sk not/1 ensures that +P is ground and called via a tabled
predicate so that sk not/1 can be used with non-tabled predicates as well, regardless of
whether +P is ground or not.

sk not/1 uses an auxiliary tabled predicate, tunnumcall/1 in its execution. Therefore to
reclaim space at the predicate or call level (e.g. using abolish table pred/1 or similar
predicates), tunnumcall/1 must be explicitly abolished.

Error Cases

• P is not instantiated

– instantiation error

• P is not callable

– type error(callable,P)

P -> Q ; R ISO
Analogous to if P then Q else R, i.e. defined as if by

(P -> Q ; R) :- P, !, Q.

(P -> Q ; R) :- R.

P -> Q ISO
When occurring other than as one of the alternatives of a disjunction, is equivalent to:

P -> Q ; fail.

repeat

Generates an infinite sequence of choice points (in other words it provides a very convenient
way of executing a loop). It is defined by the clauses:

repeat.

repeat :- repeat.

4sk not/1 replaces the ’t not’/1 predicate of earlier XSB versions whose implementation and semantics were
dubious.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 140

between(+L,+U,B) module: basics
For L and U integers, with L less than or equal to U, successive calls to between/3 unify B

with all integers between L and U inclusively. If L is less than U the predicate fails.

Error Cases:

• L (or U) is a not a character

– type error(integer,L)

6.6 Unification and Comparison of Terms

The predicates described in this section allow unification and comparison of terms 5.

Like most Prologs, default unification in XSB does not perform a so-called occurs check — it
does not handle situations where a variable X may be bound to a structure containing X as a proper
subterm. For instance, in the goal

X = f(X) % incorrect!

X is bound to f(X) creating a term that is either cyclic or infinite, depending on one’s point
of view. Prologs in general perform unification without occurs check since without occurs check
unification is linear in the size of the largest term to be unified, while unification with occurs check
may be exponential in the size of the largest term to be unified. Most Prolog programmers will
rarely, need to concern themselves with cyclic terms or unification with occurs check. However,
unification with occurs check can be important for certain applications, in particular when Prolog is
used to implement theorem provers or sophisticated constraint handlers. As a result XSB provides
an ISO-style implementation of the predicate unify with occurs check/2 described below, as well
as a Prolog flag unify with occurs check that changes the behavior of unification in XSB’s engine.

As opposed to unification predicates, term comparison predicates described below take into
account a standard total ordering of terms, which has as follows:

variables @ < floating point numbers @ < integers @ < atoms @ < compound terms

Within each one of the categories, the ordering is as follows:

• ordering of variables is based on their address within the SLG-WAM — the order is not
related to the names of variables. Thus note that two variables are identical only if they
share the same address – only if they have been unified or are the same variable to begin
with. As a corollary, note that two anonymous variables will not have the same address and
so will not be considered identical terms. As with most WAM-based Prologs, the order of
variables may change as variables become bound to one another. If the order is expected to
be invariant across variable bindings, other mechanisms, such as attributed variables, should
be used.

• floating point numbers and integers are put in numeric order, from −∞ to +∞. Note that a
floating point number is always less than an integer, regardless of their numerical values. If
comparison is needed, a conversion should be performed (e.g. through float/1).

5Arithmetic comparison predicates that may evaluate terms before comparing them are described in Section 6.3.1.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 141

• atoms are put in alphabetical (i.e. ASCII) order;

• compound terms are ordered first by arity, then by the name of their principal functor and
then by their arguments (in a left-to-right order).

• lists are compared as ordinary compound terms having arity 2 and functor ’.’.

For example, here is a list of terms sorted in increasing standard order:

[X, 3.14, -9, fie, foe, fum(X), [X], X = Y, fie(0,2), fie(1,1)]

The basic predicates for unification and comparison of arbitrary terms are:

X = Y

Unifies X and Y without occur check.

unify with occurs check(One,Two)

Unifies One and Two using an occur check, and failing if One is a proper subterm of Two or if
Two is a proper subterm of One.

Example:

| ?- unify_with_occurs_check(f(1,X),f(1,a(X))).

no

| ?- unify_with_occurs_check(f(1,X),f(1,a(Y))).

X = a(_h165)

Y = _h165

yes

| ?- unify_with_occurs_check(f(1,a(X)),f(1,a(X))).

X = _h165

yes

T1 == T2

Tests if the terms currently instantiating T1 and T2 are literally identical (in particular,
variables in equivalent positions in the two terms must be identical). For example, the goal:

| ?- X == Y.

fails (answers no) because X and Y are distinct variables. However, the question

| ?- X = Y, X == Y.

succeeds because the first goal unifies the two variables.

X \ = Y ISO
Succeeds if X and Y are not unifiable, fails if X and Y are unifiable. It is thus equivalent to
\+(X = Y).

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 142

T1 \== T2 ISO
Succeeds if the terms currently instantiating T1 and T2 are not literally identical.

Term1 ?= Term2

Succeeds if the equality of Term1 and Term2 can be compared safely, i.e. whether the result
of Term1 = Term2 can change due to further instantiation of either term. It is defined as by
?=(A,B) :- (A==B ; A B̄), !.

unifiable(X, Y, -Unifier) module: constraintLib
If X and Y can unify, succeeds unifying Unifier with a list of terms of the form Var =

Value representing a most general unifier of X and Y. unifiable/3 can handle cyclic terms.
Attributed variables are handles as normal variables. Associated hooks are not executed 6.

T1 @< T2

Succeeds if term T1 is before term T2 in the standard order.

T1 @> T2

Succeeds if term T1 is after term T2 in the standard order.

T1 @=< T2

Succeeds if term T1 is not after term T2 in the standard order.

T1 @>= T2

Succeeds if term T1 is not before term T2 in the standard order.

T1 @= T2

Succeeds if T1 and T2 are identical variables, or if the main structure symbols of T1 and T2

are identical.

compare(?Op, +T1, +T2)

Succeeds if the result of comparing terms T1 and T2 is Op, where the possible values for Op

are:

‘=’ if T1 is identical to T2,

‘<’ if T1 is before T2 in the standard order,

‘>’ if T1 is after T2 in the standard order.

Thus compare(=, T1, T2) is equivalent to T1==T2. Predicate compare/3 has no associated
error conditions.

ground(+X)

Succeeds if X is currently instantiated to a term that is completely bound (has no uninstan-
tiated variables in it); otherwise it fails. While ground/1 has no associated error conditions,
it is not safe for cyclic terms: if cyclic terms may be an issue use ground or cyclic/1.

ground and acyclic(+X)
6In Version 3.3, unifiable/3 is written as a Prolog predicate and so is slower than many of the predicates in this

section.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 143

ground or cyclic(+X)

ground or cyclic/1 succeeds if X is currently instantiated to a term that is completely
bound (has no uninstantiated variables in it) or is a cyclic term; otherwise it fails. Alter-
nately, ground and acyclic/1 succeeds if X is currently instantiated to an acyclic term that is
completely bound (has no uninstantiated variables in it). Neither predicate has no associated
error conditions.

Both predicates are written to be as efficient as possible, and each requres a single traversal
of a term, regardless of whether the term is ground, nonground or cyclic. However, due to
the nature of checking for cyclicity, these predicates are somewhat slower than the unsafe
ground/1.

subsumes(?Term1, +Term2) module: subsumes
Term subsumption is a sort of one-way unification. Term Term1 and Term2 unify if they have
a common instance, and unification in Prolog instantiates both terms to that (most general)
common instance. Term1 subsumes Term2 if Term2 is already an instance of Term1. For our
purposes, Term2 is an instance of Term1 if there is a substitution that leaves Term2 unchanged
and makes Term1 identical to Term2. Predicate subsumes/2 does not work as described if
Term1 and Term2 share common variables.

subsumes chk(+Term1, +Term2) module: subsumes
subsumes term(+Term1, +Term2) ISO

The subsumes chk/2 predicate is true when Term1 subsumes Term2; that is, when Term2 is
already an instance of Term1. This predicate simply checks for subsumption and does not bind
any variables either in Term1 or in Term2. Term1 and Term2 should not share any variables.

Examples:

| ?- subsumes_chk(a(X,f,Y,X),a(U,V,b,S)).

no

| ?- subsumes_chk(a(X,Y,X),a(b,b,b)).

X = _595884

Y = _595624

variant(?Term1, ?Term2) module: subsumes
This predicate is true when Term1 and Term2 are alphabetic variants. That is, you could
imagine that variant/2 as being defined like:

variant(Term1, Term2) :-

subsumes_chk(Term1, Term2),

subsumes_chk(Term2, Term1).

but the actual implementation of variant/2 is considerably more efficient. However, in
general, it does not work for terms that share variables; an assumption that holds for most
(reasonable) uses of variant/2.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 144

6.6.1 Sorting of Terms

Sorting routines compare and order terms without instantiating them. Users should be careful
when comparing the value of uninstantiated variables. The actual order of uninstantiated variables
may change in the course of program evaluation due to variable aliasing, garbage collection, or
other reasons.

sort(+L1, ?L2)

The elements of the list L1 are sorted into the standard order, and any identical (i.e. ‘==’)
elements are merged, yielding the list L2. The time to perform the sorting is O(nlogn) where
n is the length of list L1.

Examples:

| ?- sort([3.14,X,a(X),a,2,a,X,a], L).

L = [X,3.14,2,a,a(X)];

no

Exceptions:

instantiation error Argument 1 of sort/2 is a variable or is not a proper list.

keysort(+L1, ?L2)

The list L1 must consist of elements of the form Key-Value. These elements are sorted into
order according to the value of Key, yielding the list L2. The elements of list L1 are scanned
from left to right. Unlike sort/2, in keysort/2 no merging of multiple occurring elements
takes place. The time to perform the sorting is O(nlogn) where n is the length of list L1.
Note that the elements of L1 are sorted only according to the value of Key, not according to
the value of Value. The sorting of elements in L1 is not guaranteed to be stable.

Examples:

| ?- keysort([3-a,1-b,2-c,1-a,3-a], L).

L = [1-b,1-a,2-c,3-a,3-a];

no

Exceptions:

instantiation error L1 keysort/2 is a variable or is not a proper list.

domain error(key value pair,Element) L1 contains an element Element that is not of the
form Key-Value.

parsort(+L1, +SortSpec, +ElimDupl, ?L2) module: machine
parsort/4 is a very general sorting routine. The list L1 may consist of elements of any
form. SortSpec is the atom asc, the atom desc, or a list of terms of the form asc(I) or

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 145

desc(I) where I is an integer indicating a sort argument position. The elements of list L1

are sorted into order according to the sort specification. asc indicates ascending order based
on the entire term; desc indicates descending order. For a sort specification that is a list, the
individual elements indicate subfields of the source terms on which to sort. For example, a
specification of [asc(1)] sorts the list in ascending order on the first subfields of the terms in
the list. [desc(1),asc(2)] sorts into descending order on the first subfield and within equal
first subfields into ascending order on the second subfield. The order is determined by the
standard predicate compare. If ElimDupl is nonzero, merging of multiple occurring elements
takes place (i.e., duplicate (whole) terms are eliminated in the output). If ElimDupl is zero,
then no merging takes place. A SortSpec of [] is equivalent to “asc”. The time to perform
the sorting is O(nlogn) where n is the length of list L1. The sorting of elements in L1 is not
guaranteed to be stable. parsort/4 must be imported from module machine.

Examples:

| ?- parsort([f(3,1),f(3,2),f(2,1),f(2,2),f(1,3),f(1,4),f(3,1)],

[asc(1),desc(2)],1,L).

L = [f(1,4),f(1,3),f(2,2),f(2,1),f(3,2),f(3,1)];

no

Error Cases:

instantiation error L1 is a variable or not a proper list.

6.7 Meta-Logical

To facilitate manipulation of terms as objects in themselves, XSB provides a number meta-logical
predicates. These predicates include the standard meta-logical predicates of Prolog, along with
their usual semantics. In addition are provided predicates which provide special operations on
HiLog terms. For a full discussion of Prolog and HiLog terms see Section 4.1.

var(?X) ISO
Succeeds if X is currently uninstantiated (i.e. is still a variable); otherwise it fails.

Term X is uninstantiated if it has not been bound to anything, except possibly another
uninstantiated variable. Note in particular, that the HiLog term X(Y,Z) is considered to be
instantiated. There is no distinction between a Prolog and a HiLog variable.

Examples:

| ?- var(X).

yes

| ?- var([X]).

no

| ?- var(X(Y,Z)).

no

| ?- var((X)).

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 146

yes

| ?- var((X)(Y)).

no

nonvar(?X) ISO
Succeeds if X is currently instantiated to a non-variable term; otherwise it fails. This has
exactly the opposite behaviour of var/1.

atom(?X) ISO
Succeeds only if the X is currently instantiated to an atom, that is to a Prolog or HiLog
non-numeric constant.

Examples:

| ?- atom(HiLog).

no

| ?- atom(10).

no

| ?- atom(’HiLog’).

yes

| ?- atom(X(a,b)).

no

| ?- atom(h).

yes

| ?- atom(+).

yes

| ?- atom([]).

yes

integer(?X) ISO
Succeeds if X is currently instantiated to an integer; otherwise it fails.

float(?X) ISO
float/1 Same as real/1. Succeeds if X is currently instantiated to a floating point number;
otherwise it fails.

real(?X)

Succeeds if X is currently instantiated to a floating point number; otherwise it fails. This
predicate is included for compatibility with earlier versions of XSB.

number(?X) ISO
Succeeds if X is currently instantiated to either an integer or a floating point number (real);
otherwise it fails.

atomic(?X) ISO
Succeeds if X is currently instantiated to an atom or a number; otherwise it fails.

Examples:

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 147

| ?- atomic(10).

yes

| ?- atomic(p).

yes

| ?- atomic(h).

yes

| ?- atomic(h(X)).

no

| ?- atomic("foo").

no

| ?- atomic(’foo’).

yes

| ?- atomic(X).

no

| ?- atomic(X((Y))).

no

compound(?X) ISO
Succeeds if X is currently instantiated to a compound term (with arity greater that zero), i.e.
to a non-variable term that is not atomic; otherwise it fails.

Examples:

| ?- compound(1).

no

| ?- compound(foo(1,2,3)).

yes

| ?- compound([foo, bar]).

yes

| ?- compound("foo").

yes

| ?- compound(’foo’).

no

| ?- compound(X(a,b)).

yes

| ?- compound((a,b)).

yes

structure(?X)

Same as compound/1. Its existence is only for compatibility with previous versions.

is list(?X)

Succeeds if X is a proper list. In other words if it is either the atom [] or [H|T] where H is
any Prolog or HiLog term and T is a proper list; otherwise it fails.

Examples:

| ?- is_list([p(a,b,c), h(a,b)]).

yes

| ?- is_list([_,_]).

yes

| ?- is_list([a,b|X]).

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 148

no

| ?- is_list([a|b]).

no

is charlist(+X)
Succeeds if X is a Prolog string, i.e., a list of characters. Examples:

| ?- is_charlist("abc").

yes

| ?- is_charlist(abc).

no

is charlist(+X,-Size)

Works as above, but also returns the length of that string in the second argument, which
must be a variable.

is attv(+Term)

Succeeds is Term is an attributed variable, and fails otherwise.

is most general term(?X)
Succeeds if X is compound term with all distinct variables as arguments, or if X is an atom.
(It fails if X is a cons node.)

| ?- is_most_general_term(f(_,_,_,_)).

yes

| ?- is_most_general_term(abc).

yes

| ?- is_most_general_term(f(X,Y,Z,X)).

no

| ?- is_most_general_term(f(X,Y,Z,a)).

no

| ?- is_most_general_term([_|_]).

no

is number atom(?X)

Succeeds if X is an atom (e.g. ’123’) (as opposed to a number 123) which can be converted
to a numeric atom (integer or float) and fails otherwise. In particular, if is number atom(X)
succeeds, then

| ?- atom_codes(X,Codes),number_codes(N,Codes).

will succeed.

callable(?X)

Succeeds if X is currently instantiated to a term that standard predicate call/1 could take as
an argument and not give an instantiation or type error. Note that it only checks for errors of
predicate call/1. In other words it succeeds if X is an atom or a compound term; otherwise
it fails. Predicate callable/1 has no associated error conditions.

Examples:

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 149

| ?- callable(p).

yes

| ?- callable(p(1,2,3)).

yes

| ?- callable([_,_]).

yes

| ?- callable(_(a)).

yes

| ?- callable(3.14).

no

proper hilog(?X) HiLog
Succeeds if X is a proper HiLog term – i.e. a HiLog term that is not a Prolog term; otherwise
the predicate fails.

Examples: (In this example and the rest of the examples of this section we assume that h is
the only parameter symbol that has been declared a HiLog symbol).

| ?- proper_hilog(X).

no

| ?- proper_hilog(foo(a,f(b),[A])).

no

| ?- proper_hilog(X(a,b,c)).

yes

| ?- proper_hilog(3.6(2,4)).

yes

| ?- proper_hilog(h).

no

| ?- proper_hilog([a, [d, e, X(a)], c]).

yes

| ?- proper_hilog(a(a(X(a)))).

yes

functor(?Term, ?Functor, ?Arity) ISO
Succeeds if the functor of the Prolog term Term is Functor and the arity (number of argu-
ments) of Term is Arity. Functor can be used in either the following two ways:

1. If Term is initially instantiated, then

• If Term is a compound term, Functor and Arity are unified with the name and
arity of its principal functor, respectively.

• If Term is an atom or a number, Functor is unified with Term, and Arity is unified
with 0.

2. If Term is initially uninstantiated, then either both Functor and Arity must be instan-
tiated, or Functor is instantiated to a number, and

• If Arity is an integer in the range 1..255, then Term becomes instantiated to the most
general Prolog term having the specified Functor and Arity as principal functor and
number of arguments, respectively. The variables appearing as arguments of Term
are all distinct.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 150

• If Arity is 0, then Functor must be either an atom or a number and it is unified
with Term.

• If Arity is anything else, then functor/3 aborts.

Error Cases

atom or variable Functor is not an atom or variable.

instantiation error Both Term, and either Functor, or Arity are uninstantiated.

Examples:

| ?- functor(p(f(a),b,t), F, A).

F = p

A = 3

| ?- functor(T, foo, 3).

T = foo(_595708,_595712,_595716)

| ?- functor(T, 1.3, A).

T = 1.3

A = 0

| ?- functor(foo, F, 0).

F = foo

| ?- functor("foo", F, A).

F = .

A = 2

| ?- functor([], [], A).

A = 0

| ?- functor([2,3,4], F, A).

F = .

A = 2

| ?- functor(a+b, F, A).

F = +

A = 2

| ?- functor(f(a,b,c), F, A).

F = f

A = 3

| ?- functor(X(a,b,c), F, A).

F = apply

A = 4

| ?- functor(map(P)(a,b), F, A).

F = apply

A = 3

| ?- functor(T, foo(a), 1).

++Error: Wrong type in argument 2 of functor/3

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 151

Aborting...

| ?- functor(T, F, 3).

++Error: Uninstantiated argument 2 of functor/3

Aborting...

| ?- functor(T, foo, A).

++Error: Uninstantiated argument 3 of functor/3

Aborting...

hilog functor(?Term, ?F, ?Arity) HiLog
The XSB standard predicate hilog functor/3 succeeds

• when Term is a Prolog term and the principal function symbol (functor) of Term is F and
the arity (number of arguments) of Term is Arity, or

• when Term is a HiLog term, having name F and the number of arguments F is applied
to, in the HiLog term, is Arity.

The first of these cases corresponds to the “usual” behaviour of Prolog’s functor/3, while the
second is the extension of functor/3 to handle HiLog terms. Like the Prolog’s functor/3

predicate, hilog functor/3 can be used in either of the following two ways:

1. If Term is initially instantiated, then

• If Term is a Prolog compound term, F and Arity are unified with the name and
arity of its principal functor, respectively.

• If Term is an atom or a number, F is unified with Term, and Arity is unified with 0.

• If Term is any other HiLog term, F and Arity are unified with the name and the
number of arguments that F is applied to. Note that in this case F may still be
uninstantiated.

2. If Term is initially uninstantiated, then at least Arity must be instantiated, and

• If Arity is an integer in the range 1..255, then Term becomes instantiated to the most
general Prolog or HiLog term having the specified F and Arity as name and number
of arguments F is applied to, respectively. The variables appearing as arguments are
all unique.

• If Arity is 0, then F must be a Prolog or HiLog constant, and it is unified with
Term. Note that in this case F cannot be a compound term.

• If Arity is anything else, then hilog functor/3 aborts.

In other words, the standard predicate hilog functor/3 either decomposes a given HiLog
term into its name and arity, or given an arity —and possibly a name— constructs the cor-
responding HiLog term creating new uninstantiated variables for its arguments. As happens
with functor/3 all constants can be their own principal function symbols.

Examples:

| ?- hilog_functor(f(a,b,c), F, A).

F = f

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 152

A = 3

| ?- hilog_functor(X(a,b,c), F, A).

X = _595836

F = _595836

A = 3

| ?- hilog_functor(map(P)(a,b), F, A).

P = _595828

F = map(_595828)

A = 2

| ?- hilog_functor(T, p, 2).

T = p(_595708,_595712)

| ?- hilog_functor(T, h, 2).

T = apply(h,_595712,_595716)

| ?- hilog_functor(T, X, 3).

T = apply(_595592,_595736,_595740,_595744)

X = _595592

| ?- hilog_functor(T, p(f(a)), 2).

T = apply(p(f(a)),_595792,_595796)

| ?- hilog_functor(T, h(p(a))(L1,L2), 1).

T = apply(apply(apply(h,p(a)),_595984,_595776),_596128)

L1 = _595984

L2 = _595776

| ?- hilog_functor(T, a+b, 3).

T = apply(a+b,_595820,_595824,_595828)

arg(+Index, +Term, ?Argument) ISO
Unifies Argument with the Indexth argument of Term, where the index is taken to start at
1. In accordance with ISO semantics, Index must be instantiated to a non-negative integer,
and Term to a compound term, otherwise an error is thrown as described below. If Index is
0 or a number greater than the arity of Term, the predicate quietly fails.

Examples:

| ?- arg(2, p(a,b), A).

A = b

| ?- arg(2, h(a,b), A).

A = a

| ?- arg(0, foo, A).

no

| ?- arg(2, [a,b,c], A).

A = [b,c]

| ?- arg(2, "HiLog", A).

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 153

A = [105,108,111,103]

| ?- arg(2, a+b+c, A).

A = c

| ?- arg(3, X(a,b,c), A).

X = _595820

A = b

| ?- arg(2, map(f)(a,b), A).

A = a

| ?- arg(1, map(f)(a,b), A).

A = map(f)

| ?- arg(1, (a+b)(foo,bar), A).

A = a+b

Error Cases

• Index is a variable

– instantiation error

• Index neither a variable nor an integer

– type error(integer,Index)

• Index is less than 0

– domain error(not less than zero,Index)

• Term is a variable

– instantiation error

• Term neither a variable nor a compound term

– type error(integer,Index)

arg0(+Index, +Term, ?Argument)

Unifies Argument with the Indexth argument of Term if Index > 0, or with the functor of
Term if Index = 0.

hilog arg(+Index, +Term, ?Argument) HiLog
If Term is a Prolog term, it has the same behaviour as arg/3, but if Term is a proper HiLog
term, hilog arg/3 unifies Argument with the (Index+1)th argument of the Prolog represen-
tation of Term. Semantically, Argument is the Indexth argument to which the HiLog functor
of Term is applied. The arguments of the Term are numbered from 1 upwards. An atomic
term is taken to have 0 arguments.

Initially, Index must be instantiated to a positive integer and Term to any non-variable Prolog
or HiLog term. If the initial conditions are not satisfied or I is out of range, the call quietly
fails. Note that like arg/3 this predicate does not succeed for Index=0.

Examples:

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 154

| ?- hilog_arg(2, p(a,b), A).

A = b

| ?- hilog_arg(2, h(a,b), A).

A = b

| ?- hilog_arg(3, X(a,b,c), A).

X = _595820

A = c

| ?- hilog_arg(1, map(f)(a,b), A).

A = a

| ?- hilog_arg(2, map(f)(a,b), A).

A = b

| ?- hilog_arg(1, (a+b)(foo,bar), A).

A = foo

| ?- hilog_arg(1, apply(foo), A).

A = foo

| ?- hilog_arg(1, apply(foo,bar), A).

A = bar

Note the difference between the last two examples. The difference is due to the fact that
apply/1 is a Prolog term, while apply/2 is a proper HiLog term.

?Term =.. ?List ISO
Given proper instantiation of the arguments, =../2 (pronounced univ) succeeds when (1)
Term unifies with a compound Prolog or HiLog term and List unifies with a list whose head
is the functor of Term and whose tail is a list of the arguments of Term; or (2) when Term

unifies with an atomic term and List unifies with a list whose only element is Term. More
precisely,

• If initially Term is uninstantiated, then List must be instantiated either to a proper list
(list of determinate length) whose head is an atom, or to a list of length 1 whose head
is a number.

• If the arguments of =../2 are both uninstantiated, or if either of them is not what is
expected, =../2 throws the appropriate error message.

Examples:

| ?- X - 1 =.. L.

X = _h112

L = [-,_h112,1]

| ?- p(a,b,c) =.. L.

L = [p,a,b,c]

| ?- h(a,b,c) =.. L.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 155

L = [apply,h,a,b,c]

| ?- map(p)(a,b) =.. L.

L = [apply,map(p),a,b]

| ?- T =.. [foo].

T = foo

| ?- T =.. [apply,X,a,b].

T = apply(X,a,b)

| ?- T =.. [1,2].

++Error[XSB/Runtime/P]: [Type (1 in place of atomic)] in arg 2 of predicate =../2

| ?- T =.. [a+b,2].

++Error[XSB/Runtime/P]: [Type (a + b in place of atomic)] in arg 2 of predicate =../2

| ?- X =.. [foo|Y].

++Error[XSB/Runtime/P]: [Instantiation] in arg 2 of predicate =../2

Error Cases

• Term is a variable and List is a variable, a partial list, a or a list whose head is a variable

– instantiation error

• List is neither a variable nor a non-empty list

– type error(list, H)

• List is a list whose head H is neither an atom nor a variable, and whose tail is not the
empty list

– type error(atomic, H)

• Term is a variable and the tail of List has a length greater than XSB’s maximum arity
for terms (256)

– representation error(max arity)

?Term ^=.. [?F |?ArgList]

HiLog When Term is a Prolog term, this predicate behaves exactly like the Prolog =../2.
However when Term is a proper HiLog term, ^=../2 succeeds unifying F to its HiLog func-
tor and ArgList to the list of the arguments to which this HiLog functor is applied. Like
=../2, the use of ^=../2 can nearly always be avoided by using the more efficient predicates
hilog functor/3 and hilog arg/3. The behaviour of ^=../2, on HiLog terms is as follows:

• If initially Term is uninstantiated, then the list in the second argument of ^=../2 must
be instantiated to a proper list (list of determinate length) whose head can be any Prolog
or HiLog term.

• If the arguments of ^=../2 are both uninstantiated, or if the second of them is not what
is expected, ^=../2 aborts, producing an appropriate error message.

Examples:

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 156

| ?- p(a,b,c) ^=.. L.

L = [p,a,b,c]

| ?- h(a,b,c) ^=.. L.

L = [h,a,b,c]

| ?- map(p)(a,b) ^=.. L.

L = [map(p),a,b]

| ?- T ^=.. [X,a,b].

T = apply(X,a,b)

| ?- T ^=.. [2,2].

T = apply(2,2)

| ?- T ^=.. [a+b,2].

T = apply(a+b,2)

| ?- T ^=.. [3|X].

++Error: Argument 2 of ^=../2 is not a proper list

Aborting...

Error Cases

instantiation error Argument 2 of ^=../2 is not a proper list.

copy term(+Term, -Copy) ISO
Makes a Copy of Term in which all variables have been replaced by brand new variables which
occur nowhere else. It can be very handy when writing (meta-)interpreters for logic-based
languages. The version of copy term/2 provided is space efficient in the sense that it never
copies ground terms. Predicate copy term/2 has no associated errors or exceptions.

Examples:

| ?- copy_term(X, Y).

X = _598948

Y = _598904

rr | ?- copy_term(f(a,X), Y).

X = _598892

Y = f(a,_599112)

term depth(+Term, -Depth)

term depth/2 provides an efficient way to find the maximal depth of a term. Term depth is
defined recursively as follows:

• The depth of a structure is defined as 1 + the maximal depth of any argument of that
structure.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 157

• The depth of an attributed variable is the depth of the attribute structure associated
with that variable.

• The depth of a list [H|T] is defined as 1 + the maximal depth of H and T.

• The depth of any other element is 1.

Note that according to this definition, the depth of the list [a,b] is 3, since the list is
equivalent to the structure .(a,.(b,[])) whose depth is 3.

term depth/2 does not check for cyclic structures, so it must be ensured that Term is acyclic.

term size(+Term, -Size)

term size/2 provides an efficient way to find the total number of constituents of a term.
Term size is defined recursively as follows:

• The size of an attributed variable is 1 (the variable size) + the size of the attribute
structure.

• The size of a non-compound term is 1.

• The size of a compound term is defined as 1 + the sum of the sizes of all arguments of
that term.

• The size of a list [H|T] is defined as the size of the term ’.’(H,T).

term size/2 does not check for cyclic structures, so it must be ensured that Term is acyclic.

6.8 Cyclic Terms

6.8.1 Unification with and without Occurs Check

Cyclic terms are created when Prolog unifies two terms whose variables have not been standardized
apart: for instance

X = f(X)

will produce the cyclic term f(f(f(f(f(f(...)))))) – in other words, a term with an “infinite” depth.
Note that according to the mathematical definition of unification, X should not unify with a term
containing itself. There are two reasons why XSB (along with virtually all other Prologs) has this
default behavior.

• The default unification algorithm, when it unifies a variable V with a term T, does not check
for the occurrence of V in T, in other words it does not perform an occurs check. Unification
without an occurs check is linear in the sizes of the terms to be unified, while unification
with an occurs check is exponential in the sizes of the terms. This complexity is not just
theoretical: it can slow down programs that perform unification of large non-ground terms –
sometimes drastically.

• Some programs purposefully construct cyclic terms: this occurs with various constraint li-
braries such as CHR. These libraries do not perform as expected when a mathematically
correct unification algorithm is used.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 158

XSB provides two mechanisms for overriding this default behavior for unification.

• First, there is a Prolog flag unify with occurs check which when set to on ensures that
all unification is mathematically correct. Care should be taken when using this flag, for the
above two reasons.

• For more detailed usages, the ISO predicate unify with occurs check/2 can be used syn-
tactically rather than Prolog’s default unification operator =/2.

6.8.2 Cyclic Terms

Fortunately, the creation of cyclic terms is uncommon for most types of programming; even when
cyclic terms arise they can often be avoided by the proper use of copy term/2 or other predicates.
Nevertheless cyclic terms do arise when XSB is used for meta-programming or if XSB is used as
the basis of a high-level knowledge representation language such as Flora-2 or Silk. It is important
that XSB’s behavior be cycle-safe in the sense that the creation of cyclic terms per se will not
create infinite loops in XSB’s tabling or XSB’s builtins. Like some other Prologs, XSB supports
unification of cyclic terms. In addition, most predicates like functor/3, or =../2 that either take
non-compound terms or that do not require term traversal are cycle-safe. A few builtins that
require term-traversal are “safe” for cyclic terms. For instance writing in XSB is subject to a depth
check, which terminates for cyclic terms. Most importantly, the XSB heap garbage collector is
guarenteed to be safe for cyclic terms.

Variant tabling can also handle cyclic terms if the proper flags are set. These flags are
max table subgoal depth which determines the maximal “reasonable” depth of a subgoal; and
max table answer depth, max table answer list depth which determine the maximal “reason-
able” depth for non-list terms or lists (respectively) in answers. These last two flags also determine
a “reasonable” depth for interned tries. Each of these depth flags have an associated answer flag:
max table subgoal action, max table answer action and max table answer list action re-
spectively. The actions can be of three types: error which throws an error if a term with a certain
depth is encountered as a tabled subgoal or answer (regardless of whether that term is tabled);
failure which causes failure for these cases; and fail on cycles which fails on cyclic terms, and
otherwise throws an error for a term of a certain depth 7.

While the above operations cycle-safe, cyclic terms can cause problems in XSB for builtins or
predicates that require term traversal. For instance the library predicates length/2 and append/2

currently go into infinite loops with cyclic terms; unless otherwise specified it is the user’s responsi-
bility to check library predicates (as opposed to standard builtins) for acyclicity using is acyclic/1

or is cyclic/1. In addition the following XSB builtins are not cycle-safe:

• bagof/3, copy term/2, ground/1 numbervars/[1,3,4], setof/3, subsumes/2, subsumes chk/2,
term depth/2, term size/2, term to atom/[2,3], term to codes/[2,3], term variables/2,
unifiable/2 and variant/2 8.

7We hope to efficiently integrate cycle checking into XSB’s subsumptive tabling in the reasonably near future.
8The predicate ground or cyclic/1 is safe for cyclic terms.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 159

• Various table inspection builtins based on get call/2 or similar routines (including get residual/2).

Arguably, programs should not intentionally create cyclic terms, and the above flags, as well as
the following predicates, can help debug when cyclic terms are created.

is cyclic(?X)

Succeeds if X is a cyclic term.

is acyclic(?X)

acyclic term(?X) ISO
Succeeds if X is not a cyclic term.

6.9 Manipulation of Atomic Terms

This section lists some of XSB’s standard predicates for manipulating atomic terms. See also in
Volume 2, Section 1.5 for other library predicates. Section 7 for wildcard matching, and Section 8
for an interfae to the PCRE library.

atom codes(?Atom, ?CharCodeList) ISO
The standard predicate atom codes/2 performs the conversion between an atom and its
character list representation. If Atom is supplied (and is an atom), CharList is unified with a
list of ASCII codes representing the “name” of that atom. In that case, CharList is exactly
the list of ASCII character codes that appear in the printed representation of Atom. If on the
other hand Atom is a variable, then CharList must be a proper list of ASCII character codes.
In that case, Atom is instantiated to an atom containing exactly those characters, even if the
characters look like the printed representation of a number.

Examples:

| ?- atom_codes(’Foo’, L).

L = [70,111,111]

| ?- atom_codes([], L).

L = [91,93]

| ?- atom_codes(X, [102,111,111]).

X = foo

| ?- atom_codes(X, []).

X = ’’

| ?- atom_codes(X, "Foo").

X = ’Foo’

| ?- atom_codes(X, [52,51,49]).

X = ’431’

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 160

| ?- atom_codes(X, [52,51,49]), integer(X).

no

| ?- atom_codes(X, [52,Y,49]).

++Error[XSB/Runtime/P]: [Instantiation] in arg 2 of predicate atom_codes/2

Forward Continuation...

| ?- atom_codes(431, L).

++Error[XSB/Runtime/P]: [Type (431 in place of atom)] in arg 1 of predicate

atom_codes/2

Forward Continuation...

| ?- atom_codes(X, [52,300,49]).

[Representation (300 is not character code)] in arg 2 of predicate

atom_codes/2

Forward Continuation...

Error Cases

• Atom is a variable and CharCodeList is a partial list or a list with an element which is
a variable

– instantiation error

• Atom is neither a variable nor an atom

– type error(atom, Atom)

• Atom is a variable and CharCodeList is neither a list nor a partial list

– type error(list, CharCodeList)

• Atom is a variable and an element E of CharCodeList is neither a variable nor a character
code

– representation error(character code, E)

number codes(?Number, ?CharCodeList) ISO
The standard predicate number codes/2 performs the conversion between a number and its
character list representation. If Number is supplied (and is a number), CharList is unified
with a list of ASCII codes comprising the printed representation of that Number. If on the
other hand Number is a variable, then CharList must be a proper list of ASCII character
codes that corresponds to the correct syntax of a number (either integer or float) In that
case, Number is instantiated to that number, otherwise number codes/2 will simply fail.

Examples:

| ?- number_codes(123, L).

L = [49,50,51];

| ?- number_codes(N, [49,50,51]), integer(N).

N = 123

| ?- number_codes(31.4e+10, L).

L = [51,46,49,51,57,57,57,55,69,43,49,48]

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 161

| ?- number_codes(N, "314e+8").

N = 3.14e+10

| ?- number_codes(foo, L).

++Error[XSB/Runtime/P]: [Type (foo in place of

number)] in arg 1 of predicate

number_codes

Forward Continuation...

Error Cases

• Number is a variable and CharCodeList is a partial list or a list with an element which
is a variable

– instantiation error

• Number is neither a variable nor a number

– type error(number, Number)

• Number is a variable and CharCodeList is neither a list nor a partial list

– type error(list, CharCodeList)

• Number is a variable and an element E of CharCodeList is neither a variable nor a
character code

– representation error(character code, E)

name(?Constant, ?CharList)

The standard predicate name/2 performs the conversion between a constant and its character
list representation. If Constant is supplied (and is any atom or number), CharList is unified
with a list of ASCII codes representing the “name” of the constant. In that case, CharList
is exactly the list of ASCII character codes that appear in the printed representation of
Constant. If on the other hand Constant is a variable, then CharList must be a proper list
of ASCII character codes. In that case, name/2 will convert a list of ASCII characters that
can represent a number to a number rather than to a character string. As a consequence of
this, there are some atoms (for example ’18’) which cannot be constructed by using name/2.
If conversion to an atom is preferred in these cases, the standard predicate atom codes/2

should be used instead. The syntax for numbers that is accepted by name/2 is exactly the
one which read/1 accepts.

Examples:

| ?- name(’Foo’, L).

L = [70,111,111]

| ?- name([], L).

L = [91,93]

| ?- name(431, L).

L = [52,51,49]

| ?- name(X, [102,111,111]).

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 162

X = foo

| ?- name(X, []).

X = ’’

| ?- name(X, "Foo").

X = ’Foo’

| ?- name(X, [52,51,49]).

X = 431

| ?- name(X, [45,48,50,49,51]), integer(X).

X = -213

| ?- name(3.14, L).

++Error[XSB/Runtime/P]: [Miscellaneous] Predicate name/2 for reals is not implemented yet

Aborting...

• Constant is a variable and CharCodeList is a partial list or a list with an element which
is a variable

– instantiation error

• Constant is neither a variable nor atomic

– type error(atomic, Constant)

• Constant is a variable and CharCodeList is neither a list nor a partial list

– type error(list, CharCodeList)

• Constant is a variable and an element E of CharCodeList is neither a variable nor a
character code

– representation error(character code, E)

atom chars(?Number, ?CharList) ISO
Like atom_codes/2, but the list returned (or input) is a list of characters as atoms rather
than ASCII codes. For instance, atom_chars(abc,X) binds X to the list [a,b,c] Instead of
[97,98,99].

Error Cases

• Atom is a variable and CharList is a partial list or a list with an element which is a
variable

– instantiation error

• Atom is neither a variable nor an atom

– type error(atom, Atom)

• Atom is a variable and CharList is neither a list nor a partial list

– type error(list, CharList)

• An element E of CharList is not a single-character atom

– type error(character, E)

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 163

• Atom is a variable and an element E of CharCodeList is not a single-character atom

– representation error(character, E)

number chars(?Number, ?CharList) ISO
Like number_codes/2, but the list returned (or input) is a list of characters as atoms rather
than ASCII codes. For instance, number_chars(123,X) binds X to the list [’1’,’2’,’3’]

instead of [49,50,51].

Error Cases

• Number is a variable and CharList is a partial list or a list with an element which is a
variable

– instantiation error

• Number is neither a variable nor a number

– type error(number, Number)

• Number is a variable and CharList is neither a list nor a partial list

– type error(list, CharList)

• An element E of CharList is not a single-character atom

– type error(character, E)

• CharList is a list of single-character atoms but is not parsable as a number (by XSB)

– syntax error(CharList)

number digits(?Number, ?DigitList)

Like number_codes/2, but the list returned (or input) is a list of digits as numbers rather
than ASCII codes (for floats, the atom ’.’, ’+’ or ’-’, and ’e’ will also be present in the list).
For instance, number_digits(123,X) binds X to the list [1,2,3] instead of [’1’,’2’,’3’],
and number_digits(123.45,X) binds X to [1,.,2,3,4,5,0,0,e,+,0,2].

Error cases are the same as number chars/2.

char code(?Character, ?Code) ISO
The standard predicate char code/2 is true if Code is the current code for Character. In
XSB it is defined as atom codes(Character,[Code]).

atom length(+Atom1,?Length) ISO
This standard predicate succeeds if Length unifies with the length of (the name of) Atom.

Example

|?- atom_length(trilobyte,L).

L = 9

Error Cases

• Atom is a variable

– instantiation error

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 164

• Atom is neither a variable nor an atom

– type error(atom,Atom)

• Length is neither a variable nor an integer

– type error(integer,Length)

concat atom(+AtomList,?Atom) module: string
AtomList must be a list structure containing atoms, integers and/or floats. This predicate
flattens AtomList and concatenates the atoms and integers into a single atom, returned in
Atom. Integers and floats are converted to character strings using number codes/2.

This is a somewhat more general predicate than the ISO atom concat/2 described below,
and can be more efficient if numerous atoms are to be concatenated together.

concat atom(+AtomList,+Sep,?Atom) module: string

AtomList must be a list containing atoms, integers and/or floats, and Sep must be an atom.
This predicate concatenates the atoms and integers into a single atom, separating each by
Sep, return the resulting atom in Atom. Integers and floats are converted to character strings
using number codes/2.

This is a somewhat more general predicate than the ISO atom concat/2 described below,
and can be more efficient if numerous atoms are to be concatenated together.

atom concat(Atom1,Atom2,Atom3) ISO

• Usage: atom concat(?Atom,?Atom,+Atom)

• Usage: atom concat(+Atom,+Atom,-Atom)

Succeeds if Atom12 is the concatenation of Atom1 and Atom2.

Examples

| ?- atom_concat(hello,world,F).

F = hello world

| ?- atom_concat(X,Y,’hello world’).

X =

Y = hello world;

X = h

Y = ello world

The last query will re-succeed for all combinations of atoms that produce hello world.

Error Cases

• Atom1 and Atom3 are both variables

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 165

– instantiation error

• Atom2 and Atom3 are both variables

– instantiation error

• Atom1 is neither a variable nor an atom

– type error(atom,Atom1)

• Atom2 is neither a variable nor an atom

– type error(atom,Atom2)

• Atom3 is neither a variable nor an atom

– type error(atom,Atom3)

sub atom(+Atom,?LeftLength,?CenterLength,?RightLength,?CenterAtom ISO
Succeeds if Atom can be broken into three pieces: A left atom of length LeftLength, a
center atom CenterAtom of length CenterLength and a right atom of length RightLength. If
sufficient arguments are uninstantiated to produce CenterAtom in non-deterministic starting
positions, the predicate will backtrack through all center atoms for which the left atom length
is the smallest , up to those whose left atom length is greatest (see examples below).

Examples

| ?- sub_atom(trilobyte,5,4,RL,CA).

RL = 0

CA = byte

| ?- sub_atom(trilobyte,1,CL,2,CA).

CL = 6

CA = riloby

| ?- sub_atom(trilobyte,LL,6,RL,riloby).

LL = 1

RL = 2

| ?- sub_atom(trilobyte,RL,4,LL,CA).

RL = 0

LL = 5

CA = tril;

RL = 1

LL = 4

CA = rilo;

RL = 2

CL = 3

CA = ilob

| ?- sub_atom(trilobyte,LL,CL,RL,CA).

LL = 0

CL = 0

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 166

RL = 9

CA = ;

LL = 0

CL = 1

RL = 8

CA = t;

LL = 0

CL = 2

RL = 7

CA = tr;

: /* after more backtracking */

LL = 0

CL = 9

RL = 0

CA = trilobyte;

LL = 1

CL = 0

RL = 8

CA = ;

Ll = 1

CL = 1

RL = 7

CA = r;

Error Cases

• Atom is a variable

– instantiation error

• Atom is neither a variable nor an atom

– type error(atom, Atom)

• CenterAtom is neither a variable nor an atom

– type error(atom, CenterAtom)

• LeftLength is neither a variable nor an integer

– type error(integer, LeftLength)

• CenterLength is neither a variable nor an integer

– type error(integer, CenterLength)

• RightLength is neither a variable nor an integer

– type error(integer, RightLength)

• LeftLength is an integer that is less than zero

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 167

– domain error(not less than zero, LeftLength)

• CenterLength is an integer that is less than zero

– domain error(not less than zero, CenterLength)

• RightLength is an integer that is less than zero

– domain error(not less than zero, RightLength)

string substitute(+InpStr, +SubstrList, +SubstitutionList, -OutStr) module: string

InputStr can an atom or a list of characters. SubstrList must be a list of terms of the form
s(BegOffset, EndOffset), where the name of the functor is immaterial. The meaning of the
offsets is the same as for substring/4. (In particular, negative offsets represent offsets from
the first character past the end of String.) Each such term specifies a substring (between
BegOffset and EndOffset; negative EndOffset stands for the end of string) to be replaced.
SubstitutionList must be a list of atoms or character lists.

Offsets start from 0, as in C/Java.

This predicate replaces the substrings specified in SubstrList with the corresponding strings
from SubstitutionList. The result is returned in OutStr. OutStr is a list of characters, if
so is InputStr; otherwise, it is an atom.

If SubstitutionList is shorter than SubstrList then the last string in SubstitutionList

is used for substituting the extra substrings specified in SubstitutionList. As a special
case, this makes it possible to replace all specified substrings with a single string.

As in the case of re substring/4, if OutStr is an atom, it is not interned. The user should
either intern this string or convert it into a list, as explained previously.

The string_substitute/4 predicate always succeeds.

Here are some examples:

| ?- string_substitute(’qaddf’, [s(2,4)], [’123’] ,L).

L = qa123f

| ?- string_substitute(’qaddf’, [s(2,-1)], [’123’] ,L).

L = qa123

| ?- string_substitute("abcdefg", [s(4,-1)], ["123"],L).

L = [97,98,99,100,49,50,51]

| ?- string_substitute(’1234567890123’, [f(1,5),f(5,7),f(9,-2)], ["pppp", lll],X).

X = 1pppplll89lll

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 168

| ?- string_substitute(’1234567890123’, [f(1,5),f(6,7),f(9,-2)], [’---’],X).

X = 1---6---89---

term to atom(+Term,-Atom,+Options) module: string
Converts +Term to an atomic form according to a list of write options, Options, that are
similar to those used by write term/[2,3]. The various options of term to atom/[2,3] are
especially useful for the interface from C to XSB (see Calling XSB from C in Volume 2 of
this manual).

• quoted(+Bool). If Bool = true, then atoms and functors that can’t be read back by
read/1 are quoted, if Bool = false, each atom and functor is written as its unquoted
name. Default value is false.

• ignore ops(+Bool). If Bool = true each compound term is output in functional nota-
tion; list braces are ignored, as are all explicitly defined operators. If Bool = canonical,
bracketed list notation is used. Default value is canonical. The corresponding value of
false, that would enable operator precedence, is not yet implemented.

• numbervars(+Bool). If Bool = true, a term of the form ’$VAR’(N) where N is an
integer, is output as a variable name consisting of a capital letter possibly followed by
an integer. A term of the form ’$VAR’(Atom) where Atom is an atom, is output as
itself (without quotes). Finally, a term of the form ’$VAR’(String) where String is a
character string, is output as the atom corresponding to this character string. If bool
is false this cases are not treated in any special way. Default value is false.

Error Cases

• Options is a variable

– instantiation error

• Options neither a variable nor a list

– type error(list,Options)

• Options contains a variable element, O

– instantiation error

• Options contains an element O that is neither a variable nor a write option.

– domain error(write option,O)

Examples:

| ?- term_to_atom(f(a,1,X,[’3cpio’,d(3),’$VAR’("Foo")]),F,[]).

X = _h131

F = f(a,1,_h0,[3cpio,d(3),$VAR([70,111,111])])

yes

| ?- term_to_atom(f(a,1,X,[’3cpio’,d(3),’$VAR’("Foo")]),F,[numbervars(true)]).

X = _h131

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 169

F = f(a,1,_h0,[3cpio,d(3),Foo])

yes

| ?- term_to_atom(f(a,1,X,[’3cpio’,d(3),’$VAR’("Foo")]),F,[numbervars(true),quoted(true)]).

X = _h131

F = f(a,1,_h0,[’3cpio’,d(3),Foo])

yes

| ?- term_to_atom(f(a,1,X,[’3cpio’,d(3),’$VAR’("Foo")]),F,[numbervars(true),quoted(true),ignore_ops(true)]).

X = _h131

F = f(a,1,_h0,’.’(’3cpio’,’.’(d(3),’.’(Foo,[]))))

yes

term to atom(+Term,-Atom) module: string
This predicate converts an arbitrary Prolog term Term into an atom, putting the result in
Atom. It is defined using the default options for term to atom/3, e.g. ignore ops(canonical),
quoted(false), and numbervars(false).

term to codes(+Term,-CodeList,+OptionList) module: string
This predicate is used in the definition of term to atom/3 but only converts a term into a
list of ASCII codes, and does not intern the list as an atom. Allowed values for OptionList
and error cases are the same as in term to atm/3.

term to codes(+Term,-CodeList) module: string
This predicate converts a term to a list of ASCII codes. It is defined using the default options
for term to atom/3, e.g. ignore ops(canonical), quoted(false), and numbervars(false).

gc atoms

Explicitly invokes the garbage collector for atoms that are created, but no longer needed. By
default, gc atoms/1 is called automatically, unless the Prolog flag atom garbage collection

is set to false, or if more than one thread is active. However there are reasons why a
user may need to invoke atom table garbage collection. First, in Version 3.3, if atom table
garbage collection is invoked automatically, it occurs periodically on heap garbage collection,
or if numerous asserts and retracts have taken place. These heuristics overlook certain cases
where numerous atoms may be created without invoking the garbage collector – e.g. through
repeated uses of format write string/3. In addition if user-defined C code contains pointers
to XSB’s atom table, atom table garbage collection will be unsafe, as Version 3.3 of XSB does
not detect such pointers in external code. In such cases, atom table garbage collection should
be turned off via the Prolog flag atom garbage collection, and reinvoked at a point where
the external pointers are no longer used.

6.10 All Solutions and Aggregate Predicates

Often there are many solutions to a problem and it is necessary somehow to compare these solutions
with one another. The most general way of doing this is to collect all the solutions into a list,

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 170

which may then be processed in any way desired. So XSB provides ISO-standard predicates such
as setof/3, bagof/3, and findall/3 to collect solutions into lists. Sometimes however, one wants
simply to perform some aggregate operation over the set of solutions, for example to find the
maximum or minimum of the set of solutions. XSB uses answer subsumption to produce a powerful
aggregation facility as discussed in Section 5.4

setof(?Template, +Goal, ?Set) ISO
This predicate may be read as “Set is the set of all instances of Template such that Goal is
provable”. If Goal is not provable, setof/3 fails. The term Goal specifies a goal or goals as
in call(Goal). Set is a set of terms represented as a list of those terms, without duplicates,
in the standard order for terms (see Section 6.6). If there are uninstantiated variables in
Goal which do not also appear in Template, then a call to this evaluable predicate may
backtrack, generating alternative values for Set corresponding to different instantiations of
the free variables of Goal. Variables occurring in Goal will not be treated as free if they are
explicitly bound within Goal by an existential quantifier. An existential quantification can
be specified as:

Y ^ G

meaning there exists a Y such that G is true, where Y is some Prolog term (usually, a variable).

Error cases are the same as predicate call/1 (see Section 6.11).

Example: Consider the following predicate:

p(red,high,1).

p(green,low,2).

p(blue,high,3).

p(black,low,4).

p(black,high,5).

The goal ?- setof(Color,Height^Val^p(Color,Height,Val),List) returns a single solu-
tion:

Color = _h73

Height = _h87

Val = _h101

L = [black,blue,green,red]

If Height is removed from the sequence of existential variables, so that the goal becomes:

?- setof(Color,Val^p(Color,Height,Val),List)

the first solution is:

Color = _h73

Val = _h87

Height = high

L = [black,blue,red];

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 171

upon backtracking, a second solution is produced:

Color = _h73

Val = _h87

Height = low

L = [black,green]

bagof(?Template, +Goal, ?Bag) ISO
This predicate has the same semantics as setof/3 except that the third argument returns an
unsorted list that may contain duplicates.

Error Cases are the same as predicate call/1 (see Section 6.11).

Example: For the predicate p/3 in the example for setof/3, the goal
?- bagof(Color,Height^Val^p(Color,Height,Val),L) returns the single solution:

Color = _h73

Height = _h87

Val = _h101

L = [red,green,blue,black,black];

If Height is removed from the sequence of existential variables, so that the goal becomes:
?- bagof(Color,Val^p(Color,Height,Val),List), the first solution is:

Color = _h73

Val = _h87

Height = high

L = [red,blue,black];

upon backtracking, a second solution is produced:

Color = _h73

Val = _h87

Height = low

L = [green,black];

findall(?Template, +Goal, ?List) ISO
Similar to predicate bagof/3, except that variables in Goal that do not occur in Template

are treated as existential, and alternative lists are not returned for different bindings of such
variables. Note that this means that Goal should not contain existential variables. This
makes findall/3 deterministic (non-backtrackable). Unlike setof/3 and bagof/3, if Goal
is unsatisfiable, findall/3 succeeds binding List to the empty list.

Error cases are the same as call/1 (see Section 6.11).

Example: For the predicate p/3 in the example for setof/3, the goal
findall(Color,p(Color,Height,Val),L) returns a single solution:

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 172

Color = _h73

Height = _h107

Val = _h121

F = [red,green,blue,black,black]

findall(?Template, +Goal, ?List,?Tail)

Acts as findall/3, but returns the result as the difference-list Bag-Tail. In fact, the 3-
argument version is defined in terms of the 4-argument version:

findall(Templ, Goal, Bag) :- findall(Templ, Goal, Bag, [])

Error cases are the same as findall/3 (or call/1).

tfindall(?Template, +Goal, ?List) Tabling

Like findall/3, tfindall/3 treats all variables in Goal that do not occur in Template as
existential. However, in tfindall/3, the Goal must be a call to a single tabled predicate.

tfindall/3 allows findall functionality to be used safely with tabling by throwing an error
if it is called recursively. Its use can be seen by considering the following series of programs.

p1(X):- findall(Y,p1(Y),X).

When executing the goal p(X), XSB will throw an error when it reaches the maximum number
of recursive invocations of findall.

Next, consider the program

:- table t/1.

t(X):- findall(Y,t(Y),X).

t(a).

The query t(X) will terminate without error, but will return two answers: X = [] and X =
a. These answers are hard to defend semantically, since there is an implicit domain closure
axiom in findall-like predicates. On the other hand, for the program

:- table t2/1.

t2(X):- tfindall(Y,t2(Y),X).

t2(a).

the query t2(X) will throw a table error, indicating that a call to tfindall/3 is apparently
non-stratified footnoteDetection of non-stratification is based on the approximate detection of
dependencies among subgoals maintained by XSB. This approximation is quite close for local
evaluation, but is less close for batched evaluation.. Other behavior for tabled aggregation is
provided by answer subsumption as discussed in Section 5.4

Other differences between predicates findall/3 and tfindall/3 can be seen from the fol-
lowing example:

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 173

| ?- [user].

[Compiling user]

:- table p/1.

p(a).

p(b).

[user compiled, cpu time used: 0.639 seconds]

[user loaded]

yes

| ?- p(X), findall(Y, p(Y), L).

X = a

Y = _922928

L = [a];

X = b

Y = _922820

L = [a,b];

no

| ?- abolish_all_tables.

yes

| ?- p(X), tfindall(Y, p(Y), L).

X = b

Y = _922820

L = [b,a];

X = a

Y = _922820

L = [b,a];

no

Error cases include those of findall/3 (see above), along with

table error Upon execution Goal is not a subgoal of a tabled predicate.

table error A call to tfindall/3 is apparently non-stratified

X ^ Goal ISO
Within setof/3, bagof/3 and the like, the ^ /2 operator means there exists an X such that
Goal is true.

excess vars(+Term, +ExistVarTerm, +AddVarList, -VarList) module: setof
Returns in VarList the list of (free) variables found in Term concatenated to the end of
AddVarList. (In normal usage AddVarList is passed in as an empty list.) ExistVarTerm

is a term containing variables assumed to be quantified in Term so none of these variables
are returned in the resulting list (unless they are in AddVarList.) Subterms of Term of the
form (VarTerm ^ SubTerm) are treated specially: all variables in VarTerm are assumed to
be quantified in SubTerm, and so no occurrence of these variables in SubTerm is collected into
the resulting list.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 174

Error Cases

type error AddVarList is not a list of variables

memory Not enough memory to collect the variables.

6.11 Meta-Predicates

call(#X) ISO
If X is a non-variable term in the program text, then it is executed exactly as if X appeared
in the program text instead of call(X), e.g.

. . ., p(a), call((q(X), r(Y))), s(X), . . .

is equivalent to

. . ., p(a), q(X), r(Y), s(X), . . .

However, if X is a variable in the program text, then if at runtime X is instantiated to a term
which would be acceptable as the body of a clause, the goal call(X) is executed as if that
term appeared textually in place of the call(X), except that any cut (‘!’) occurring in X will
remove only those choice points in X. If X is not instantiated as described above, an error
message is printed and call/1 fails.

Error Cases

instantiation error X is a variable

type error(callable,X) X is not callable.

#X

(where X is a variable) executes exactly the same as call(X). However, the explicit use of
call/1 is considered better programming practice. The use of a top level variable subgoal
elicits a warning from the compiler.

call(Goal,Arg,...) ISO
call(Goal,Arg) where Goal is an N-ary callable term first constructs a new N+1-ary term
NewGoal with the same functor and first N arguments as Goal and with Arg as its N+1th
argument, and then calls NewGoal. As an example,

call(member(X),[a,b,c])

is equivalent to call(member(X,[a,b,c]). Goal must be a callable term, but can be prepended
by a module name using the :/2 symbol. call(Goal,Arg1,Arg2,...) will act similarly.
Note that Goal should usually be atomic – if the outer functor of Goal is, say, ,/2, call/[2-10]
will try to add the extra argument(s) to the comma functor, which is generally not the in-
tended behavior.

While meta calls are generally fast in XSB, the extra term manipulation of call/[2-10]

makes it somewhat slower than call/1.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 175

call tv(#Goal,-TV) Tabling
Calls Goal just as with call/1, and if Goal does not fail, instantiates TV with either true or
undefined, depending on the value of Goal in the well-founded semantics. Goal need not be
tabled itself.

Error cases are the same as call/1.

timed call(#Goal,+Interval,#Handler,+Option)

timed call(#Goal,+Interval,#Handler)

This predicate calls Goal and, if Goal is still being evaluated after Interval milliseconds,
Goal will be interrupted and Handler executed. In the case where Handler succeeds or
fails, the execution of Goal will be continued; if Handler throws an uncaught exception the
execution of Goal may be aborted. In this way timed call/3 can be used enforce a time-out
on Goal.

Interval can be either a positive integer or the term repeating(Int) where Int is a non-
negative integer. In this latter case, Goal is interrupted every Int milliseconds until it termi-
nates (whether by normal termination or by Handler throwing an exception). In the case of
repeated interrupts, the time taken to execute Handler is not counted as part of Interval
milliseconds.

Nested calls to timed call/3 are not allowed unless Option is set to nested.

• If Option is not equal to nested, or if timed call/3 is used, then a nested call to
timed call/4 will throw a permission error.

• If Option is equal to nested then the nested timed call is simply treated as a call to
Goal: in other words the interval and handler for the nested call is ignored.

As an implementation note, timed call/[3,4] is based on XSB’s internal interrupt mech-
anism, used for attributed variable handlers and thread signalling. As such, the ability to
execute complex actions upon interrupt and to resume is very robust. However, checks for
interrupts are only made whenever XSB’s SLG-WAM engine is executing. Because of this,
if XSB is suspended on I/O, calling a C or java function, in a C-implemented builtin, or
otherwise outside of its virtual machine, the interrupt will not be executed until computation
is back within XSB’s virtual machine.

timed call/3 is not yet implemented for the multi-threaded engine but its functionality is
easily duplicated using thread signalling (Section‘7.5).

Examples Consider the simple (and non-tabled) program fragment

loop :- loop.

which goes into an infinite loop on the query ?- loop. However, the query

timed_call(loop,repeating(500),abort).

will interrupt loop and abort its computation after 500 milliseconds. Alternately, the query

timed_call(loop,500,statistics).

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 176

will interrupt the computation after 500 seconds, print out statistics, and resume the compu-
tation where it left off.

timed_call(loop,repeating(500),statistics).

will interrupt the computation every 500 milliconds tp print statistics. More sophisticated in-
terrupt handlers could introspect a computation (e.g., using statistics/2 or table dump/[1,3])
and possibly modify parameters of the computation when possible (e.g., by changing one form
of tabling to another, when permitted).

Error Cases Error cases are the same as in call/1 for the first and third arguments of
timed call/3, along with these other errors.

Interval is not an integer

• type error(integer,Interval)

Interval is not a positive integer

• domain error(positive integer,Interval)

A call C to timed call/3 is made within the scope of some other call to timed call/3

• permission error(nested call,predicate,Goal)

timed call/3 is called from the multi-threaded engine

• misc error

bounded call(#Goal,+MaxMemory,+MaxCPU,#Handler) module: standard
bounded call(#Goal,+MaxMemory,+MaxCPU) module: standard

These predicates call Goal and check once per second whether the total CPU time to execute
Goal is greater than MaxCPU seconds, and whether the total memory taken by XSB is greater
than MaxMemory bytes. Under bounded call/4 if either of these conditions arise, Handler is
called; under bounded call/3 a resource exception is thrown for memory or CPU time.

These predicates are implemented directly using timed call/3 and inherit the advantages
and limitations of that predicate. As an advantage, the ability to execute complex actions
upon interrupt and to resume is very robust. However, checks for interrupts are only made
whenever XSB’s SLG-WAM engine is executing. Because of this, if XSB is suspended on I/O,
calling a C or java function, in a C-implemented builtin, or otherwise outside of its virtual
machine, the interrupt will not be executed until computation is back within XSB’s virtual
machine.

Handler cannot cause timed call/3 to be executed as a subgoal; but otherwise Handler has
no restrictions.

bounded call/[3,4] is not yet implemented for the multi-threaded engine but its function-
ality is easily duplicated using thread signalling (Section‘7.5).

Error Cases Error cases are the same as in call/1 for the first argument of bounded call/3,
and are the same as that of timed call for Handler.

MaxCPU or MaxMemory is not an integer

• type error(integer)

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 177

MaxCPU or MaxMemory is not a positive integer

• domain error(positive integer)

once(#X) ISO
once/1 is defined as once(X):- call(X),!. once/1 should be used with care in tabled
programs. The compiler can not determine whether a tabled predicate is called in the scope
of once/1, and such a call may lead to runtime errors. If a tabled predicate may occur in the
scope of once/1, use table once/1 instead.

Error cases are the same as call/1.

forall(Generate,Test)

forall(Generate, Test) is true iff for all possible bindings of Generate, the goal Test is
true. Procedurally, abstracting error checking, the predicate shall behave as being defined by
\+ (call(Generator), \+ call(Test)).

Error cases are the same as call/1.

table once(#X) Tabling
table once/1 is a weaker form of once/1, suitable for situations in which a single solution is
desired for a subcomputation that may involve a call to a tabled predicate. table once(?Pred)

succeeds only once even if there are many solutions to the subgoal Pred. However, it does
not “cut over” the subcomputation started by the subgoal Pred, thereby ensuring the correct
evaluation of tabled subgoals.

call cleanup(#Goal,#Handler) ISO
call cleanup(Goal, Cleanup) calls Goal just as if it were called via call/1, but it is ensures
that Handler will be called after Goal finishes execution. call cleanup/2 is thus useful when
Goal uses a resource, (such as a stream, mutex, database cursor, etc.) that should be released
when Goal finishes execution.

More precisely, Goal finishes execution either 1) by failure, 2) by determining that the success
of Goal is deterministic, 3) when an error is thrown and not handled by Goal or one of its
subgoals; or 4) when Goal is cut over. In all of these cases, Handler will be called and will
succeed non-deterministically. We illustrate these cases through examples.

• Failure of Goal:

?- call_cleanup(fail,writeln(failed(Goal))).

In this case, Goal has no solutions, and the handler is invoked when the engine backtracks
out of Goal.

• Deterministic success of Goal. Assume that p(1) and p(2) have been asserted. Then

?- call_cleanup((p(X),writeln(got(p(X)))),writeln(handled(p(X)))).

got(p(1))

X = 1;

got(p(2))

handled(p(2))

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 178

X = 2;

no

Note that Handler is called only after the last solution of the goal p(X) has been ob-
tained. XSB decides to call Handler only when it can be determined that the success
of Goal has left no choice points. In such a case, the final solution has been obtained
for Goal. Of course, it may be that a solution S to Goal leaves a choice point but the
choice point will produce no further solutions for Goal. XSB will not call Handler in
this case, rather it will wait until there are no choice points left for Goal.

• An uncaught error E is thrown out of Goal. In this case, Handler will be called, and
then, if E is uncaught, E will be rethrown. This is illustrated in the following example
(Error handling is discussed further in Section 12.2.2):

?- catch(call_cleanup(throw(my_error),writeln(invoking_handler)),Ball,write(Ball)).

invoking_handler

my_error

yes

Of course, Handler itself can be wrapped in a catch/3 so that any errors will be caught
by call cleanup/2.

• Choice points for Goal are removed via a cut. Consider an example in which p/1 has
the same extension as above (p(1),p(2):

call_cleanup(p(X),writeln(handled_1)),!.

handled_1

X = 1

yes

The handler is invoked immediately when the choice point laid down by p(X) is cut over
– before returning to the command line. If a cut cuts over more than goal to be cleaned,
more than one handler will be executed:

?-call_cleanup(p(X),writeln(handled_4_1)),

call_cleanup(p(Y),writeln(handled_4_2)),

call_cleanup(p(Z),writeln(handled_4_3)),

!.

handled_4_3

handled_4_2

handled_4_1

X = 1

Y = 1

Z = 1

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 179

call cleanup/2 is thus an extremely powerful and flexible mechanism when used in a simple
manner. While Handler is “guaranteed” to be invoked whenever Goal finishes execution 9, it
may be difficult to predict when Handler will be invoked, as Handler may be invoked because
of deeply non-local cuts over Goal, and even when such cuts are not present, the invocation
depends on XSB determining when the last solution for Goal has been obtained. Baroque
usages, such as invoking call cleanup/2 and cuts in the handler are supported, but may
lead to code that is difficult to debug, since handlers may be invoked based on the state of
XSB’s choice point stack.

Error Cases

Goal is a variable

• instantiation error

Goal is neither a variable nor a callable term

• type error(callable, Goal)

Handler is a variable

• instantiation error

Handler is neither a variable nor a callable term

• type error(callable, Handler)

6.12 Information about the System State

Various aspects of the state of an instance of XSB — information about what predicates, modules, or
dynamic clauses have been loaded, their object files, along with other information can be inspected
in ways similar to many Prolog systems. However, because the atom-based module system of
XSB may associate structures with particular modules, predicates are provided to inspect these
elements as well. The following descriptions of state predicates use the terms predicate indicator,
term indicator and current module to mean the following:

• By predicate indicator we mean a compound term of the form M:F/A or simply F/A. When
the predicate indicator is fully instantiated, M and F are atoms representing the module name
and the functor of the predicate respectively and A is a non negative integer representing its
arity.

Example: usermod:append/3

• By term indicator we mean a predicate or function symbol of arity N followed by a sequence
of N variables (enclosed in parentheses if N is greater than zero). A term indicator may
optionally be prefixed by the module name, thus it can be of the form M:Term.

Example: usermod:append(, ,)

9In fact we don’t guarantee anything, see XSB’s license.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 180

• A module M becomes a current (i.e. “known”) module as soon as it is loaded in the system or
when another module that is loaded in the system imports some predicates from module M.

Note that due to the dynamic loading of XSB, a module can be current even if it has not
been loaded, and that some predicates of that module may not be defined. In fact, a module
can be current even if it does not exist. This situation occurs when a predicate is improperly
imported from a non-existent module. Despite this, a module can never lose the property of
being current.

current input(?Stream) ISO
Succeeds iff stream Stream is the current input stream, or procedurally unifies Stream with
the current input stream.

Error Cases

• Stream is neither a variable nor a stream identifier

– domain error(stream or variable,Stream))

current output(?Stream) ISO
current output/1 Succeeds iff stream Stream is the current output stream, or procedurally
unifies Stream with the current output stream.

Error Cases

• Stream is neither a variable nor a stream identifier

– domain error(stream or variable,Stream))

ISO Compatability Note: In XSB current input/1 does not throw an error if Stream is
not a current input stream, but quietly fails instead.

current prolog flag(?Flag Name, ?Value) ISO
current prolog flag/2 allows the user to examine both dynamic aspects of XSB along
with certain non-changeable ISO flags and non-changeable Prolog-commons flags. Calls to
current prolog flag/2 will unify against ISO, Prolog-commons, and XSB-specific flags.

ISO and Prolog-commons flags are as follows:

• bounded Indicates whether integers in XSB are bounded. This flag always has the value
true

• min integer, max integer The minimum integer available in the current XSB config-
uration (differs between 32- and 64-bits).

• max arity Indicates the maximum arity of terms in XSB. This flag always has the value
255

• integer rounding function This flag always has the value toward zero

• debug Indicates whether trace or debugging is turned on or off

• unknown Indicates the behavior taken when calling an unknown predicate. Values can
be set to fail, warning, or error, indincating that calls to unknown predicates fail,
produce a warning message to user warning or throw an existence error. The default
setting is error.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 181

• double quotes Indicates that double-quoted terms in XSB represent lists of character
codes. Value is codes

• dialect indicates the implementation of Prolog that is running. Using this flag, appli-
cations intended to run on more than one Prolog can take actions that conditional on
the executing Prolog. The value is xsb.

• version data indicates the version of XSB that is running. Using this flag, applications
intended to run on more than one Prolog can take actions that conditional on the
executing Prolog. The value is xsb.

ISO Compatability Note: The ISO flags char conversion is not available – XSB does
not use character conversion. XSB reads double quoted strings as lists of character codes, so
that the value of the flag double quotes is always codes, and this flag is not settable.

Non-standard flag names may be specific to XSB or may be common to XSB and certain
other Prolog. These flag names are:

• backtrace on error on iff system-handled errors automatically print out the trace of
the execution stack where the error arose, off otherwise. Default is on. In the multi-
threaded engine, this flag is thread-specific and controls whether the backtrace for a
current execution will be printed to STDERR.

• dcg style the DCG style currently used; xsb or standard (standard is used in Quintus,
SICSTUS, etc.). See Section 11.4 for more details. Default is xsb. This flag affects all
threads in the process.

• heap garbage collection indirection, none, sliding, or copying depending on the
heap garbage collection strategy that is currently being employed (see also Section 3.7).
Default is indirection. This flag is private to each thread.

• heap margin Specifies the size in bytes of the margin used to determine whether to
perform heap garbage collection or reallocation of the environment stack. The default is
8192 (8K) bytes for 32-bit platforms 16384 (16K) for 64-bit platforms. Setting this field
to a large value (e.g. in the megabyte range) can cause XSB to be more aggressive in
terms of expanding heap and local stack and to do fewer heap garbage collections than
with the default value. However heap margin should not be set lower than its default,
as this may prevent XSB from properly creating large terms on the heap.

• clause garbage collection on if garbage collection for retracted clauses is allowed,
and off otherwise. Default is on. This flag is private to each thread.

• atom garbage collection on if garbage collection for atomic constants is allowed, and
off otherwise. Default is on. This flag is global for all threads (currently, string garbage
collection will only be invoked if there is a single active thread.)

• table gc action abolish tables transitively if predicates or subgoals that depend
on a conditional answer of an abolished table are to be abolished automatically, and
abolish tables singly if not. Default is abolish tables transitively. This flag
affects all threads in the process.

• goal the goal passed to XSB on command line with the ‘-e’ switch; ‘true.’ if nothing
is passed. This flag may be examined, but not set.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 182

• tracing on iff trace mode is on; off otherwise. This flag affects all threads in the
process.

• write depth The depth to which a term is written by write-like predicates. Default is
64. This flag affects all threads in the process.

• warning action The action to take on warnings: the default value print warning prints
a warning message to the XSB STDWARN stream when warning/1 is called; silent warning

silently succeeds when warning/1 is called; and error warning/1 throws a miscellaneous
exception.

• write attributes Determines the action to take by write/1 when it writes an at-
tributed variable. By default write/1 portrays attributed variables using module-specific
routines (cf. Volume 2 of this manual) as V ariable{Module : PA Output} where
PA Output is the output of the portray attrubutes/2 clause for Module. However
the value ignore causes an attributed variable to be written simply as a variable; and
dots causes V ariable{< modulename >: ...} to be written. Finally, the value write

causes a variables attribute to be written as a term 10. The default behavior is set to
the value portray.

• max table subgoal action The action to take when a tabled subgoal of maximum depth
is encountered. To understand the use of this flag, consider that if a predicate such as

p(X):- p(f(X)).

is tabled, it can (semantically) create subgoals of infinite depth. When the maximum
subgoal depth is reached, XSB can either throw a miscellaneous error (the default action);
or XSB can fail – an action that may be valid for certain programs. The action is set to
fail by the value failure while the action of throwing an error can be (re-)set using the
value error.

• max table subgoal depth The maximum depth of a subgoal argument that can be
added to a table: when the depth is reached, an action is taken as indicated for the
previous flag. The default value is maximum integer.

• max table answer action The action to take when a tabled answer of maximum depth
is encountered. To understand the use of this flag, consider the program fragment:

:- table p/1.

p(f(X)):- p(X). p(a).

is tabled, the model for the goal ?- p(X) is infinite, so that this program will not
terminate. When the maximum answer depth is reached, XSB can either throw a mis-
cellaneous error (the default action); emit a warning; or XSB can fail – an action that
may be valid for certain programs 11. The action is set to fail by the value failure while
the action of throwing an error can be (re-)set using the value error, and the action of
warning is set by the value warning.

Note that this flag affects only structures that are not lists (since large lists are more
common than other large structures).

10When writing an attribute, any attributed variables in the attribute itself are written just as variables with their
attributes ignored.

11Failure in this case can be seen as an implicit form of answer abstraction.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 183

• max table answer depth The maximum depth of an answer argument that can be added
to a table: when the depth is reached, an action is taken as indicated for the previous
flag. The default value is maximum integer.

Note that this flag affects only structures that are not lists (since large lists are more
common than other large structures).

• max table answer list action The action to take when a tabled answer of maximum
list depth is encountered. To understand the use of this flag, consider the program
fragment:

:- table l/1.

l([a|X]):- l(X). l([a]).

is tabled, the model for the goal ?- l(X) is infinite, so that this program will not
terminate. When the maximum answer list depth is reached, XSB can either throw a
miscellaneous error (the default action); emit a warning; or XSB can fail – an action
that may be valid for certain programs 12. The action is set to fail by the value failure
while the action of throwing an error can be (re-)set using the value error, and the
action of warning is set by the value warning.

• max table answer list depth The maximum list depth of an answer argument that
can be added to a table: when the depth is reached, an action is taken as indicated for
the previous flag. The default value is maximum integer.

Note that this flag affects only structures that are lists (since large lists are more common
than other large structures).

• max memory The maximum amount of memory in kilobytes that an XSB thread (in the
single-threaded engine) or all XSB threads (in the multi threaded engine) can use for
their combined execution stacks, program space, tables, or any other purpose. If a query
exceeds this amount, XSB will abort the query with a resource exception and then try
to reclaim space used by the query. As with other flags, this flag can be set during an
XSB session. The value of 0 effectively disables the flag, allowing XSB to allocate as
much memory as the underlying OS will grant. The default value is 0, so that the flag
is disabled.

• unify with occurs check If set to on, perform all unification using an occurs check,
which makes unification mathematically correct, but computationally complex. Without
the occurs check, the unification

X = f(X)

will produce a cyclic term X = f(f(f(f(...)))); with the occurs check this unification
will fail. Setting the flag to on may slow down programs, perhaps drastically, and may
be incompatable with some constraint libraries such as CHR. An alternate to this flag is
the ISO predicate unify with occurs check/2: see Section 6.8 for further discussion.
The default for this flag is off.

The following flags affect only the multi-threaded engine.

12Failure in this case can be seen as an implicit form of answer abstraction.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 184

• thread glsize In the multi-threaded engine, the initial size, in kbytes, of the global
and local stack area of a newly created thread if no such option is explicitly passed.
By default this is 768 (or 1536 for 64-bit configurations), or whatever was passed in if
the command-line option -m was used, but that value may be modified at any time by
resetting the flag. This flag affects a thread created by any thread in the process.

• thread tcpsize In the multi-threaded engine, the initial size, in kbytes, of the trail
and choice point area of a newly created thread if no such option is explicitly passed.
By default this is 768 (or 1536 for 64-bit configurations), or whatever was passed in if
the command-line option -c was used, but that value may be modified at any time by
resetting the flag. This flag affects a thread created by any thread in the process.

• thread complsize In the multi-threaded engine, the initial size, in kbytes, of the com-
pletion stack area of a newly created thread if no such option is explicitly passed. By
default this is 64 (or 128 for 64-bit configurations), or whatever was passed in if the
command-line option -0 was used, but that value may be modified at any time by
resetting the flag. This flag affects a thread created by any thread in the process.

• thread pdlsize In the multi-threaded engine, the initial size, in kbytes, of the unifica-
tion stack area of a newly created thread if no such option is explicitly passed. By default
this is 64 (or 128 for 64-bit configurations), or whatever was passed in if the command-
line option -m was used, but that value may be modified at any time by resetting the
flag. This flag affects a thread created by any thread in the process.

• thread detached In the multi-threaded engine, this specifies whether threads are to be
created as detached or joinable if no explicit option is passed. A value of true indicates
that threads are to be created as detached, and false as joinable. If this flag is not set,
its default is false.

• max threads In the multi-threaded engine, the maximum number of valid threads. By
default this is 1024 and this value may not be reset at runtime, but it may be set by the
command-line option --max threads. This option is settable only by a command-line
argument, and has no effect in the single-threaded engine.

• max queue size In the multi-threaded engine, the default maximum number of terms
a message queue contains before writes to the message queue block. By default this is
1000. If set to 0, queues by default will be unbounded. This option has no effect in the
single-threaded engine.

• shared predicates In the multi-threaded engine, indicates whether predicates are con-
sidered thread-shared by default – that is, whether tables or dynamic predicates are
shared among threads. By default this is false, and predicates are considered thread-
private by default. This option is settable only by a command-line argument, and has
no effect in the single-threaded engine.

Note that the non-standard flags are used only for dynamic XSB settings, i.e., settings that
might change between sessions (via command line arguments) or within the same session (via
modifiable flags). For static configuration information, the predicate xsb configuration/2

is used. xsb configuration/2.

Error Cases

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 185

• Flag Name is neither a variable nor an atom.

– domain error(atom or variable,Flag Name)

set prolog flag(?Flag Name, ?Value) ISO
set prolog flag/2 allows the user to change settable prolog flags. Currently the only settable
ISO flag is the unknown flag. Setting the flag unknown to fail results in calls to undefined
predicates to quietly fail. Setting it to warning causes calls to undefined predicates to generate
a warning (to STDWARN) and then fail. Setting it to error (the default) causes calls to
undefined predicates to throw an existence error.

Dynamic XSB settings can also be changed, as described in current prolog flag/2.

Error Cases

• Flag Name or Value is a variable.

– instantiation error

• Flag Name is not the name of a recognized Prolog flag.

– domain error(prolog flag,Flag Name)

current predicate(?Predicate Indicator) ISO
current predicate/1 can be used to backtrack through indicators for loaded user or system
predicates. If Predicate Indicator unifies with Module:F/A all loaded predicates unifying
with this indicator is returned. If Predicate indicator is F/A, current predicate/1 be-
haves as if it were called with the form usermod:F/A. Unlike current functor/1 current predicate/1

does not return indicators for predicates that have been imported but not actually loaded into
code space. For more detailed analysis of predicate properties, the predicate predicate property/2

can be used.

As an example to backtrack through all of the predicates defined and loaded in module blah,
regardless of whether blah is a system or a user defined module, use:

| ?- current predicate(blah:Predicate).

In this case Predicate will have the form: Functor/Arity.

To backtrack through all predicates defined and loaded in any current module, use:

| ?- current predicate(Module:Functor/Arity).

This succeeds once for every predicate that is loaded in XSB’s database.

To find the predicates having arity 3 that are loaded in usermod, use:

| ?- current predicate(usermod:Functor/3).

while to find all predicates loaded in the global modules of the system regardless of their arity,
use:

| ?- current predicate(usermod:Predicate).
Error Cases

• Predicate indicator is neither a variable nor a predicate indicator

– type error(predicate indicator,Predicate indicator))

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 186

ISO Compatability Note: In XSB, current predicate will backtrack through system
predicates as well as user predicates.

current module(?Module)

The standard predicate current module/1 allows the user to check whether a given module
is current or to generate (through backtracking) all currently known modules. Succeeds iff
Module is one of the modules in the database. This includes both user modules and system
modules. For more detailed analysis of module properties, the predicate module property/2

can be used.

Note that predicate current module/1 succeeds for a given module even if that module does
not export any predicates. There are no error conditions associated with this predicate; if its
argument does not unify with one of the current modules, current module/1 simply fails.

current module(?Module, ?ObjectFile)

Predicate current module/2 gives the relationship between the modules and their associated
object file names. The file name ObjectFile must be absolute and end with the object file
extension for the system (by default, .xwam). It is possible for a current module to have no
associated file name (as is the case for "usermod"), or for the system to be unable to determine
the file name of a current module. In both cases, predicate current module/1 will succeed
for this module, while current module/2 will fail. The system is unable to determine the
file name of a given module if that module is not in one of the directories of the search path
(see Section 3.6). Once again, there are no error conditions associated with this predicate; if
the arguments of current module/2 are not correct, or Module has no associated File, the
predicate will simply fail.

current functor(?Predicate Indicator)

current predicate/1 can be used to backtrack through indicators for all non-atomic terms
occurring in loaded modules. If Predicate Indicator unifies with Module:F/A all term indi-
cators unifying with F/A in a module unifying with Module are returned. If Predicate indicator

is F/A, current predicate/1 behaves as if it were called with the form usermod:F/A. Unlike
current predicate/1 current functor/1 returns not only structures occurring in pred-
icates but predicates that are imported into loaded modules but are not yet themselves
loaded.

As an example, to backtrack through all of the functors of positive arity (function and predi-
cate symbols) that appear in the global modules of the system regardless of whether they are
system or a user defined, use:

| ?- current functor(Functor/Arity), Arity > 0.

There are no error conditions associated with this predicate; if its argument is not a predicate
indicator the predicate simply fails.

current index(Functor/Arity,IndexSpec)

XSB has a variety of ways to index dynamic predicate including alternate argument index-
ing, multiple argument indexing, star-indexing, and tries, as discussed in Section 6.14. In
addition XSB allows a choice of which argument to index for compiled predicates as well.
current index/2 returns the index specification for each functor/arity pair unifying with
Functor/Arity and visible from the calling context of current index/2.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 187

current atom(?Atom Indicator)

Generates (through backtracking) all currently known atoms, and unifies each in turn with
Atom Indicator.

predicate property(?Term Indicator, ?Property)

The standard predicate predicate property/2 can be used to find the properties of any
predicate that is visible to a particular module. Succeeds iff Term Indicator is a term
indicator for a current predicate whose principal functor is a predicate having Property as
one of its properties. Or procedurally, Property is unified with the currently known properties
of the predicate having Term Indicator as its skeletal specification.

A brief description of predicate property/2 is as follows:

• If Term Indicator is not a variable, and is a structure or atom, then Property is
successively unified with the various properties associated with Term Indicator. If
Term Indicator is not a known to the system, the call succeeds with Property succes-
sively unified to exported and unclassified. These properties can be considered as a
default for any structure or atom.

• If Property is bound to a valid predicate property, then predicate property/2 succes-
sively unifies Term Indicator with the skeletal specifications of all predicates known to
the system having the specified Property.

• If Term Indicator is a variable, then it is unified (successively through backtracking)
with the most general term for a predicate whose known properties are unified with
Property.

• If Term Indicator is not a term indicator, or if Property is not a valid predicate prop-
erty, the call fails.

For example, all the loaded predicate skeletal specifications in module "usermod" may be
enumerated using:

| ?- predicate property(Pred, loaded).

Also the following query finds all predicate skeletal specifications that are exported by module
blah:

| ?- predicate property(blah:Pred, exported).

Currently, the following properties are associated with predicates either implicitly or by decla-
ration. Double lines show property categories, and a predicate can have at most one property
of each category.

• Execition Type which is one of

– unclassified The predicate symbol is not yet classified according to this category.
This property has various meanings. Usually for exported predicate symbols in
system or user defined modules it means that the predicate is yet unloaded (because
it has not been used). In usermod it usually means that the predicate is either a
function symbol, or an unloaded predicate symbol (including constants).

– dynamic The predicate is dynamic.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 188

– loaded The predicate (including internal predicates) is a Prolog predicate loaded
into the module in question; this is always the case for predicates in usermod.

– unloaded The predicate is yet unloaded into the module in question.

– foreign The predicate is a foreign predicate. This implies that the predicate is
already loaded in the system, because currently there is no way for XSB to know
that a predicate is a foreign predicate until it is loaded in the system.

• Visibility Type which can be one of

– exported The predicate symbol is exported by the module in question; in other
words the predicate symbol is visible to any other module in the system.

– local The predicate symbol is local to the module in question.

– imported from(Mod) The predicate symbol is imported into the module in question
from module Mod.

• Tabling Call Behavior which can be one of

– tabled(variant) The predicate has been declared tabled and to use call variance.

– tabled(subsumptive) The predicate has been declared tabled and to use call sub-
sumption

– tabled(default) The predicate has been declared tabled and to use the default
tabling strategy of the session, which can be either call variance or call subsumption.

• Incremental Tabling Behavior which can be one of

– incremental The predicate was declared as either incremental dynamic or as incre-
mental tabled; or

– opaque The predicate was declared as opaque to incremental updates.

• spied The predicate symbol has been declared spied (either conditionally or uncondi-
tionally).

• shared The predicate has been declared shared in the multi-threaded engine. This
means that any dynamic code or tables for this predicate will be shared among threads,
but it does not affect static, non-tabled code.

• built in The predicate symbol has the same Functor and Arity as one of XSB’s stan-
dard predicates, and is available tothe user without needing to load a file or import th
epredicate from a module.

• meta predicate(Template) The predicate is a meta-predicate. This property provides
compatibility with other Prolog compilers and with forthcoming ISO Prolog standards.

Finally, since dynamic is usually declared as an operator with precedence greater than 999,
writing the following:

| ?- predicate property(X, dynamic).

will cause a syntax error. The way to achieve the desired result is to parenthesize the operator
like in:

| ?- predicate property(X, (dynamic)).

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 189

module property(?Module, ?Property)

The standard predicate module property/2 can be used to find the properties of any current
module. Succeeds iff Module is the name of a current module having Property as one of its
properties. Or procedurally, Property is unified with the currently known properties of the
module having Module as its name.

Currently, the following properties are associated with modules implicitly

Property Explanation

unloaded The module (including system modules) though it is
current, is yet unloaded in the system.

loaded The module (including system modules) is loaded in the
system; this is always the case for usermod.

listing

Lists in the current output stream the clauses for all dynamic predicates found in module
usermod. Note that listing/0 does not list any compiled predicates unless they have the
dynamic property (see predicate property/2). A predicate gets the dynamic property when
it is explicitly declared as dynamic, or automatically acquires it when some clauses for that
predicate are asserted in the database. In cases where a predicate was compiled but converted
to dynamic by asserting additional clauses for that predicate, listing/0 will just display an
indication that there exist compiled clauses for that predicate and only the dynamically
created clauses of the predicate will be listed. For example:

| ?- [user].

[Compiling user]

a(X) :- b(X).

a(1).

[user compiled, cpu time used: 0.3 seconds]

[user loaded]

yes

| ?- assert(a(3)).

yes

| ?- listing.

a(A) :-

$compiled.

a(3).

yes

Predicate listing/0 always succeeds. The query:

| ?- listing.

is just a notational shorthand for the query:

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 190

| ?- listing(X).

listing(+Predicate Indicator)

If Predicate Indicator is a variable then listing/1 is equivalent to listing/0. If Predicate Indicator

is an atom, then listing/1 lists the dynamic clauses for all predicates of that name found
in module usermod of the database. The argument Predicate Indicator can also be a
predicate indicator of the form Name/Arity in which case only the clauses for the specified
predicate are listed. Finally, it is possible for Predicate Indicator to be a list of predicate
indicators and/or atoms; e.g.

| ?- listing([foo/2, bar, blah/4]).

If Predicate Indicator is not a variable, an atom or a predicate indicator (or list of predicate
indicators) of the form Name/Arity, predicate listing/1 will simply fail.

In future releases of XSB, we intend to allow the user to specify a predicate indicator of the
form Module:Name/Arity as argument of listing/1.

xsb configuration(Feature Name, ?Value)

Succeeds iff the current value of the XSB feature Feature Name is Value.

This predicate provides information on a wide variety of features related to how XSB was
built, including the compiler used, the compiler and loader flags, the machine and OS on
which XSB was built, the release number, the various directories that XSB uses to find its
libraries, etc.

To find all features and their values, ask the following query:

| ?- xsb configuration(FeatureName, Value), fail.

Here is how xsb configuration might look like:

xsb_configuration(architecture, ’i386-apple-darwin8.9.1’).

%% configuration is usualy the same as architecture, but it can also

%% contain special tags, {\it e.g.}, i386-apple-darwin8.9.1-dbg, for a verion

%% built with debugging enabled.

xsb_configuration(configuration, ’i386-apple-darwin8.9.1-dbg’).

xsb_configuration(host_os, ’darwin8.9.1’).

xsb_configuration(os_version, ’8.9.1’).

xsb_configuration(os_type, ’darwin’).

xsb_configuration(host_vendor, ’apple’).

xsb_configuration(host_cpu, ’i386’).

xsb_configuration(compiler, ’gcc’).

xsb_configuration(compiler_flags, ’-faltivec -fPOC -Wall -pipe -g’).

xsb_configuration(loader_flags, ’-g -lm ’).

xsb_configuration(compile_mode, ’debug’).

%% The type of XSB engine configured.

xsb_configuration(scheduling_strategy, ’(local)’).

xsb_configuration(engine_mode, ’slg-wam’).

xsb_configuration(word_size, ’32’).

%% The following is XSB release information

xsb_configuration(major_version, ’3’).

xsb_configuration(minor_version, ’3’).

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 191

xsb_configuration(patch_version, ’1’).

xsb_configuration(beta_version, ’’).

xsb_configuration(version, ’3.3.1’).

xsb_configuration(codename, ’Pignoletto’).

xsb_configuration(release_date, date(2011, 04, 12)).

%% Support for other languages

xsb_configuration(perl_support, ’yes’).v

xsb_configuration(perl_archlib, ’/usr/lib/perl5/i386-linux/5.00404’).

xsb_configuration(perl_cc_compiler, ’cc’).

xsb_configuration(perl_ccflags, ’-Dbool=char -DHAS_BOOL -I/usr/local/include’).

xsb_configuration(perl_libs, ’-lnsl -lndbm -lgdbm -ldb -ldl -lm -lc -lposix -lcrypt’).

xsb_configuration(javac, ’/usr/bin/javac’).

/* Tells where XSB is currently residing; can be moved */

xsb_configuration(install_dir, InstallDir) :- ...

/* User home directory. Usually HOME. If that is null, then it would

be the directory where XSB is currently residing.

This is where we expect to find the .xsb directory */

xsb_configuration(user_home, Home) :- ...

/* Where XSB invocation script is residing */

xsb_configuration(scriptdir, ScriptDir) :- ...

/* where are cmplib, syslib, lib, packages, etc live */

xsb_configuration(cmplibdir, CmplibDir) :- ...

xsb_configuration(libdir, LibDir) :- ...

xsb_configuration(syslibdir, SyslibDir) :- ...

xsb_configuration(packagesdir, PackDir) :- ...

xsb_configuration(etcdir, EtcDir) :- ...

/* architecture and configuration specific directories */

xsb_configuration(config_dir, ConfigDir) :- ...

xsb_configuration(config_libdir, ConfigLibdir) :- ...

/* site-specific directories */

xsb_configuration(site_dir, ’/usr/local/XSB/site’).

xsb_configuration(site_libdir, SiteLibdir) :- ...

/* site and configuration-specific directories */

xsb_configuration(site_config_dir, SiteConfigDir) :- ...

xsb_configuration(site_config_libdir, SiteConfigLibdir) :- ...

/* Where user’s arch-specific libraries are found by default. */

xsb_configuration(user_config_libdir, UserConfigLibdir) :- ...

hilog symbol(?Symbol)

Succeeds iff Symbol has been declared as a HiLog symbol, or procedurally unifies Symbol

with one of the currently known (because of a prior declaration) HiLog symbols. The HiLog
symbols are always atoms, but if the argument of hilog symbol, though instantiated, is not
an atom the predicate simply fails. So, one can enumerate all the HiLog symbols by using
the following query:

| ?- hilog symbol(X).

current op(?Precedence, ?Specifier, ?Name) ISO
This predicate is used to examine the set of operators currently in force. It succeeds when the
atom Name is currently an operator of type Specifier and precedence Precedence. None of

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 192

the arguments of current op/3 need to be instantiated at the time of the call, but if they
are, they must be of the following types:

Precedence must be an integer in the range from 1 to 1200.

Specifier must be one of the atoms:

xfx xfy yfx fx fy hx hy xf yf

Name it must be an atom.

Error Cases

• Precedence is neither a variable nor an integer in the range from 1 to 1200.

– domain error(operator priority,Precedence)

• Specifier is neither a variable nor an operator specifier of the types above.

– domain error(operator specifier,Specifier)

• Name is neither a variable nor an atom.

– domain error(atom or variable,Name)

hilog op(?Precedence, ?Type, ?Name)

This predicate has exactly the same behaviour as current op/3 with the only difference that
Type can only have the values hx and hy.

6.13 Execution State

break

Causes the current execution to be suspended at the beginning of the next call. The interpreter
then enters break level 1 and is ready to accept input as if it were at top level. If another call
to break/0 is encountered, it moves up to break level 2, and so on. While execution is done
at break level n > 0 the prompt changes to n: ?-.

To close a break level and resume the suspended execution, the user can type the the atom
end of file or the end-of-file character applicable on the system (usually CTRL-d on UNIX
systems). Predicate break/0 then succeeds (note in the following example that the calls to
break/0 do not succeed), and the execution of the interrupted program is resumed. Alterna-
tively, the suspended execution can be abandoned by calling the standard predicate abort/0,
which causes a return to the top level.

An example of break/0 ’s use is the following:

| ?- break.

[Break (level 1)]

1: ?- break.

[Break (level 2)]

2: ?- end of file.

[End break (level 2)]

yes

1: ?-

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 193

Entering a break closes all incomplete tables (those which may not have a complete set of
answers). Closed tables are unaffected, even if the tables were created during the computation
for which the break was entered.

halt ISO
halt/0 Exits the XSB session regardless of the break level. On exiting the system cpu and
elapsed time information is displayed.

halt(Code) ISO
halt/1 Exits the XSB session regardless of the break level, sending the integer Code to the
parent process. Normally 0 is considered to indicate normal termination, while other exit
codes are used to report various degrees of abnormality.

Error Cases

• Code is not an integer

– type error(Integer,Code)

prompt(+NewPrompt, ?OldPrompt)

Sets the prompt of the top level interpreter to NewPrompt and returns the old prompt in
OldPrompt.

An example of prompt/2 ’s use is the following:

| ?- prompt(’Yes master > ’, P).

P = | ?- ;

no

Yes master > fail.

no

Yes master >

trimcore module: machine
A call to trimcore/0 reallocates an XSB thread’s execution stacks (and some tabling stacks)
to their initial allocation size, the action affecting only the memory areas for the calling thread.
When XSB is called in standalone or server mode, trimcore/0 is automatically called when
the top interpreter level is reached. When XSB is embedded in a process, trimcore/0 is
called at the top interpreter level for any thread created through xsb ccall thread create()
(see Volume 2, Chapter 3 Embedding XSB in a Process).

gc heap

Explicitly invokes the garbage collector for a thread’s heap. By default, heap garbage col-
lection is called automatically for each thread upon stack expansion, unless the Prolog flag
heap garbage collection is set to none. Automatic heap garbage collection should rarely
need to be turned off, and should rarely need to be invoked manually.

statistics

Displays usage information on the current output stream, including:

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 194

• Process-level information about allocated memory excluding execution stacks but in-
cluding:

– atoms Space used to maintain global information about predicates and structures.

– string Space used to maintain information about atomic constants in XSB.

– asserted Space allocated for dynamic code.

– asserted Space allocated for static code.

– foreign Space allocated for foreign predicates.

– table Space allocated for XSB’s tables.

– findall Space allocated for buffers to support findall/3 and similar predicates.

– mt-private Private space used by threads.

– profiling Space used to maintain profiling information, if XSB is called with pro-
filing on.

– gc temp Temporary space for used for heap garbage collector.

– interprolog space allocated for the Interprolog XSB/Java interface.

– thread space allocated for the thread table

– the space occupied by subgoal and answer tables (in the form of tries) [57, 18, 36].
In the multi-threaded configuration process level table space includes shared tables
but not private tables.

• Thread-specific information about allocation of memory for the calling thread including
the

– Global stack (heap) and local (environment) stack (see e.g. [1]) for the calling thread.
Memory for these two WAM stacks is allocated as a single unit so that each stack
grows together; information is provided on the current allocation for the stacks as
well as on the stack sizes themselves. (See Section 3.7 for the memory re-allocation
algorithm).

– Trail and choice point stack (see e.g. [1]) for the calling thread. Memory for these
two WAM stacks is allocated as a single unit so that each stack grows together;
information is provided on the current allocation for the stacks as well as on the stack
sizes themselves. The (re-)allocation follows the algorithm sketched in Section 3.7).
(See Section 3.7 for the memory re-allocation algorithm).

– SLG unification stack for the calling thread This stack is used as a space to copy
terms from the execution stacks into table space, or back out. This stack will not
be reallocated unless extremely large terms are tabled.

– SLG completion stack for the calling thread. The completion stack is used to per-
form incremental completion for sets of mutually dependent tabled subgoals. One
completion stack frame is allocated per tabled subgoal [59] but the size of these
frames is version-dependent.

– the space occupied by private subgoal and answer tables for the calling thread.

In XSB’s single-threaded configuration, maximum space used by each of will be output
if the ’-s’ command-line option is used

• Information about the number of tabling operations performed in the session by any
thread. Note that the statistics are divided up between calls to predicates that use

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 195

variant tabling and those that use (call) subsumptive tabling (see Section 5.2.1 and
[36]).

– Call Subsumption Subgoal Operations. For predicates that use subsumptive tabling,
the total number of subsumptive subgoal calls is given, as is the number of new calls
(producers) and the number of repeated calls to non-completed tables (variants).
Furthermore, the number of properly subsumed calls to incomplete tables is given,
along with the number of subsumed calls to completed tables. Finally, the total
number of subsumptive table entries overall is given, including all producer and
consumer calls.

– Call Subsumption Answer Operations. In call subsumptive tabling, answer lists are
copied from producer subgoals to subsumed consumer subgoals (this operation is not
required in variant tabling). The number of answer ident operations represents
the number of times this copy is done. In addition, the number of consumptions
performed by all consuming subsumptive table entries is also given.

– Call Variance Subgoal Operations. For call variance the number of subgoal check/insert
operations is given along with the unique number of subgoals encountered (generator)
and the number of redundant consumer encountered (consumer).

– Total Answer Operations. For both variant and subsumptive tables, the number of
answer check insert operations is given along with the number of answers actually
inserted into the table and the number of redundant answers derived.

• Garbage Collection Information. Time spent garbage collecting by the calling thread
and number of heap cells collected.

• Information about process CPU and clock time, as well as the number of active threads.

As mentioned above, if XSB is configured with the single-threaded engine and is invoked with
the ’-s’ option (see Section 3.7), additional information is printed out about maximum use
of each execution stack and table space. However, the ’-s’ option can substantially slow
down the emulator so benchmarks of time should be performed separately from benchmarks
of space.

Example: The following printout shows how the statistics/0 output looks if it is invoked
with the ’-s’ option (without it the Maximum stack used, and Maximum table space used

lines are not shown). Information about the allocation size is provided since the sizes can be
changed through emulator options (see Section 3.7).

| ?- statistics.

Memory (total) 2429504 bytes: 726696 in use, 1702808 free

permanent space 645520 bytes: 645520 in use, 0 free

atom 120328

string 156872

asserted 3184

compiled 358216

other 6920

glob/loc space 786432 bytes: 652 in use, 785780 free

global 456 bytes

local 196 bytes

trail/cp space 786432 bytes: 476 in use, 785956 free

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 196

trail 88 bytes

choice point 388 bytes

SLG unific. space 65536 bytes: 0 in use, 65536 free

SLG completion 65536 bytes: 0 in use, 65536 free

SLG table space 80048 bytes: 80048 in use, 0 free

Maximum stack used: global 436724, local 14780, trail 27304, cp 20292,

SLG completion 0 (0 subgoals)

Maximum table space used: 0 bytes

Tabling Operations

0 subsumptive call check/insert ops: 0 producers, 0 variants,

0 properly subsumed (0 table entries), 0 used completed table.

0 relevant answer ident ops. 0 consumptions via answer list.

0 variant call check/insert ops: 0 producers, 0 variants.

0 answer check/insert ops: 0 unique inserts, 0 redundant.

0 heap (0 string) garbage collections by copying: collected 0 cells in 0.000000 secs

Time: 0.190 sec. cputime, 13.921 sec. elapsetime

statistics(+Key)

statistics/1 allows the user to output detailed statistical information about the atom and
symbol tables, as well as about table space. The following calls to statistics/1 are sup-
ported:

• statistics(reset) Resets the CPU time as well as counts for various tabling opera-
tions.

• statistics(atom) Outputs statistics about both the atom and symbol tables. An
example is:

| ?- statistics(atom).

Symbol table statistics:

Table Size: 8191

Total Symbols: 1188

used buckets: 1088 (range: [0, 8174])

unused buckets: 7103

maximum bucket size: 3 (#: 18)

String table statistics:

Table Size: 16381

Total Strings: 1702

used buckets: 1598 (range: [0, 16373])

unused buckets: 14783

maximum bucket size: 3 (#: 2318)

• statistics(table) Outputs very detailed statistics about table space, including break-
downs into variant and subsumptive call- and answer- trie nodes and hash tables; answer
return list nodes, and structures for conditional answers (cf. [59, 57, 36, 17]). In the

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 197

multi-threaded engine, these data structures are reported both for shared tables and for
private tables of the calling thread.

While this option is intended primarily for developers, it can also provide valuable in-
formation for the serious user of tabling.

Error Cases

• Key not a valid atom for input to statistics/1

– domain error(statisticsInputDomain,Key))

statistics(?Key,-Result)

statistics/2 allows a user to determine information about resources used by XSB. Currently
statistics/2 unifies Key with

• runtime, which instantiates Result to the structure [TotalCPU,IncrCPU] where TotalCPU
is the total (process-level) CPU time at the time of call, and IncrCPU is the CPU time
taken since the last call to statistics/2. Times are measured in seconds. The process-
level CPU time includes time taken for system calls, as well as time taken for garbage
collection and stack-shifting. Note that in the multi-threaded engine, statistics/2

measures the time for all threads.

• walltime, which instantiates Result to the list [TotalTime,IncrTime] where TotalTime
is the total elapsed time at the time of call, and IncrTime is the elapsed time taken since
the last call to statistics/2. Times are measured in seconds.

• tablespace which instantiates Result to the list [Alloc,Used]. In the single-threaded
engine, Alloc is the total table space allocated and Used is the total table space used,
both in bytes. In the multi-threaded engine, both refer to table space private to the
calling thread.

• shared tablespace which instantiates Result to the list [Alloc,Used]. In the multi-
threaded engine, Alloc is the total space allocated for shared tables and Used is the
total table space used, both in bytes. An error is thrown if this option is called by the
single-threaded engine.

• gl which instantiates Result to the list [Alloc,Used], where Alloc is the total number
of bytes allocated for XSB’s combined heap and local (environment) stack, while Used

is the approximate number of bytes used by both of these stacks. In the multi-threaded
engine, these numbers refer only to the stacks of the calling thread.

• tc which instantiates Result to the list [Alloc,Used], where Alloc is the total number
of bytes allocated for XSB’s combined trail and choice point stack while Used is the
number of bytes used by both of these stacks. In the multi-threaded engine, these
numbers refer only to the stacks of the calling thread.

• heap which instantiates Result to the total number of bytes used by XSB’s heap. In
the multi-threaded engine, the number refers only to the heap of the calling thread.

• local which instantiates Result to the total number of bytes used by XSB’s local
(environment) stack. In the multi-threaded engine, the number refers only to the local
stack of the calling thread.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 198

• trail which instantiates Result to the total number of bytes used by XSB’s trail stack.
In the multi-threaded engine, the number refers only to the trail stack of the calling
thread.

• choice point which instantiates Result to the total number of bytes used by XSB’s
choice point stack. In the multi-threaded engine, the number refers only to the choice
point stack of the calling thread.

• open tables which instantiates Result to the number of uncompleted tables in XSB’s
completion stack. In the multi-threaded engine, this number refers to the completion
stack of the calling thread, which may contain both thread-private and thread-shared
tables.

• atoms which instantiates Result to the number of bytes taken by atoms in the atom
table.

Example An example of using statistics/2 to check CPU time is as follows:

?- statistics(runtime,[BeforeCumu,BeforeIncr]),spin(100000000),

statistics(runtime,[AfterCumu,AfterIncr]).

BeforeCumu = 5.0167

BeforeIncr = 5.0167

AfterCumu = 9.6498

AfterIncr = 4.6331

Note that statistics/2 can provide either cumulative or incremental times; here

AfterCumu − BeforeCumu = AfterIncr

Checking wall time is done similarly.

?- statistics(walltime,Before),sleep(1),statistics(walltime,After).

Before = [35.0651,35.0651]

After = [36.0652,1.0001]

Error Cases

• Key not a valid atom for input to statistics/1

– domain error(statisticsInputDomain,Key))

time(+Goal)

Prints both the CPU time and wall time taken by the execution of Goal. Any choice-points of
Goal are discarded. The definition of predicate is based on the SWI-Prolog definition (minus
reporting the number of inferences, which XSB does not currently support). This predicate
is also found on other Prolog compilers such as YAP.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 199

6.14 Asserting, Retracting, and Other Database Modifications

XSB provides an array of features for modifying the dynamic database. As a default, using
assert/1, clauses can be asserted using first-argument indexing in a manner that is now stan-
dard to Prolog implementations. However, a variety of other behaviors can be specified using the
(executable) directives index/3 and index/2. For instance, dynamic clauses can be declared to
have multiple or joint indexes, and this indexing can be either hash-based as is typical in Prolog
systems or based on tries. No matter what kind of indexing is used, space is dynamically allo-
cated when a new clause is asserted and, unless specified otherwise, released after it is retracted.
Furthermore, the size of any index table expands dynamically as clauses are asserted.

All dynamic predicates are compiled into SLG-WAM code, however the manner of their com-
pilation may differ, and the differences in compilation affect the semantics for the predicate. If a
dynamic predicate P/n is given an indexing directive of trie, clauses for P/n will be compiled
using trie instructions; otherwise clauses for P/n will be compiled into SLG-WAM instructions
along the lines of static predicates.

Consider first dynamic predicates that use any indexing other than trie – including multiple or
joint indices and star indexing. XSB asserts WAM code for such clauses so that that the execution
time of dynamic code is similar to compiled code for unit and binary clauses. Furthermore, tabling
can be used by explicitly declaring a predicate to be both dynamic and tabled. In Version 3.3, when
the clause of a dynamic predicate is asserted as WAM code, the “immediate semantics” rather than
the ISO Semantics of assert/retract [45]. The immediate semantics allows assert and retract to be
fast and spatially efficient, but requires that significant care must be taken when modifying the
definition of a predicate which is currently being executed.

If a dynamic predicate is given an indexing directive of trie, clauses of the predicate are
compiled (upon a call assert/1) using trie instructions as described in [57]. Creation of trie-based
dynamic code is significantly faster than creation of other dynamic code, and execution time may
also be faster. However, trie-based predicates can only be used for unit clauses where a relation is
viewed as a set, and where the order of the facts is not important.

XSB does not at this time fully support dynamic predicates defined within compiled code. The
only way to generate dynamic code is by explicitly asserting it, or by using the standard predicate
load dyn/1 to read clauses from a file and assert them (see the section Asserting Dynamic Code
in Volume 2). There is a dynamic/1 predicate (see page 205) that declares a predicate within the
system so that if the predicate is called when no clauses are presently defining it, the call will
quietly fail instead of issuing an “Undefined predicate” error message.

asserta(+Clause) ISO
asserta/1 If the index specification for the predicate is not trie, this predicate adds a dynamic
clause, Clause, to the database before any other clauses for the same predicate currently in the
database. If the index specification for the predicate is trie, the clause is asserted arbitrarily
within the trie, and a warning message sent to stderr.

Note that because of the precedence of :-/2, asserting a clause containing this operator
requires an extra set of parentheses: assert((Head :- Body)).

Error Cases

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 200

• Clause is not instantiated

– instantiation error

• Clause is not a callable clause.

– domain error(callable,Clause)

• Clause has a head that is a static built-in

– permission error(modify,builtin,Clause)

• Clause has a head that is a static user predicate

– permission error(modify,static,Clause)

assertz(+Clause) ISO
If the index specification for the predicate is not trie, this predicate adds a dynamic clause,
Clause, to the database after any other clauses for the same predicate currently in the
database. If the index specification for the predicate is trie, the clause is asserted arbitrarily
within the trie, and a warning message sent to stderr. Error cases are as with asserta/1.

Note that because of the precedence of :-/2, asserting a clause containing this operator
requires an extra set of parentheses: assert((Head :- Body)).

assert(+Clause) ISO
If the index specification for the predicate is not trie, this predicate adds a dynamic clause,
Clause, to the database after any other clauses for the same predicate currently in the
database (acting as assertz/1). If the index specification for the predicate is trie, the
clause is asserted arbitrarily within the trie. Error cases are as with assertz/1.

Note that because of the precedence of :-/2, asserting a clause containing this operator
requires an extra set of parentheses: assert((Head :- Body)).

assert(+Clause,+AorZandVar,+Index)

This is a lower-level interface to (non-trie-indexed) assert. It is normally not needed except
in one particular situation, when assert aborts because it needs too many registers. In this
case, this lower-level assert may allow the offending clause to be correctly asserted.

The default implementation of non-trie-indexed assert generates code with a single pass
through the asserted term. Because of this, it cannot know when it has encountered the
final occurrence of a variable, and thus it can never release (and thus re-use) registers that
are used to refer to variables. Since there is a limit of 255 registers in the XSB virtual machine,
asserting a clause with more than this many distinct variables results in an error. There is
an alternative implementation of assert that initially traverses the clause to determine the
number of occurrences of each variable and thus allows better use of registers during code
generation.

Clause is the clause to assert. AorZandVar is an integer whose lower 2 bits are used: The
low-order bit is 0 if the clause is to be added as the first clause, and 1 if it is to be added
as the last clause. If the second bit (2) is on, then the clause is traversed to count variable
occurrences and so improve register allocation for variables; if it is 0, the default one-pass
code-generation is done. So, for example, if AorZandVar is 3, then the clause will be asserted
as the last one in the predicate and the better register allocation will be used. Index indicates
the argument(s) on which to index.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 201

retract(+Clause) ISO
retract/1 Removes through backtracking all clauses in the database that match with Clause.
Clause must be of one of the forms: Head or Head :- Body. Note, that because of the prece-
dence of :-/2, using the second form requires an extra set of parentheses: retract((Head

:- Body)).

The technical details on space reclamation are as follows. When retract is called, a check is
made to determine whether it is safe to reclaim space for that clause. Safety is ensured when:

• A check is made of the choice point stack indicating that no choice point will backtrack
into space that is being reclaimed; AND

– The predicate is thread-private; OR

– there is a single active thread

• AND if the predicate is tabled, there is no incomplete table for that predicate.

If it is safe to reclaim space for the clause, space is reclaimed immediately. Otherwise the
clause is marked so that its space may later be reclaimed through garbage collection. (See
gc dynamic/1).

Error Cases

• Clause is not instantiated

– instantiation error

• Clause is not a callable clause.

– domain error(callable,Clause)

• Clause has a head that is a static built-in

– permission error(modify,builtin,Clause)

• Clause has a head that is a static user predicate

– permission error(modify,static,Clause)

retractall(+Head)

removes every clause in the database whose head matches with Head. The predicate whose
clauses have been retracted retains the dynamic property (contrast this behavior with that of
predicates abolish/[1,2] below). Predicate retractall/1 is determinate and always suc-
ceeds. The term Head is not further instantiated by this call. Conditions for space reclamation
and error cases are as with retract/1.

abolish(+PredSpec) ISO
Removes all information about the specified predicate. PredSpec is of the form Pred/Arity.
Everything about the abolished predicate is completely forgotten by the system (including the
dynamic or static property, whether the predicate is tabled, and whether the predicate is
thread-shared or thread-private) 13. Any completed tables for the predicate are also removed.

It is an error to abolish a predicate when there is more than 1 active thread, regardless of
whether the predicate is thread-private or thread-shared. The reason for this is that, even

13For compatibility with older Prologs, there is also an abolish/2 which takes Pred and Arity as its two arguments.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 202

if PredInd denotes a thread-private predicate, one thread may be making use of PredInd
as another thread abolishes it. abolish/1 throws an error in such a case to prevent such a
semantic inconsistency. Similarly, if there is a non-completed table for PredInd, an error is
thrown to prevent incompleteness in the tabled computation.

ISO Compatability Note: Version 3.3 of XSB allows static predicates to be abolished and
their space reclaimed. Such space is reclaimed immediately, and unlike the case for abolished
static code, no check is made to ensure that XSB’s choice point stack is free of choice points
for the abolished static predicate. Abolishing static code is thus dangerous and should be
avoided unless a user is certain it is safe to use.

Error Cases

• PredInd, Pred or Arity is not instantiated

– instantiation error

• Arity is not in the range 0..255 (max arity)

– domain error(arity indicator,Arity)

• PredInd indicates a static built-in

– permission error(modify,builtin,Predind)

• abolish/1 is called when there is more than 1 active thread.

– misc error

• PredInd has a non-completed table in the current thread.

– table error

• There are active backtrack points to a (dynamic) clause for PredInd 14.

– misc error

clause(+Head,?Body) ISO
Returns through backtracking all dynamic clauses in the database whose head matches Head
and Body matches Body. For facts the Body is true. clause/2 works properly for all
dynamically asserted clauses, even if they are trie-indexed; however clause/2 does not access
trie-inserted terms. In the multi-threaded engine, when a thread T calls clause/2 it accesses
both thread-shared dynamic code and thread-private dynamic code for T .

Error Cases

• Head is not instantiated

– instantiation error

• Head (or Body) is not a callable clause.

– domain error(callable,Head)

• Head is a static built-in

– permission error(access,builtin,Head)

14XSB throws an error in this case because garbage collection for abolished predicates has not been implemented
(unlike for retract(all) and various table abolishes). Besides, you shouldn’t be abolishing a predicate that you could
backtrack into. What were you thinking?

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 203

• Head is a static user predicate

– permission error(access,static,Clause)

gc dynamic(-N)

Invokes the garbage collector for dynamic clauses that have been retracted, or whose predicate
has been abolished. When called with more than 1 active thread, gc dynamic/1 will always
perform garbage collection for that thread’s private retracted clauses; however in Version 3.3,
it will only perform garbage collection for retracted thread-shared clauses if there is a single
active thread. N is the number or shared and/or private frames left to be collected – if N is
unified to 0, then all possible garbage collecting has been performed. N is unified to -1 garbage
collection was not attempted (due to multiple active threads).

By default, gc dynamic/1 is called automatically at the top level of the XSB interpreter,
when abolishing a predicate, and when calling retractall for an “open” term containing no
variable bindings.

index(+PredSpec, +IndexSpec)

In index(PredSpec, IndexSpec), PredSpec is a predicate indicator or term indicator, and
IndexSpec is a form of index specification as described below.

In general, XSB supports hash-based indexing on various arguments of clauses, on combina-
tions of arguments, as well as within the arguments of a clause. The availability of various
kinds of indexing depends on whether code is static (e.g. compiled) or dynamic (e.g. asserted,
loaded with load dyn/1 and so on). Index directives can be given to the compiler as part
of source code or executed during program execution (analogously to op/3). When executed
during program execution, index/2 does not re-index an already existing predicate; however
for dynamic predicates index/2 does affect the index for clauses asserted after the directive
has been given.

• Hash-based Indexing

– Static Predicates In this case IndexSpec must be a non-negative integer which indi-
cates the argument on which an index is to be constructed. If IndexSpec is 0, then
no index is kept (possibly an efficient strategy for predicates with only one or two
clauses.)

– Dynamic Predicates For a dynamic predicate, (to which no clauses have yet been
asserted), a wide variety of indexing techniques are possible. We discuss their syntax
first, and then their semantics. For dynamic predicates then, IndexSpec can be
either an indexing element or a list of indexing elements. Each indexing element
defines a separate index and specifies an argument or group of arguments that make
up the search key of that index. Thus an indexing element consists of one or more
argument indicators joined together by +/2. An argument indicator is may be an
integer (ArgNo) indicating an argument number (starting from 1) to use in the index,
or it may have the form *(ArgNo).
If ArgNo is an integer, only the main functor symbol of argument ArgNo will partic-
ipate in the index. When annotated with the asterisk, the first 5 fields of argument
ArgNo (in a depth-first traversal of the term) will be used in the index. If there are

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 204

fewer than 5, they all will be used. If any of the first 5 is a variable, then the index
cannot be used.
An index is usually on a single argument, in which case the indexing element consists
of a single argument indicator. If an indexing element contains more than one
argument specifier, then a joint index is specified i.e. an index will be constructed
so that the values of each argument indicator are to be concatenated to create the
search key of the index.
Examples help clarify this. index(p/3,[2,1]) indicates that clauses asserted for the
predicate p/3 should be indexed on both the second and the first argument. A query
Q to p/3 will first use the second argument index to p/3 if the second argument of Q
is non-variable, and will use the main functor of the second argument. Otherwise, if
the second argument of Q is a variable, but not the first argument, the first argument
index of p/3 will be used. If both arguments in Q are variables, no index will be
used and Q will backtrack through all clauses for p/3.
index(p/3,[*(2),1]) would result in similar behavior as the previous example, but
the first index to be tried (on the second argument) would be built using more of
the term value in that second argument position (not just the main functor symbol.)
As another example, one could specify: index(p/5,[1+2,1,4]). After clauses are
asserted to it, a call to p/5 would first check to see if both the first and second
arguments are non-variable and if so, use an index based on both those values.
Otherwise, it would see if the first argument is non-variable and if so, use an index
based on it. Otherwise, it would see if the fourth argument is non-variable and if
so use an index based on it. As a last resort, it would use no index but backtrack
through all the clauses in the predicate. In each of these cases, the indexes are built
using only the main functor symbol in the indicated argument position. (Notice that
it may well make sense to include an argument that appears in a joint specification
later alone, as 1 in this example, but it never makes sense forcing the single argument
to appear earlier. In that case the joint index would never be used.)
If we want to use similar indexing on p/5 of the previous example, except say
argument 1 takes on complex term values and we want to index on more of those
terms, we might specify the index as index(p/5,[*(1)+2,*(1),4]).

• Trie-based Indexing If Predspec is dynamic, the executable directive index(Predspec,trie)
causes clauses for Predspec to be asserted using tries (see [57], which is available through
the XSB web page). The name trie indexing is something of a misnomer since the trie
itself both indexes the term and represents it. In XSB, a trie index is formed using
a left-to-right traversal of the unit clauses. These indexes can be very effective if dis-
criminating information lies deep within a term, and if there is sharing of left-prefixes
of a term, trie indexing can reduce the space needed to represent terms. Furthermore,
asserting a unit clause as a trie is much faster than asserting it using default WAM code.
Despite these advantages, representing terms as tries leads to semantic differences from
asserted code, of which the user should be aware. First, the order of clauses within a trie
is arbitrary: using asserta/1 or assertz for a predicate currently using trie indexing
will give the same behavior as using assert. Also, the current version of XSB only
allows trie indexing for unit clauses.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 205

If in doubt what indexing is being used for a predicate, a call to current index/2 can be
made.

Error Cases

• PredSpec or IndexSpec is a variable

– instantiation error

• PredSpec is neither a variable, a predicate indicator, nor a callable term.

– type error(predicate indicator or callable,PredSpec)

• IndexSpec is not ground

– instantiation error

• IndexSpec is neither a properly formed indexing element nor a list of indexing elements

– domain error(indexing element,IndexSpec)

• IndexSpec is a list containing an element IndexElt that not a properly formed indexing
element

– domain error(indexing element,IndexElt)

• PredSpec represents a predicate that has been previously defined to be static

– permission error(modify,static predicate)

dynamic(+Operations) ISO
dynamic/1 can be used either as a compiler declaration or as an executable directive. Used

as a compiler declaration, it indicates that all clauses for each predicate denoted by the
command are dynamic – clauses for these predicates can be asserted or retracted. Without
this declaration compiled clauses will be treated as static. Executed as a directive in a state
of execution where no clauses exist for each denoted predicate dynamic/1 ensures clauses for
the affected predicates are to be treated as dynamic. If PredSpec contains a predicate that is
defined as static or as foreign code, a permission error will be thrown. Operations can take
one of two forms:

1. Operations is a predicate indicator, a callable term, or a comma-list of predicate indi-
cators or callable terms.

2. Operations has the form Predspec as Options where

• PredSpec is a predicate indicator, a callable term, or comma-list of predicate indi-
cators or callable terms.

• Options is either a dynamic option or a list of dynamic options. These dynamic
options control the attributes of a dyamic predicate. In Version 3.3, the following
dynamic options are supported

– tabled which causes the dynamic predicate to be tabled. The declaration/directive
dynamic p/n as tabled has the same effect as table p/n as dynamic.

– variant which causes the table evaluation method of the predicate(s) to use
call variance.

– incremental which allows (incremental) tables that are based on the dynamic
predicate to be automatically updated when clauses are asserted or retracted.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 206

– opaque. This option is essencially the same as non-incremental dynamic code,
except that opaque predicates can be made incremental by a later dynamic/1
directive, and incremental predicates can be made opaque by a dynamic/1

directuve.

– private which causes the predicate(s) to be treated as thread private.

– shared which causes the predicate(s) to be treated as thread shared.

If the directive

dynamic p/n.

is executed, its behavior is as follows:

• If p/n is already dynamic, the directive has no effect, regardless of wither p/n is tabled,
incremental or opaque, private or shared.

• If p/n has not already been defined, the directive makes p/n non-tabled, non-incremental,
and to use the default thread sharing strategy (private unless XSB is called with
--shared predicates).

If the directive

dynamic PredList as Options.

is executed, various checks are performed on Options. These checks are (mostly) performed
before any predicates are declared as dynamic or options changed, and reduce the possibility
of leaving some p/n in PredList with inconsistent attributes.

• If a dynamic predicate in Predlist is declared as incremental it may be changed to
opaque at any time; similarly, a dynamic predicate that is opaque may be changed to
incremental

• Otherwise, an attempt to change an attribute of p/n in PredList – i.e. whether p/n
is tabled or not, incremental/opaque or not, and thread-private or thread-shared – will
throw a permission error.

In addition, regardless of the state of predicates in PredList, if options contains an inconstent
set of declarations, a domain error will be thrown. Options is inconsistent in the following
cases:

• Options contains tabled or variant and opaque or incremental. Tabled dynamic
incremental code is not yet supported in XSB.

• Options contains both private and shared

• Options contains both incremental and opaque

Error Cases

Error cases are summarized as follows. Let Operations be of the form PredSpec or PredSpec
as Options. Then if

• PredSpec or is a variable or a comma list containing a variable

– instantiation error

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 207

• An element of PredSpec is neither a variable nor a comma list

– type error(callable,PredSpec)

• A predicate in PredSpec has been previously defined to be static or foreign

– permission error(modify,static predicate)

• Options is a variable or a list containing a variable

– instantiation error

• Options contains an element Option that isn’t a dynamic option (as described above)

– domain error(dynamic option,Option)

• Options contains inconsistnet elements (as described above)

– table error

• An option in Options would modify a predicate in predspec in a manner that is not
allowed (as described above)

– permission error

In addition, if a predicate p/n was declared to be dynamic and a file containing clauses for
p/n is later consulted, a permission error will be thrown.

6.14.1 Reading Dynamic Code from Files

Several built-in predicates are available that can assert the contents of a file into XSB’s database.
These predicates are useful when code needs to be dynamic, or when the they contain a large
number of clauses or facts. Configured properly, files containing millions of facts can be read and
asserted into memory in under a minute, making XSB suitable for certain kinds of in-memory
database operations 15.

Each of the predicates in this section allow loading from files with proper prolog extensions,
and makes use of the XSB library paths. See Sections 3.6 and 3.3 for details.

load dyn(+FileName)

Asserts the contents of file FileName into the database. All existing clauses of the predicates
in the file that already appear in the database, are retracted, unless there is a multifile/1

declaration for them. An indexing declaration of a predicate p/n in FileName will be observed
as long as the declarations occur before the first clause of p/n. file will be observed as Clauses
in FileName must be in a format that read/1 will process. So, for example, operators are
permitted. As usual, clauses of predicates are not retracted if they are compiled instead of
dynamically asserted. All predicates are loaded into usermod. Module declarations such as
:- export are ignored and a warning is issued.

Dynamically loaded files can be filtered through the XSB preprocessor. To do this, put the
following in the source file:

15In Version 3.3, loading code dynamically can also be useful when the clauses contain atoms whose length is more
than 255 that cannot be handled by the XSB compiler.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 208

:- compiler_options([xpp_on]).

Of course, the name compiler_options might seem like a misnomer here (since the file is
not being compiled), but it is convenient to use the same directive both for compiling and
loading, in case the same source file is used both ways.

Error Cases

• FileName is a variable

– instantiation error

• FileName is not an atom.

– type error(atom,Filename)

• FileName has been loaded previously in the session and there is more than one active
thread.

– misc error

load dyn(+FileName,+Dir)

Asserts the contents of file FileName into the database. Dir indicates whether assertz or
asserta is to be used. If Dir is z, then assertz is used and the behavior of load dyn(FileName)

is obtained. If Dir is a, then asserta is used to add the clauses to the database, and clauses
will be in the reverse order of their appearance in the input file. asserta is faster than
assertz for predicates such that their indexing and data result in many hash collisions. Dir
is ignored for facts in FileName that are trie-indexed.

Error Cases

• FileName is a variable

– instantiation error

• FileName is not an atom:

– type error(atom,FileName)

• Dir is not equal to a or z 16:

– domain error(a or z,Dir)

• FileName has been loaded previously in the session and there is more than one active
thread.

– misc error

load dync(+FileName)

Acts as load dyn/1, but assumes that facts are in “canonical” format and is much faster
as a result. In XSB, a term is in canonical format if it does not use any operators other
than list notation and comma-list notation. This is the format produced by the predicate
write canonical/1. (See cvt canonical/2 to convert a file from the usual read/1 format
to read canonical format.) As usual, clauses of predicates are not retracted if they are

16For backward compatibility, 0 and 1 are also allowed.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 209

compiled instead of dynamically asserted. All predicates are loaded into usermod. :- export

declarations are ignored and a warning is issued.

Notice that this predicate can be used to load files of Datalog facts (since they will be in
canonical format). This predicate is significantly faster than load dyn/1 and should be used
when speed is important. (See load dync/2 below for further efficiency considerations.) A
file that is to be dynamically loaded often but not often modified by hand should be loaded
with this predicate.

As with load_dyn/1, the source file can be filtered through the C preprocessor. However,
since all clauses in such a file must be in canonical form, the compiler_options/1 directive
should look as follows:

:-(compiler_options(’.’(xpp_on,[]))).

Error Cases

• FileName is a variable

– instantiation error

• FileName is not an atom.

– type error(atom,FileName)

• FileName has been loaded previously in the session and there is more than one active
thread.

– misc error

load dync(+FileName,+Dir)

Acts as load dyn/2, but assumes that facts are in “canonical” format. Dir is ignored for
trie-asserted code, but otherwise indicates whether assertz or asserta is to be used. If Dir
is z, then assertz is used and the exact behavior of load dync(FileName) is obtained. If
Dir is a, then asserta is used to add the clauses to the database, and clauses will end up in
the reverse order of their appearance in the input file.

Setting Dir to a for non trie-asserted code can sometimes be much faster than the default of
z. The reason has to do with how indexes on dynamic code are represented. Indexes use hash
tables with bucket chains. No pointers are kept to the ends of bucket chains, so when adding
a new clause to the end of a bucket (as in assertz), the entire chain must be run. Notice
that in the limiting case of only one populated bucket (e.g., when all clauses have the same
index term), this makes assertz-ing a sequence of clauses quadratic. However, when using
asserta, the new clause is added to the beginning of its hash bucket, and this can be done
in constant time, resulting in linear behavior for asserta-ing a sequence of clauses.

Error Cases

• FileName is a variable

– instantiation error

• FileName is not an atom:

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 210

– type error(atom,FileName)

• Dir is not instantiated to a or z 17:

– domain error(a or z,Dir)

• FileName has been loaded previously in the session and there is more than one active
thread.

– misc error

ensure loaded(+FileName,+Action)

This predicate does nothing if FileName has been loaded or consulted into XSB, and has not
changed since it was loaded or consulted. Otherwise

• If Action is instantiated to dyn the behavior is as load dyn/1 (or load dyn(FileName,z)).

• If Action is instantiated to dyna the behavior is as load dyn(FileName,a).

• If Action is instantiated to dync the behavior is as load dync/1 (or load dync(FileName,z)).

• If Action is instantiated to dynca the behavior is as load dync(FileName,a).

• If Action is instantiated to consult, FileName is consulted (action is the same as
ensure loaded/1).

Error Cases

• FileName is not instantiated:

– instantiation error

• FileName is not an atom:

– type error(atom,FileName)

• Action is not a valid load action as described above

– domain error(loadAction,Action)

cvt canonical(+FileName1,+FileName2) module: consult
Converts a file from standard term format to “canonical” format. The input file name is
FileName1; the converted file is put in FileName2. This predicate can be used to convert a
file in standard Prolog format to one loadable by load dync/1.

6.14.2 The storage Module: Associative Arrays and Backtrackable Updates

XSB provides a high-level interface that allows the creation of “objects” that efficiently manage
the storage of facts or of associations between keys and values. Of course, facts and associative
arrays can be easily managed in Prolog itself, but the storage module is highly efficient and
supports the semantics of backtrackable updates as defined by Transaction logic [6] in addition to
immediate updates. The semantics of backtrackable updates means that an update made by the
storage module may is provisional until the update is committed. Otherwise, if a subgoal calling

17For backward compatibility, 0 and 1 are also allowed.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 211

the update fails, the change is undone. The commit itself may be made either by the predicate
storage commit/1, or less cleanly by cutting over the update itself.

A storage object O is referred to by a name, which must be a Prolog atom. O can be associated
either with a set of facts or a set of key-value pairs. Within a given storage object each key is
associated with a unique value: however since keys and values can be arbitrary Prolog terms, this
constraint need not be a practical restriction. A storage object O is created on demand, simply
by calling (a backtrackable or non-backtrackable) update predicate that refers to O. However
to reclaim O’s space within a running thread, the predicate storage reclaim space/1 must be
called. Both backtackable and non-backtrackable updates can be made to the same storage object,
although doing so may not always be a good programming practice.

If multiple threads are used, each storage object is private to a thread, and space for a storage
object is reclaimed upon a thread’s exit. Thread-shared storage objects may be supported in future
versions.

All the predicates described in this section must be imported from module storage.

Non-backtrackable Storage

storage insert keypair(+StorageName,+Key, +Value, ?Inserted)

Insert the given Key-Value pair into StorageName. If the pair is new, then Inserted unifies
with 1. If the pair is already in StorageName, then Inserted unifies with 0. If StorageName
already contains a pair with the given key that is associated with a different value, then
Inserted unifies with -1. The first argument, StorageName, must be an atom naming the
storage to be used. Different names denote different storages. In all cases the predicate
succeeds.

storage delete keypair(+StorageName, +Key, ?Deleted)

Delete the key-value pair with the given key from StorageName. If the pair was in StorageName

then Deleted unifies with 1. If it was not in StorageNames then Deleted unifies with 0. The
first argument, StorageName, must be an atom naming the storage object to be used. Differ-
ent names denote different storages. In both cases the predicate succeeds.

storage find keypair(+StorageName, +Key, ?Value)

If StorageName has a key pair with the given key, then Value unifies with the value stored
in StorageName. If no such pair exists in the database, then the goal fails.

Note that this predicate works with non-backtrackable associative arrays described above as
well as with the backtrackable ones, described below.

storage insert fact(+StorageName, +Fact, ?Inserted)

Similar to keypair insertion, but this primitive inserts facts rather than key pairs.

storage delete fact(+StorageName, +Fact, ?Inserted)

Similar to key-pair deletion, but this primitive deletes facts rather than key pairs.

storage find fact(+StorageName, +Fact)

Similar to key-pair finding, but this primitive finds facts facts rather than key pairs.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 212

Backtrackable Updates

storage insert keypair bt(+StorageName, +Key, +Value, ?Inserted)

A call to this predicate inserts a key pair into StorageName as does storage insert keypair/4,
and the key-value pair may be queried via storage find keypair/3, just as with the non-
backtrackable updates described above. In addition, the key-value pair can be removed from
StorageName by explicit deletion. However, the key pair will be removed from StorageName

upon failing over the insertion goal unless a commit is made to StorageName through the
goal storage commit(StorageName). The exact semantics is defined by Transaction Logic
[6].

Note it is the update itself that is backtrackable, not the key-value pair. Hence, a key-pair may
be (provisionally) inserted by a backtrackable update and deleted by a non-backtrackable up-
date, or inserted by a non-backtrackable update and (provisionally) deleted by a backtrackable
update. Of course, whether such a mixture makes sense would depend on a given application.

storage delete keypair bt(+StorageName, +Key, ?Deleted)

Like storage delete keypair/3, but backtrackable as described for storage insert keypair bt/4.

storage insert fact bt(+StorageName, +Goal)

Like storage insert fact/2, but backtrackable.

storage delete fact bt(+StorageName, +Goal)

This is a backtrackable version of storage delete fact/2.

storage commit(+StorageName)

Commits to StorageName any backtrackable updates since the last commit, or since initial-
ization if no commit has been made to StorageName. If StorageName does not exist, the
predicate silently fails.

Reclaiming Space

storage reclaim space(+StorageName)

This is similar to reclaim space/1 for assert and retract, but it is used for storage man-
aged by the primitives defined in the storage module. As with reclaim space/1, this goal
is typically called just before returning to the top level.

6.15 Tabled Predicate Manipulations

In XSB, tables are designed so that they can be used transparently by computations. However, it is
necessary to first inform the system of which predicates should be evaluated using tabled resolution
(Section 3.10.2), and whether variant or subsumptive tabling should be used (Chapter 5). Further,
it is often useful to be able to explicitly inspect a table, or to alter its state. The predicates described
in this section are provided for these purposes. In order to ground the discussion of these predicates,
we continue our overview of tables and table creation from Chapter 5. For a detailed description of

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 213

the implementation of table access routines in XSB, the reader is referred to [57, 36, 18] and other
papers listed in the bibliography.

Tables and Table Entries

Abstractly, a table can be seen as a set of entry triples 〈S,A, Status〉 where S is a subgoal, A is its
associated answer set, and Status its status — whether it is complete or incomplete. In terms
of implementation, “the table” is actually a set of mini-tables, each one containing entries for a
particular predicate. Hence, we may refer to the table containing entries for some predicate p/n as
“the table for p/n.” Further recall that a particular predicate may be evaluated according to either
a variant or subsumptive strategy as chosen by the user. Invocation of a call during an evaluation
leads to the classification of the call, as well as its possible insertion into the table. Each call can be
classified as either (a) a generator, or producer, of an answer set, or (b) a consumer of the answer
set of some subgoal in the table. Creation of a table entry thus relies not only on the call and on
the subgoals already present in the table, but also upon whether call-variance or call-subsumption
is used (cf. [36]).

Answers, Returns, and Templates

Given a table entry (S,A, Status), the set of variables in S is sometimes called the substitution
factor of S. The order of arguments in the substitution factor corresponds to the order of distinct
variables in a left-to-right traversal of S. Each answer in A substitutes values for the variables
in the substitution factor of S; this substitution is sometimes called an answer substitution. The
table inspection predicates allow access to substitution factors and answer substitutions through a
family of terms whose principle functors are ret/n, where n is the size of the substitution factor.

Example 6.15.1 Let S = p(X,f(Y)) be a producer subgoal (or simply, a subgoal if call-variance
is used). Using the ret/nnotation, the substitution factor can be depicted as ret(X,Y), while the
answer substitution {X=a,Y=b} is depicted as ret(a,b). Note that the application of the answer
substitution to the producer subgoal yields the answer p(a,f(b)).

To take a slightly more complex example, consider the subgoal q(X) where X is an attributed
variable whose attribute is f(Z,Y,Y). In this case the substitution factor is ret(X,Z,Y). 2

In a similar manner, XSB maintains substitutions between producer subgoals and consuming
subgoals when subsumption-based tabling is used. The return template for a consuming call is a
substitution mapping variables of its producer to subterms of the call. This template can then
be used to select returns from the producer which satisfy the consuming call. Note, then, that a
return template of a subsumed subgoal may show partial instantiations. Return templates are also
represented as ret/n terms in the manner described above.

Example 6.15.2 Let p/2 of the previous example be evaluated using subsumption and let S be
present in its table. Further, let S1: p(A,f(B)) and S2: p(g(Z),f(b)) be two consuming subgoals
of S. Then the return template of S1 is ret(A,B) and that of S2 is ret(g(Z),b). S1, being a

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 214

variant of S, selects all returns of S such that {X=A,Y=B}. S2, on the other hand, selects only
relevant answers of S, those where the returns satisfy {X=g(Z),Y=b}. 2

Skeletons and Predicate Specifications

A skeleton for a functor f/n is a structure of the form f(Arg1,...,Argn) where each Argi is a
distinct variable. Similarly the skeleton of a term is the skeleton formed from the principal functor
of the term, so that skeletons from the terms f(1,2) and f(A,B) are the same. A return skeleton
is a specific application of this notion to answer returns. From it, one may discern the size of the
template for a given subgoal. Finally, we assume that a predicate specification for a predicate p

and arity n, represented as PredSpec below, can be given either using the notation p/n or as a
skeleton, p(t1,...,tn).

6.15.1 Declaring and Modifying Tabled Predicates

table(+Operations) Tabling
table/1 can be used either as a compiler declaration or as an executable directive. Used
as a compiler declaration, it indicates that each predicate denoted by the command is to be
compiled using (a particular form of) tabling, and may indicate that a predicate is dynamic
or thread-shared or thread-private. Executed as a directive in a state of execution where no
clauses exist for each denoted predicate table/1 ensures that any clauses asserted for each
predicate use tabling and may indicate the mode of tabling to be used. Operations can take
one of three forms:

1. Operations is a predicate indicator, a callable term, or a comma-list or list of predicate
indicators or callable terms.

2. Operations is a term indicating that a predicate is to be tabled with a particular form
of answer subsumption (cf. Section 5.4).

3. Operations has the form Predspec as Options where

• PredSpec is a predicate indicator, a callable term, or p comma-list or list of predicate
indicators or callable terms.

• Options is either a table option or a list of table options. In Version 3.3, the following
table options are supported

– dynamic or dyn which causes the predicate(s) to be treated as dynamic in addi-
tion to being tabled, and is equivalent to ?- dynamic PredSpec 18

– subsumptive which causes the table evaluation method of the predicate(s) to
use call subsumption.

– variant which causes the table evaluation method of the predicate(s) to use
call variance.

– incremental which causes the table evaluation method of the predicate(s) to
be incremental.

18Because dynamic is an operator, the declaration requires parentheses, e.g.: table p/n as (dynamic).

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 215

– opaque which indicates that the tables predicate is used in the definition of an
incremental table, but are not to be incrementally maintained themselves.

– private which causes the predicate(s) to be treated as thread private in addition
to being tabled.

– shared which causes the predicate(s) to be treated as thread shared in addition
to being tabled.

If the directive

table PredList as Options.

is executed, various checks are performed on Options. These checks are (mostly) performed
before any predicates are declared as dynamic or options changed, and reduce the possibility
of leaving some p/n in PredList with inconsistent attributes.

• If a predicate in Predlist has been declared as incremental it may be changed to
opaque at any time; similarly, a predicate that is opaque may be changed to incremental

• If a predicate in Predlist has been declared to use call variance it may be changed to
use call subsumption at any time; similarly, a predicate that uses call subsumption may
be changed to use call variance.

• Otherwise, an attempt to change an attribute of p/n in PredList – i.e. whether p/n
is tabled or not, dynamic or not and thread-private or thread-shared – will throw a
permission error.

In addition, regardless of the state of predicates in PredList, if options contains an unsup-
ported set of declarations, a table error will be thrown (see Table 5.1 for a list of supported
and non-supported combinations of tabling modes and predicate properties). Options is
throws a table error in the following cases:

• Options contains dynamic and tabled or variant and opaque or incremental. Tabled
dynamic incremental code is not yet supported in XSB.

• Options contains incremental or opaque and subsumptive or shared

• Options contains both subsumptive and shared

• Options contains both variant and subsumptive

• Options contains both private and shared

• Options contains both incremental and opaque

Error Cases

Error cases are summarized as follows. Let Operations be of the form PredSpec or PredSpec
as Options. Then if

• PredSpec or is a variable or a comma list containing a variable

– instantiation error

• An element of PredSpec is neither a variable nor a comma list

– type error(callable,PredSpec)

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 216

• A predicate in PredSpec has been previously defined to be static or foreign and Options

contains dynamic or dyn

– permission error(modify,static predicate)

• Options is a variable or a list containing a variable

– instantiation error

• Options contains an element Option that isn’t a table option (as described above)

– domain error(table option,Option)

• Options contains a non-supported combination of elements (as described above)

– table error

• An option in Options would modify a predicate in predspec in a manner that is not
allowed (as described above)

– permission error

6.15.2 Predicates for Table Inspection

The user should be aware that skeletons that are dynamically created (e.g., by functor/3) are
located in usermod (refer to Section 3.4). In such a case, the tabling predicates below may not
behave in the desired manner if the tabled predicates themselves have not been imported into
usermod.

We maintain two running examples in this section for explanatory purposes. One uses variant-
based tabling:

Variant Example

Program Table

:- table p/2 as variant.

p(1,2).

p(1,3).

p(1,_).

p(2,3).

Subgoal Answer Set Status

p(1,Y) p(1,2) complete
p(1,3)
p(1,Y)

p(X,3) p(1,3) complete
p(2,3)

and the other uses subsumption-based tabling:

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 217

Subsumptive Example

Program Table

:- table q/2 as subsumptive.

q(a,b).

q(b,c).

q(a,c).

Subgoal Answer Set Status

q(X,Y) q(a,b) complete
q(b,c)
q(a,c)

q(a,Y) q(a,b) complete
q(a,c)

q(X,c) q(b,c) complete
q(a,c)

Note that in the subsumptive example, the subgoals q(a,Y) and q(X,c) are subsumed by, and
hence obtain their answers from, the subgoal q(X,Y).

get call(+CallTerm,-TableEntryHandle,-ReturnTemplate) Tabling

If call variance is used for the predicate corresponding to CallTerm, then this predicate
searches the table for an entry whose subgoal is a variant of CallTerm. If subsumption is
used, then this predicate searches for some entry that subsumes (properly or not) CallTerm.
In either case, should the entry exist, then the handle to this entry is assigned to the second
argument, while in the third, its return template is constructed. These latter two arguments
should be given as variables.

Error Cases

• CallTerm is not a callable term

– type error(callable term,CallTerm)

• CallTerm does not correspond to a tabled predicate

– permission error(table access,non-tabled predicate,CallTerm)

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 218

Example 6.15.3

Variant Predicate

| ?- get_call(p(X,Y),Ent,Ret).

no

| ?- get_call(p(1,Y),Ent,Ret).

Y = _h92

Ent = 136039108

Ret = ret(_h92);

no

| ?- get_call(p(X,3),Ent,Ret).

X = _h84

Ent = 136039156

Ret = ret(_h84);

no

| ?- get_call(p(1,3),Ent,Ret).

no

Subsumptive Predicate

| ?- get_call(q(X,Y),Ent,Ret).

X = _h80

Y = _h94

Ent = 136043988

Ret = ret(_h80,_h94);

no

| ?- get_call(q(a,Y),Ent,Ret).

Y = _h88

Ent = 136069412

Ret = ret(a,_h88);

no

| ?- get_call(q(X,c),Ent,Ret).

X = _h80

Ent = 136069444

Ret = ret(_h80,c);

no

get calls(#CallTerm,-TableEntryHandle,-ReturnSkeleton) Tabling
Identifies through backtracking each subgoal in the table which unifies with CallTerm. For
those that do, the handle to the table entry is assigned to the second argument, and its return
skeleton is constructed in the third. These latter two arguments should be given as variables.
The error terms are the same as for get calls/1.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 219

Example 6.15.4

Variant Predicate

| ?- get_calls(p(X,Y),Ent,Ret).

X = _h80

Y = 3

Ent = 136039156

Ret = ret(_h80);

X = 1

Y = _h94

Ent = 136039108

Ret = ret(_h94);

no

| ?- get_calls(p(X,3),Ent,Ret).

X = _h80

Ent = 136039156

Ret = ret(_h80);

X = 1

Ent = 136039108

Ret = ret(3);

no

| ?- get_calls(p(1,3),Ent,Ret).

Ent = 136039156

Ret = ret(1);

Ent = 136039108

Ret = ret(3);

no

Subsumptive Predicate

| ?- get_calls(q(X,Y),Ent,Ret).

X = a

Y = _h94

Ent = 136069412

Ret = ret(a,_h94);

X = _h80

Y = c

Ent = 136069444

Ret = ret(_h80,c);

X = _h80

Y = _h94

Ent = 136043988

Ret = ret(_h80,_h94);

no

| ?- get_calls(q(a,Y),Ent,Ret).

Y = _h88

Ent = 136069412

Ret = ret(a,_h88);

Y = c

Ent = 136069444

Ret = ret(a,c);

Y = _h88

Ent = 136043988

Ret = ret(a,_h88);

no

get calls for table(+PredSpec,?Call) Tabling
Identifies through backtracking all the subgoals whose predicate is that of PredSpec and
which unify with Call. PredSpec is left unchanged while Call contains the unified resultant.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 220

Example 6.15.5

Variant Predicate

|?- get_calls_for_table(p(1,3),Call).

Call = p(_h142,3);

Call = p(1,_h143);

no

| ?- get_calls_for_table(p/2,Call).

Call = p(_h137,3);

Call = p(1,_h138);

no

Subsumptive Predicate

| ?- get_calls_for_table(q(X,Y),Call).

X = _h80

Y = _h94

Call = q(a,_h167);

X = _h80

Y = _h94

Call = q(_h166,c);

X = _h80

Y = _h94

Call = q(_h166,_h167);

no

get returns(+TableEntryHandle,#ReturnSkeleton) Tabling
Backtracks through the answers for the subgoal whose table entry is referenced through
the first argument, TableEntryHandle, and instantiates ReturnSkeleton with the variable
bindings corresponding to the return.

The supplied values for the entry handle and return skeleton should be obtained from some
previous invocation of a table-inspection predicate.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 221

Example 6.15.6

Variant Predicate

| ?- get_calls(p(X,3),Ent,Ret),

get_returns(Ent,Ret).

X = 2

Ent = 136039156 % p(X,3)

Ret = ret(2);

X = 1

Ent = 136039156

Ret = ret(1);

X = 1

Ent = 136039108 % p(1,Y)

Ret = ret(3);

X = 1

Ent = 136039108

Ret = ret(3);

no

Subsumptive Predicate

| ?- get_calls(q(a,c),Ent,Ret),

get_returns(Ent,Ret).

Ent = 136069412 % q(a,Y)

Ret = ret(a,c);

Ent = 136069444 % q(X,c)

Ret = ret(a,c);

Ent = 136043988 % q(X,Y)

Ret = ret(a,c);

no

| ?- get_calls(q(c,a),Ent,Ret),

get_returns(Ent,Ret).

no

get returns(+TableEntryHandle,#ReturnSkeleton,-ReturnHandle) Tabling
Functions identically to get returns/2, but also obtains a handle to the return given in the
second argument.

get returns for call(+CallTerm,?AnswerTerm) Tabling
Succeeds through backtracking for each answer of the subgoal CallTerm which unifies with
AnswerTerm. Fails if CallTerm is not a subgoal in the table or AnswerTerm does not unify
with any of its answers or the answer set is empty.

The answer is created in its entirety, including fresh variables; the call is not further instan-
tiated. However, an explicit unification of the call with its answer may be performed if so
desired.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 222

Example 6.15.7

Variant Predicate

| ?- get_returns_for_call(p(1,Y),

AnsTerm).

Y = _h88

AnsTerm = p(1,_h161);

Y = _h88

AnsTerm = p(1,3);

Y = _h88

AnsTerm = p(1,2);

no

| ?- get_returns_for_call(p(X,Y),

AnsTerm).

no

| ?- get_returns_for_call(p(1,2),

AnsTerm).

no

Subsumptive Predicate

| ?- get_returns_for_call(q(a,Y),

AnsTerm).

Y = _h88

AnsTerm = q(a,c);

Y = _h88

AnsTerm = q(a,b);

no

| ?- get_returns_for_call(q(X,c),

AnsTerm).

X = _h80

AnsTerm = q(b,c);

X = _h80

AnsTerm = q(a,c);

no

get residual(#CallTerm,?DelayList) Tabling

variant get residual(#CallTerm,?DelayList) Tabling
get residual/2 backtracks through the answer set of each completed subgoal in the table that
unifies with CallTerm. With each successful unification, this argument is further instantiated
as well as that of the DelayList.

Example 6.15.8 For the following program and table

:- table p/2.

p(1,2).

p(1,3):- tnot(p(2,3)).

p(2,3):- tnot(p(1,3)).

Call Returns

p(1,X) p(1,2)
p(1,3):- tnot(p(2,3))

p(1,3) p(1,3):- tnot(p(2,3))

p(2,3) p(2,3):- tnot(p(1,3))

the completed subgoals are p(1,X), p(1,3), and p(2,3). Calls to get residual/2 will act
as follows

| ?- get_residual(p(X,Y),List).

X = 1 % from subgoal p(1,X)

Y = 2

List = [];

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 223

X = 1 % from subgoal p(1,X)

Y = 3

List = [tnot(p(2,3))];

X = 1 % from subgoal p(1,3)

Y = 3

List = [tnot(p(2,3))];

X = 2 % from subgoal p(2,3)

Y = 3

List = [tnot(p(1,3))];

no

Since the delay list of an answer consists of those literals whose truth value is unknown in
the well-founded model of the program (see Chapter 5) get residual/2 is useful to examin
the residual program (e.g. for XASP).

For other purposes, it may be desired to examine the answers for a particular call – not for all
calls that unifiy with CallTerm. In this case, variant get residual/2 can be used, which
backtracks through all answers for CallTerm if CallTerm is a tabled subgoal with answers,
and fails otherwise. For the above example, variant get residual/2 behaves as follows:

| ?- variant_get_residual(p(X,Y),List).

no

| ?- variant_get_residual(p(1,Y),List).

X = 1 % from subgoal p(1,X)

Y = 2

List = [];

X = 1 % from subgoal p(1,X)

Y = 3

List = [tnot(p(2,3))];

no

Error Cases

• CallTerm is not a callable term

– type error(callable term,CallTerm)

• CallTerm does not correspond to a tabled predicate

– permission error(table access,non-tabled predicate,CallTerm)

table state(+CallTerm,?PredType,?CallType,?AnsSetStatus) Tabling

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 224

table state(+TableEntryHandle,?PredType,?CallType,?AnsSetStatus) Tabling
Succeeds whenever CallTerm is a subgoal in the table, or TableEntryHandle is a valid refer-
ence to a table entry, and its predicate type, the type of the call, and the status of its answer
set, unify with arguments 2 through 4, respectively.

XSB defines three sets of atomic constants, one for each parameter. Taken together, they
provide a detailed description of the given call. The valid combinations and their specific
meaning is given in the following table. Notice that not only can these combinations describe
the characteristics of a subgoal in the table, but they are also equipped to predict how a new
goal would have been treated had it been called at that moment.

PredType CallType AnsSetStatus Description

complete Self explanatory.
An incremental table that has been

producer incremental needs reeval invalidated, and is therefore inconsistent
with a KB and needs recomputation.

variant incomplete Self explanatory.
no entry undefined The call does not appear in the table.

complete Self explanatory.
producer

incomplete Self explanatory.
The call is in the table and is properly

complete
subsumed by a completed producer.

subsumed
The call is in the table and is properly

incomplete
subsumed by an incomplete producer.
The call is not in the table, but if it were

subsumptive complete to be called, it would consume from a
completed producer.
The call is not in the table, but if it had

no entry incomplete been called at this moment, it would
consume from an incomplete producer.
The call is not in the table, but if it had

undefined been called at this moment, it would be
a producer.

undefined undefined undefined The given predicate is not tabled.

table dump(#Term,+OptionList) module: dump table
table dump(+Stream,#Term,+OptionList) module: dump table

table dump/[2,3] provides an easy method to view subgoals and answers that are present
in a table. Given an input Term, table dump/[2,3] provides information about all tabled
subgoals that are subsumed by Term; if Term is a variable, information about all tables is
provided.

The information is provided at three levels of aggregation, and the form of the information
is determined by the options in OptionsList.

• If the option summary(true) is set, the aggregate number of subgoals and answers that
are subsumed by Term is collected, along with the aggregate number of calls to these
subgoals. If Term is a variable this information is broken down by tabled predicates.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 225

– If details(answers) is set, a list is collected of all subgoals S such that S is
subsumed by Term along with the number of answers for each S and a list of those
answers. If Term is a variable this information is broken down by tabled predicates.

– If details(subgoals) is set, a list is collected of all subgoals S such that S is
subsumed by Term along with the number of answers for each S. However, unlike
the action for details(answers) the actual list of answers for S is not returned. If
Term is a variable this information is broken down by tabled predicates.

– If details(false) is set, no detail information is provided for the actual subgoals
or their answers.

• If OptionsList contains the option results(X) for some variable X, X will be instanti-
ated upon backtracking to all infomation collected about the tables.

• If the option output(true) is set, the information is written to Stream or to userout

in Prolog-readable form.

If not otherwise specified the default options are summary(true), details(false), output(true).

Example Consider the program:

:- table p/2.

p(1,a).

p(1,b) :- p(2,b).

p(2,b) :- p(1,a).

p(3,X) :- q(X).

:- table q/1.

q(1). q(2).

:- table r/1.

r(a).

:- table s/2.

s(1,a). s(2,b). s(1,a1). s(2,b1).

and suppose the top-level query ?- p(X,Y) has been made. Then table dump/2 provides the
following information (reformatted for readability):

| ?- table_dump(_X,[summary(true)]).

summary = p(A,B) - subgoals(3) - total_times_called(4) - total_answers(7)

X = p(_h243,_h244);

summary = q(A) - subgoals(1) - total_times_called(1) - total_answers(2).

X = q(_h228)

yes

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 226

| ?- table_dump(_X,[details(answers)]).

summary = p(A,B) - subgoals(3) - total_times_called(4) - total_answers(7).

details = p(A,B) - subgoals(3) - details([

p(C,D) - times_called(1) - answers(5) - [p(3,1),p(3,2),p(2,b),p(1,b),p(1,a)] - completed,

p(1,a) - times_called(2) - answers(1) - [p(1,a)] - completed,

p(2,b) - times_called(1) - answers(1) - [p(2,b)] - completed]).

X = p(_h232,_h233);

summary = q(A) - subgoals(1) - total_times_called(1) - total_answers(2).

details = q(A) - subgoals(1) - details([

q(B) - times_called(1) - answers(2) - [q(2),q(1)] - completed]).

X = q(_h232)

yes

As the above example shows, each line of the summary has the form:

summary =
Pred/Goal - subgoals(Nsubgoals) - total times called(Ncalled) - total answers(Nanswers)

where

• Pred/Goal is either a term indicator, if the Term argument of table dump/[2,3] was a
variable (to indicate there should be no filtering of tabled calls); or Term itself.

• Nsubgoals are the total number tabled subgoals that are subsumed by Pred/Goal (perhaps
including Pred/Goal itself).

• Ncalled is the total number of times all subgoals subsumed by Pred/Goal have been
called.

• Nanswers is the total number of answers currently derived by all subgoals subsumed by
Pred/Goal.

Each line of details has the form:

Details =
Pred/Goal - subgoals(Nsubgoals) - details(List)

where Pred/Goal and Nsubgoals are as above. If details(answers) was an input option

List =
Subgoal - times called(Ncalled) - answers(Nanswers) - List of Answers - Status

for each Subgoal in the table subsumed by Pred/Goal. Ncalled and Nanswers are as above,
while List of Answers contains all those answers currently derived for Subgoal. On the other
hand, if details(subgoals) was an input option

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 227

List =
Subgoal - times called(Ncalled) - answers(Nanswers) - Status

where all elements are as before. Finally Status is

• completed if Subgoal has been completed; and

• scc(NSCC) if Subgoal is incomplete. NSCC is relative: if NSCC is greater than MSCC

then NSCC is a descendent of MSCC : i.e., subgoals in SCC MSCC depend on subgoals
in SCC NSCC . However, these numbers should only be used relatively: at a given state
in the computation there may be fewer than MSCC Sccs 19.

Error Cases

• OptionList is a variable, or contains a variable as an element

– instantiation error

• OptionList is not a list

– type error(list,OptionList)

• OptionList contains an element, O, that is not a valid table dump option.

– domain error(table dump option,O)

print incomplete tables(+Stream or alias) module: tables
print incomplete tables module: tables

These predicates, which can be useful for debugging purposes, print out each incomplete
subgoal in the current state, followed by the ordinal number of the SCC to which that subgoal
belongs. This information describes the dependencies among tabled predicates. In local
evaluation (the default evaluation method for XSB) all subgoals in SCC m depend on all
subgoals in SCC n if m < n. Furthermore, all subgoals in a given SCC depend on one
another 20.

In print incomplete tables/0, the information is output to stddbg.

Example: For the program

:- table q/2.

q(0,_):- !,print_incomplete_tables.

q(3,A):- q(5,A).

q(N,A):- N1 is N - 1,q(N1,A).

the goal ?- q(5,foo) will produce the output

19XSB keeps track of SCCs through an algorithm similar to depth-first search: the numbers associated with subgoals
are the depth-first numbers of the minimal back-dependency of a subgoal (cf. [59])

20This assumes that there is no early completion, which can remove dependencies. In batched evaluation, the
dependencies are less exact – see [59] for details, as SCCs represent a dag of dependencies rather than a chain as in
local evaluation.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 228

q(5, foo)- scc(1).

q(4, foo)- scc(1).

q(3, foo)- scc(1).

q(2, foo)- scc(2).

q(1, foo)- scc(3).

q(0, foo)- scc(4).

Error Cases (print incomplete tables/1)

• Stream or alias is a variable

– instantiation error

• Stream or alias is neither a variable, nor a stream term nor an alias.

– domain error(stream or alias,Stream or alias)

• Stream or alias is not associated with an open stream

– existence error(stream,Stream or alias)

6.15.3 Deleting Tables and Table Components

The following predicates are used to semantically invalidate tables and/or reclaim their space.
The use of the word “tables” in this section is rather unspecific. For the purpose of deletion
a table can either refer to a single subgoal and its answers, or to all subgoals and answers
for a tabled predicate. Predicates are provided to invalidate tables not only for particular
predicates and subgoals, but for all tabled predicates, all tabled predicates in a module, and
in the multi-threaded engine all thread-private tabled predicates or all thread-shared tabled
predicates. Overall, these predicates share similar characteristics.

First, an incomplete tabled subgoal S may not be abolished by the user except under special
circumstances described below. This restriction is made since if S is incomplete there may
be pointers to S from various elements of the current execution environment, and removing
all of these pointers may be difficult to do. If one of the deletion predicates is called when
the current execution environment contains a reference to a completed table that is being
abolished, space for the abolished information is not immediately reclaimed. More precisely,
if the current global tabling envonment (including suspended states) has either

• a choice point that points to an answer A;

• or a (heap) delay list that points to a subgoal S

we say that A or S is active. Also, since tables can be abolished and rederived during the
course of an evaluation, the table deletion system marks the tables with versions. Accordingly,
if a tabled predicate Pversion or subgoal Sversion to be abolished has an answer that is active
in the current environment, reclamation of space for that version of P or S will be delayed
until no answers for Pversion or Sversion are active. New calls to P or S, however, will derive
a new table versions, rather than using the abolished information.

When conditional answers are present, abolishing a specific table or call may lead to semantic
or implementational complications. Consider the conditional answer r(a,b):- undef| from

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 229

Figure 6.1. If the predicate r/2 (or subgoal r(a,X)) is abolished and later rederived, the
rederivation of r(a,X) might have different semantics than the original derivation (e.g. if
undef depended on a dynamic predicate whose definition has changed). From an implemen-
tation perspective, if space for r(a,X)) is reclaimed, then the call get residual(p(a,X),Y)

may core dump, even if there are no choice points for completed tables anywhere in the
choice point stack. To address this problem, by default abolishing a subgoal S (predicate P)
will abolish all ‘vsubgoals (predicates) that (transtively) depend on S (P) 21. In this case
the goal abolish table call(r(a,X)) would cause the deletion of p(a,X) while the goal
abolish table pred(r/2) would cause the deletion of p/2, since there are tabled subgoals
of p/2 that depend on r/2. Only dependencies from subgoals or answers to the answers that
are conditional on them are taken into account for table deletion: thus the deletion r(a,X)

deletes p(a,X), but not undef.

Users with programs that give rise to conditional answers in completed tables are encouraged
to maintain this default behavior. However the default behavior may be changed either by
setting a Prolog flag:

?- set_prolog_flag(table_gc_action,abolish_tables_singly).

or by calling a 2-ary abolish command with abolish tables singly in the options list.

Program Table

:- table p/2, r/2.

p(X,Y):- r(X,Y).

r(a,b):- undef.

r(a,c):- undef.

r(a,d):- undef.

r(a,e):- undef.

:- table s/0, t/0.

s:- tnot(t).

t:- tnot(undef).

:- table undef/0.

undef :- tnot(undef).

Subgoal Answer Set Status

p(a,X) p(a,b):- r(a,b)| complete
p(a,c):- r(a,c)|

p(b,X) p(b,d):- r(b,d)| complete
p(b,d):- r(b,e)|

r(a,X) r(a,b):- undef| complete
r(a,c):- undef|

r(b,X) r(b,d):- undef| complete
r(b,d):- undef|

s s:- tnot(t)| complete

t t:- tnot(undef)| complete

undef undef:- tnot(undef)| complete

Figure 6.1: Example for Deleting Tables (Call-Variance)

In the multi-threaded engine abolishing tables private to a thread behaves exactly as in the
sequential engine, regardless of whether the tables are complete or incomplete, or contain
conditional answers. In addition, when a thread T exits (by normal termination or via an

21Dao Tran Minh contributed to implementing this functionality.

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 230

exception), tables private to T are abolished automatically and their space reclaimed, as are
any incomplete shared tables owned by T in local evaluation. Shared tables can be abolished
by the user at any time, but their space will not be reclaimed until there is a single active
thread.

As mentioned above, during normal execution, an incomplete tabled subgoal may not be
abolished by the user, a restriction that is made to ensure correct evaluations. Accordingly,
calling an abolish xxx predicate when tables are incomplete raises an error. However, we
note that any incomplete tables are abolished automatically by the system on exceptions (by
the default system error handler) when the interpreter level is resumed.

Table Deletion Predicates

abolish table pred(+Pred) Tabling
Invalidates all tabled subgoals for the predicate denoted by the predicate or term indi-
cator Pred. If any subgoal for Pred contains an answer A that is active in the current
enviornment, Pred space reclamation for the Pred tables will be delayed until A is no
longer active; otherwise the space for the Pred tables will be reclaimed immediately.

If Pred has a subgoal that contains a conditional answer, the default behavior will be to
transitively abolish any tabled predicates with subgoals having answers that depend on
any conditional answers of S. This default may be changed either by setting a Prolog
flag:

?- set_xsb_flag(table_gc_action,abolish_tables_singly).

or by calling abolish table pred/2 with the appropriate option. If the transitive abol-
ishes are turned off, and Pred contains a conditional answer, the warning

abolish table pred/[1,2] is deleting a table with conditional answers:

delay dependencies may be corrupted.

will be issued.

In the multi-threaded engine, if Pred is shared, reclamation for Pred will be delayed until
there is a single active thread and no answer in Pred is active in the current execution
environment. Otherwise, the behavior of abolish table pred/1 is the same as in the
sequential engine.

Finally, abolish table pred/1 will throw an error if the predicate to be abolished is
incremental. This is because abolishing some incremental tables but not others will
leave dangling pointers in the data structures used for uncremental updates. Until
abolish table pred/[1,2] is extended to support incremental tables, use abolish table call/[1,2]

or abolish all tables/0.

Error Cases

• Pred is not instantiated

– instantiation error

• PredSpec is not a predicate indicator or a term indicator

– domain error(predicate or term indicator,Pred)

• PredSpec does not indicate a tabled predicate

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 231

– table error

• There is currently an incomplete table for an atomic subgoal of Pred

– table error

abolish table pred(+CallTerm,+Options) Tabling
Behaves as abolish table pred/1, but allows the default table gc action to be over-
ridden with a flag, which can be either abolish tables transitively or abolish tables singly.

Error Cases Error cases are the same as abolish table pred/1 but with the additions:

• Options is a variable, or contains a variable as an element

– instantiation error

• Options is not a list

– type error(list,Options)

• Options contains an option O that is not a table abolish option.

– domain error([abolish tables transitively, abolish tables singly,O)

abolish table call(+CallTerm) Tabling
Invalidates all entries from the table for any subgoals that unify with CallTerm. If a
subgoal S unifying with CallTerm contains an answer A that is active in the current
enviornment, the table entry for S will not be reclaimed until A is no longer active;
otherwise the space for S will be reclaimed immediately.

If S contains a conditional answer, the default behavior will be to transitively abolish
any subgoals that depend on any conditional answers of S. This default may be changed
either by setting an XSB flag:

?- set_xsb_flag(table_gc_action,abolish_tables_singly).

or by calling abolish table call/2 with the appropriate option. If the transitive abol-
ishes are turned off, and S contains a conditional answer, the warning

abolish table call/1 is deleting a table with conditional answers:

delay dependencies may be corrupted.

will be issued.

In the multi-threaded engine, if S is a subgoal for a predicate that is shared, reclamation
for S will be delayed until there is a single active thread and no answer in S is active in
the current execution environment. Otherwise, the behavior of abolish table call/1

is the same as in the sequential engine on tabled predicates that are thread-private.

abolish table call/[1,2] also cascades abolishes for incremental tables. If a call G
is abolished, all calls that G depends on will also be abolished, so that the dependency
structures that support incremental tabling will remain in a consistent state.

Error Cases

• The term spec CallTerm does not correspond to a tabled predicate:

– table error

• The term spec CallTerm unifies with a tabled subgoal that is incomplete:

– table error

• The term spec CallTerm is a cyclic term::

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 232

– table error

abolish table call(+CallTerm,+Options) Tabling
Behaves as abolish table call/1, but allows the default table gc action to be over-
ridden with a flag, which can be either abolish tables transitively or abolish tables singly.

Error Cases Error cases are the same as abolish table call/1 but with the additions:

• Options is a variable, or contains a variable as an element

– instantiation error

• Options is not a list

– type error(list,Options)

• Options contains an option O that is not a table abolish option.

– domain error([abolish tables transitively, abolish tables singly,O)

abolish all tables Tabling
In the single-threaded engine, removes all tables presently in the system and frees all the
memory held by XSB for these structures. Predicates that have been declared tabled re-
main so, but information in their table is deleted. abolish all tables/0 works directly
on the memory structures allocated for table space. This makes it very fast for abolishing
a large amount of tables, and to maintain its speed it throws an error if any completed
answer A is active in the current execution environment. abolish all tables/0 can be
used regardless of whether there are incremental tables, or tables that use call or answer
subsumption.

In the multi-threaded engine abolish all tables/0 raises an error unless it is called
when there is a single active thread. In that case, all shared tables are abolished as
well as all private tables for the main thread. An error will be thrown if any completed
answer A is active in the current environment, regardless of whether A is thread-private
or thread-shared.

Error Cases

• There are incomplete tables at the time of the predicate’s call;

– table error

• The current execution environment has an active answer A

– table error

• (Multi-threaded engine only) More than one thread is active:

– table error

abolish all private tables Tabling
In the multi-threaded engine, removes all tables private to the thread and frees all
the memory held by XSB for these structures, including space for conditional answers.
Predicates that have been declared tabled remain so, but information in their table
is deleted. abolish all private tables/0 works directly on the memory structures
allocated for table space. This makes it very fast for abolishing a large amount of tables,
and to maintain its speed it throws an error if any completed answer A for a private
table is active in the current execution environment.

Error Cases

• There are incomplete tables at the time of the predicate’s call;

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 233

– table error

• The current execution environment for the thread has an active answer A for a
private table.

– table error

abolish all shared tables Tabling
In the multi-threaded engine, removes all tables private to the thread and frees all
the memory held by XSB for these structures, including space for conditional answers.
Predicates that have been declared tabled remain so, but information in their table
is deleted. abolish all private tables/0 works directly on the memory structures
allocated for table space. This makes it very fast for abolishing a large amount of tables,
and to maintain its speed it throws an error if any completed answer A for a private
table is active in the current execution environment. abolish all shared tables/0

raises an error unless it is called when there is a single active thread. In that case, all
shared tables are abolished, but private tables for the main thread are unaffected.

Error Cases

• There are incomplete tables at the time of the predicate’s call;

– table error

• The current execution environment has an active answer A

– table error

• More than one thread is active:

– table error

abolish module tables(+Module) Tabling
Given a module name (or the default module, usermod), this predicate abolishes all
tables for each tabled predicate in Module. It is implemented using a series of calls to
abolish table pred/1 and so inherits the behavior of that predicate.

gc tables(-Number) Tabling
When a tabled subgoal or predicate is abolished, reclamation of its space may be post-
poned if the subgoal or predicate has an answer that is active in the current environment.
A garbage collection routine is called at various points in execution to check which an-
swers are active in the current environment, and to reclaim the space for subgoals and
predicates with no active answers. In particular, space for all abolished tables is re-
claimed whenever the engine re-executes the main command-line or C thread interpreter
code. However for certain applications this strategy may not be adequate. For this
reason, the user can explicitly call the table garbage collector to reclaim space for any
deleted tabled predicates or subgoals that no longer have active answers.

gc tables/1 always succeeds, unifying Number to −1 if garbage collection was not at-
tempted (due to multiple active threads) and otherwise to the number of tables still
unreclaimed at the end of garbage collection.

Error Cases

• Number is not a variable

– type error(variable)

CHAPTER 6. STANDARD PREDICATES AND PREDICATES OF GENERAL USE 234

delete return(+TableEntryHandle,+ReturnHandle) Tabling
Removes the answer indicated by ReturnHandle from the table entry referenced by
TableEntryHandle. The value of each argument should be obtained from some previous
invocation of a table-inspection predicate.

This predicate is low-level so no error checking is done. In Version 3.3, this predicate
does not reclaim space for deleted returns, but simply marks the returns as invalid.

Warning: While useful for purposes such as tabled aggregation, delete return/2 can
be difficult to use, both from an implementation and semantic perspective.

invalidate tables for(+DynamicPredGoal,+Mode) Tabling
This predicate supports invalidation of tables. Tables may become invalid if dynamic
predicates on which they depend change, due to asserts or retracts. By default XSB
does not change or delete tables when they become invalid; it is the user’s responsibility
to know when a table is no longer valid and to use the abolish table * primitives to
delete any table when its contents become invalid.

This predicate gives the XSB programmer some support in managing tables and delet-
ing them when they become invalid. To use this predicate, the user must have previ-
ously added clauses to the dynamic predicate, invalidate table for/2. That predicate
should be defined to take a goal for a dynamic predicate and a mode indicator and abol-
ish (some) tables (or table calls) that might depend on (any instance of) that fact.
invalidate tables for(+DynamicPredGoal),+Mode simply backtracks through calls to
all unifying clauses of
invalidate table for(+DynamicPredGoal,+Mode). The Mode indicator can be any
term as long as the two predicates agree on how they should be used. The intention is
that Mode will be either ’assert’ or ’retract’ indicating the kind of database change being
made.

Consider a simple example of the use of these predicates: Assume the definition of tabled
predicate ptab/3 depends on dynamic predicate qdyn/2. In this case, the user could
initially call:

:- assert((invalidate_table_for(qdyn(_,_),_) :-

abolish_table_pred(ptab(_,_,_)))).

to declare that when qdyn/2 changes (in any way), the table for ptab/3 should be
abolished. Then each time a fact such as qdyn(A,B) is asserted to, or retracted from,
qdyn/2, the user could call

:- invalidate_table_for(qdyn(A,B),_).

The user could use the hook mechanisms in XSB (Chapter 9) to automatically invoke
invalidate tables for whenever assert and/or retract is called.

Chapter 7

Multi-Threaded Programming in XSB

id with Version 3.0, XSB supports the use of POSIX threads to perform separable computations,
and in certain cases to parallelize them. POSIX threads have a simple and clear API, and are
available on all Unixes and by using open-source libraries, on Windows as well (see Section 7.8 to
configure under Windows). This chapter introduces how to program with threads in XSB through a
series of examplesi sections discuss performance aspects of our implementation as well as describing
relevant predicates. A general knowledge of multi-threaded programming is assumed, such as can
be found in [44, 8].

7.1 Getting Started with Multi-Threading

In Version 3.3 the default configuration of XSB does not include multi-threading. This is partly
because multi-threading is new, and despite our efforts, the multi-threaded engine may contain
bugs not present in the single-threaded engine. However the main reason is because in Version
3.3, not all libraries and packages have yet been made thread-safe so that not all configurations
are supported with multi-threading. Both the XSB-calling-C and the C-calling-XSB interfaces are
supported in the multi-threaded engine. All XSB libraries have been ported to the multi-threaded
engine except the profiling library and the string library (which is not yet thread-safe). The
packages ODBC and CHR, FLORA-2, and regmatch are supported by the multi-threaded engine, but
the packages dbdrivers, xpath, interprolog, smodels, perlmatch, libwww and posix are not
yet fully supported. We note, however that all basic/ISO Prolog functionality is thread-safe (at
least, as far as we know :-).

With this in mind, making the multi-threaded engine is simple: configure and make XSB as in
Chapter 3, but include the command --enable-mt. When you invoke the newly made configuration
of XSB you should see engine: multi-threading in the configuration list below the banner rather
than engine: slg-wam as in the sequential engine.

Hello World for Beginners We naturally start with a program to print “hello world”. Within
the multi-threaded engine, import thread create/2 from the module thread, and type the com-

235

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 236

mand

?- thread create(writeln(’hello world’),Id)

you should see something like

Id = 1hello world

while the output is a little ugly, the “hello world” program does illustrate simple multi-threading
at work. The calling thread (i.e. the thread controlling the command-line interpreter which we call
Tprompt) executes the predicate thread create/2 which creates a thread Tchild and immediately
returns with the XSB thread id of the created thread. Meanwhile, Tchild initializes its stacks and
other memory areas and executes the goal writeln(’hello world’). Tchild and Tprompt share most
of their process-level information: in particular they share a common I/O stream for standard
output, leading to the output above. What is happening may be seen a little more easily by
executing the command

?- thread create((sleep(1),writeln(’hello world’)),Id)

In this case the interpreter reports that F is bound to a thread id, then about a second later
writeln/1 is executed.

The simple “hello world” program illustrates a couple of points. First, it is easy to create a
thread in XSB and have that thread do work. Second, it can be tricky to coordinate actions among
threads. We’ll explore these two themes in more detail, but first suppose we are determined to
extend out multi-threaded program so that it produces good output. One way to do this is to join
Tprompt and Tchild as follows

?- thread_create(writeln(’hello world’),Id),

thread_join(Id,ExitCode).

hello world

Id = 1

ExitCode = true

In this case, as soon as Tprompt has issued a command to create Tchild, it executes thread join/2.
This latter predicate makes a system call to the underlying operating system to suspend Tprompt

until Tchild has exited. thread join/2 returns a status term indicating whether the goal to thread
Id succeeded, failed, exited with an error term, or was cancelled (in this case Id succeeded).

So far, we’ve introduced a few concepts that have not been fully discussed. First is the concept
of an XSB thread id: XSB manages up to M active threads using XSB thread ids. The default for
M in Version 3.3 is 1024, but M can be reset via the max threads command line option to XSB
(cf. Section 3.7). Once XSB is initialized, the maximum number of threads for an XSB session can
be obtained at run time via the Prolog flag max threads (cf. Section 6.12). It should be noted
that the XSB thread id of a thread is different from the identifier of the underlying Pthread. An

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 237

XSB thread id is a Prolog term, and unlike POSIX thread ids, XSB thread ids can be compared
for equality using unification. The actual form of an XSB thread id, however, is subject to change
between versions, so programs should not make use of the exact form of an XSB thread id. In
the multi-threaded engine, the XSB thread id of any thread can be queried using the predicate
thread self/1.

7.2 Communication among Threads

Example 7.2.1 Consider the program fragment

:- dynamic p/1.

test:- thread_create(assert(p(1)),_X).

If you type the goal ?- test and then the goal ?- p(X), the call p(X) will fail.

This illustrates an important point about dynamic and tabled predicates in the multi-threaded
engine: by default clauses for a dynamic predicate p/n are private to the thread that asserts them;
and by default tables created in an evaluation of a goal for p/n are private to the thread that
evaluates the goal. This behavior contrasts to that of static code which is always shared between
threads. In the example above, to allow p(1) to be visible to various threads, p/1 must be declared
to be shared with the following declaration.

:- table p/1 as shared.

or

:- dynamic p/1 as shared.

Alternately, dynamic and tabled predicates can be made thread-shared by default by invoking
XSB with the command-line argument --shared predicates, in which case a predicate may be
declared thread-private through the declaration

:- table p/1 as private.

or

:- dynamic p/1 as private.

The ability to share dynamic code between predicates provides an extremely powerful mecha-
nism for threads to communicate. So why does XSB make dynamic predicates thread-private by
default? The main reason for this is that if dozens or hundreds of threads are running concurrently,
shared dynamic code becomes an expensive synchronization point. Code for shared predicates

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 238

must be more heavily mutexed than code for private predicates. In the case of dynamic code,
XSB does not always immediately reclaim the space of retracted clause, to avoid the possibility of
some computation backtracking into a clause that has been reclaimed. Rather, (like most Prologs),
XSB may decide to garbage collect the space of the retracted clauses at a later time. While clause
garbage collection is simple enough to implement for a single thread, garbage collecting clauses
for shared dynamic predicates is difficult to do when multiple threads are active. Accordingly, in
Version 3.3, space for shared dynamic clauses is not reclaimed until there is a single active thread.
However for thread-private dynamic predicates, there is no problem in reclaiming space when mul-
tiple threads are active: from the engine’s perspective garbage collection is no different than in
the sequential case. Thus one set of reasons for making dynamic predicates private by default are
based on efficiency 1.

The second reason for making dynamic predicates thread-private by default is semantic. Sup-
pose thread T1 starts a tabled computation that depends on the dynamic shared predicate p/1.
While T1 is computing the table, thread T2 asserts a clause to p/1. T1’s table is likely to be in-
consistent, leading to the problem of read consistency of any table that depends on thread-shared
dynamic predicates. In Version 3.3, users are responsible for ensuring read consistency of any
tables that depend on shared dynamic data. Future versions of XSB are intended to allow more
sophisticated mechanisms for read consistency.

Not only can tables depend on thread-shared or thread-private dynamic data, but the tables
themselves may be thread-shared or thread-private. Like dynamic code, the declaration table

Predspec as shared allows sharing of tables for a predicate evaluated with call-variance to be
shared among threads 2. To some extent, tabling considerations for making a predicate thread-
shared or thread-private are like those of dynamic code. Thread-private tables require fewer syn-
chronization points overall. The situation for reclaiming space for abolished tables is analogous to
reclaiming space for retracted dynamic clauses: the garbage collector treats abolished tables for
thread-private predicates as in the sequential case, while space for shared tables is not reclaimed
until there is a single active thread. However the precise semantics of how tabling information is
shared depends on whether the multi-threaded engine is configured with the default local evaluation
or with batched evaluation. As discussed in Chapter 5, local evaluation is so-named because com-
putation always takes place in the SCC most recently created, and no answer is returned outside
of an SCC until the SCC has been completely evaluated. Within this scheduling strategy it is not
often useful to share answers between tables that have not been completed – as local evaluation
would allow these answers to be returned only if the tables were in the same SCC. This leads to
a concurrency semantics called Shared Completed Tables [48, 49, 51]. Shared Completed Tables
can in fact be supported by a relatively simple algorithm for optimistic concurrency control. If
goals to two mutually dependent tables Tablea and Tableb are called concurrently by two different
threads, Threada and Threadb, nothing is done until it is detected that Tablea and Tableb are both
incomplete and are contained in the same SCC of the table dependency graph. At that time, one of
the threads (e.g. Threada) takes over recomputation of all tables in the SCC, and when the SCC is
completed, any remaining answers are returned to other threads that had invoked goals in the SCC.
While Threada is completing this computation, Threadb suspends until the SCC is complete. Thus

1Future versions may offer more powerful garbage collectors for shared predicates.
2In Version 3.3, tabled predicates using call-subsumption are always private; an attempt to make such a predicate

thread-shared throws an exception.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 239

the semantics of Shared Completed Tables supports concurrency for the well-founded semantics,
but only supports the most coarse-grained parallelism.

Batched evaluation, on the other hand, allows answers to be returned outside of an SCC before
that SCC has been completed. Concurrency control for batched evaluation is similar to that for
local evaluation, except in the following case. Assume as before that Tablea, first called by Threada,
and Tableb first called by Threadb are determined to be in the same SCC, and that Threada takes
over computation of subgoals in the SCC. Now, Threadb, rather than suspending, may continue
work. In particular, Threadb can return any answers in Tableb that it finds whenever it finds them,
regardless of whether they have been produced by Threadb (before Threada took over the SCC)
or by Threada (afterwards). We call this type of concurrency semantics, Table Parallelism. Table
Parallelism can be used to program producer-consumer examples, as well as to implement Or- and
And- parallelism. Table Parallelism was first introduced in [26], but the mechanism now used for
implementing Table Parallelism differs significantly from what was described there. In Version 3.3
of XSB, the implementation of Table Parallelism is experimental: in particular, it does not yet
support tabled negation.

As mentioned, for either semantics of shared tables, in Version 3.3, users of thread-shared
tables are responsible for ensuring read consistency. Note that, in principle, thread-shared tables
may depend on thread-private tables and vice-versa. Either type of table may depend on thread-
private or thread-shared dynamic code. In addition, a predicate may be both dynamic and tabled,
and its clauses and tables may be either thread-private or thread-shared.

7.3 Thread Statuses: Joinable and Detached Threads

So far we have assumed that the goal called in thread create/2 terminates normally — by success
or failure. But what if a thread throws an error while executing a goal? How long should error
information for a thread persist, and how can it be checked?

Our approach relies on the semantics of Pthreads, which can be either joinable or detached.
Within this framework, we consider a thread to be valid if it has not yet terminated, or if it
is joinable and has not yet been joined. After a joinable Pthread Tdead has terminated, status
information about Tdead persists until some other thread joins it — at which time the information
is removed. On the other hand, if Tdead is detached, status information is removed as soon as Tdead

terminates. Reclamation of thread status information may be contrasted to that of thread-specific
data structures such as stacks. Upon normal or exceptional termination of Tdead, any memory
automatically allocated in the process of initializing Tdead’s, or executing its goal – including stacks,
private dynamic code, private tables is reclaimed. In addition, any mutexes held by Tdead, are
released. On the other hand, XSB-specific status information about threads follows the Pthread
model: by default, error information is available when joining a joinable thread, but not otherwise 3.

Example 7.3.1 Suppose the goal

?- thread_create(functor(X,Y,Z),F).

3This behavior can, of course, be overridden by embedding goals within catch/3 and handling errors separately,
or simply by adding a default user error handler: see Chapter 12 for details.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 240

is executed. By default, this will produce the result

X = _h113

Y = _h127

Z = _h141

F = 1++Error[XSB/Runtime/P]: [Instantiation] in arg 2 of predicate functor/3

In fact, the variable bindings are output to STDOUT, while the error message

++Error[XSB/Runtime/P]: [Instantiation] in arg 2 of predicate functor/3

is output to STDERR, and may be redirected. The call

?- thread_join(2,Error).

returns

Error = exception(error(instantiation_error, in arg 2 of predicate functor/3,

[[Forward Continuation...,... standard:call/1,... standard:catch/3],

Backward Continuation...]))

In other words, Error is instantiated to a exception/1 structure, containing a standard XSB error
term (including backtrace).

The error term in the above example is one example of a thread status term. In XSB, these thread
statuses are as follows.

• running The thread is still executing

• true The thread has exited and successfully evaluated its goal.

• false The thread has exited and failed its goal.

• exception(Exception) The thread has been terminated due to an uncaught exception, rep-
resented by the term Exception which is a standard XSB error term.

• cancelled(Exception) The thread has been terminated due to a thread cancellation, rep-
resented by the term Exception which is a standard XSB error term.

• exited(ExitTerm) The thread has been terminated using the predicate thread exit/1 with
ExitTerm as its argument.

Any of these statuses except running may be returned by thread join/2. In Prolog, the statuses
of exited threads provide much more information than C exit codes.

As with pthreads, XSB threads are created as joinable by default, but can be created as detached
using an option in thread create/3. Alternatively, a thread created as joinable can be made
detached by thread detach/1. All of the predicates mentioned in this section are fully described
in Section 7.9.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 241

7.4 Prolog Message Queues

While Prolog predicates can communicate through shared dynamic code and tables, message queues
provide a useful mechanism for one thread to pass a command to another or to synchronize on the
return of data. A Prolog message queue contains an arbitrary Prolog Term, and unification may be
used to obtain a term from a queue. More specifically, when a producer writes Term into a queue,
the term is copied into the queue so that no binding are shared between Term and the producer’s
stacks. Term may include structures or lists and need not be bound, and any variable bindings
within Term are preserved. When a consumer Tcons accesses the queue it provides a goal G and
traverses the queue until it finds a term in the queue that unifies with G. If Tcons finds a term in
the queue that unifies with G, it removes it from the queue and continues in its computation. If
there is no term in the queue that unifies with G, Tcons will suspend until at least one other term is
added to the queue. When it awakens it will retraverse the queue from the beginning to find a term
that unifies with G 4. Because of the behavior of message queues, it is usually good programming
practice to ensure that terms written into the queue will unify with the goals of consumers. This
can usually be done by abstracting a consumers goal (say to a variable, X) or by splitting one
“multiplexed” queue into two separate queues.

A Prolog message queue can be public or private: a public message queue can have any number
of readers and writers. In addition, each thread T also has a private message queue QT : any thread
can write to QT but only T can read from it. The following example illustrates how to use private
message queues:

test_private:-

thread_id(Tid),

thread_create(child(Tid),Id),

thread_get_message(’Mom Im home’(ChildId)),

thread_send_message(ChildId,’Im in the kitchen’),

thread_join(Id,_).

child(Parent):-

thread_self(Id),

thread_send_message(Parent,’Mom, Im home’(Id)),

thread_get_message(’Im in the kitchen’).

If ?- test is called by Tparent, it will obtain its own thread id, create a new thread Tchild to execute
child/1, wait for a message that Tchild is operational using thread get message/1, send a message
to Tchild using thread send message/2 and then wait for Tchild to terminate. When it is created,
Tchild immediately sends a message to its parent, waits for a message back from its parent, and
terminates.

It is illustrative to compare

test_public:-

4Note that this traversal is necessary since the position of Tcons may in the queue may not be valid due to the
addition and deletion of terms by other threads.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 242

message_queue_create(Qid)

thread_create(child(Qid),Id),

thread_get_message(Qid,’Mom Im home’(ChildQ)),

thread_send_message(ChildQ,’Im in the kitchen’),

thread_join(Id,_),

message_queue_destroy(Qid).

child(ParentQ):-

message_queue_create(Qid),

thread_send_message(ParentQ,’Mom, Im home’(Qid)),

thread_get_message(Qid,’Im in the kitchen’),

message_queue_destroy(Qid).

test public is essentially the same program as test private, but uses public message queues,
rather than private queues. The public queues must be explicitly created and destroyed, and they
are referred to via a queue id (or alias) rather than via a thread id (or alias). Like thread ids, queue
ids in XSB are integers, but a user should not depend on their precise form: aliases should be used
if a user wants control of queue or thread identifiers.

Thus, apart from who can read from them, private and public message queues have essen-
tially the same behavior. In addition, any queue can be created with a bound, size on the
number of messages (terms) it contains. If size is 0, the queue is taken to be unbounded. If
a bounded queue already contains size elements, the producer will suspend until one or more el-
ements are removed from the queue. For public queues, a size argument can be passed using the
predicate message queue create/2 (See Section 7.9). For private queues, and for public queues
created with message queue create/1, the value for size is taken from the settable Prolog flag
max queue terms. The default value for max queue terms is currently 100.

7.5 Thread Cancellation and Signalling

There may be a number of situations in which it is useful to give one thread the ability to cancel the
execution of another thread. Within the semantics of pthreads, this is called thread cancellation.
At the C level, thread cancellation can be tricky, as mutexes must be released, allocated memory
freed, and so on. Accordingly, the predicate thread cancel/1 cancels XSB threads by acting purely
within the SLG-WAM engine. When thread T1 interrupts thread T2, T1 writes to the thread-specific
XSB interrupt vector in T2. Later, when T2 checks its interrupt vector, it throws a cancellation
error, which causes it to clean up its mutexes, memory, private tables and dynamic code, and then
exit.

Thread cancellation is just a special case of Prolog thread signalling, in which one thread can
signl another thread to interrupt what it is doing and execute a goal 5. The following code provides
an example of thread signalling.

5Prolog thread signalling should be distinguished from signalling at the OS level where functions such as
pthread kill() or kill() are used.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 243

test_signal:-

thread_self(Tid),

thread_create(child(Tid),T1,[]),

thread_get_message(’Im alive’),

thread_signal(T1,writeln(’Excuse me, but did you just kick me?’)),

thread_join(T1,_Ball),

writeln(test5_ok).

child(Tid):-

thread_send_message(Tid,’Im alive’),

loop.

loop:- loop.

test signal begins like test private, but rather than waiting for a signal from its parent, the
child goes into an infinite loop. The signal interrupts the child, which writes out a message and
returns to the infinite loop.

Thread signals may be any callable Prolog term. As with private message queues, each thread
is created with its own private signal queue (there are no public signal queues). In XSB, threads
handle Prolog signal interrupts (including cancellation messages) at the same time as attributed
variable interruptions. This means that Prolog signal interrupts will be handled very quickly if
SLG-WAM code is being executed. On the other hand, if a thread executing a builtin to, e.g.
waiting on a mutex, the thread may be immediately awakened to process the signal, but not
always: if a thread is waiting for input on a stream or socket, the thread may not handle the signal
interrupt until the input is received. Furthermore, in a very few critical sections of code, thread
signal handling may be distabled. However, the thread is guarenteed to handle the signal interrupt
or cancellation message very shortly after it finishes the builtin.

So, while thread cancellation and signalling is useful, it must be used with a certain amount of
care. Any thread can signal any other thread, and any thread can cancel any other thread, with
the exception that the main thread, which controls the console (or interface to C or interprolog)
cannot be cancelled. The main thread always has XSB thread id 0 in both the single-threaded and
multi-threaded systems, and has the thread alias main.

7.6 Performance and other Considerations

For running programs that do not use multiple threads, the multi-threaded engine has a minimal
overhead compared to the single-threaded engine. Times for single-threaded execution of Prolog
or tabled programs range from about 10–20% slower to 10–20% faster for the multi-threaded en-
gine compared to the single-threaded engine. Speedups for running multiple threads on multiple
processors depends heavily on the applications run and on the underlying operating system.

The size of a given thread may be a consideration for multi-threaded applications, especially on
a 32-bit platform (the multi-threaded engine has been tested on both 32-bit and 64-bit platforms).
Each thread has an area of thread-private variables that are “global” to its own virtual machine.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 244

This area, called the thread context, which accounts for about 4 Kbytes of space. Much larger
are the various stacks used by the threads for tabled and Prolog execution. Almost all of XSB’s
memory areas are fully expandable, and the initial size of the execution stacks may be set explicitly
as options in thread create/3. Explicitly setting a default thread stack size for an XSB thread
to be smaller than the default process stack size may be useful for applications that have a large
number of concurrently running threads.

Other performance considerations involve the contention by threads for shared resources. As
discussed above, contention may arise when creating or abolishing tables, or when asserting or re-
tracting dynamic code — however in either case thread-private predicates give rise to less contention
than thread-shared predicates. In terms of I/O, each XSB stream up to the maximum number of
file descriptors has its own mutex; as a result threads writing to different streams will not contend
for I/O. Thus, in multi-threaded applications, it may be more efficient to open and close streams
and access these streams explicitly, than to redirect standard input or standard output through
see/1 and tell/1.

7.7 Examples of Multi-Threaded Programs in XSB

Figure 7.1 shows an example of a multi-threaded goal server in XSB, which makes use of XSB’s
socket library (see Volume 2 of this manual) 6. The server listens for requests from clients using
socket accept/2 and spawns a thread to handle each request via the goal accept client/2 which
actually calls the goals. The goals executed by the server could be tabled and take advantage of
the shared table implementation, shared dynamic code, or any other mechanism in XSB. Halting
of the server is done by the thread cancellation mechanism, and a shared dynamic predicate is used
to make the server’s thread identifier known to the other threads. Note that this is the reason a
specific thread was created to execute server loop, as the main thread cannot be canceled.

Figure 7.2!la uses a multi-threaded execution model to compute a series of prime numbers in
parallel 7, The master thread partitions the work and creates two worker threads. The worker
threads each compute its portion of the interval and return their results to the master through a
message queue.

Notice how the primes/2 predicate uses difference lists to avoid the use of the append predicate8,
and while threads don’t share variables, the bindings of the terms in the messages are correctly
handled, allowing Prolog’s unification to assume its full power. Although only two threads are
used, the program could easily be extended to use an arbitrary number of threads

7.8 Configuring the Multi-threaded Engine under Windows

Libraries for pthreads are included on most versions of Unix and Linux. Windows also supports
multi-threading, but with a somewhat different semantics and API than that of pthreads. To run

6Material in this section is based on [48].
7This example was inspired by a similar example for multi-threaded computation of primes in from Logtalk [52]
8For a description on how to program with difference lists see a Prolog programming text, such as[67]).

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 245

:- dynamic server id/1 as shared.

server :-

socket(SockFD),

socket set option(SockFD, linger, SOCK NOLINGER),

xsb port(XSBport),
socket bind(SockFD, XSBport),
socket listen(SockFD,Q LENGTH),

thread create(server loop(SockFD), Id, []),

assert(server id(Iden)),

thread join(Iden).

server loop(SockFD) :-

socket accept(SockFD, SockClient),
thread create(attend client(SockClient)),

server loop(SockFD).

attend client(SockClient) :-

socket recv term(SockClient, Goal),
(Goal == stop ->

retract(server id(Server)),

thread cancel(Server),

socket close(SockClient),

thread exit

; true

),

(is valid(Goal) ->

call(Goal),
socket send term(SockClient, Goal),
fail,

; socket send term(SockClient, invalid goal(Goal))
),

socket send term(SockClient, end),

socket close(SockClient).

Figure 7.1: A multi-threaded goal server in XSB

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 246

prime(P, I) :- I < sqrt(P),!.

prime(P, I) :- Rem is P mod I, Rem = 0, !, fail.

prime(P, I) :- I1 is I − 1, prime(P, I1).

prime(P) :- I is P − 1, prime(P, I).

list of primes(I, F, Tail, Tail) :- I > F, !.

list of primes(I, F, [I|List], Tail) :-

prime(I), !,

I1 is I + 1, list of primes(I1, F, List, Tail).
list of primes(I, F, List, Tail) :-

I1 is I + 1, list of primes(I1, F, List, Tail).

partition space(N, H, H1) :-

H is N//2, H1 is H + 1.

worker(Q, Iden, I, F, List, Tail) :-

list of primes(I, F, List, Tail),
thread send message(Q, primes(Iden,List,Tail)).

master(N, L) :-

partition space(N, H, H1),

message queue create(Q),

thread create(worker(Q, p1, 1, H, L, L1)),

thread create(worker(Q, p2, H1, N, L1, [])),

thread get message(Q, primes(p1,L,L1)),

thread get message(Q, primes(p2,L1,[])).

Figure 7.2: A multi-threaded program to calculate prime numbers in XSB

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 247

multi-threaded XSB under Windows, a library must be included to translate the Pthread library,
used by XSB, to the native thread API of Windows.

Different libraries are available for this purpose. Internally, the multi-threaded engine has been
tested using the Win32 pthreads interface, available via http://sourceware.org/pthreads-win32,
but other libraries may also work, including Pthread library included with Cygwin. To install the
sourceware library, let $XSBENV be the parent directory of $XSBDIR the root directory of XSB – i.e.
$XSBENV is the directory into which XSB is installed.

• Download a version such as pthreads-2005-01-25.exe or later, and extract it into $XSBENV

pthreads. Add $XSBENV\pthreads\Pre-built\lib to your system path

• To configure with windows enter the commands:

sh configure --enable-mt --with-wind \

--with-includes=’c:\XSBSYS\XSBENV\pthreads\Pre-built\include \

--with-static-libraries=’c:\XSBSYS\XSBENV\pthreads\Pre-built\lib

makexsb_wind

Note that the Unix sh shell must be available in order to reconfigure.

• To configure with cygwin enter the commands:

sh configure --enable-mt \

--with-includes=’/cygdrive/c/XSBSYS/XSBENV/pthreads/Pre-built/include’ \

--with-static-libraries=’/cygdrive/c/XSBSYS/XSBENV/pthreads/Pre-built/lib’

sh makexsb --config-tag=mt

7.9 Predicates for Multi-Threading

The predicates described in this section do not address tabling or dynamic code. With only a
few minor deviations the provisional working standard described in [35] is supported. As a result,
these predicates are substantially the same as those in SWI, YAP, and other Prologs. In the single-
threaded engine, semantically correct calls to these predicates will give a miscellaneous error.

thread create(+Goal,ThreadId,+OptionsList)

When called from thread T , this predicate creates a new XSB thread Tnew to execute
Goal. When goal either succeeds, throws an unhandled error, exits, or fails, Tnew exits,
but thread create/2 will succeed immediately, binding ThreadId to the XSB thread id of
Tnew. Goal must be callable, but need not be fully instantiated. No bindings from Goal are
passed back from T to Tnew, so communication between Tnew and T must be through tables,
asserted code, message queues or other side effects.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 248

OptionList allows optional parameters in the configuration for the initial size of XSB stacks,
for aliases, and to indicate whether Tnew is to be created as detached. Note that XSB threads
allow automatic stack allocation, so that the size options may be most useful for (32-bit)
applications with very large numbers of threads. In this case, setting initial stack sizes to be
small may allow more threads to be created on a given hardware platform. Also note that
only XSB stacks are affected, the stack size of the underlying Pthread remains unaltered.

• glsize(N): create thread with global (heap) plus local stack size initially set to N kbytes.
If not specified, the default size is used. The default size can be set at the command
line (cf. Section 3.7), and altered at run time by the Prolog flag thread glsize (cf.
Section 6.12).

• tcpsize(N): create thread with trail plus choice point stack size initially set to N kbytes.
If not specified, the default size is used (cf. Section 3.7). The default size can be set
at the command line (cf. Section 3.7), and altered at run time by the Prolog flag
thread tcpsize (cf. Section 6.12).

• complsize(N): create thread with completion stack size initially set to N kbytes. If
not specified, the default size is used (cf. Section 3.7). The default size can be set
at the command line (cf. Section 3.7), and altered at run time by the Prolog flag
thread complsize (cf. Section 6.12).

• pdlsize(N): create thread with N kbytes of unification stack. If not specified, the default
size is used (cf. Section 3.7). The default size can be set at the command line (cf. Sec-
tion 3.7), and altered at run time by the Prolog flag thread pdlsize (cf. Section 6.12).

• detached(Boolean): if Boolean is true, creates detached thread. If Boolean is false,
the thread created will be joinable, while if no option is given the default will be used.
In Version 3.3 threads are created joinable by default, but this default can be altered at
run time by the Prolog flag thread default (cf. Section 6.12).

• on exit(Handler): Ensures that Handler is called whenever the thread exits: whether
that exit arises from success of Goal, failure, throwing an error that is unhandled in the
user’s program, or an explicit call to thread exit/1.

• alias(Alias): Allow thread ThreadId to be referred to via Alias in all standard thread
predicates. Alias remains active for ThreadId until it is joined. Note that the main
XSB thread has alias main.

Finally, each thread is created with a signal queue and a private message queue, so these
queues do not need to be explicitly created. Their size is obtained through the settable
Prolog flag max queue terms.

Error Cases

• Goal is a variable

– instantiation error.

• Goal is not callable

– type error(callable,Goal).

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 249

• ThreadId is not a variable

– type error(variable,ThreadId)

• OptionList is a partial list or contains an option that is a variable

– instantiation error

• OptionList is neither a list nor a partial list

– type error(list,OptionsList)

• OptionList contains an option, Option not described above

– domain error(thread option,Option)

• An element of OptionsList is alias(A) and A is already associated with an existing
thread, queue, mutex or stream

– permission error(create,alias, A)

• An element of OptionsList is alias(A) and A is not an atom

– type error(atom,A)

• An element of OptionsList is on exit(Handler) and Handler is not callable

– type error(callable,Handler).

• No more system threads are available (EAGAIN)

– resource error(system threads)

thread create(+Goal,-ThreadId)

Acts as thread create(Goal,ThreadId,[]).

thread create(+Goal)

Acts as thread create(Goal, ,[detached(true)]).

thread join(+Threads or aliases,-ExitDesignators)

When thread join/2 is called by thread T , Threads or aliases must be instantiated to
either 1) an XSB thread id or alias; or 2) a list where each element is an XSB thread id or an
alias; ExitDesignators must be uninstantiated. The action of the predicate is to suspend
T until all of the threads denoted by Threads or aliases have exited. At this time, any
remaining resources for the threads in ThreadIds will have been reclaimed. Upon success
ExitDesignators is either a the thread status of the associated thread (see page 240) or a
list of such elements.

Error Cases

• Thread or Aliases is not instantiated

– instantiation error

• Threads or aliases is not a list of XSB thread ids or aliases

– domain error(listof(thread or alias),ThreadIds)

• ExitDesignators is not a variable

– type error(variable,ExitDesignatorst)

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 250

• ThreadId does not correspond to a valid thread

– existence error(valid thread,ThreadId)

• ThreadId does not correspond to a joinable thread (i.e. ThreadId is detached).

– permission error(join,non joinable thread,ThreadId)

thread exit(+ExitTerm)

Exits a thread T with ExitTerm after releasing any mutexes held by T , freeing any thread-
specific memory allocated for T (we hope), as well as calling any exit handlers for T . ExitTerm
will be used if the caller of T joins to T , but will be ignored in other cases. There is no need
to call this routine on normal termination of a thread as it is called implicitly on success or
(final) failure of a thread’s goal.

Error Cases

• ExitCode is a variable

– instantiation error

thread self(?ThreadId or Alias)

If ThreadId is an atom, unifies ThreadId or Alias with an alias of the calling thread. Oth-
erwise, unifies ThreadId or Alias with the XSB thread id of the calling thread. There are
no error conditions.

thread detach(+Thread or Alias)

Detaches a joinable thread denoted by Thread or Alias so that all resources will be reclaimed
upon its exit. The thread denoted by ThreadId will no longer be joinable, once it is detached.
If Thread or Alias has already exited, all resources used by Thread or Alias are removed
from the system.

Error Cases

• Thread or Alias is a variable

– instantiation error

• Thread or Alias is not a thread id or alias

– domain error(thread or alias,Thread or Alias)

• Thread or Alias does not correspond to a valid thread

– existence error(valid thread,Thread or alias)

• Thread or Alias is active but not joinable

– permission error(thread detach,thread,Thread or Alias)

thread cancel(+Thread or Alias)

Cancels the XSB thread denoted by Thread or Alias. The cancellation does not use Pthread
cancellation mechanisms, rather it uses XSB’s interrupt mechanism to set Thread or Alias’s
interrupt vector 9. When this interrupt vector is checked, Thread or Alias will throw a
thread cancellation error, which can be caught within Thread or Alias like any other error.

9This interrupt vector is checked upon every it is checked on every SLG-WAM call and execute instruction.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 251

However, the default behavior is for Thread or Alias to exit with an exit ball indicating that
it has been cancelled.

As noted above, an executing thread that is cancelled will exit very shortly after the thread cancel/1

predicate is called. Blocked threads, however, are not always guarenteed to exit when can-
celled. Currently a blocked thread may be cancelled

• when it is waiting to read or write a message on a queue

• when it is executing thread sleep/1

On the other hand, a blocked thread may not be cancelled while it is waiting to read from a
stream or waiting for a mutex.

During critical operations a thread may want to prevent itself from being cancelled. This can
be done by If ?- thread cancel(T) is called for a thread T for which cancelling has been
disabled, T will be cancelled immediately after T re-enables cancellation through calling the
predicate thread enable cancel/0.

The main XSB thread cannot be cancelled; apart from that any thread can cancel any other
thread.

Error Cases

• Thread or Alias is not instantiated

– instantiation error

• Thread or Alias is not a thread id or alias

– domain error(thread or alias,Thread or Alias)

• Thread or Alias does not correspond to valid thread

– existence error(valid thread,Thread or Alias)

• Thread or Alias denotes the main thread.

– permission error(cancel,main thread,Thread or Alias)

thread signal(Thread or Alias,Goal)

thread signal(ThreadOrAlias, Goal) interrupts thread ThreadOrAlias so that it executes
Goal at the first opportunity. Specifically, once Goal is placed onto the signal queue of
ThreadOrAlias and the interrupt vector of ThreadOrAlias is adjusted, thread signal/2

succeeds. ThreadOrAlias handles the interrupt asynchronously, and if the interrupt is han-
dled while ThreadOrAlias is executing a goal with continuation C, all solutions for Goal will
be obtained, and the failure continuation of Goal will be C. If Goal throws an exception E,
the continuation will be the handler for E.

For blocked threads, signalling works much like cancellation (described above), and a blocked
thread will handle a signal whenever it can be cancelled. However, the thread does not return
to the blocking operation after the signal – rather it will execute the signal and then execute
the continuation to be taken after the blocking operation.

Error Cases

• Thread or Alias is not instantiated

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 252

– instantiation error

• Thread or Alias is not a thread id or alias

– domain error(thread or alias,Thread or Alias)

• Thread or Alias does not correspond to valid thread

– existence error(valid thread,Thread or Alias)

• Goal is not instantiated

– instantiation error

• Goal is not callable

– type error(callable,Goal)

thread disable cancel module: thread
Disables the calling thread from being cancelled, so that it can be ensured that critical
operations can run to completion. This predicate always succeeds.

thread enable cancel module: thread
Enables the calling thread to be cancelled. By default, threads may be cancelled, so this
predicate needs to be called if thread disable cancel/0 has been previously called. This
predicate always succeeds.

thread yield

Make the calling thread ready to be run after other threads of the same priority. This
predicate relies on the real-time extensions to pthreads specified in POSIX 1b, and may not
be available on all platforms.

Error Cases

• The current platform does not support POSIX real-time extensions

– misc error

thread property(?ThreadOrAlias,?Property)

If ThreadOrAlias is instantiated, unifies Property with current properties of the thread
that unify with Property; if ThreadOrAlias is a variable, backtracks through all the current
threads whose properties unify with Property. Note that there is no guarantee that that the
information returned will be valid, due to concurrency issues.

Currently Property can have the form

• detached(Bool): if Bool is true the thread is detached, otherwise it is joinable.

• alias(Alias): if the thread has an alias Alias

• status(Status): see Section 7.3 for thread statuses that are currently supported.

Example: The following predicate may be used to clear resources from the thread table,
although due to concurreny reasons, non-running threads may remain in the thread table
after this predicate terminates.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 253

clear_thread_table:-

thread_property(Tid,status(S)),

\+ (S = running),

thread_join(Tid),

fail.

clear_thread_table.

Error Cases

• ThreadOrAlias is neither a variable nor an XSB thread id nor an alias

– domain error(thread or alias, ThreadOrAlias)

• ThreadOrAlias is not associated with a valid thread

– existence error(thread, ThreadOrAlias)

thread sleep(+MilliSeconds)

Causes the calling thread to sleep approximately MilliSeconds before resuming. A thread
may be cancelled while sleeping. However, a sleeping thread that is signalled will execute the
signalled goal and resume execution without returning to sleep.

Error Cases

• Seconds is a variable

– instantiation error.

• Seconds is not an integer

– type error(integer, Seconds).

7.9.1 Predicates for Thread Synchronization and Communication

Threads can communicate to some extent through shared tables and dynamic code. However, it is
often useful to use message queues as a synchronizable form of communication. Similarly, while the
XSB engine itself is thread-safe, thread synchronization may be needed when calling a package that
is not itself thread safe (see the beginning of this chapter for a list of which packages are and are
not thread-safe). Synchronization may also be needed to protect data accessed by foreign function
calls, or to coordinate responses to external events.

Prolog Message Queues

As described previously, each thread is created with a private message queue that is readable
only by itself. The following predicates are used to communicate using private and public message
queues.

message queue create(-Queue,+Options)

Creates a new public message queue with identifier Queue. Options allows optional param-
eters to be passed for the maximum number of terms in the queue, and for aliases of the
queue.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 254

• max terms(N): create queue so that it can contain at most N terms before writes to the
queue block. If not specified, the default size is used. This default can be queried and
altered at run time via the Prolog flag queue max terms. (cf. Section 6.12). If the flag
queue max terms is set to 0, the queue size will be bounded only by available memory.

• alias(Alias): Allow queue Queue to be referred to via Alias in all standard queue
predicates. Alias remains active for Queue until it is destroyed.

Error Cases

• Queue is not a variable

– type error(variable,Queue)

• Options is a partial list or a list with an element that is a variable

– instantiation error

• Options is neither a partial list or a list

– type error(list, Options)

• Options contains an option, Option not described above

– domain error(queue option,Option)

• An element of Options is alias(A) and A is already associated with an existing thread,
queue, mutex or stream

– permission error(create,alias, A)

• An element of Options is alias(A) and A is not an atom

– type error(atom,A)

message queue detroy(+Queue or Alias)

Destroys a public message queue with alias or id Queue or alias, as created by message queue create/[1,2]

If any threads are currently waiting on Queue or Alias to read or write a term, they will be
awakened and will throw an existence error.

Error Cases

• Queue or Alias is a variable

– instantiation error

• Queue or Alias is not a queue id or alias

– domain error(queue or alias,Queue or Alias)

• Queue or Alias denotes a private message queue or signal queue rather than a public
message queue

– permission error(destroy,private signal or message queue,Queue or Alias)

• Queue or alias is not the queue name or alias of a public message queue.

– existence error(message queue, Queue or Alias)

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 255

thread send message(+Queue or Alias,#Message)

Queue or alias may either be a queue id or alias, or a thread id or alias in which latter
case the private queue for a thread is used. If there are fewer terms on Queue or Alias

than the queue’s maximum allowed number thread send message/2 puts Message onto
Queue or Alias, and returns immediately. Otherwise, the calling thread suspends until there
are fewer elements on Queue or Alias than the queue’s maximum allowed number, when the
thread will be awakened to put Message onto the queue.

Error Cases

• Queue or Alias is a variable

– instantiation error

• Queue or Alias is not a queue id, queue alias, thread id, or thread alias.

– domain error(queue or alias,Queue or Alias)

thread get message(+Queue or Alias,?Message)

If there are terms on Queue or Alias thread get message/2 traverses Queue or Alias to
obtain the first term T that unifies with Message. If T exists, the predicate returns with
Message bound to the most general unifier of Message and T . If there are no terms on
Queue or Alias or if no terms unify with Message, the calling thread suspends until at least
one term is added to Queue or Alias. When the thread awakes, it will recheck Queue from
its beginning for a term that unifies with Message.

Error Cases

• Queue or Alias is a variable

– instantiation error

• Queue or Alias is not a queue id or alias

– domain error(queue or alias,Queue or Alias)

– existence error(queue, Queue or Alias)

thread get message(?Message)

Acts as thread get message/2, but on a thread’s private queue.

thread peek message(+Queue or Alias,?Message)

If there are terms on Queue or Alias thread peek message/2 traverses Queue or Alias to
obtain the first term T that unifies with Message. If T exists, the predicate returns with
Message bound to the most general unifier of Message and T . If there are no terms on
Queue or Alias or if no terms unify with Message, the predicate fails.

Error Cases

• Queue or Alias is a variable

– instantiation error

• Queue or Alias is not a queue id or alias

– domain error(queue or alias,Queue or Alias)

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 256

• Queue or Alias is not associated with a current queue

– existence error(queue, Queue or Alias)

thread peek message(?Message)

Acts as thread peek message/2, but on a thread’s private queue.

User-defined Mutexes

Usually, running multi-threaded evaluations does not requre a user to set any mutexes – nec-
essary mutexes are handled by XSB itself (we hope), and programs can often be written so that
user-level locking is unnecessary. However, under certain conditions, locking is useful or even nec-
essary: for instance, a user may need to set a lock so that a set of shared dynamic facts cannot be
accessed when it is updated.

One of the simplest and most powerful primitives for locking are mutexes. The mutexes provided
by the following predicates are recursive: if a thread T locks a recursive mutex M , any calls to
mutex lock(M) made by T will immediately succeed without suspending while M is locked. Other
threads that attempt to lock M will suspend until M is unlocked. To unlock M after n calls to
mutex lock(M), T must make n calls to mutex unlock(M).

When using mutexes in XSB, programmers must not only avoid explicitly creating deadlocks,
but must also ensure that a mutex is unlocked when leaving a critical area, and destroyed when it is
no longer needed. Making sure that this happens for successful goals, for failed goals and for goals
that raise exceptions can sometimes be complicated. The predicate with mutex/2 handles all of
these cases. We recommend using it if possible, and making use of lower-level calls to mutex lock/1,
mutex unlock/1 and mutex trylock/1 only in rare cases when with mutex/2 is not applicable.

with mutex(+Mutex,?Goal)

Locks a current mutex or aliasMutex, executes Goal deterministically, then unlocks Mutex. If
Goal leaves choice-points, these are destroyed. Mutex is unlocked regardless of whether Goal
succeeds, fails or raises an exception. Any exception thrown by Goal is re-thrown after the
mutex has been successfully unlocked.

Error Cases

• Mutex is a variable

– instantiation error

• Mutex is not a mutex id or alias

– domain error(mutex or alias,Mutex or Alias)

• Mutex is not associated with a current mutex.

– existence error(mutex,Mutex)

• Locking Mutex would give rise to a deadlock 10

10This error case handles the EDEADLK return code on MacOS X, and other platforms.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 257

– permission error(mutex,lock,Mutex)

• Goal is a variable

– instantiation error

• Goal is neither a variable nor a callable term

– type error(callable, Goal)

mutex create(?Mutex)

Creates a new recursive user mutex with identifier Mutex. Options allows optional parameters
to be passed, currently only for aliases of the mutex.

• alias(Mutex): Allow queue Mutex to be referred to via Mutex in all standard queue
predicates. Mutex remains active for Mutex until it is destroyed.

Error Cases

• Mutex is not a variable

– type error(variable,Mutex)

• Options is a partial list or a list with an element that is a variable

– instantiation error

• Options is neither a partial list or a list

– type error(list, Options)

• Options contains an option, Option not described above

– domain error(mutex option,Option)

• An element of Options is alias(A) and A is already associated with an existing thread,
queue, mutex or stream

– permission error(create,alias, A)

• An element of Options is alias(A) and A is not an atom

– type error(atom,A)

mutex destroy(+Mutex)

Destroys a current unlocked mutex with alias or id Mutex along with any memory it uses.

Error Cases

• Mutex is a variable

– instantiation error

• Mutex is not a mutex id or alias

– domain error(mutex or alias,Mutex or Alias)

• Mutex is not associated with a current mutex.

– existence error(mutex,Mutex)

• Mutex is locked

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 258

– permission error(mutex,destroy,Mutex)

mutex lock(+Mutex)

mutex lock(Mutex) locks a (recursive) mutex with alias or id Mutex. Locking and unlocking
mutexes should be paired carefully in order to avoid deadlocks. In particular, a programmer
needs to ensure that mutexes are properly unlocked even if the protected code fails or raises
an exception.

Error Cases

• Mutex is a variable

– instantiation error

• Mutex is not a mutex id or alias

– domain error(mutex or alias,Mutex or Alias)

• Mutex is not associated with a current mutex.

– existence error(mutex,Mutex)

• Locking Mutex would give rise to a deadlock 11

– permission error(mutex,lock,Mutex)

mutex trylock(+Mutex)

Works as mutex lock/1 but fails immediately if Mutex is held by another thread, rather than
suspending the calling thread.

Error Cases

• Mutex is a variable

– instantiation error

• Mutex is not a mutex id or alias

– domain error(mutex or alias,Mutex or Alias)

• Mutex is not associated with a current mutex.

– existence error(mutex,Mutex)

mutex unlock(+Mutex)

Unlocks the mutex with alias or id Mutex when called by the same thread that locked Mutex.

Error Cases

• Mutex is a variable

– instantiation error

• Mutex is not a mutex id or alias

– domain error(mutex or alias,Mutex or Alias)

• Mutex is not associated with a current mutex.

– existence error(mutex,Mutex)

11This error case handles the EDEADLK return code on MacOS X, and other platforms.

CHAPTER 7. MULTI-THREADED PROGRAMMING IN XSB 259

• Mutex is not held by the calling thread

– permission error(unlock,mutex,Mutex)

mutex unlock all

mutex unlock all/0 unlocks all user mutexes owned by the current thread. It has no error
cases.

mutex property(?MutexOrAlias,?Property)

If MutexOrAlias is instantiated, unifies Property with current properties of the mutex; if
MutexOrAlias is a variable, backtracks through all the current mutexes whose properties
unify with Property. Note that there is no guarantee that that the information returned will
be valid, due to concurrency issues.

Currently Property can have the form

• alias(Alias): if the mutex has an alias Alias

• status(Status). If the mutex is locked, Status will be a term of the form locked(ThreadId,NumLocks)

where ThreadId is the thread id of the owner of the lock, and NumLocks is the number of
times the mutex has been locked by the current owner (recall that user-defined mutexes
are recursive and must be unlocked as many times as they have been locked in order to
be freed). If the mutex is unlocked, Status will be a term of the form unlocked.

Example: The query

?- mutex_property(M,status(_)).

can be used to enumerate all active user-defined mutexes.

Error Cases

• MutexOrAlias is neither a variable nor an XSB mutex id nor an alias

– domain error(mutex or alias, MutexOrAlias)

• MutexOrAlias is not associated with an active mutex

– existence error(mutex, MutexOrAlias)

• Property is neither a variable nor a valid mutex property

– domain error(mutex property, Property)

Chapter 8

Storing Facts in Tries

XSB offers a mechanism by which large numbers of facts can be directly stored and manipulated in
tries, which can either be private to a thread or shared among threads. The mechanism described
in this chapter is in some ways similar to trie-indexed asserted code as described in Section 6.14,
but allows creation of tries that are shared between threads, and of associative tries that support
efficient memory management 1.

When stored in a trie, facts are compiled into trie-instructions similar to those used for XSB’s
tables. For instance set of facts

{ rt(a,f(a,b),a), rt(a,f(a,X),Y), rt(b,V,d) }

would be stored in a trie as shown in Figure 8, where each node corresponds to an instruction
in XSB’s virtual machine. Using a trie for storage has the advantage that discrimination can be
made on a position anywhere in a fact, and directly inserting into or deleting from a trie is 4-5x
faster than with standard dynamic code. In addition, in trie-dynamic code, there is no distinction
between the index and the code itself, so for many sets of facts trie storage can use much less space
than standard dynamic code. For instance, Figure 8 shows how the prefix rt(a,f(a,... is shared
for the first two facts. However, trie storage comes with tradeoffs: first, only facts can be stored in
a trie; second, unlike standard dynamic code, no ordering is preserved among the facts; and third,
duplicate facts are not supported.

In Version 3.3 of XSB, tries that store facts may have the following forms:

• Private, general tries allow arbitrary terms to be inserted in a trie. These tries are thread-
private so that inserting a term in a trie Tr in one thread will not be visible to another thread.
Although such tries are general, they have limitations in memory reclamation in Version 3.3
of XSB. If a term is deleted from Tr, memory will be reclaimed if it is safe to do so at the
time of deletion 2; otherwise the space will not be reclaimed until all terms in Tr are removed
by truncating Tr or until the thread exits.

1For nearly all purposes, the predicates in this chapter replace the low-level API for interned tries in previous ver-
sions, which included trie intern, trie unintern, trie interned etc. However that API continues to be supported
for low-level systems programming.

2That is, if no choice points are around that may cause backtracking into Tr.

260

CHAPTER 8. STORING FACTS IN TRIES 261

a

s

0s

rt

0

ν1

ν1

ν1

s 11

f/2

7

8

5

4

3

s

s

s

s

s

a

2.1

2.2

33

a

b

10

92

s

s

s 1

s

3

22

1

d

b

6

Figure 8.1: Terms Stored as a Trie

• Private, associative Associative tries are more restricted than general tries: an associative trie
combines a key which can be any ground term, with a value which can be any term. Memory
for deleted key-value pairs in an associative trie is always immediately reclaimed, and insert
or delete operations can be faster for an associative trie than for a general trie. These tries are
private to a thread, and in addition to reclaiming memory when a term is deleted, memory
is reclaimed when the trie is truncated or dropped, and when the thread exits.

• Shared, associative tries are associative tries that are shared among threads. Memory for
deleted key-value pairs is always immediately reclaimed, and when the trie is truncated or
dropped.

8.1 Examples of Using Tries

A handle for a trie can be obtained using the trie create/2 predicate. Terms can then be inserted
into or deleted from that trie, and terms can be unified with information in the trie, as shown in
the following example:

Example 8.1.1 First, we create a private general trie:

| ?- trie_create(X,[type(prge)]).

X = 1

CHAPTER 8. STORING FACTS IN TRIES 262

yes

Next, we insert some terms into the trie

| ?- trie_insert(1,f(a,b)), trie_insert(1,[a,dog,walks]).

yes

Now we can make arbitrary queries against the trie

| ?- trie_unify(1,X).

X = [a,dog,walks];

X = f(a,b);

no

Above, a general query was made, but the query could have been any Prolog term. Now we delete
a term, and see what’s left.

| ?- trie_delete(1,f(X,B)).

X = a

B = b

yes

| ?- trie_unify(1,X).

X = [a,dog,walks];

no

The behavior of general tries can be constrasted with that of associative tries as seen in the
next example.

Example 8.1.2 Now we start by creating a shared associative trie, with abbreviation shas using
the multi-threaded engine

| ?- trie_create(X,[type(shas),alias(foo)]).

X = 1048577

yes

This time we used an alias so now we can use foo to refer to insert a couple of key-value pairs into
the trie (we could also use the trie handle itself)

| ?- trie_insert(foo,pair(sentence(1),[a,dog,walks])),

trie_insert(foo,pair(sentence(2),[a,man,snores])).

yes

CHAPTER 8. STORING FACTS IN TRIES 263

However, inserting a general term into an associative trie throws an error

| ?- trie_insert(foo,f(a,b)).

++Error[XSB/Runtime/P]: [Domain (f(a,b) not in domain pair/2)]

in arg 2 of predicate trie_insert/2

(Inserted term must be key-value pair in trie 1048577)

Finally, in an associative trie, if we insert a value for a key that is already in the trie, it will update
the value for that key.

| ?- trie_insert(foo,pair(sentence(1),[a,dog,snoress])).

yes

| ?- trie_unify(foo,pair(sentence(1),X)).

X = [a,dog,snores]

yes

8.2 Predicates for Tries

The following subsections describe predicates for inserting terms into a trie, deleting terms from
a trie, and unifying a term with terms in a trie, predicates for creating, dropping, and truncating
tries, as well as predicates for bulk insertes into and deletes from a trie. These predicates can apply
to any type of trie, and perform full error checking on their call arguments. As such, they are safer
and more general than the lower-level trie predicates described in Chapter 1 of Volume 2 of this
manual. Use of the predicates described here is recommended for applications unless the need for
speed is paramount.

trie create(-TrieId,+OptionList) module: intern
OptionList allows optional parameters in the configuration of a trie to indicate its type
and whether an alias should be used. In the present version, OptionList may contain the
following terms

• type(Type) where Type can be one of

– prge (private, general) maintains information that is accessable only to the calling
thread. No other restrictions are made for accessing information in a private trie.
In the single-threaded engine, tries are private by default.

– pras (private, associative) creates a private trie that maintains key-value pairs in a
manner similar to an associative array, using the term pair(Key,Value). Each key
must be ground, and there may be only one value per key.

– shas (shared associative) creates a shared trie that maintains key-value pairs in a
manner similar to an associative array, using the term pair(Key,Value). Each key
must be ground, and there may be only one value per key. This option is available
only in the multi-threaded engine

CHAPTER 8. STORING FACTS IN TRIES 264

• alias(Alias): Allow trie TrieId to be referred to via Alias in all standard trie predi-
cates. Alias remains active for TrieId until it is dropped.

• incremental: Allows tables that depend on trie TrieId to be automatically updated as
information in TrieId changes (cf. Section 5.6.4).

• nonincremental: Specifies that tables that depend on trie TrieId should not be auto-
matically updated as information in TrieId changes (cf. Section 5.6.4).

Error Cases

• TrieId is not a variable

– type error(variable,TrieId)

• OptionList is a partial list or contains an option that is a variable

– instantiation error

• OptionList is neither a list nor a partial list

– type error(list,OptionsList)

• OptionList contains an option, Option not described above

– domain error(trie option,Option)

• An element of OptionsList is alias(A) and A is already associated with an existing
thread, queue, mutex or stream

– permission error(create,alias, A)

• An element of OptionsList is alias(A) and A its not an atom

– type error(atom,A)

trie insert(+TrieIdOrAlias,Term) module: intern
Inserts Term into the trie denoted by TrieIdOrAlias. If TrieIdOrAlias denotes an associa-
tive trie, Term must be of the form pair(Key,Value) where Key is ground. If TrieIdOrAlias
is a general trie and already contains Term, the predicate fails (as the same term cannot be
inserted multiple times in the same trie). Similarly, if TrieIdOrAlias is an associative trie
and already contains a value for Key the predicate fails.

Insertion of tries can be controlled by the flags max answer term depth, max answer list depth,
max answer term action, and max answer list action, which are also used to control ad-
ditions of answers to tables. Using these flags, if a term to be inserted is cyclic and exceeds
a stated depth, trie insertion may either fail or throw an error depending on the associated
action: see pg. 180.

Error Cases

• TrieIdOrAlias is a variable

– instantiation error.

• TrieIdOrAlias is not a trie id or alias

– domain error(trie id or alias,TrieIdOrAlias)

• TrieIdOrAlias denotes an associative array, and Term does not unify with pair(,)

CHAPTER 8. STORING FACTS IN TRIES 265

– domain error(pair/2,Term)

• TrieIdOrAlias denotes an associative array, Term = pair(Key,Value) but Key is not
ground

– misc error

• Key or Value is a cyclic term, or exceeds the depth

– misc error

trie unify(+TrieIdOrAlias,Term) module: intern
Unifies Term with a term in the trie denoted by TrieIdOrAlias. If TrieIdOrAlias denotes a
general trie, successive unifications will succeed upon backtracking. If TrieIdOrAlias denotes
an associative trie, Term must be of the form pair(Key,Value) where Key is ground.

Error Cases

• TrieIdOrAlias is a variable

– instantiation error.

• TrieIdOrAlias is not a trie id or alias

– domain error(trie id or alias,TrieIdOrAlias)

• TrieIdOrAlias denotes an associative array, and Term does not unify with pair(,)

– domain error(pair/2,Term)

• TrieIdOrAlias denotes an associative array, Term = pair(Key,Value) but Key is not
ground

– misc error

trie delete(+TrieIdOrAlias,Term) module: intern
Deletes a term unifying with Term from the trie denoted by TrieIdOrAlias. TrieIdOrAlias
denotes a general trie, all such terms can be deleted upon backtracking. If TrieIdOrAlias
denotes an associative trie, Term must be of the form pair(Key,Value) where Key is ground.
In either case, if TrieIdOrAlias does not contain a term unifying with Term the preicate
fails.

Error Cases

• TrieIdOrAlias is a variable

– instantiation error.

• TrieIdOrAlias is not a trie id or alias

– domain error(trie id or alias,TrieIdOrAlias)

• TrieIdOrAlias denotes an associative array, and Term does not unify with pair(,)

– domain error(pair/2,Term)

• TrieIdOrAlias denotes an associative array, Term = pair(Key,Value) but Key is not
ground

– misc error

CHAPTER 8. STORING FACTS IN TRIES 266

trie truncate(+TrieIdOrAlias) module: intern
Removes all terms from TrieIdOrAlias, but does not change any of its properties (e.g. the
type of the trie or its aliases).

Error Cases

• TrieIdOrAlias is a variable

– instantiation error.

• TrieIdOrAlias is not a trie id or alias

– domain error(trie id or alias,TrieIdOrAlias)

trie drop(+TrieIdOrAlias) module: intern
Drops TrieIdOrAlias. trie drop/1 not only removes all terms from TrieIdOrAlias, but
also removes information about its type and any aliases the trie may have.

Error Cases

• TrieIdOrAlias is a variable

– instantiation error.

• TrieIdOrAlias is not a trie id or alias

– domain error(trie id or alias,TrieIdOrAlias)

trie bulk insert(+TrieIdOrAlias,+Generator) module: intern
Used to insert multiple terms into the trie denoted by TrieIdOrAlias. Generator must be a
callable term. Upon backtracking through Generator its first argument should successively be
instantiated to the terms to be interned in TrieIdOrAlias. When inserting many terms into
a general trie, trie bulk insert/2 is faster than repeated calls to trie insert/2 as it does
not need to make multiple checks that the choice point stack is free of failure continuations
that point into the TrieIdOrAlias trie. For associative tries, trie bulk insert/2 can also
be faster as it needs to perform fewer error checks on the arguments of the insert.

Example 8.2.1 Given the predicate

bulk_create(p(One,Two,Three),N):-

for(One,1,N),

for(Two,1,N),

for(Three,1,N).

and a general trie Trie, the goal

?- trie bulk insert(Trie,bulk create(Term,N))

will add N3 terms to Trie.

Error Cases

• TrieIdOrAlias is a variable

CHAPTER 8. STORING FACTS IN TRIES 267

– instantiation error.

• TrieIdOrAlias is not a trie id or alias

– domain error(trie id or alias,TrieIdOrAlias)

• Generator is not a compound term

– type error(compound,Generator)

• TrieIdOrAlias denotes an associative array, and Generator does not unify with pair(,)

– domain error(pair/2,Term)

• TrieIdOrAlias denotes an associative array, and Generator succeeds with a term that
unifies with pair(Key,Value) and Key is not ground

– misc error

• Key or Value is a cyclic term

– misc error

trie bulk delete(+TrieIdOrAlias,Term) module: intern
Deletes all terms that unify with Term from TrieIdOrAlias. If TrieIdOrAlias denotes an
associative trie, the key of the key value pair need not be ground.

Example 8.2.2 For the trie in the previous example, the goal

?- trie bulk delete(Trie,p(1, ,))

will delete the N2 terms that unify with p(1, ,) from TrieIdOrAlias.

Error Cases

• TrieIdOrAlias is a variable

– instantiation error.

• TrieIdOrAlias is not a trie id or alias

– domain error(trie id or alias,TrieIdOrAlias)

trie bulk unify(+TrieIdOrAlias,#Term,-List) module: intern
Returns in List all terms in TrieIdOrAlias that unify with Term. If TrieIdOrAlias denotes
an associative trie, the key of the key value pair need not be ground.

This predicate is useful for two reasons. First, it provides a safe way to backtrack through
an associative trie while maintaining the memory management and concurrency properties
of associative tries. Second, it enforces read consistency for TrieIdOrAlias, regardless of
whether the trie is private or shared, general or associative.

Example 8.2.3 Continuing from Example 8.2.2 the goal

?- trie bulk unify(Trie,X),List

CHAPTER 8. STORING FACTS IN TRIES 268

will return the the N3 − N2 terms still in TrieIdOrAlias.

Error Cases

• TrieIdOrAlias is a variable

– instantiation error.

• TrieIdOrAlias is not a trie id or alias

– domain error(trie id or alias,TrieIdOrAlias)

• List is not a variable

– type error(variable,List).

trie property(?TrieOrAlias,?Property) module: intern
If TrieOrAlias is instantiated, unifies Property with current properties of the trie; if TrieOrAlias
is a variable, backtracks through all the current tries whose properties unify with Property.
In the MT engine, thread property/2 accesses only tries private to the calling thread and
shared tries; however note that there is no guarantee that that the information returned about
shared tries will be valid, due to concurrency issues 3.

Currently Property can have the form

• type(Type): where Type is the type of the trie.

• alias(Alias): if the trie has an alias Alias

Error Cases

• TrieOrAlias is neither a variable nor an XSB trie id nor an alias

– domain error(trie, TrieOrAlias)

• TrieOrAlias is not associated with a valid trie

– existence error(trie, TrieOrAlias)

3trie property/2 is not yet implemented for shared tries.

Chapter 9

Hooks

Sometimes it is useful to let the user application catch certain events that occur during XSB execu-
tion. For instance, when the user asserts or retracts a clause, etc. XSB has a general mechanism by
which the user program can register hooks to handle certain supported events. All the predicates
described below must be imported from xsb hook.

9.1 Adding and Removing Hooks

A hook in XSB can be either a 0-ary predicate or a unary predicate. A 0-ary hook is called without
parameters and unary hooks are called with one parameter. The nature of the parameter depends
on the type of the hook, as described in the next subsection.

add xsb hook(+HookSpec) module: xsb hook

This predicate registers a hook; it must be imported from xsb hook. HookSpec has the
following format:

hook-type(your-hook-predicate())

or, if it is a 0-ary hook:

hook-type(your-hook-predicate)

For instance,

:- add_xsb_hook(xsb_assert_hook(foobar(_))).

registers the hook foobar/1 as a hook to be called when XSB asserts a clause. Your program
must include clauses that define foobar/1, or else an error will result.

The predicate that defines the hook type must be imported from xsb hook:

:- import xsb_assert_hook/1 from xsb_hook.

269

CHAPTER 9. HOOKS 270

or add xsb hook/1 will issue an error.

remove xsb hook(+HookSpec) module: xsb hook

Unregisters the specified XSB hook; imported from xsb hook. For instance,

:- remove_xsb_hook(xsb_assert_hook(foobar(_))).

As before, the predicate that defines the hook type must be imported from xsb hook.

9.2 Hooks Supported by XSB

The following predicates define the hook types supported by XSB. They must be imported from
xsb hook.

xsb exit hook() module: xsb hook

These hooks are called just before XSB exits. You can register as many hooks as you want
and all of them will be called on exit (but the order of the calls is not guaranteed). Exit
hooks are all 0-ary and must be registered as such:

:- add_xsb_hook(xsb_exit_hook(my_own_exit_hook)).

xsb assert hook() module: xsb hook

These hooks are called whenever the program asserts a clause. An assert hook must be a
unary predicate, which expects the clause being asserted as a parameter. For instance,

:- add_xsb_hook(xsb_assert_hook(my_assert_hook(_))).

registers my assert hook/1 as an assert hook. One can register several assert hooks and all
of them will be called (but the order is not guaranteed).

xsb retract hook() module: xsb hook

These hooks are called whenever the program retracts a clause. A retract hook must be a
unary predicate, which expects as a parameter a list of the form [Head,Body], which represent
the head and the body parts of the clause being retracted. As with assert hooks, any number
of retract hooks can be registered and all of them will be called in some order.

Chapter 10

Debugging

10.1 Prolog-style Tracing and Debugging

XSB supports a version of the Byrd four-port debugger for interactive debugging and tracing of
Prolog code. In this release (Version 3.3), it does not work very well when debugging code involving
tabled predicates 1. If one only creeps (see below), the tracing can provide some useful information.
For programs that involve large amounts of tabling forest-view tracing can be used (Section 10.3).
To turn on tracing, use trace/0, trace/1, or trace/2. To turn tracing off, use notrace/0.

trace

notrace

When tracing is on, the system will print a message each time a predicate is:

1. initially entered (Call),

2. successfully returned from (Exit),

3. failed back into (Redo), and

4. completely failed out of (Fail).

When debugging interactively, a message may be printed and tracer stopped and prompts
for input. (See the predicates show/1 and leash/1 described below to modify what is traced
and when the user is prompted.)

In addition to single-step tracing, the user can set spy points to influence how the trac-
ing/debugging works. A spy point is set using spy/1. Spy points can be used to cause the
system to enter the tracer when a particular predicate is entered. Also the tracer allows
“leaping” from spy point to spy point during the debugging process. The debugger also has
profiling capabilities, which can measure the cpu time spent in each call. The cpu time is
measured only down to 0.0001-th of a second. g When the tracer prompts for input, the user
may enter a return, or a single character followed by a return, with the following meanings:

1The current version of XSB’s Prolog debugger does not include exceptions as a debugging port.

271

CHAPTER 10. DEBUGGING 272

• c, <CR>: Creep Causes the system to single-step to the next port (i.e. either the entry
to a traced predicate called by the executed clause, or the success or failure exit from
that clause).

• a: Abort Causes execution to abort and control to return to the top level interpreter.

• b: Break Calls the evaluable predicate break, thus invoking recursively a new incarnation
of the system interpreter. The command prompt at break level n is

n: ?-

The user may return to the previous break level by entering the system end-of-file char-
acter (e.g. ctrl-D), or typing in the atom end of file; or to the top level interpreter
by typing in abort.

• f: Fail Causes execution to fail, thus transferring control to the Fail port of the current
execution.

• h: Help Displays the table of debugging options.

• l: Leap Causes the system to resume running the program, only stopping when a spy-
point is reached or the program terminates. This allows the user to follow the execution
at a higher level than exhaustive tracing.

• n: Nodebug Turns off debug mode.

• r: Retry (fail) Transfers to the Call port of the current goal. Note, however, that side
effects, such as database modifications etc., are not undone.

• s: Skip Causes tracing to be turned off for the entire execution of the procedure. Thus,
nothing is seen until control comes back to that procedure, either at the Success or the
Failure port.

• q: Quasi-skip This is like Skip except that it does not mask out spy points.

• S: Verbose skip Similar to Skip mode, but trace continues to be printed. The user is
prompted again when the current call terminates with success or failure. This can be
used to obtain a full trace to the point where an error occurred or for code profiling.
(See more about profiling below.)

• e: Exit Causes immediate exit from XSB back to the operating system.

trace(+Filename,+option)

trace/2 is like trace/0 except that it is non-interactive and dumps trace information into
a log file, Filename. Currently the only supported option is log. However, the log is written
in the form of Prolog facts, which can be loaded queried. The format of the facts is:

xsb_tracelog(CallId,CallNum,PortType,ParentCallNum,DepthOfCall,CurrentCall,Time)

where CallId is an identifier generated when XSB encounters a new top-level call. This
identifier remains the same for all subgoals called while tracing that top-level call.

• CallNum is a generated number to show the nesting of the calls being traced. It is the
same number that the user sees when tracing interactively.

• PortType is ’Call’, ’Redo’, ’Exit’, or ’Fail’.

CHAPTER 10. DEBUGGING 273

• ParentCallNum is the call number of the parent call.

• DepthOfCall is the nesting depth of the current call with respect to its ancestor calls.

• CurrentCall is the call being traced

• Time is the CPU time it took to execute CurrentCall. On ’Call’ and ’Redo’, Time is
always 0 — it has a meaningful value only for the ’Exit’ and ’Fail’ log entries.

It should be noted that when calls are delayed due to the well-founded negation computation
of because of the when/2 primitive, the parent call might be off in some cases. However, the
parent property repairs itself for subsequent calls.

‘The name of the predicate (xsb tracelog) used for logging can be changed by asserting it
into the predicate debug tracelog predicate/1, which should be imported from usermod.
For instance,

:- import debug_tracelog_predicate/1 from usermod.

?- assert(debug_tracelog_predicate(foobar)).

spy(Preds)

where Preds is a spy specification or a list of such specifications, and must be instantiated.
This predicate sets spy points (conditional or unconditional) on predicates. A spy specification
can be of several forms. Most simply, it is a term of the form P/N , where P is a predicate
name and N its arity. Optionally, only a predicate name can be provided, in which case
it refers to all predicates of any arity currently defined in usermod. It may optionally may
be prefixed by a module name, e.g. ModName:P/N . (Again, if the arity is omitted, the
specification refers to all predicates of any arity with the given name currently defined in the
given module.) A spy specification may also indicate a conditional spy point. A conditional
spy specification is a Prolog rule, the head indicating the predicate to spy, and the body
indicating conditions under which to spy. For example, to spy the predicate p/2 when the
first argument is not a variable, one would write: spy(p(X,) : −nonvar(X)). (Notice that
the parentheses around the rule are necessary). The body may be empty, i.e., the rule may
just be a fact. The head of a rule may also be prefixed (using :) with a module name. One
should not put both conditional and unconditional spy points on the same predicate.

nospy(Preds)

where Preds is a spy specification, or a list of such specifications, and must be instantiated
at the time of call. What constitutes a spy specification is described above under spy. nospy
removes spy points on the specified predicates. If a specification is given in the form of a fact,
all conditional spy points whose heads match that fact are removed.

debug

Turns on debugging mode. This causes subsequent execution of predicates with trace or spy
points to be traced, and is a no-op if there are no such predicates. The predicates trace/0,
trace/1, trace/2, and spy/1 cause debugging mode to be turned on automatically.

nodebug

Turns off debugging mode. This causes trace and spy points to be ignored.

CHAPTER 10. DEBUGGING 274

debugging

Displays information about whether debug mode is on or not, and lists predicates that have
trace points or spy points set on them.

debug ctl(option,value)

debug ctl/2 performs debugger control functions as described below. These commands can
be entered before starting a trace or inside the trace. The latter can be done by responding
with “b” at the prompt, which recursively invokes an XSB sub-session. At this point, you
can enter the debugger control commands and type end_of_file. This returns XSB back to
the debugger prompt, but with new settings.

1. debug ctl(prompt, off) Set non-interactive mode globally. This means that trace will
be printed from start to end, and the user will never be prompted during the trace.

2. debug ctl(prompt, on) Make tracing/spying interactive.

3. debug ctl(profile, on) Turns profiling on. This means that each time a call execution
reaches the Fail or Exit port, CPU time spent in that call will be printed. The actual
call can be identified by locating a Call prompt that has the same number as the “cpu
time” message.

4. debug ctl(profile, off) Turns profiling off.

5. debug ctl(redirect, +File) Redirects debugging output to a file. This also includes
program output, errors and warnings. Note that usually you cannot see the contents
of +File until it is closed, i.e., until another redirect operation is performed (usually
debug ctl(redirect, tty), see next).

6. debug ctl(redirect, tty) Attaches the previously redirected debugging, error, pro-
gram output, and warning streams back to the user terminal.

7. debug ctl(show, +PortList) Allows the user to specify at which ports should trace
messages be printed. PortList must be a list of port names, i.e., a sublist of [’Call’,
’Exit’, ’Redo’, ’Fail’].

8. debug ctl(leash, +PortList) Allows the user to specify at which ports the tracer
should stop and prompt the user for direction. PortList must be a list of port names,
i.e., a sublist of [’Call’, ’Exit’, ’Redo’, ’Fail’]. Only ports that are show-n can be leash-ed.

9. debug ctl(hide, +PredArityPairList) The list must be of the form [P1/A1, P2/A2,

...], i.e., each either must specify a predicate-arity pair. Each predicate on the list will
become non-traceable. That is, during the trace, each such predicate will be treated as
an black-box procedure, and trace will not go into it.

10. debug ctl(unhide, ?PredArityPairList) If the list is a predicate-arity list, every
predicate on that list will become traceable again. Items in the list can contain variables.
For instance, debug ctl(unhide, [/2]) will make all 2-ary that were previously made
untraceable traceable again. As a special case, if PredArityPairList is a variable, all
predicates previously placed on the “untraceable”-list will be taken off.

11. debug ctl(hidden, -List) This returns the list of predicates that the user said should
not be traced.

CHAPTER 10. DEBUGGING 275

10.2 Low-Level Tracing

XSB also provides a facility for low-level tracing of execution. This can be activated by invoking
the emulator with the -T option (see Section 3.7), or through the predicate trace/0. It causes
trace information to be printed out at every call (including those to system trap handlers). The
volume of such trace information can very become large very quickly, so this method of tracing is
not recommended in general.

XSB debugger also provides means for the low-level control of what must be traced. Normally,
various standard predicates are masked out from the trace, since these predicates do not make sense
to the application programmer. However, if tracing below the application level is needed, you can
retract some of the facts specified in the file syslib/debugger data.P (and in some cases assert
into them). All these predicates are documented in the header of that file. Here we only mention
the four predicates that an XSB developer is more likely to need. To get more trace, you should
retract from the first three predicates and assert into the last one.

• hide this show(Pred,Arity): specifies calls (predicate name and arity) that the debugger
should not show at the prompt. However, the evaluation of this hidden call is traced.

• hide this hide(Pred,Arity): specifies calls to hide. Trace remains off while evaluating
those predicates. Once trace is off, there is no way to resume it until the hidden predicate
exits or fails.

• show this hide(Pred,Arity): calls to show at the prompt. However, trace is switched off
right after that.

• trace standard predicate(Pred,Arity): Normally trace doesn’t go inside standard predi-
cates (i.e., those specified in syslib/std xsb.P. If you need to trace some of those, you must
assert into this predicate.

In principle, by retracting all facts from the first three predicates and asserting enough facts into
the last one, it is possible to achieve the behavior that approximates the -T option. However, unlike
-T, debugging can be done interactively. This does not obviate -T, however. First, it is easier to
use -T than to issue multiple asserts and retracts. Second, -T can be used when the error occurs
early on, before the moment when XSB shows its first prompt.

10.3 Analyzing the Execution of Tabled Programs

The sort of tracing and debugging described in previous sections has proven useful for Prolog
programs for 30 or more years. However, when tabling is added to Prolog, things change. First,
as described in Chapter 5, tabling can be used to find the least fixed point of mutually recursive
predicates. Operationally, this requires the ability to suspend one computation path and to resume
another. The addition of tabled negation for the well-founded semantics also requires the ability to
delay negative goals whose only proof may be involved in a loop through negation and to simplify

CHAPTER 10. DEBUGGING 276

these goals once their truth value has become known. Furthermore, a tabled subgoal has different
states: it may be new; it may be incomplete so that new answers might be derived for it; or
completed so that the answers may simply be read from the table. In short, tabling, which can
execute much more general programs than Prolog and can use the stronger well-founded semantics,
requires a more complex set of operations than Prolog’s SLDNF so that debugging and tracing is
correspondingly more complex. Thus, while the 4-port debugger may be useful for programs that
involve just a few tabled predicates, it may not be useful for programs that heavily use tabling for
complex recursions, non-monotinic reasoning or other purposes.

There is currently no standard approach to debugging tabled programs. One possible approach
would be to extend the 4-port debugger to include other ports for tabling operations. Such exten-
sions have not yet been explored, and whether the paradigm of n-port debugging can be extended
to full tabling so that it can be useful to programmers is an open question. Another approach
would be use the declarative approach of justification [32, 54] to explain why derivations were or
were not made. XSB does in fact have a justification package but it is not currently robust enough
to be recommended for general use. Below we present the logforest approach.

10.3.1 Tracing a tabled evaluation through forest logging

While the operations used for tabling are more complex than those of SLDNF, they have a clear for-
mal operational semantics through SLG and the forest-of-trees model. We recall this model briefly
below for a definite program but assume a background knowledge of tabled logic programming (see,
for instance [74]).

Example 10.3.1 Figure 10.1 shows a program fragment along with an SLG forest for the query
?- reach(1,Y) to the the right-recursive tabled predicate reach/1. An SLG forest consists of an
SLG tree for each tabled subgoal S: this tree has root S :- S. In a definite program an SLG tree
represents resolution of program clauses and answers to prove S. In Figure 10.1 each non-root
node of the form K.N where N = (S :- Goals)θ is a clause in which the bindings to a subgoal
S are maintained in Sθ, the goals remaining to prove S are in Goalsθ, and the order of creation
of N within the tabled evaluation is represented by a number, K (local scheduling is used in this
example). Children of a root node are obtained through resolution of a tabled subgoal against
program clauses. Children of non-root nodes are obtained through answer clause resolution, if
the left most selected literal is tabled (e.g. children of node 3 or 11 in the tree for reach(1,Y)),
or through program clause resolution if the leftmost selected literal is not tabled (e.g. children of
nodes 2 and 18 in the tree for reach(1,Y)). Nodes that have empty Goals are termed answers. Note
that the evaluation keeps track of each tabled subgoal S that it encounters. Later if S is selected
again, resolution will use answers rather than program clauses; if no answers are available, the
computation will suspend at that point and the evaluation will backtrack to try to derive answers
using some other computation path. Once more answers have been derived, the evaluation resumes
the suspended computation. Similarly, once the computation has backtracked through all answers
available for S in the current state, the computation path will suspend, and resume after further
answers are found. Thus a tabled evaluation is a fixed point computation for a set of interdependent
subgoals. When it is etermined that a (perhaps singleton) set of subgoals can produce no more
answers, the subgoals are completed.

CHAPTER 10. DEBUGGING 277

16. reach(3,Y):− edge(3,Y)

7. reach(2,Y):− edge(2,Y)

complete (9a)

3. reach(1,Y) :− reach(2,Y)

5. reach(2,Y) :− edge(2,Z),reach(Z,Y)

6. reach(2,Y) :− reach(2,Y)

10. reach(1,2) :−

11. reach(1,Y) :− reach(3,Y)

12. reach(3,Y) ;− reach(3,Y)

13. reach(3,Y) :− edge(3,Z),reach(Z,Y)

14. reach(3,Y) :− reach(1,Y)

15. reach(3,2) :−

4. reach(2,Y) :− reach(2,Y)

edge(3,1).edge(2,2).edge(1,3).edge(1,2)

reach(X,Y):− edge(X,Y).

:− table reach/2.
reach(X,Y):− edge(X,Z),reach(Z,Y).

25. reach(3,1) :−

24. reach(1,3) :−23. reach(1,1) :−22. reach(1,2) :−

21. reach(3.3) :−

20. reach(1,3) :− 19. reach(1,2) :−

18. reach(1,Y) :− edge(1,Y)

17. reach(3,1) :−

9. reach(2,2) :−

8. reach(2,2) :−

2. reach(1,Y) :− edge(1,Z), reach(Z,Y)

1. reach(1,Y) :− reach(1,Y)

Figure 10.1: A program PRrec and SLG forest for (local) evaluation of ?- reach(1,Y)

CHAPTER 10. DEBUGGING 278

The forest logging approach (logforest) allows one to run a tabled query and produce a log
that can be interpreted as (a partial image of) an SLG forest. The log can then used to analyze
program correctness, to optimize performance and so on. Because logforest produces a log, it
superficially resembles the non-interactive trace described earlier in this chapter. However,

• trace/1 produces a Prolog-style trace that takes little account of tabling. logforest struc-
tures its output according to the forest-of-trees model, and takes little account of program
clause resolution.

• logforest is implemented in C for efficiency, while trace/1 is built on top of XSBs interactive
debugger. Unlike trace/1, logforest can therefore to produce logs for very large evaluations
with little overhead.

We stress that the forest logging approch is under development and its features are subject to
change.

Currently, logforest captures the following actions.

• A call to a tabled subgoal If a call to a tabled subgoal S1 is made from a tree for S2 a Prolog-
readable fact of the form tc(S1,S2,Stage,Counter) is logged, where Counter is the ordinal
number of the fact, and Stage is

– new if S1 is a new subgoal

– cmp if S1 is not a new subgoal and has been completed

– incmp if S1 is not a new subgoal but has not been completed

For instance, in the above example, node 3 would be represented as tc(reach(2,Y),reach(1,Y),2)
(the reason for using the counter value of 2 rather than 3 is explained below). If S1 is the
first tabled subgoal in an evaluation, S2 is the atom null.

• Derivation of a new answer When a new answer A is derived for subgoal S and added to the
table (i.e. A is not already an answer for S) a fact of the form na(A,S,Counter) is logged.
In the above example, the answer node 9 would be represented as na([2],reach(2, v1),4)

where the first argument is a list of substitutions for the variables v1,..., vn in S.

• Return of an answer to a consuming subgoal When an answer A is returned to a consuming
subgoal S in a tree for ST , a fact of the form ar(A,S,ST,Counter) is logged. A log entry is
made only if the table for S is incomplete (see the explanation below).

• Subgoal completion

– When a set S of subgoals is determined to be completely evaluated and is completed,
a fact of the form cmp(S,SCCNum,Counter) is logged for each S ∈ S. Here SCCNum
is simply a number giving an ordinal value that can be used to group subgoals into
mutually dependent sets of subgoals or SCCs, i.e. the SCCNum of each S ∈ S has the
same value, but that value is not used for a completion fact of any subgoal not in S.

CHAPTER 10. DEBUGGING 279

– When a subgoal S is early completed, i.e. it is determined that no more answers for S are
possile or are desired a fact of the form cmp(S,ec,Counter) is logged. If S belonged to
a larger mutually dependent set S when it was early completed, S will also be included
in the completion facts for S.

• Table Abolishes

– When a tabled subgoal S is abolished, a fact of the form ta(subg(S),Counter) is logged.

– When all tables for a predicate p/n are abolished, a fact of the form ta(pred(p/n),Counter)

is logged.

– When all tables are abolished, a fact of the form ta(all,Counter) is logged.

• Location of errors Whenever an error is thrown and the execution is in a tree for a subgoal S,
a Prolog-readable fact of the form err(S,Counter) is logged, where Counter is the ordinal
number of the fact. The primary purpose of this fact is to indicate the nearest tabled call
that gave rise to an uncaughterror.

logforest does not contain

• Information about the occurrence of program clause resolution either when used to produce
children of tabled predicates, or when it is used to produce children whose nodes have a
selected literal that is non-tabled.

• Information about the return of answers from completed tables. XSB uses a so-called com-
pleted table optimization which treats answer return from completed tables in a manner akin
to program clause resolution.

The inclusion of the above two features in logforest would significantly slow down execution of
XSB. However, future versions of logforest may include expanded logging features for negation,
for call and answer subsumption and for incremental tabling 2.

Example 10.3.2 The forest for reach(1,Y) in the foregoing example has the log file as shown in
Table 10.1.

log forest(+Call) module: tables
log forest(+Call,+Options) module: tables

These predicates turn on forest logging, call Call then turn logging off. Currently, the only
option is file(File), which directs the logging to the file File. If Options is an empty list
or if log forest/1 is called, the log will be sent to standard output 3.

load forest log(+File) module: tables
The log produced by log forest/[1,2] is a Prolog file that can be compiled and/or loaded
dynamically just as any other Prolog file. However, for large logs (i.e. those of many

2Currently, attributes of attributed variables are not printed out.
3Future options will be able to turn on and off the logging of various types of facts.

CHAPTER 10. DEBUGGING 280

Log File Forest Explanation

tc(reach(1, v0),null,new,0) node 1
node 2 created by program clause resol.
node 3 created by program clause resol.

tc(reach(2, v0),reach(1, v0),new,1) node 4
node 5 created by program clause resol.
node 6 created by program clause resol.

tc(reach(2, v0),reach(2, v0),incmp,2) repeated subgoal registered
node 7 created by program clause resol.
node 8 created by program clause resol.

na([2],reach(2, v0),3) node 8 registered as answer
ar([2],reach(2, v0),reach(2, v0),4) node 9 created by answer resol.
cmp(reach(2, v0),2,5) 9a reach(2, v0) completed

node 10 created by return from completed table
na([2],reach(1, v0),6) node 10 registered as an answer

node 11 created by program clause resol.
tc(reach(3, v0),reach(1, v0),new,7) node 12

node 13 created by program clause resol.
node 14 created by program clause resol.

tc(reach(1, v0),reach(3, v0),incmp,8) node 14 repeated subgoal registered
ar([2],reach(1, v0),reach(3, v0),9) node 15 created by answer resol.
na([2],reach(3, v0),10) node 15 registered as an answer

node 16 created by program clause resol.
node 17 created by program clause resol.

na([1],reach(3, v0),11) node 17 registered as an answer
node 18 created by program clause resol.
node 19 created by program clause resol. (repeated answer)
node 20 created by program clause resol.

na([3],reach(1, v0),12) node 20 registered as an answer
ar([3],reach(1, v0),reach(3, v0),13) node 21 created by answer return
na([3],reach(3, v0),14) node 21 registered as an answer
ar([2],reach(3, v0),reach(1, v0),15) node 22 created by answer resol.
ar([1],reach(3, v0),reach(1, v0),16) node 23 created by answer resol.
na([1],reach(1, v0),17) node 23 registered as an answer
ar([3],reach(3, v0),reach(1, v0),18) node 24 created by answer resol.
ar([1],reach(1, v0),reach(3, v0),19) node 25 created by answer resol.v
cmp(reach(1, v0),1,20)
cmp(reach(3, v0),1,21)

Table 10.1: Log file for computation in Figure 10.1

CHAPTER 10. DEBUGGING 281

megabytes) use of load dync/[1,2] XSB commands can drastically reduce the time needed
to load the file, while use of the proper index/2 declarations can greately improve query time.
The simple predicate, load forest log/1 loads a log file and indexes needed arguments.

Chapter 11

Definite Clause Grammars

11.1 General Description

Definite clause grammars (DCGs) are an extension of context free grammars that have proven
useful for describing natural and formal languages, and that may be conveniently expressed and
executed in Prolog. A Definite Clause Grammar rule is executable because it is just a notational
variant of a logic rule that has the following general form:

Head --> Body.

with the declarative interpretation that “a possible form for Head is Body”. The procedural in-
terpretation of a grammar rule is that it takes an input sequence of symbols or character codes,
analyses some initial portion of that list, and produces the remaining portion (possibly enlarged)
as output for further analysis. In XSB, the exact form of this sequence is determined by whether
XSB’s DCG mode is set to use tabling or not, as will be discussed below. In either case, the argu-
ments required for the input and output lists are not written explicitly in the DCG rule, but are
added when the rule is translated (expanded) into an ordinary normal rule during parsing. Extra
conditions, in the form of explicit Prolog literals or control constructs such as if-then-elses (’->’/2)
or cuts (’!’/0), may be included in the Body of the DCG rule and they work exactly as one would
expect.

The syntax of DCGs is orthogonal to whether tabling is used for DCGs or not. An overview of
DCG syntax supported by XSB is as follows:

1. A non-terminal symbol may be any HiLog term other than a variable or a number. A variable
which appears in the body of a rule is equivalent to the appearance of a call to the standard
predicate phrase/3 as it is described below.

2. A terminal symbol may be any HiLog term. In order to distinguish terminals from nonter-
minals, a sequence of one or more terminal symbols α, β, γ, δ, . . . is written within a grammar
rule as a Prolog list [α, β, γ, δ, . . .], with the empty sequence written as the empty list [].
The list of terminals may contain variables but it has to be a proper list, or else an error

282

CHAPTER 11. DEFINITE CLAUSE GRAMMARS 283

message is sent to the standard error stream and the expansion of the grammar rule that
contains this list will fail. If the terminal symbols are ASCII character codes, they can be
written (as elsewhere) as strings.

3. Extra conditions, expressed in the form of Prolog predicate calls, can be included in the body
(right-hand side) of a grammar rule by enclosing such conditions in curly brackets, ’{’ and
’}’. For example, one can write:

positive integer(N) --> [N], {integer(N), N > 0}. 1

4. The left hand side of a DCG rule must consist of a single non-terminal, possibly followed by
a sequence of terminals (which must be written as a unique Prolog list). Thus in XSB, unlike
SB-Prolog version 3.1, “push-back lists” are supported.

5. The right hand side of a DCG rule may contain alternatives (written using the usual Prolog’s
disjunction operator ’;’ or using the usual BNF disjunction operator ’|’.

6. The Prolog control primitives if-then-else (’->’/2), nots (not/1, fail if/1, ′\ +′/1 or
tnot/1) and cut (’!’/0) may also be included in the right hand side of a DCG rule. These
symbols need not be enclosed in curly brackets. 2 All other Prolog’s control primitives, such
as repeat/0, must be enclosed explicitly within curly brackets if they are not meant to be
interpreted as non-terminal grammar symbols.

11.2 Translation of Definite Clause Grammar rules

In this section we informally describe the translation of DCG rules into normal rules in XSB. Each
grammar rule is translated into a Prolog clause as it is consulted or compiled. This is accomplished
through a general mechanism of defining the hook predicate term expansion/2, by means of which
a user can specify any desired transformation to be done as clauses are read by the reader of XSB’s
parser. This DCG term expansion is as follows:

A DCG rule such as:

p(X) --> q(X).

will be translated (expanded) into:

p(X, Li, Lo) :-

q(X, Li, Lo).

If there is more than one non-terminal on the right-hand side, as in

p(X, Y) --> q(X), r(X, Y), s(Y).

the corresponding input and output arguments are identified, translating into:

1A term like {foo} is just a syntactic-sugar for the term ’{}’(foo).
2Readers familiar with Quintus Prolog may notice the difference in the treatment of the various kinds of not.

For example, in Quintus Prolog a not/1 that is not enclosed within curly brackets is interpreted as a non-terminal
grammar symbol.

CHAPTER 11. DEFINITE CLAUSE GRAMMARS 284

p(X, Y, Li, Lo) :-

q(X, Li, L1),

r(X, Y, L1, L2),

s(Y, L2, Lo).

Terminals are translated using the predicate ’C’/3 (See section 11.3 for its description). For
instance:

p(X) --> [go, to], q(X), [stop].

is translated into:

p(X, S0, S) :-

’C’(S0, go, S1),

’C’(S1, to, S2),

q(X, S2, S3),

’C’(S3, stop, S).

Extra conditions expressed as explicit procedure calls naturally translate into themselves. For
example,

positive number(X) -->

[N], {integer(N), N > 0},
fraction(F), {form number(N, F, X)}.

translates to:

positive number(X, Li, Lo) :-

’C’(Li, N, L1),

integer(N),

N > 0,

L1 = L2,

fraction(F, L2, L3),

form number(N, F, N),

L3 = Lo.

Similarly, a cut is translated literally.

Push-back lists (a proper list of terminals on the left-hand side of a DCG rule) translate into a
sequence of ’C’/3 goals with the first and third arguments reversed. For example,

it is(X), [is, not] --> [aint].

becomes

it is(X, Li, Lo) :-

’C’(Li, aint, L1),

’C’(Lo, is, L2),

’C’(L2, not, L1).

Disjunction has a fairly obvious translation. For example, the DCG clause:

CHAPTER 11. DEFINITE CLAUSE GRAMMARS 285

expr(E) -->

expr(X), "+", term(Y), {E is X+Y}
| term(E).

translates to the Prolog rule:

expr(E, Li, Lo) :-

(expr(X, Li, L1),

’C’(L1, 43, L2), % 0’+ = 43

term(Y, L2, L3)

E is X+Y,

L3 = Lo

; term(E, Li, Lo)

).

11.2.1 Definite Clause Grammars and Tabling

Tabling can be used in conjunction with Definite Clause Grammars to get the effect of a more
complete parsing strategy. When Prolog is used to evaluate DCG’s, the resulting parsing algorithm
is “recursive descent”. Recursive descent parsing, while efficiently implementable, is known to suffer
from several deficiencies: 1) its time can be exponential in the size of the input, and 2) it may not
terminate for certain context-free grammars (in particular, those that are left or doubly recursive).
By appropriate use of tabling, both of these limitations can be overcome. With appropriate tabling,
the resulting parsing algorithm is a variant of Earley’s algorithm and of chart parsing algorithms.

In the simplest cases, one needs only to add the directive :- auto table (see Section 3.10.4) to
the source file containing a DCG specification. This should generate any necessary table declara-
tions so that infinite loops are avoided (for context-free grammars). That is, with a :- auto table

declaration, left-recursive grammars can be correctly processed. Of course, individual table di-
rectives may also be used, but note that the arity must be specified as two more than that shown
in the DCG source, to account for the extra arguments added by the expansion. However, the
efficiency of tabling for DCGs depends on the representation of the input and output sequences
used, a topic to which we now turn.

Consider the expanded DCG rule from the previous section:

p(X, S0, S) :-

’C’(S0, go, S1),

’C’(S1, to,S2),

q(X, S2, S3),

’C’(S3, stop, S).

In a Prolog system, each input and output variable, such as S0 or S is bound to a variable or a
difference list. In XSB, this is called list mode. Thus, to parse go to lunch stop the phrase would
be presented to the DCG rule as a list of tokens [go,to,lunch,stop] via a call to phrase/3 such
as:

phrase(p(X),[go,to,lunch,stop]).

CHAPTER 11. DEFINITE CLAUSE GRAMMARS 286

or an explicit call to p/3, such as:

p(X,[go,to,lunch,stop|X],X).

Terminal elements of the sequence are consumed (or generated) via the predicate ’C’/3 which is
defined for Prolog systems as:

’C’([Token|Rest],Token,Rest).

While such a definition would also work correctly if a DCG rule were tabled, the need to copy
sequences into or out of a table can lead to behavior quadratic in the length of the input sequence
(See Section 5.2.4). As an alternative, XSB allows a mode of DCGs that defines ’C’/3 as a call to
a Datalog predicate word/3 :

’C’(Pos,Token,Next pos):- word(Pos,Token,Next pos).

assuming that each token of the sequence has been asserted as a word/3 fact, e.g:

word(0,go,1).

word(1,to,2).

word(2,lunch,3).

word(3,stop,4).

The above mode of executing DCGs is called datalog mode.

word/3 facts are asserted via a call to the predicate tphrase set string/1. Afterwards,
a grammar rule can be called either directly, or via a call to tphrase/1. To parse the list
[go,to,lunch,stop] in datalog mode using the predicate p/3 from above, the call

tphrase set string([go,to,lunch,stop])

would be made, afterwards the sequence could be parsed via the goal:

tphrase(p(X)).

or

p(X,0,F).

To summarize, DCGs in list mode have the same syntax as they do in datalog mode: they just
use a different definition of ’C’/3. Of course tabled and non-tabled DCGs can use either definition
of ’C’/3. Indeed, this property is necessary for tabled DCG predicates to be able to call non-tabled
DCG predicates and vice-versa. At the same time,tabled DCG rules may execute faster in datalog
mode, while non-tabled DCG rules may execute faster in list mode.

Finally, we note that the mode of DCG parsing is part of XSB’s state. XSB’s default mode is
to use list mode: the mode is set to datalog mode via a call to tphrase set string/3 and back
to list mode by a call to phrase/2 or by a call to reset dcg mode/0.

11.3 Definite Clause Grammar predicates

The library predicates of XSB that support DCGs are the following:

CHAPTER 11. DEFINITE CLAUSE GRAMMARS 287

phrase(+Phrase, ?List)

This predicate is true iff the list List can be parsed as a phrase (i.e. sequence of terminals)
of type Phrase. Phrase can be any term which would be accepted as a nonterminal of the
grammar (or in general, it can be any grammar rule body), and must be instantiated to a
non-variable term at the time of the call; otherwise an error message is sent to the standard
error stream and the predicate fails. This predicate is the usual way to commence execution
of grammar rules.

If List is bound to a list of terminals by the time of the call, then the goal corresponds to
parsing List as a phrase of type Phrase; otherwise if List is unbound, then the grammar is
being used for generation.

tphrase(+Phrase)

This predicate is succeeds if the current database of word/3 facts can be parsed via a call to
the term expansion of +Phrase whose input argument is set to 0 and whose output argument
is set to the largest N such that word(, ,N) is currently true.

The database of word/3 facts is assumed to have been previously set up via a call to
tphrase set string/1 (or variant). If the database of word/3 facts is empty, tphrase/1
will abort.

phrase(+Phrase, ?List, ?Rest)

This predicate is true iff the segment between the start of list List and the start of list Rest
can be parsed as a phrase (i.e. sequence of terminals) of type Phrase . In other words, if the
search for phrase Phrase is started at the beginning of list List, then Rest is what remains
unparsed after Phrase has been found. Again, Phrase can be any term which would be
accepted as a nonterminal of the grammar (or in general, any grammar rule body), and must
be instantiated to a non-variable term at the time of the call; otherwise an error message is
sent to the standard error stream and the predicate fails.

Predicate phrase/3 is the analogue of call/1 for grammar rule bodies, and provides a se-
mantics for variables in the bodies of grammar rules. A variable X in a grammar rule body is
treated as though phrase(X) appeared instead, X would expand into a call to phrase(X, L,

R) for some lists L and R.

expand term(+Term1, ?Term2)

This predicate is used to transform terms that appear in a Prolog program before the program
is compiled or consulted. The default transformation performed by expand term/2 is that
when Term1 is a grammar rule, then Term2 is the corresponding Prolog clause; otherwise
Term2 is simply Term1 unchanged. If Term1 is not of the proper form, or Term2 does not
unify with its clausal form, predicate expand term/2 simply fails.

Users may augment the default transformations by asserting clauses for the predicate term expansion/2

to usermod. After term expansion(Term a,Term b) is asserted, then if a consulted file con-
tains a clause that unifies with Term a the clause will be transformed to Term b before further
compilation. expand term/2 calls user clauses for term expansion/2 first; if the expansion
succeeds, the transformed term so obtained is used and the standard grammar rule expansion
is not tried; otherwise, if Term1 is a grammar rule, then it is expanded using dcg/2; otherwise,
Term1 is used as is.

CHAPTER 11. DEFINITE CLAUSE GRAMMARS 288

Example: Suppose the following clause is asserted:

?- assert(term_expansion(foo(X),bar(X))).

and that the file te.P contains the clause foo(a) then the clause will automatically be
expanded upon consulting the file:

| ?- [te].

[Compiling /Users/macuser/te]

[te compiled, cpu time used: 0.0170 seconds]

[te loaded]

yes

| ?- bar(X).

X = a

yes

| ?- foo(X).

++Error[XSB/Runtime/P]: [Existence (No procedure usermod : foo / 1 exists)] []

Forward Continuation...

However, read/[1,2] does not automatically perform term expansion

| ?- use_module(standard,[expand_term/2]).

yes

| ?- read(X),expand_term(X,Y).

foo(a).

X = foo(a)

Y = bar(a)

yes

’C’(?L1, ?Terminal, ?L2)

This predicate generally is of no concern to the user. Rather it is used in the transformation
of terminal symbols in grammar rules and expresses the fact that L1 is connected to L2

by the terminal Terminal. This predicate is needed to avoid problems due to source-level
transformations in the presence of control primitives such as cuts (’!’/0), or if-then-elses
(’->’/2) and is defined by the single clause:

’C’([Token|Tokens], Token, Tokens).

The name ’C’ was chosen for this predicate so that another useful name might not be pre-
empted.

CHAPTER 11. DEFINITE CLAUSE GRAMMARS 289

tphrase set string(+List)

This predicate

1. abolishes all tables;

2. retracts all word/3 facts from XSB’s store; and

3. asserts new word/3 facts corresponding to List as described in Section 11.2.1.

implicitly changing the DCG mode from list to datalog.

tphrase set string keeping tables(+List) module: dcg
This predicate is the same as tphrase set string, except it does not abolish any tables.
When using this predicate, the user is responsible for explicitly abolishing the necessary
tables.

tphrase set string auto abolish(+List) module: dcg
This predicate is the same as tphrase set string, except it abolishes tables that have been
indicated as dcg-supported tables by a previous call to set dcg supported table/1.

set dcg supported table(+TabSkel) module: dcg
This predicate is used to indicate to the DCG subsystem that a particular tabled predicate is
part of a DCG grammar, and thus the contents of its table depends on the string being parsed.
TabSkel must be the skeleton of a tabled predicate. When tphrase set string auto abolish/1

is called, all tables that have been indicated as DCG-supported by a call to this predicate
will be abolished.

dcg(+DCG Rule, ?Prolog Clause) module: dcg
Succeeds iff the DCG rule DCG Rule translates to the Prolog clause Prolog Clause. At the
time of call, DCG Rule must be bound to a term whose principal functor is ’-->’/2 or else
the predicate fails. dcg/2 must be explicitly imported from the module dcg.

11.4 Two differences with other Prologs

The DCG expansion provided by XSB is in certain cases different from the ones provided by some
other Prolog systems (e.g. Quintus Prolog, SICStus Prolog and C-Prolog). The most important of
these differences are:

1. XSB expands a DCG clause in such a way that when a ’!’/0 is the last goal of the DCG
clause, the expanded DCG clause is always steadfast.

That is, the DCG clause:

a --> b, ! ; c.

gets expanded to the clause:

a(A, B) :- b(A, C), !, C = B ; c(A, B).

and not to the clause:

CHAPTER 11. DEFINITE CLAUSE GRAMMARS 290

a(A, B) :- b(A, B), ! ; c(A, B).

as in Quintus, SICStus and C Prolog.

The latter expansion is not just optimized, but it can have a different (unintended) meaning
if a/2 is called with its second argument bound.

However, to obtain the standard expansion provided by the other Prolog systems, the user
can simply execute:

set dcg style(standard).

To switch back to the XSB-style DCG’s, call

set dcg style(xsb).

This can be done anywhere in the program, or interactively. By default, XSB starts with the
XSB-style DCG’s. To change that, start XSB as follows:

xsb -e "set dcg style(standard)."

Problems of DCG expansion in the presence of cuts have been known for a long time and
almost all Prolog implementations expand a DCG clause with a ’!’/0 in its body in such a
way that its expansion is steadfast, and has the intended meaning when called with its second
argument bound. For that reason almost all Prologs translate the DCG clause:

a --> ! ; c.

to the clause:

a(A, B) :- !, B = A ; c(A, B).

But in our opinion this is just a special case of a ’!’/0 being the last goal in the body of a
DCG clause.

Finally, we note that the choice of DCG style is orthogonal to whether the DCG mode is list
or datalog.

2. Most of the control predicates of XSB need not be enclosed in curly brackets. A difference
with, say Quintus, is that predicates not/1, ′\ +′/1, or fail if/1 do not get expanded when
encountered in a DCG clause. That is, the DCG clause:

a --> (true -> X = f(a) ; not(p)).

gets expanded to the clause:

a(A,B) :- (true(A,C) -> =(X,f(a),C,B) ; not p(A,B))

and not to the clause:

a(A,B) :- (true(A,C) -> =(X,f(a),C,B) ; not(p,A,B))

that Quintus Prolog expands to.

However, note that all non-control but standard predicates (for example true/0 and ’=’/2)
get expanded if they are not enclosed in curly brackets.

Chapter 12

Exception Handling

We use the term exceptions to define errors in program execution that are handled by a non-local
change in execution state. The preferred mechanism for dealing with exceptions in XSB is to use
the predicates catch/3, throw/1, and default user error handler/1 together. These predicates
are ISO-compatable, and their use can give a great deal of control to exception handling. At a
high level, when an exception is encountered an error term T is thrown. Throwing an error term
T causes XSB to examine its choice point stack until it finds a catcher that unifies with T . This
catcher then calls a handler. If no explicit catcher for T exists, a default handler is invoked, which
usually results in an abort, and returns execution to the top-level of the interpreter, or to the calling
C function.

More precisely, a handler is set up when catch(Goal,Catcher,Handler) is called. At this point
a continuation is saved (i.e. a Prolog choice point), and Goal is called. If no exceptions are en-
countered, answers for Goal are obtained as usual. Within the execution of Goal, an exception can
be signaled by a call to throw(Error), or by a predicate in the error handler module that calls
throw/1. throw/1 searches for an ancestor of the current environment called by catch/3 and whose
catcher (second argument) unifies with Error. If such an ancestor is found, program execution re-
verts to the ancestor and all intervening choice points are removed. The catcher’s handler (third ar-
gument) is called and the exception is thereby handled. On the other hand, if no ancestor was called
using catch/3 the system checks whether a clause with head default user error handler(Term)

has been asserted, such that Term unifies with Error. If so, this handler is executed. If not, XSB’s
default system error handler in invoked an error message is output and execution returns to the
top level of the interpreter.

The following, somewhat fanciful example, helps clarify these concepts 1. Consider the predicate
userdiv/2 (Figure 12.1) which is designed to be called with the first argument instantiated to a
number. A second number is then read from a console, and the first number is divided by the
second, and unified with the second argument of userdiv/2. By using catch/3 and throw/1

together the various types of errors can be caught.

The behavior of this program on some representative inputs is shown below.

1Code for this example can be found in $XSBDIR/examples/exceptions.P.

291

CHAPTER 12. EXCEPTION HANDLING 292

:- import error_writeln/1 from standard.

:- import type_error/4 from error_handler.

userdiv(X,Ans):-

catch(userdiv1(X,Ans),mydiv1(Y),handleUserdiv(Y,X)).

userdiv1(X,Ans):-

(number(X) -> true; type_error(number,X,userdiv1/2,1)),

write(’Enter a number: ’),read(Y),

(number(Y) -> true ; throw(mydiv1(error1(Y)))),

(Y < 0 -> throw(mydiv1(error2(Y))); true),

(Y =:= 0 -> throw(error(zerodivision,userdiv/1)); true),

Ans is X/Y.

handleUserdiv(error1(Y),_X):-

error_writeln([’a non-numeric denominator was entered in userdiv/1: ’,Y]),fail.

handleUserdiv(error2(Y),_X):-

error_writeln([’a negative denominator was entered in userdiv/1: ’,Y]),fail.

Figure 12.1: The userdiv/1 program

| ?- userdiv(p(1),F).

++Error[XSB/Runtime/P]: [Type (p(1) in place of number)] in arg 1 of predicate userdiv1/2

Forward Continuation...

... machine:xsb_backtrace/1

... error_handler:type_error/4

... standard:call/1

... x_interp:_$call/1

... x_interp:call_query/1

... standard:call/1

... standard:catch/3

... x_interp:interpreter/0

... loader:ll_code_call/3

... standard:call/1

... standard:catch/3

no

| ?- userdiv(3,F).

Enter a number: foo.

a non-numeric denominator was entered in userdiv/1: foo

no

|| ?- userdiv(3,F).

Enter a number: -1.

a negative denominator was entered in userdiv/1: -1

no

CHAPTER 12. EXCEPTION HANDLING 293

| ?- userdiv(3,Y).

Enter a number: 2.

Y = 1.5000

yes

Note, however the following behavior.

| ?- userdiv(3,F).

Enter a number: 0.

++Error[XSB/Runtime/P] uncaught exception: error(zerodivision,userdiv / 1)

Aborting...

By examining the program above, it can be seen that if p(1) is entered, the predicate type error/3

is called. type error/3 is an XSB mechanism to throw an ISO-style type error from Prolog.
Such an error is known to the default system error handler which prints out a message along
with a backtrace that indicates the calling context in which the error arose (this behavior can
be controlled: see Section 12.4). Alternately, in the second case, when -1 is entered, the er-
ror term mydiv1(error2(-1)) is thrown, which is caught within userdiv/2 and handled by
handleUserdiv/2. Finally, when 0 is entered for the denominator, an error term of the form
error(zerodivision,userdiv/1) is thrown, and that this term does not unify with the second
argument of the catch/3 literal in the body of userdiv/1, or with a known ISO error. The error is
instead caught by XSB’s default system error handler which prints an uncaught exception message
and aborts to the top level of the interpreter.

XSB has two default system error handlers: one used when XSB is called as a stand-alone
process, and another when XSB is embedded in a process. Each recognizes certain error formats
(see Section 12.1), and handles the rest as uncaught exceptions. However, there may be times
when an application requires special default handling: perhaps the application calls XSB from
through a socket, so that aborts are not practical. Alternately, perhaps XSB is being called from a
graphical user interface via Interprolog [9] or some other interface, and in addition to a special abort
handling, one would like to display an error window. In these cases it is convenient to make use of
the dynamic predicate default user error handler/1. default user error handler/1 is called
immediately before the default system error handler, and after it is ascertained that no catcher for
an error term is available via a catch/3 ancestor. It is important to note that the system error
handlers catch errors only in the main thread, and do not affect errors thrown by goals executed by
thread create/[2,3]. Error terms thrown by goals executed by non-detached threads are stored
internally, and can be obtained by thread join/2. Error terms thrown by detached threads are
lost when the thread exits, so that any error handling for a detached thread should be performed
within the thread itself. See Chapter 7 for further information.

Accordingly, suppose the following clause is asserted into usermod:

?- assert((default_user_error_handler(error(zerodivision,Pred)):-

error_writeln([’Aborting: division by 0 in: ’,Pred]))).

The behavior will now be

CHAPTER 12. EXCEPTION HANDLING 294

| ?- userdiv(4,F).

Enter a number: 0.

Aborting: division by 0 in: userdiv / 1

The actions of catch/3 and throw/1 resemble that of the Prolog cut in that they remove choice
points that lie between a call to throw/1 and the matching catch/3 that serves as its ancestor.
However, if this process encounters a choice point for an incomplete table, execution is aborted to
the top user level.

The predicate call cleanup/2 (cf. Section 6.11) can be used with catch/3, since call cleanup(Goal,Cleanup)

executes Cleanup whenever computation of Goal is completed, whether because Goal has thrown
an exception, has failed, or has succeeded with its last answer. call cleanup/2 can thus be used
to release resources created by Goal (such as streams, mutexes, database cursors, etc.). However,
if Goal throws an exception, call cleanup/2 will re-throw the exception after executing cleanup.

12.1 Representations of ISO Errors

All exceptions that occur during the execution of an XSB program can be caught. However, by
structuring error terms in a consistent manner, different classes of errors can be handled much more
easily by user-defined handlers. This philosophy partly underlies the ISO Standard for defining
classes of Prolog errors [33]. While the ISO standard defines various types of errors and how
they should arise during execution of ISO Prolog predicates, it does not define the actual error
terms a system should use. Accordingly, we define the formats for various ISO errors 2. Below,
in Section 12.2 we provide convenience predicates for throwing various ISO errors and performing
various error checks.

In the following predicates, Msg is either a list of HiLog terms or a comma-list of HiLog terms.
Each of the error/2 terms below can also be represented as error/3 terms, where the third
argument is instantiated to the representation of a backtrace 3.

error(domain error(Valid type,Culprit),Msg) is the format of an ISO type error, where
Valid type is the domain expected and Culprit is the term observed. Unlike types, do-
mains can be user-defined.

error(evaluation error(Flag),Msg) is the format of an ISO evaluation error (e.g. overflow or
underflow), and Flag is the type of evaluation error encountered.

error(existence error(Type,Culprit),Msg) is the format of an ISO type error, where Type is
the type of a resource and Culprit is the term observed.

error(instantiation error,Msg)) is the format of an ISO instantiation error.

error(permission error(Op,Obj type,Culprit).Msg) is the format of an ISO permission er-
ror, for an operation Op applied to an object of type Obj type, where Culprit was observed.

2We note that XSB’s system predicates are in the process of being updated to handle these errors.
3If a program catches errors itself, error/3 may need to be imported from error handler.

CHAPTER 12. EXCEPTION HANDLING 295

error(representation error(Flag).Msg) is the format of an ISO representation error (e.g. the
maximum arity of a predicate has been exceeded), and Flag is the type of representation
error encountered.

error(resource error(Flag).Msg) is the format of an ISO resource error (e.g. too many files
are opened), and Flag is the type of resource error encountered.

error(syntax error,Msg) and error(syntax error(Culprit),Msg) are alternate formats of an
ISO syntax error, where Culprit is used for a syntactically-incorrect sequence of tokens.

error(system error(Flag),Msg) is the format of an ISO system error, and Flag is the type of
system error encountered.

error(type error(Valid type,Culprit),Msg) is the format of an ISO type error, where Valid type

is the type expected and Culprit is the term observed. This should be used for checks of
Prolog types only (i.e. integers, floats, atoms, etc.)

In addition, XSB’s engine also makes use of some other types of errors.

error(table error,Msg) is the format of an error arising when using XSB’s tabling mechanism.

error(misc error,Msg) is the format of an error that is not otherwise classified.

error(thread cancel,Id) is the format of an error ball for a thread that has been cancelled by
XSB thread Id (See Chapter 7 for details on thread cancellation.)

In Version 3.3 of XSB, errors for ISO predicates usually, but not not always ISO-compliant.
First, when XSB determines it is out of available memory, recovering from such an error may be
difficult at best. Accordingly the computation is aborted in the sequential engine, or XSB exits
in the multi-threaded engine. Second, errors in XSB code sometimes arise as miscellaneous errors
rather than as a designated ISO-error type. We are, however, in the process of reclassifying errors
to their ISO types.

When XSB generates a memory exception, it prints out a backtrace and exits. This should be
caused only by a bug in XSB or included code. The first predicate in the backtrace that is printed in
these circumstances may be incorrect or redundant. This is because the memory structures used to
generate the backtrace are not always completely consistent, and so an interrupt at an unexpected
point may result in the use of somewhat inconsistent information.

12.2 Predicates to Throw and Handle Errors

12.2.1 Predicates to Throw Errors

XSB provides a variety of predicates that throw errors 4. Those likely to be of interest to users are:

4C functions for throwing terms and ISO-style errors are described in Volume 2, Chapter 3 Foreign Language

Interface.

CHAPTER 12. EXCEPTION HANDLING 296

throw(+ErrorTerm) ISO
Throws the error ErrorTerm. Execution traverses up the choice point stack until a goal of
the form catch(Goal,Term,Handler) is found such that Term unifies with ErrorTerm. In
this case, Handler is called. If no catcher is found in the main thread, the system looks for
a clause of default user error handler(Term) such that Term unifies with ErrorTerm —
if no such clause is found the default system error handler is called. In a non-main joinable
thread, the error term is stored internally and the thread exits; in a detached thread, the
thread exits with no action taken. throw/1 is most useful in conjunction with specialized
handlers for new types of errors not already supported in XSB.

domain error(+Valid type,-Culprit,+Predicate,+Arg) module: error handler
Throws a domain error. Using the default system error handler (with backtrace on error
set to off) an example is

domain_error(posInt,-1,checkPosInt/3,3).

++Error[XSB/Runtime/P]: [Domain (-1 not in domain posInt)] in arg 3 of predicate

checkPosInt/3

evaluation error(+Flag,+Predicate,+Arg) module: error handler
Throws an evaluation error. Using the default system error handler (with backtrace on error
set to off) an example is

evaluation_error(zero_divisor,unidiv/1,2).

++Error[XSB/Runtime/P]: [Evaluation (zero_divisor)] in arg 2 of predicate unidiv/2

existence error(+Object type,?Culprit,+Predicate,+Arg) module: error handler
Throws an existence error. Using the default system error handler (with backtrace on error
set to off) an example is

existence_error(file,’myfile.P’,’load_intensional_rules/2’,2).

++Error[XSB/Runtime/P]: [Existence (No file myfile.P exists)] in arg 2 of predicate

load_intensional_rules/2

instantiation error(+Predicate,+Arg,+State) module: error handler
Throws an instantiation error. Using the default system error handler, an example (with
backtrace on error set to off) is

?- instantiation_error(foo/1,1,nonvar).

++Error[XSB/Runtime/P]: [Instantiation] in arg 1 of predicate foo/1: must be nonvar

permission error(+Op,+Obj type,?Culprit,+Predicate) module: error handler
Throws a permission error. Using the default system error handler, an example (with
backtrace on error set to off) is

| ?- permission_error(write,file,’myfile.P’,foo/1).

++Error[XSB/Runtime/P]: [Permission (Operation) write on file: myfile.P] in foo/1

representation error(+Flag,+Predicate,+Arg) module: error handler
Throws a representation error. Using the default system error handler, an example (with
backtrace on error set to off) is

CHAPTER 12. EXCEPTION HANDLING 297

representation_error(max_arity,assert/1,1).

++Error[XSB/Runtime/P]: [Representation (max_arity)] in arg 1 of predicate assert/1

resource error(+Flag,+Predicate) module: error handler
Throws a resource error. Using the default system error handler (with backtrace on error
set to off) and example is

resource_error(open_files,open/3)

++Error[XSB/Runtime/P]: [Resource (open_files)] in predicate open/3

type error(+Valid type,-Culprit,+Predicate,+Arg) module: error handler
Throws a type error. Using the default system error handler, an example (with backtrace on error
set to off) is

| ?- type_error(atom,f(1),foo/1,1).

++Error[XSB/Runtime/P]: [Type (f(1) in place of atom)] in arg 1 of predicate foo/1

misc error(+Message) module: error handler

Throws a miscellaneous error that will be caught by the default system handler. For good
programming practice miscellaneous errors should only be thrown when the cases above are
not applicable, and the type of error is not of interest for structured error handling. Such
situations occur can occur for instance in debugging, during program development, or in
small-special purpose programs. Note that this misc error/2 replaces the obsolescent XSB
predicates abort/1 and abort/2.

12.2.2 Predicates to Handle Errors

For best results, output for handling errors should be sent to XSB’s standard error stream using
the alias user error or one of the predicates described below.

catch(?Goal,?CatchTerm,+Handler) ISO
Calls Goal, and sets up information so that future throws will be able to access CatchTerm

under the mechanism mentioned above. catch/3 does not attempt to clean up system level
resources. Thus, it is left up to the handler to close open tables (via close open tables/0,
close any open files, reset current input and output, and so on 5.

default user error handler(?CatchTerm)

Handles any error terms that unify with CatchTerm that are not caught by invocations of
catch/3. This predicate does close open tables and release mutexes held by the calling thread,
but does not attempt to clean up other system level resources, which is left to the handler.

error write(?Message) module: standard
error writeln(?Message) module: standard

Utility routines for user-defined error catching. These predicates output Message to XSB’s
STDERR stream, rather than to XSB’s STDOUT stream, as does write/1 and writeln/1. In

5cf. the default system error handler, which performs these functions, if needed.

CHAPTER 12. EXCEPTION HANDLING 298

addition, if Message is a comma list, the elements in the comma list are output as if they
were concatenated together. Each of these predicates must be implicitly from the module
standard.

close open tables module: machine
Removes table data structures for all incomplete tables, but does not affect any incom-
plete tables. In Version 3.3 this predicate should only be used to handle exceptions in
default user error handler/1. In addition, for the multi-threaded engine, this predicate
unlocks any system mutexes held by the thread calling this predicate.

12.3 Convenience Predicates

The following convenience predicates are provided to make a commonly used check and throw an
ISO error if the check is not satisfied. All these predicates must be imported from the module
error handler.

check atom(?Term,+Predicate,+Arg) module: error handler

Checks that Term is an atom. If so, the predicate succeeds; if not it throws a type error.

check acyclic(?Term,+Predicate,+Arg) module: error handler

Checks that Term is acyclic. If so, the predicate succeeds; if not it throws a miscellaneous
error.

check ground(?Term,+Predicate,+Arg) module: error handler

Checks that Term is ground. If so, the predicate succeeds; if not it throws an instantiation
error.

check integer(?Term,+Predicate,+Arg) module: error handler

Checks that Term is an integer. If so, the predicate succeeds; if not it throws a type error.

check nonvar(?Term,+Predicate,+Arg) module: error handler

Checks that Term is not a variable. If not, the predicate succeeds; if Term is a variable, it
throws an instantiation error.

check var(?Term,+Predicate,+Arg) module: error handler

Checks that Term is a variable. If so, the predicate succeeds; if not it throws an instantiation
error.

check nonvar list(?Term,+Predicate,+Arg) module: error handler

Checks that Term is a list, each of whose elements is ground. If so, the predicate succeeds; if
not it throws an instantiation error.

check stream(?Stream,+Predicate,+Arg) module: error handler

Checks that Stream is a stream. If so, the predicate succeeds; if not it throws an instantiation
error 6.

6The representation of streams in XSB is subject to change.

CHAPTER 12. EXCEPTION HANDLING 299

check one thread(+Operation,+Object Type,+Predicate) module: error handler

In the multi-threaded engine, check one thread/3 checks that there is only one active
thread: if not, a miscellaneous error is thrown indicating that Operation is not permit-
ted on ObjectType as called by Predicate, when more than one thread is active. This check
provides a convenient way to allow inclusion of certain operations that are difficult to make
thread-safe by other means.

In the single-threaded engine this predicate always succeeds.

12.4 Backtraces

Displaying a backtrace of the calling context of an error in addition to an error message can greatly
expedite debugging. For XSB’s default error handler, backtraces are printed out by default, a behav-
ior that can be overridden for a given thread by the command: set prolog flag(backtrace on error,off).
For users who write their own error handlers, the following predicates can be used to manipulate
backtraces.

It is important to note that Prolog backtraces differ in a significant manner from backtraces
obtained from other languages, such as C backtraces produced by GDB. This is because a Prolog
backtrace obtains forward continuations from the local environment stack, and in the WAM, local
stack frames are only created when a given clause requires permanent variables – otherwise these
stack frames are optimized away. The precise conditions for optimizing away a local stack frame
require an understanding of the WAM (and of a specific compiler). However in general, longer
clauses with many variables require a local stack frame and their forward continuations will be
displayed, while shorter clauses with fewer variables do not and their forward continuations will
not be displayed.

xsb backtrace(-Backtrace) module: machine
Upon success Backtrace is bound to a structure indicating the forward continuations for a
point of execution. This structure should be treated as opaque, and manipulated by one of
the predicates below.

get backtrace list(+Backtrace,-PredicateList) module: error handler

Given a backtrace structure, this predicate produces a list of predicate identifiers or the
form Module:Predicate/Arity. This list can be manipulated as desired by error handling
routines.

print backtrace(+Backtrace) module: error handler

This predicate, which is used by XSB’s default error handler, prints a backtrace structure to
XSB’s standard error stream.

Chapter 13

Restrictions and Current Known Bugs

In this chapter we indicate some features and bugs of XSB that may affect the users at some point
in their interaction with the system.

If at some point in your interaction with the system you suspect that you have run across a
bug not mentioned below, please report it to (xsb-contact@cs.sunysb.edu). Please try to find
the smallest program that illustrates the bug and mail it to this address together with a script that
shows the problem. We will do our best to fix it or to assist you to bypass it.

13.1 Current Restrictions

• The maximum arity for predicate and function symbols is 255.

• The maximum length of atoms that can be stored in an XSB object code file is in principle
232 − 1.

• Not all of XSB’s tabling and builtins currently take account of cyclic terms, so using them
may lead to XSB hanging or crashing (cf. Section 6.8). Cyclic terms can be checked using
the predicate is cyclic/1.

• In the current version, you should never try to rename a byte code file generated for a module,
though you can move it around in your file system. Since the module name is stored in the
file, renaming it causes the system to load it into wrong places. However, byte code files for
non-modules can be renamed at will.

• XSB allows up to 1 Gigabyte of address space for 32-bit chips. There are various tagging
schemes, which depend on the operating system and where in the 32-bit virtual address space
it allocates user memory. The most general tagging scheme (named GENERAL TAGGING)
adjusts itself to the address space in use. Other more specific tagging schemes are available for
specific architectures. Floating point numbers are by default double precision when computed
at runtime. Floating point numbers in the compiler are only single precision (due to the way
they are represented in object byte-code files.) If --enable-fast-floats is specified, then
28-bit floats are used. For 64-bit platforms, addresses are stored in 60 bits. However, as the

300

CHAPTER 13. RESTRICTIONS AND CURRENT KNOWN BUGS 301

object code file format is the same as for the 32-bit versions, compiled constants are subject
to 32-bit limitations.

• Indexing on floating-point numbers is suspect, since, as implemented in XSB, the semantics
of floating-point unification is murky in the best case. Therefore, it is advisable that if you
use floating point numbers in the first argument of a procedure, that you explicitly index the
predicate in some other argument.

• The XSB compiler cannot distinguish the occurrences of a 0-ary predicate and a name of
a module (of an import declaration) as two different entities. For that reason it fails to
characterise the same symbol table entry as both a predicate and a module at the same time.
As a result of this fact, a compiler error is issued and the file is not compiled. For that reason
we suggest the use of mutually exclusive names for modules and 0-ary predicates, though we
will try to amend this restriction in future versions of XSB.

• Tabled predicates that use call-subsumption do not handle calls that use attributed variables,
and may not use answer subsumption or incremental tabling.

13.2 Known Bugs

• The reader cannot read an infix operator immediately followed by a left parenthesis. In such
a case you get a syntax error. To avoid the syntax error just leave a blank between the infix
operator and the left parenthesis. For example, instead of writing:

| ?- X=(a,b).

write:

| ?- X= (a,b).

• The reader cannot properly read an operator defined as both a prefix and an infix operator.
For instance the declaration

:- op(1200,xf,’<=’).

:- op(1200,xfx,’<=’).

will lead to a syntax error.

• When the code of a predicate is reloaded many times, if the old code is still in use at the
time of loading, unexpected errors may occur, due to the fact that the space of the old code
is reclaimed and may be used for other purposes.

• Currently, term comparisons (==,@<=,@<,@>, and @>=) do not work for terms that overflow the
C-recursion stack (terms that contain more than 10,000 variables and/or function symbols).

Appendix A

GPP - Generic Preprocessor

Version 2.0 - (c) Denis Auroux 1996-99
http://www.math.polytechnique.fr/cmat/auroux/prog/gpp.html

As of version 2.1, XSB uses gpp as a source code preprocessor for Prolog programs. This helps
maintain consistency between the C and the Prolog parts of XSB through the use of the same .h
files. In addition, the use of macros improves the readability of many Prolog programs, especially
those that deal with low-level aspects of XSB. Chapter 3.10 explains how gpp is invoked in XSB.

A.1 Description

gpp is a general-purpose preprocessor with customizable syntax, suitable for a wide range of pre-
processing tasks. Its independence on any programming language makes it much more versatile
than cpp, while its syntax is lighter and more flexible than that of m4.

gpp is targeted at all common preprocessing tasks where cpp is not suitable and where no very
sophisticated features are needed. In order to be able to process equally efficiently text files or
source code in a variety of languages, the syntax used by gpp is fully customizable. The handling
of comments and strings is especially advanced.

Initially, gpp only understands a minimal set of built-in macros, called meta-macros. These
meta-macros allow the definition of user macros as well as some basic operations forming the core
of the preprocessing system, including conditional tests, arithmetic evaluation, and syntax spec-
ification. All user macro definitions are global, i.e. they remain valid until explicitly removed;
meta-macros cannot be redefined. With each user macro definition gpp keeps track of the corre-
sponding syntax specification so that a macro can be safely invoked regardless of any subsequent
change in operating mode.

In addition to macros, gpp understands comments and strings, whose syntax and behavior can
be widely customized to fit any particular purpose. Internally comments and strings are the same
construction, so everything that applies to comments applies to strings as well.

302

APPENDIX A. GPP - GENERIC PREPROCESSOR 303

A.2 Syntax

gpp [-o outfile] [-I/include/path] [-Dname=val ...]

[-z|+z] [-x] [-m] [-n] [-C|-T|-H|-P|-U ... [-M ...]]

[+c<n> str1 str2] [-c str1]

[+s<n> str1 str2 c] [infile]

A.3 Options

gpp recognizes the following command-line switches and options:

• -h
Print a short help message.

• -o outfile
Specify a file to which all output should be sent (by default, everything is sent to standard
output).

• -I /include/path
Specify a path where the #include meta-macro will look for include files if they are not present
in the current directory. The default is /usr/include if no -I option is specified. Multiple -I
options may be specified to look in several directories.

• -D name=val
Define the user macro name as equal to val. This is strictly equivalent to using the #define
meta-macro, but makes it possible to define macros from the command-line. If val makes
references to arguments or other macros, it should conform to the syntax of the mode specified
on the command-line. Note that macro argument naming is not allowed on the command-line.

• +z
Set text mode to Unix mode (LF terminator). Any CR character in the input is systematically
discarded. This is the default under Unix systems.

• -z
Set text mode to DOS mode (CR-LF terminator). In this mode all CR characters are removed
from the input, and all output LF characters are converted to CR-LF. This is the default if
gpp is compiled with the WIN NT option.

• -x
Enable the use of the #exec meta-macro. Since #exec includes the output of an arbitrary
shell command line, it may cause a potential security threat, and is thus disabled unless this
option is specified.

• -m
Enable automatic mode switching to the cpp compatibility mode if the name of an included
file ends in ’.h’ or ’.c’. This makes it possible to include C header files with only minor
modifications.

APPENDIX A. GPP - GENERIC PREPROCESSOR 304

• -n
Prevent newline or whitespace characters from being removed from the input when they
occur as the end of a macro call or of a comment. By default, when a newline or whitespace
character forms the end of a macro or a comment it is parsed as part of the macro call or
comment and therefore removed from output. Use the -n option to keep the last character in
the input stream if it was whitespace or a newline.

• -U arg1 ... arg9
User-defined mode. The nine following command-line arguments are taken to be respectively
the macro start sequence, the macro end sequence for a call without arguments, the argument
start sequence, the argument separator, the argument end sequence, the list of characters to
stack for argument balancing, the list of characters to unstack, the string to be used for
referring to an argument by number, and finally the quote character (if there is none an
empty string should be provided). These settings apply both to user macros and to meta-
macros, unless the -M option is used to define other settings for meta-macros. See the section
on syntax specification for more details.

• -M arg1 ... arg7
User-defined mode specifications for meta-macros. This option can only be used together with
-M. The seven following command-line arguments are taken to be respectively the macro
start sequence, the macro end sequence for a call without arguments, the argument start
sequence, the argument separator, the argument end sequence, the list of characters to stack
for argument balancing, and the list of characters to unstack. See below for more details.

• (default mode)
The default mode is a vaguely cpp-like mode, but it does not handle comments, and presents
various incompatibilities with cpp. Typical meta-macros and user macros look like this:

#define x y

macro(arg,...)

This mode is equivalent to

-U "" "" "(" "," ")" "(" ")" "#" "\\"

-M "#" "\n" " " " " "\n" "(" ")"

• -C
cpp compatibility mode. This is the mode where gpp’s behavior is the closest to that of cpp.
Unlike in the default mode, meta-macro expansion occurs only at the beginning of lines, and
C comments and strings are understood. This mode is equivalent to

-n -U "" "" "(" "," ")" "(" ")" "#" ""

-M "\n#\w" "\n" " " " " "\n" "" ""

+c "/*" "*/" +c "//" "\n" +c "\\\n" ""

+s "\"" "\"" "\\" +s "’" "’" "\\"

APPENDIX A. GPP - GENERIC PREPROCESSOR 305

• -T
TeX-like mode. In this mode, typical meta-macros and user macros look like this:

\define{x}{y}

\macro{arg}{...}

No comments are understood. This mode is equivalent to

-U "\\" "" "{" "}{" "}" "{" "}" "#" "@"

• -H
HTML-like mode. In this mode, typical meta-macros and user macros look like this:

<#define x|y>

<#macro arg|...>

No comments are understood. This mode is equivalent to

-U "<#" ">" "\B" "|" ">" "<" ">" "#" "\\"

• -P
Prolog-compatible cpp-like mode. This mode differs from the cpp compatibility mode by its
handling of comments, and is equivalent to

-n -U "" "" "(" "," ")" "(" ")" "#" ""

-M "\n#\w" "\n" " " " " "\n" "" ""

+ccss "\!o/*" "*/" +ccss "%" "\n" +ccii "\\\n" ""

+s "\"" "\"" "" +s "\!#’" "’" ""

• +c <n> str1 str2
Specify comments. Any unquoted occurrence of str1 will be interpreted as the beginning of a
comment. All input up to the first following occurrence of str2 will be discarded. This option
may be used multiple times to specify different types of comment delimiters. The optional
parameter <n> can be specified to alter the behavior of the comment and e.g. turn it into a
string or make it ignored under certain circumstances, see below.

• -c str1
Un-specify comments or strings. The comment/string specification whose start sequence is
str1 is removed. This is useful to alter the built-in comment specifications of a standard
mode, e.g. the cpp compatibility mode.

• +s <n> str1 str2 c
Specify strings. Any unquoted occurrence of str1 will be interpreted as the beginning of a
string. All input up to the first following occurrence of str2 will be output as is without any
evaluation. The delimiters themselves are output. If c is non-empty, its first character is used
as a string-quote character, i.e. a character whose presence immediately before an occurrence

APPENDIX A. GPP - GENERIC PREPROCESSOR 306

of str2 prevents it from terminating the string. The optional parameter <n> can be specified
to alter the behavior of the string and e.g. turn it into a comment, enable macro evaluation
inside the string, or make the string specification ignored under certain circumstances, see
below.

• -s str1
Un-specify comments or strings. Identical to -c.

• infile
Specify an input file from which gpp reads its input. If no input file is specified, input is read
from standard input.

A.4 Syntax Specification

The syntax of a macro call is the following : it must start with a sequence of characters matching
the macro start sequence as specified in the current mode, followed immediately by the name of
the macro, which must be a valid identifier, i.e. a sequence of letters, digits, or underscores (” ”).
The macro name must be followed by a short macro end sequence if the macro has no arguments,
or by a sequence of arguments initiated by an argument start sequence. The various arguments are
then separated by an argument separator, and the macro ends with a long macro end sequence.

In all cases, the parameters of the current context, i.e. the arguments passed to the body being
evaluated, can be referred to by using an argument reference sequence followed by a digit between 1
and 9. Macro parameters may alternately be named (see below). Furthermore, to avoid interference
between the gpp syntax and the contents of the input file a quote character is provided. The quote
character can be used to prevent the interpretation of a macro call, comment, or string as anything
but plain text. The quote character ”protects” the following character, and always gets removed
during evaluation. Two consecutive quote characters evaluate as a single quote character.

Finally, to facilitate proper argument delimitation, certain characters can be ”stacked” when
they occur in a macro argument, so that the argument separator or macro end sequence are not
parsed if the argument body is not balanced. This allows nesting macro calls without using quotes.
If an improperly balanced argument is needed, quote characters should be added in front of some
stacked characters to make it balanced.

The macro construction sequences described above can be different for meta-macros and for user
macros: this is e.g. the case in cpp mode. Note that, since meta-macros can only have up to two
arguments, the delimitation rules for the second argument are somewhat sloppier, and unquoted
argument separator sequences are allowed in the second argument of a meta-macro.

Unless one of the standard operating modes is selected, the above syntax sequences can be
specified either on the command-line, using the -M and -U options respectively for meta-macros and
user macros, or inside an input file via the #mode meta and #mode user meta-macro calls. In both
cases the mode description consists of 9 parameters for user macro specifications, namely the macro
start sequence, the short macro end sequence, the argument start sequence, the argument separator,
the long macro end sequence, the string listing characters to stack, the string listing characters to
unstack, the argument reference sequence, and finally the quote character. As explained below

APPENDIX A. GPP - GENERIC PREPROCESSOR 307

these sequences should be supplied using the syntax of C strings; they must start with a non-
alphanumeric character, and in the first five strings special matching sequences can be used (see
below). If the argument corresponding to the quote character is the empty string that functionality
is disabled. For meta-macro specifications there are only 7 parameters, as the argument reference
sequence and quote character are shared with the user macro syntax.

The structure of a comment/string is the following : it must start with a sequence of characters
matching the given comment/string start sequence, and always ends at the first occurrence of the
comment/string end sequence, unless it is preceded by an odd number of occurrences of the string-
quote character (if such a character has been specified). In certain cases comment/strings can be
specified to enable macro evaluation inside the comment/string: in that case, if a quote character
has been defined for macros it can be used as well to prevent the comment/string from ending, with
the difference that the macro quote character is always removed from output whereas the string-
quote character is always output. Also note that under certain circumstances a comment/string
specification can be disabled, in which case the comment/string start sequence is simply ignored.
Finally, it is possible to specify a string warning character whose presence inside a comment/string
will cause gpp to output a warning (this is useful e.g. to locate unterminated strings in cpp mode).
Note that input files are not allowed to contain unterminated comments/strings.

A comment/string specification can be declared from within the input file using the #mode
comment meta-macro call (or equivalently #mode string), in which case the number of C strings
to be given as arguments to describe the comment/string can be anywhere between 2 and 4: the
first two arguments (mandatory) are the start sequence and the end sequence, and can make use
of the special matching sequences (see below). They may not start with alphanumeric characters.
The first character of the third argument, if there is one, is used as string-quote character (use an
empty string to disable the functionality), and the first character of the fourth argument, if there is
one, is used as string-warning character. A specification may also be given from the command-line,
in which case there must be two arguments if using the +c option and three if using the +s option.

The behavior of a comment/string is specified by a three-character modifier string, which may
be passed as an optional argument either to the +c/+s command-line options or to the #mode
comment/#mode string meta-macros. If no modifier string is specified, the default value is ”ccc”
for comments and ”sss” for strings. The first character corresponds to the behavior inside meta-
macro calls (including user-macro definitions since these come inside a #define meta-macro call),
the second character corresponds to the behavior inside user-macro parameters, and the third
character corresponds to the behavior outside of any macro call. Each of these characters can take
the following values:

• i: disable the comment/string specification.

• c: comment (neither evaluated nor output).

• s: string (the string and its delimiter sequences are output as is).

• q: quoted string (the string is output as is, without the delimiter sequences).

• C: evaluated comment (macros are evaluated, but output is discarded).

• S: evaluated string (macros are evaluated, delimiters are output).

APPENDIX A. GPP - GENERIC PREPROCESSOR 308

• Q: evaluated quoted string (macros are evaluated, delimiters are not output).

Important note: any occurrence of a comment/string start sequence inside another comment/string
is always ignored, even if macro evaluation is enabled. In other words, comments/strings cannot be
nested. In particular, the ’Q’ modifier can be a convenient way of defining a syntax for temporarily
disabling all comment and string specifications.

Syntax specification strings should always be provided as C strings, whether they are given as
arguments to a #mode meta-macro call or on the command-line of a Unix shell. If command-line
arguments are given via another method than a standard Unix shell, then the shell behavior must
be emulated, i.e. the surrounding ”” quotes should be removed, all occurrences of ’\\’ should be
replaced by a single backslash, and similarly ’\”’ should be replaced by ’”’. Sequences like ’\n’ are
recognized by gpp and should be left as is.

Special sequences matching certain subsets of the character set can be used. They are of the
form ’\x’, where x is one of:

• b: matches any sequence of one or more spaces or TAB characters (’\b’ is identical to ’ ’).

• w: matches any sequence of zero or more spaces or TAB characters.

• B: matches any sequence of one or more spaces, tabs or newline characters.

• W: matches any sequence of zero or more spaces, tabs or newline characters.

• a: an alphabetic character (’a’ to ’z’ and ’A’ to ’Z’).

• A: an alphabetic character, or a space, tab or newline.

• #: a digit (’0’ to ’9’).

• i: an identifier character. The set of matched characters is customizable using the #mode
charset id command. The default setting matches alphanumeric characters and underscores
(’a’ to ’z’, ’A’ to ’Z’, ’0’ to ’9’ and ’ ’).

• t: a TAB character.

• n: a newline character.

• o: an operator character. The set of matched characters is customizable using the #mode
charset op command. The default setting matches all characters in ”+-*/\ˆ<>=‘∼:.?@#&!%|”,
except in Prolog mode where ’ !’, ’%’ and ’|’ are not matched.

• O: an operator character or a parenthesis character. The set of additional matched characters
in comparison with ’\o’ is customizable using the #mode charset par command. The default
setting is to have the characters in ”()[]{}” as parentheses.

Moreover, all of these matching subsets except ’\w’ and ’\W’ can be negated by inserting a ’ !’,
i.e. by writing ’\!x’ instead of ’\x’.

APPENDIX A. GPP - GENERIC PREPROCESSOR 309

Note an important distinctive feature of start sequences: when the first character of a macro
or comment/string start sequence is ’ ’ or one of the above special sequences, it is not taken to
be part of the sequence itself but is used instead as a context check: for example a start sequence
beginning with ’\n’ matches only at the beginning of a line, but the matching newline character is
not taken to be part of the sequence. Similarly a start sequence beginning with ’ ’ matches only if
some whitespace is present, but the matching whitespace is not considered to be part of the start
sequence and is therefore sent to output. If a context check is performed at the very beginning of
a file (or more generally of any body to be evaluated), the result is the same as matching with a
newline character (this makes it possible for a cpp-mode file to start with a meta-macro call).

A.5 Evaluation Rules

Input is read sequentially and interpreted according to the rules of the current mode. All input
text is first matched against the specified comment/string start sequences of the current mode
(except those which are disabled by the ’i’ modifier), unless the body being evaluated is the con-
tents of a comment/string whose modifier enables macro evaluation. The most recently defined
comment/string specifications are checked for first. Important note: comments may not appear
between the name of a macro and its arguments (doing so results in undefined behavior).

Anything that is not a comment/string is then matched against a possible meta-macro call, and
if that fails too, against a possible user-macro call. All remaining text undergoes substitution of
argument reference sequences by the relevant argument text (empty unless the body being evaluated
is the definition of a user macro) and removal of the quote character if there is one.

Note that meta-macro arguments are passed to the meta-macro prior to any evaluation (al-
though the meta-macro may choose to evaluate them, see meta-macro descriptions below). In the
case of the #mode meta-macro, gpp temporarily adds a comment/string specification to enable
recognition of C strings (”...”) and prevent any evaluation inside them, so no interference of the
characters being put in the C string arguments to #mode with the current syntax is to be feared.

On the other hand, the arguments to a user macro are systematically evaluated, and then passed
as context parameters to the macro definition body, which gets evaluated with that environment.
The only exception is when the macro definition is empty, in which case its arguments are not
evaluated. Note that gpp temporarily switches back to the mode in which the macro was defined in
order to evaluate it: so it is perfectly safe to change the operating mode between the time when a
macro is defined and the time when it is called. Conversely, if a user macro wishes to work with the
current mode instead of the one that was used to define it it needs to start with a #mode restore
call and end with a #mode save call.

A user macro may be defined with named arguments (see #define description below). In that
case, when the macro definition is being evaluated, each named parameter causes a temporary
virtual user-macro definition to be created; such a macro may only be called without arguments
and simply returns the text of the corresponding argument.

Note that, since macros are evaluated when they are called rather than when they are defined,
any attempt to call a recursive macro causes undefined behavior except in the very specific case
when the macro uses #undef to erase itself after finitely many loop iterations.

APPENDIX A. GPP - GENERIC PREPROCESSOR 310

Finally, a special case occurs when a user macro whose definition does not involve any arguments
(neither named arguments nor the argument reference sequence) is called in a mode where the short
user-macro end sequence is empty (e.g. cpp or TeX mode). In that case it is assumed to be an
alias macro: its arguments are first evaluated in the current mode as usual, but instead of being
passed to the macro definition as parameters (which would cause them to be discarded) they are
actually appended to the macro definition, using the syntax rules of the mode in which the macro
was defined, and the resulting text is evaluated again. It is therefore important to note that, in
the case of a macro alias, the arguments actually get evaluated twice in two potentially different
modes.

A.6 Meta-macros

These macros are always pre-defined. Their actual calling sequence depends on the current mode;
here we use cpp-like notation.

• #define x y
This defines the user macro x as y. y can be any valid gpp input, and may for example refer
to other macros. x must be an identifier (i.e. a sequence of alphanumeric characters and
’ ’), unless named arguments are specified. If x is already defined, the previous definition
is overwritten. If no second argument is given, x will be defined as a macro that outputs
nothing. Neither x nor y are evaluated; the macro definition is only evaluated when it is
called, not when it is declared.

It is also possible to name the arguments in a macro definition: in that case, the argument
x should be a user-macro call whose arguments are all identifiers. These identifiers become
available as user-macros inside the macro definition; these virtual macros must be called
without arguments, and evaluate to the corresponding macro parameter.

• #defeval x y
This acts in a similar way to #define, but the second argument y is evaluated immediately.
Since user macro definitions are also evaluated each time they are called, this means that the
macro y will undergo two successive evaluations. The usefulness of #defeval is considerable,
as it is the only way to evaluate something more than once, which can be needed e.g. to
force evaluation of the arguments of a meta-macro that normally doesn’t perform any evalu-
ation. However since all argument references evaluated at define-time are understood as the
arguments of the body in which the macro is being defined and not as the arguments of the
macro itself, usually one has to use the quote character to prevent immediate evaluation of
argument references.

• #undef x
This removes any existing definition of the user macro x.

• #ifdef x
This begins a conditional block. Everything that follows is evaluated only if the identifier
x is defined, until either a #else or a #endif statement is reached. Note however that the
commented text is still scanned thoroughly, so its syntax must be valid. It is in particular

APPENDIX A. GPP - GENERIC PREPROCESSOR 311

legal to have the #else or #endif statement ending the conditional block appear as only the
result of a user-macro expansion and not explicitly in the input.

• #ifndef x
This begins a conditional block. Everything that follows is evaluated only if the identifier x
is not defined.

• #ifeq x y
This begins a conditional block. Everything that follows is evaluated only if the results of the
evaluations of x and y are identical as character strings. Any leading or trailing whitespace
is ignored for the comparison. Note that in cpp-mode any unquoted whitespace character is
understood as the end of the first argument, so it is necessary to be careful.

• #ifneq x y
This begins a conditional block. Everything that follows is evaluated only if the results of the
evaluations of x and y are not identical (even up to leading or trailing whitespace).

• #else
This toggles the logical value of the current conditional block. What follows is evaluated if
and only if the preceding input was commented out.

• #endif
This ends a conditional block started by a #if... meta-macro.

• #include file
This causes gpp to open the specified file and evaluate its contents, inserting the resulting
text in the current output. All defined user macros are still available in the included file, and
reciprocally all macros defined in the included file will be available in everything that follows.
The include file is looked for first in the current directory, and then, if not found, in one of
the directories specified by the -I command-line option (or /usr/include if no directory was
specified). Note that, for compatibility reasons, it is possible to put the file name between ””
or <>.

Upon including a file, gpp immediately saves a copy of the current operating mode onto the
mode stack, and restores the operating mode at the end of the included file. The included file
may override this behavior by starting with a #mode restore call and ending with a #mode
push call. Additionally, when the -m command line option is specified, gpp will automatically
switch to the cpp compatibility mode upon including a file whose name ends with either ’.c’
or ’.h’.

• #exec command
This causes gpp to execute the specified command line and include its standard output in the
current output. Note that this meta-macro is disabled unless the -x command line flag was
specified, for security reasons. If use of #exec is not allowed, a warning message is printed
and the output is left blank. Note that the specified command line is evaluated before being
executed, thus allowing the use of macros in the command-line. However, the output of the
command is included verbatim and not evaluated. If you need the output to be evaluated,
you must use #defeval (see above) to cause a double evaluation.

APPENDIX A. GPP - GENERIC PREPROCESSOR 312

• #eval expr
The #eval meta-macro attempts to evaluate expr first by expanding macros (normal gpp eval-
uation) and then by performing arithmetic evaluation. The syntax and operator precedence
for arithmetic expressions are the same as in C ; the only missing operators are <<, >>, ?:
and assignment operators. If unable to assign a numerical value to the result, the returned
text is simply the result of macro expansion without any arithmetic evaluation. The only ex-
ceptions to this rule are the == and != operators which, if one of the sides does not evaluate
to a number, perform string comparison instead (ignoring trailing and leading spaces).

Inside arithmetic expressions, the defined(...) special user macro is also available: it takes
only one argument, which is not evaluated, and returns 1 if it is the name of a user macro
and 0 otherwise.

• #if expr
This meta-macro invokes the arithmetic evaluator in the same manner as #eval, and compares
the result of evaluation with the string ”0” in order to begin a conditional block. In particular
note that the logical value of expr is always true when it cannot be evaluated to a number.

• #mode keyword ...
This meta-macro controls gpp’s operating mode. See below for a list of #mode commands.

The key to gpp’s flexibility is the #mode meta-macro. Its first argument is always one of a
list of available keywords (see below); its second argument is always a sequence of words separated
by whitespace. Apart from possibly the first of them, each of these words is always a delimiter
or syntax specifier, and should be provided as a C string delimited by double quotes (” ”). The
various special matching sequences listed in the section on syntax specification are available. Any
#mode command is parsed in a mode where ”...” is understood to be a C-style string, so it is safe to
put any character inside these strings. Also note that the first argument of #mode (the keyword)
is never evaluated, while the second argument is evaluated (except of course for the contents of C
strings), so that the syntax specification may be obtained as the result of a macro evaluation.

The available #mode commands are:

• #mode save / #mode push
Push the current mode specification onto the mode stack.

• #mode restore / #mode pop
Pop mode specification from the mode stack.

• #mode standard name
Select one of the standard modes. The only argument must be one of: default (default mode);
cpp, C (cpp mode); tex, TeX (tex mode); html, HTML (html mode); prolog, Prolog (prolog
mode). The mode name must be given directly, not as a C string.

• #mode user ”s1” ... ”s9”
Specify user macro syntax. The 9 arguments, all of them C strings, are the mode specification
for user macros (see the -U command-line option and the section on syntax specification).
The meta-macro specification is not affected.

APPENDIX A. GPP - GENERIC PREPROCESSOR 313

• #mode meta {user | ”s1” ... ”s7”}
Specify meta-macro syntax. Either the only argument is user (not as a string), and the user-
macro mode specifications are copied into the meta-macro mode specifications, or there must
be 7 string arguments, whose significance is the same as for the -M command-line option (see
section on syntax specification).

• #mode quote [”c”]
With no argument or ”” as argument, removes the quote character specification and disables
the quoting functionality. With one string argument, the first character of the string is taken
to be the new quote character. The quote character cannot be alphanumeric nor ’ ’, and
cannot be one of the special matching sequences either.

• #mode comment [xxx] ”start” ”end” [”c” [”c”]]
Add a comment specification. Optionally a first argument consisting of three characters
not enclosed in ” ” can be used to specify a comment/string modifier (see the section on
syntax specification). The default modifier is ccc. The first two string arguments are used
as comment start and end sequences respectively. The third string argument is optional and
can be used to specify a string-quote character (if it is ”” the functionality is disabled). The
fourth string argument is optional and can be used to specify a string delimitation warning
character (if it is ”” the functionality is disabled).

• #mode string [xxx] ”start” ”end” [”c” [”c”]]
Add a string specification. Identical to #mode comment except that the default modifier is
sss.

• #mode nocomment / #mode nostring [”start”]
With no argument, remove all comment/string specifications. With one string argument,
delete the comment/string specification whose start sequence is the argument.

• #mode preservelf { on | off | 1 | 0 }
Equivalent to the -n command-line switch. If the argument is on or 1, any newline or whites-
pace character terminating a macro call or a comment/string is left in the input stream for
further processing. If the argument is off or 0 this feature is disabled.

• #mode charset { id | op | par } ”string”
Specify the character sets to be used for matching the \o, \O and \i special sequences. The
first argument must be one of id (the set matched by \i), op (the set matched by \o) or par
(the set matched by \O in addition to the one matched by \o). ”string” is a C string which
lists all characters to put in the set. It may contain only the special matching sequences \a,
\A, \b, \B, and \# (the other sequences and the negated sequences are not allowed). When
a ’-’ is found in-between two non-special characters this adds all characters in-between (e.g.
”A-Z” corresponds to all uppercase characters). To have ’-’ in the matched set, either put it
in first or last position or place it next to a \x sequence.

A.7 Examples

Here is a basic self-explanatory example in standard or cpp mode:

APPENDIX A. GPP - GENERIC PREPROCESSOR 314

#define FOO This is

#define BAR a message.

#define concat #1 #2

concat(FOO,BAR)

#ifeq (concat(foo,bar)) (foo bar)

This is output.

#else

This is not output.

#endif

Using argument naming, the concat macro could alternately be defined as

#define concat(x,y) x y

In TeX mode and using argument naming, the same example becomes:

\define{FOO}{This is}

\define{BAR}{a message.}

\define{\concat{x}{y}}{\x \y}

\concat{\FOO}{\BAR}

\ifeq{\concat{foo}{bar}}{foo bar}

This is output.

\else

This is not output.

\endif

In HTML mode and without argument naming, one gets similarly:

<#define FOO|This is>

<#define BAR|a message.>

<#define concat|#1 #2>

<#concat <#FOO>|<#BAR>>

<#ifeq <#concat foo|bar>|foo bar>

This is output.

<#else>

This is not output.

<#endif>

The following example (in standard mode) illustrates the use of the quote character:

#define FOO This is \

a multiline definition.

#define BLAH(x) My argument is x

BLAH(urf)

\BLAH(urf)

APPENDIX A. GPP - GENERIC PREPROCESSOR 315

Note that the multiline definition is also valid in cpp and Prolog modes despite the absence of quote
character, because ’\’ followed by a newline is then interpreted as a comment and discarded.

In cpp mode, C strings and comments are understood as such, as illustrated by the following
example:

#define BLAH foo

BLAH "BLAH" /* BLAH */

’It\’s a /*string*/ !’

The main difference between Prolog mode and cpp mode is the handling of strings and comments:
in Prolog, a ’...’ string may not begin immediately after a digit, and a /*...*/ comment may not
begin immediately after an operator character. Furthermore, comments are not removed from the
output unless they occur in a #command.

The differences between cpp mode and default mode are deeper: in default mode #commands
may start anywhere, while in cpp mode they must be at the beginning of a line; the default mode
has no knowledge of comments and strings, but has a quote character (’\’), while cpp mode has
extensive comment/string specifications but no quote character. Moreover, the arguments to meta-
macros need to be correctly parenthesized in default mode, while no such checking is performed in
cpp mode.

This makes it easier to nest meta-macro calls in default mode than in cpp mode. For example,
consider the following HTML mode input, which tests for the availability of the #exec command:

<#ifeq <#exec echo blah>|blah

> #exec allowed <#else> #exec not allowed <#endif>

There is no cpp mode equivalent, while in default mode it can be easily translated as

#ifeq (#exec echo blah

) (blah

)

\#exec allowed

#else

\#exec not allowed

#endif

In order to nest meta-macro calls in cpp mode it is necessary to modify the mode description, either
by changing the meta-macro call syntax, or more elegantly by defining a silent string and using the
fact that the context at the beginning of an evaluated string is a newline character:

#mode string QQQ "$" "$"

#ifeq $#exec echo blah

$ $blah

$

\#exec allowed

APPENDIX A. GPP - GENERIC PREPROCESSOR 316

#else

\#exec not allowed

#endif

Note however that comments/strings cannot be nested (”...” inside $...$ would go undetected), so
one needs to be careful about what to include inside such a silent evaluated string.

Remember that macros without arguments are actually understood to be aliases when they are
called with arguments, as illustrated by the following example (default or cpp mode):

#define DUP(x) x x

#define FOO and I said: DUP

FOO(blah)

The usefulness of the #defeval meta-macro is shown by the following example in HTML mode:

<#define APPLY|<#defeval TEMP|<\##1 \#1>><#TEMP #2>>

<#define <#foo x>|<#x> and <#x>>

<#APPLY foo|BLAH>

The reason why #defeval is needed is that, since everything is evaluated in a single pass, the input
that will result in the desired macro call needs to be generated by a first evaluation of the arguments
passed to APPLY before being evaluated a second time.

To translate this example in default mode, one needs to resort to parenthesizing in order to
nest the #defeval call inside the definition of APPLY, but need to do so without outputting the
parentheses. The easiest solution is

#define BALANCE(x) x

#define APPLY(f,v) BALANCE(#defeval TEMP f

TEMP(v))

#define foo(x) x and x

APPLY(\foo,BLAH)

As explained above the simplest version in cpp mode relies on defining a silent evaluated string to
play the role of the BALANCE macro.

The following example (default or cpp mode) demonstrates arithmetic evaluation:

#define x 4

The answer is:

#eval x*x + 2*(16-x) + 1998%x

#if defined(x)&&!(3*x+5>17)

This should be output.

#endif

APPENDIX A. GPP - GENERIC PREPROCESSOR 317

To finish, here are some examples involving mode switching. The following example is self-
explanatory (starting in default mode):

#mode push

#define f(x) x x

#mode standard TeX

\f{blah}

\mode{string}{"$" "$"}

\mode{comment}{"/*" "*/"}

\f{urf} /* blah */

\define{FOO}{bar/* and some more */}

\mode{pop}

f(FOO)

A good example where a user-defined mode becomes useful is the gpp source of this document
(available with gpp’s source code distribution).

Another interesting application is selectively forcing evaluation of macros in C strings when in
cpp mode. For example, consider the following input:

#define blah(x) "and he said: x"

blah(foo)

Obviously one would want the parameter x to be expanded inside the string. There are several
ways around this problem:

#mode push

#mode nostring "\""

#define blah(x) "and he said: x"

#mode pop

#mode quote "‘"

#define blah(x) ‘"and he said: x‘"

#mode string QQQ "$$" "$$"

#define blah(x) $$"and he said: x"$$

The first method is very natural, but has the inconvenient of being lengthy and neutralizing string
semantics, so that having an unevaluated instance of ’x’ in the string, or an occurrence of ’/*’,
would be impossible without resorting to further contortions.

The second method is slightly more efficient, because the local presence of a quote character
makes it easier to control what is evaluated and what isn’t, but has the drawback that it is sometimes
impossible to find a reasonable quote character without having to either significantly alter the source
file or enclose it inside a #mode push/pop construct. For example any occurrence of ’/*’ in the
string would have to be quoted.

APPENDIX A. GPP - GENERIC PREPROCESSOR 318

The last method demonstrates the efficiency of evaluated strings in the context of selective
evaluation: since comments/strings cannot be nested, any occurrence of ’”’ or ’/*’ inside the ’$$’
gets output as plain text, as expected inside a string, and only macro evaluation is enabled. Also
note that there is much more freedom in the choice of a string delimiter than in the choice of a
quote character.

A.8 Advanced Examples

Here are some examples of advanced constructions using gpp. They tend to be pretty awkward
and should be considered as evidence of gpp’s limitations.

The first example is a recursive macro. The main problem is that, since gpp evaluates everything,
a recursive macro must be very careful about the way in which recursion is terminated, in order
to avoid undefined behavior (most of the time gpp will simply crash). In particular, relying on a
#if/#else/#endif construct to end recursion is not possible and results in an infinite loop, because
gpp scans user macro calls even in the unevaluated branch of the conditional block. A safe way to
proceed is for example as follows (we give the example in TeX mode):

\define{countdown}{

\if{#1}

#1...

\define{loop}{\countdown}

\else

Done.

\define{loop}{}

\endif

\loop{\eval{#1-1}}

}

\countdown{10}

The following is an (unfortunately very weak) attempt at implementing functional abstraction in
gpp (in standard mode). Understanding this example and why it can’t be made much simpler is
an exercise left to the curious reader.

#mode string "‘" "‘" "\\"

#define ASIS(x) x

#define SILENT(x) ASIS()

#define EVAL(x,f,v) SILENT(

#mode string QQQ "‘" "‘" "\\"

#defeval TEMP0 x

#defeval TEMP1 (

\#define \TEMP2(TEMP0) f

)

TEMP1

)TEMP2(v)

APPENDIX A. GPP - GENERIC PREPROCESSOR 319

#define LAMBDA(x,f,v) SILENT(

#ifneq (v) ()

#define TEMP3(a,b,c) EVAL(a,b,c)

#else

#define TEMP3(a,b,c) \LAMBDA(a,b)

#endif

)TEMP3(x,f,v)

#define EVALAMBDA(x,y) SILENT(

#defeval TEMP4 x

#defeval TEMP5 y

)

#define APPLY(f,v) SILENT(

#defeval TEMP6 ASIS(\EVA)f

TEMP6

)EVAL(TEMP4,TEMP5,v)

This yields the following results:

LAMBDA(z,z+z)

=> LAMBDA(z,z+z)

LAMBDA(z,z+z,2)

=> 2+2

#define f LAMBDA(y,y*y)

f

=> LAMBDA(y,y*y)

APPLY(f,blah)

=> blah*blah

APPLY(LAMBDA(t,t t),(t t))

=> (t t) (t t)

LAMBDA(x,APPLY(f,(x+x)),urf)

=> (urf+urf)*(urf+urf)

APPLY(APPLY(LAMBDA(x,LAMBDA(y,x*y)),foo),bar)

=> foo*bar

#define test LAMBDA(y,‘#ifeq y urf

y is urf#else

y is not urf#endif

‘)

APPLY(test,urf)

APPENDIX A. GPP - GENERIC PREPROCESSOR 320

=> urf is urf

APPLY(test,foo)

=> foo is not urf

A.9 Author

Denis Auroux, e-mail: auroux@math.polytechnique.fr.

Please send me e-mail for any comments, questions or suggestions.

Many thanks to Michael Kifer for valuable feedback and for prompting me to go beyond version
1.0.

Bibliography

[1] H. Ait-Kaci. The WAM: a (real) tutorial. Technical Report 5, DEC Paris Research Report,
1990.

[2] J. Alferes, C. Damasio, and L. Pereira. SLX: a top-down derivation procedure for programs
with explicit negation. In M. Bruynooghe, editor, International Logic Programming Symp,
pages 424–439, 1994.

[3] J. Alferes, C. Damasio, and L. Pereira. A logic programming system for non-monotonic rea-
soning. Journal of Automated Reasoning, 1995.

[4] F. Banchilhon, D. Maier, Y. Sagiv, and J. Ullman. Magic sets and other strange ways to
implement logic programs. In PODS. ACM, 1986.

[5] C. Beeri and R. Ramakrishnan. On the power of magic. J. Logic Programming, 10(3):255–299,
1991.

[6] A. Bonner and M. Kifer. An overview of transaction logic. Theoretical Computer Science,
133:205–265, October 1994.

[7] D. Boulanger. Fine-grained goal-directed declarative analysis of logic programs. Proceedings
of the International Workshop on Verification, Model Checking and Abstract Interpretation,
1997. Available through http://www.dsi.unive.it/ bossi/VMCAI.html.

[8] D. Butenhof. Programming with POSIX Threads. Prentice-Hall, 1997.

[9] M. Calejo. Interprolog: A declarative java-prolog interface. In EPIA. Springer-Verlag, 2001.
See XSB’s home page for downloading instructions.

[10] L. Castro and V. S. Costa. Understanding memory management in prolog systems. In In-
ternational Conference on Logic Programming, number 2237 in LNCS, pages 11–26. Springer,
2001.

[11] L. Castro, T. Swift, and D. Warren. Suspending and resuming computations in engines for
SLG evaluation. In Practical Applications of Declarative Languages, 2002. To appear.

[12] L. Castro, T. Swift, and D. Warren. XASP: Answer Set Programming in XSB. Manual to
Open-source software availible at xsb.sourceforge.net, 2002.

321

BIBLIOGRAPHY 322

[13] W. Chen, M. Kifer, and D. S. Warren. HiLog: A foundation for higher-order logic program-
ming. J. Logic Programming, 15(3):187–230, 1993.

[14] W. Chen, T. Swift, and D. S. Warren. Efficient top-down computation of queries under the
well-founded semantics. J. Logic Programming, 24(3):161–199, September 1995.

[15] W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General Logic Programs.
Journal of the ACM, 43(1):20–74, January 1996.

[16] M. Codish, B. Demoen, and K. Sagonas. Semantics-based program analysis for logic-based lan-
guages using XSB. Springer International Journal of Software Tools for Technology Transfer,
2(1):29–45, Nov. 1998.

[17] B. Cui and T. Swift. Preference logic grammars: Fixed-point semantics and application to
data standardization. Artificial Intelligence, 138:117–147, 2002.

[18] B. Cui, T. Swift, and D. S. Warren. From tabling to transformation: Implementing non-ground
residual programs. In International Workshop on Implementations of Declarative Languages,
1999.

[19] B. Cui and D. S. Warren. A system for tabled constraint logic programming. In Computational
Logic, page 478492, 2000.

[20] S. Dawson, C. R. Ramakrishnan, S. Skiena, and T. Swift. Principles and practice of unification
factoring. ACM Transactions on Programming Languages and Systems, September 1996.

[21] S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical program analysis using general
purpose logic programming systems — a case study. In ACM PLDI, pages 117–126, May 1996.

[22] B. Demoen and K. Sagonas. CAT: the Copying Approach to Tabling. In Priniclpes of Declar-
ative Programming, 10th International Symposium, pages 21–35. Springer-Verlag, 1998. LNCS
1490.

[23] B. Demoen and K. Sagonas. Memory Management for Prolog with Tabling. In Proceedings of
ISMM’98: ACM SIGPLAN International Symposium on Memory Management, pages 97–106.
ACM Press, 1998.

[24] J. Desel and W. Reisig. Place/transition Petri nets. In Lectures on Petri Nets I: Basic Models,
pages 122–174. Springer LNCS 1491, 1998.

[25] S. Dietrich. Extension Tables for Recursive Query Evaluation. PhD thesis, SUNY at Stony
Brook, 1987.

[26] J. Freire, R. Hu, T. Swift, and D. S. Warren. Parallelizing tabled evaluation. In 7th Interna-
tional PLILP Symposium, pages 115–132. Springer-Verlag, 1995.

[27] J. Freire, T. Swift, and D. Warren. Beyond depth-first: Improving tabled logic programs
through alternative scheduling strategies. Journal of Functional and Logic Programming, 1998.

[28] J. Freire, T. Swift, and D. Warren. A formal framework for scheduling in SLG. In International
Workshop on Tabling in Parsing and Deduction, 1998.

BIBLIOGRAPHY 323

[29] J. Freire, T. Swift, and D. S. Warren. Treating I/O seriously: Resolution reconsidered for disk.
In 14th International Conferene on Logic Programming, 1997. To Appear.

[30] T. Fruhwirth. Constraint handling rules. Journal of Logic Programming, 1998.

[31] J. Gartner, T. Swift, A. Tien, L. M. Pereira, and C. Damásio. Psychiatric diagnosis from the
viewpoint of computational logic. In International Conference on Computational Logic, pages
1362–1376. Springer-Verlag, 2000. LNAI 1861.

[32] H. Guo, C. R. Ramakrishnan, and I. V. Ramakrishnan. Speculative beats conservative justi-
fication. In International Conference on Logic Programming, volume 2237 of Lecture Notes in
Computer Science, pages 150–165. Springer, 2001.

[33] ISO working group JTC1/SC22. Prolog international standard iso-iec 13211-1. Technical
report, International Standards Organization, 1995.

[34] New built-in flags, predicates and functions proposal. Technical report, International Standards
Organization, 2006. Edited by P. Moura, ISO/IEC DTR 13211-1:2006.

[35] Prolog multi-threaded support. Technical report, International Standards Organization, 2007.
Edited by P. Moura, ISO/IEC DTR 13211-5:2007.

[36] E. Johnson, C. R. Ramakrishnan, I. V. Ramakrishnan, and P. Rao. A space efficient engine
for subsumption-based tabled evaluation of logic programs. In A. Middeldorp and T. Sato,
editors, 4th Fuji International Symposium on Functional and Logic Programming, number 1722
in Lecture Notes in Computer Science, pages 284–299. Springer-Verlag, Nov. 1999.

[37] T. Kanamori and T. Kawamura. Abstract interpretation based on oldt resolution. Journal of
Logic Programming, 15:1–30, 1993.

[38] D. Kemp and R. Topor. Completeness of a top-down query evaluation procedure for stratified
databases. In Logic Programming: Proc. of the Fifth International Conference and Symposium,
pages 178–194, 1988.

[39] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based
languages. Journal of the ACM, 42:741–843, July 1995.

[40] M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic programming and
its applications. J. Logic Programming, 12(4):335–368, 1992.

[41] R. Larson, D. S. Warren, J. Freire, and K. Sagonas. Syntactica. MIT Press, 1995.

[42] R. Larson, D. S. Warren, J. Freire, K. Sagonas, and P. Gomez. Semantica. MIT Press, 1996.

[43] J. Leite and L. M. Pereira. Iterated logic programming updates. In International Conference
on Logic Programming, pages 265–278. MIT Press, 1998.

[44] B. Lewis and D. Berg. Multithreaded Programming with Pthreads. Prentice-Hall, 1998.

[45] T. Lindholm and R. O’Keefe. Efficient implementation of a defensible semantics for dynamic
PROLOG code. In Proceedings of the International Conference on Logic Programming, pages
21–39, 1987.

BIBLIOGRAPHY 324

[46] X. Liu, C. R. Ramakrishnan, and S. Smolka. Fully local and efficient evaluation of alternating
fixed points. In TACAS 98: Tools and Algorithms for Construction and Analysis of Systems,
pages 5–19. Springer-Verlag, 1998.

[47] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.

[48] R. Marques. Concurrent Tabling: Algorithms and Implementation. PhD thesis, Universidade
Nova de Lisboa, 2007.

[49] R. Marques and T. Swift. Concurrent and local evaluation of normal programs. In International
Conference on Logic Programming, pages 206–222, 2008.

[50] R. Marques, T. Swift, and J. Cunha. Extending tabled logic programming with multi-
threading: A systems perspective. In CICLOPS, pages 91–107, 2008.

[51] R. Marques, T. Swift, and J. Cunha. A simple and efficient implementation of concurrent local
tabling. In Practical Applications of Declarative Languages, pages 264–278, 2010.

[52] P. Moura. Logtalk User Manual. Available online from http://logtalk.org.

[53] I. Niemelä and P. Simons. SModels — An implementation of the stable model and well-
founded semantics for normal LP. In International Conference on Logic Programming and
Non-Monotonic Reasoning, pages 420–429. Springer-Verlag, 1997.

[54] G. Pemmasani, H. Guo, Y. Dong, C. R. Ramakrishnan, and I. V. Ramakrishnan. Online
justification for tabled logic programs. In Fuji International Symposium on Functional and
Logic Programming, pages 24–38, 2004.

[55] T. Przymusinski. Every logic program has a natural stratification and an iterated least fixed
point model. In PODS, pages 11–21, 1989.

[56] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. Smolka, T. Swift, and D. S.
Warren. Efficient model checking using tabled resolution. In Proceedings of CAV 97, 1997.

[57] P. Rao, I. V. Ramakrishnan, K. Sagonas, T. Swift, and D. S. Warren. Efficient table access
mechanisms for logic programs. Journal of Logic Programming, 38(1):31–54, Jan. 1999.

[58] F. Riguzzi and T. Swift. Tabling and answer subsumption for reasoning on logic programs
with annotated disjunctions. In International Conference on Logic Programming, 2010.

[59] K. Sagonas and T. Swift. An abstract machine for tabled execution of fixed-order stratified
logic programs. ACM TOPLAS, 20(3):586 – 635, May 1998.

[60] K. Sagonas, T. Swift, and D. S. Warren. XSB as an efficient deductive database engine. In
Proc. of SIGMOD 1994 Conference. ACM, 1994.

[61] K. Sagonas, T. Swift, and D. S. Warren. An abstract machine for efficiently computing queries
to well-founded models. Journal of Logic Programming, 45(1-3):1–41, 2000.

[62] K. Sagonas, T. Swift, and D. S. Warren. The limits of fixed-order computation. Theoretical
Computer Science, 254(1-2):465–499, 2000.

BIBLIOGRAPHY 325

[63] K. Sagonas and D. S. Warren. Efficient execution of HiLog in WAM-based Prolog imple-
mentations. In L. Sterling, editor, Proceedings of the 12th International Conference on Logic
Programming, pages 349–363. MIT Press, June 1995.

[64] D. Saha. Incremental Evaluation of Tabled Logic Programs. PhD thesis, SUNY Stony Brook,
2006.

[65] D. Saha and C. Ramakrishnan. Incemental and demand-driven points-to analysis using logic
programming. In ACM Principles and Practice of Declarative Programming, 2005.

[66] H. Seki. On the power of Alexandrer templates. In Proc. of 8th PODS, pages 150–159. ACM,
1989.

[67] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

[68] T. Swift. A new formulation of tabled resolution with delay. In Recent Advances in Artifiial
Intelligence. Springer-Verlag, 1999. Available at http://www.cs.sunysb.edu/̃ tswift.

[69] T. Swift. Tabling for non-monotonic programming. Ann. Math. Artif. Intell., 25(3-4):201–240,
1999.

[70] T. Swift. Deduction in ontologies via answer set programming. In International Conference
on Logic Programming and Non-Monotonic Reasoning, number 2923 in LNAI, pages 275–289,
2004.

[71] T. Swift. An engine for efficiently computing (sub-)models. In International Conference on
Logic Programming, pages 514–518, 2009.

[72] T. Swift and D. Warren. XSB: Extending the power of prolog using tabling. available at
www.cs.sunysb.edu/ tswift, 2009.

[73] T. Swift and D. Warren. Tabling with answer subsumption: Implementation, applications and
performance. In JELIA, 2010. Available at http://www.cs.sunysb.edu/˜tswift.

[74] T. Swift and D. Warren. XSB: Extending the power of Prolog using tabling. Theory and
Practice of Logic Programming, 2010. To appear. Available at www.cs.sunysb.edu/ tswift.

[75] H. Tamaki and T. Sato. OLDT resolution with tabulation. In Third International Conference
on Logic Programming, pages 84–98, 1986.

[76] A. van Gelder, K. Ross, and J. Schlipf. Unfounded sets and well-founded semantics for general
logic programs. JACM, 38(3):620–650, 1991.

[77] L. Vieille. Recursive query processing: The power of logic. Theoretical Computer Science,
69:1–53, 1989.

[78] A. Walker. Backchain iteration: Towards a practical inference method that is simple enough
to be proved terminating, sound, and complete. J. Automated Reasoning, 11(1):1–23, 1993.
Originally formulated in New York University TR 34, 1981.

BIBLIOGRAPHY 326

[79] H. Wan, B. Grossof, M. Kifer, P. Fodor, and S. Liang. Logic programming with defaults and
argumentation theories. In International Conference on Logic Programming, pages 432–448,
2009.

[80] D. H. D. Warren. An abstract Prolog instruction set. Technical Report 309, SRI, 1983.

Index

\+/1, 138
\=/2, 141
\==/2, 142
,̂ 170
ˆ /2, 137
!/0, 138, 174, 282, 283, 288
\+/1, 77
’∨’/2, 135
’∧’/2, 135
’/’/2, 134
’//’/2, 134
’<<’/2, 135
’><’/2, 135
’>>’/2, 135
**/2, 137
*/2, 134
+/2, 134
-/1, 135
-/2, 134
->/2, 139
=../2, 154
=/2, 141
==/2, 141
?=/2, 142
@</2, 142
@= /2, 142
@=< /2, 142
@>/2, 142
@>= /2, 142
ISO, 146, 180, 193, 199, 201
[]/1 (consult), 34
$trace/0, 275
^ /2, 173
^=../2, 155
throw/1, 296
‘C’/3, 288

abolish/1, 201
abolish all private tables/0, 232
abolish all shared tables/0, 233
abolish all tables/0, 232
abolish module tables/1, 233
abolish table call/1, 231
abolish table call/2, 232
abolish table pred/1, 230
abolish table pred/2, 231
acos/1, 137
acyclic term/1, 159
add xsb hook/1, 269
arg/3, 152
arg0/3, 153
asin/1, 137
assert/1, 200
assert/3, 200
assertz/1, 200
at end of stream/0, 109
at end of stream/1, 109
atan/1, 137
atan/2, 137
atan2/2, 137
atom/1, 146
atom chars/2, 162
atom codes/2, 159
atom concat/3, 164
atom length/2, 163
atomic/1, 146
bagof/3, 171
between/3, 140
bounded call/3, 176
bounded call/4, 33, 176
break/0, 192
call/1, 174
call/[2,10], 174

327

INDEX 328

call cleanup/2, 177
call tv/2, 175
callable/1, 148
catch/3, 297
ceiling/1, 136
char code/2, 163
check acyclic/3, 298
check atom/3, 298
check ground/3, 298
check integern/3, 298
check nonvar/3, 298
check nonvar list/3, 298
check one thread/3, 299
check stream/3, 298
check var/3, 298
clause/2, 202
close/1, 107
close/2, 106
close open tables/0, 298
compare/3, 142
compile/1, 34, 37
compile/2, 34, 37
compound/1, 147
concat atom/2, 164
concat atom/3, 164
console write/1, 124
console writeln/1, 124
copy term/2, 156
cos/1, 137
current atom/1, 187
current functor/1, 186
current index/2, 186
current input/1, 180
current module/1, 186
current module/2, 186
current op/3, 191
current predicate/1, 185
current prolog flag/2, 180
cvt canonical/2, 210
datime/1, 131
dcg/2, 289
debug/0, 273
debug ctl/2, 274
debugging/0, 274
default user error handler/1, 297

delete returns/2, 234
div/2, 134
domain error/4, 296
dynamic/1, 96, 205
e/0, 137
ensure loaded/1, 35
ensure loaded/2, 210
epsilon/0, 137
error write/1, 124, 297
error writeln/1, 124, 297
evaluation error/3, 296
excess vars/4, 173
existence error/4, 296
expand term/2, 287
fail/0, 138
fail if/1, 138
false/0, 138
file clone/3, 110
file exists/1, 112
file file getbuf atom/4, 129
file getbuf atom/3, 129
file getbuf list/3, 128
file getbuf list/4, 128
file putbuf/4, 129
file putbuf/5, 129
file read line atom/1, 128
file read line atom/2, 128
file read line list/1, 127
file read line list/2, 127
file reopen/3, 109
file truncate/3, 110
file write line/2, 128
file write line/3, 128
findall/3, 171
findall/4, 172
float/1, 136
floor/1, 136
flush all output streams/0, 111
flush output/0, 109
flush output/1, 108
fmt read/3, 125
fmt read/4, 125
fmt write/2, 125
fmt write/3, 126
fmt write string/3, 127

INDEX 329

forall/2, 177
functor/3, 149
gc atoms/0, 169
gc dynamic/1, 203
gc heap/0, 193
gc tables/1, 233
get/1, 114
get0/1, 114
get backtrace list/2, 299
get byte/1, 117
get byte/2, 117
get call/3, 217
get calls/3, 218
get calls for table/2, 219
get char/1, 114
get char/2, 113
get code/1, 114
get code/2, 114
get residual/2, 222
get returns/2, 220
get returns/3, 221
get returns for call/2, 221
ground/1, 142
ground and acyclic/1, 142
ground or cyclic/1, 143
hilog arg/3, 153
hilog functor/3, 151
hilog op/3, 192
hilog symbol/1, 191
include/1, 45
incr assert/1, 96
incr assert inval/1, 97
incr asserta/1, 96
incr asserta inval/1, 97
incr assertz/1, 96
incr assertz inval/1, 97
incr directly depends/2, 98
incr invalidate call/1, 98
incr retract inval/1, 97
incr retractall/1, 97
incr retractall inval/1, 97
incr table update/0, 97
incr table update/1, 97
incr table update/2, 97
incr trans depends/2, 98

incr trie intern/2, 100
incr trie intern inval/2, 100
incr trie uninternall/2, 100
incr trie uninternall inval/2, 100
index/2, 203
instantiation error/4, 296
integer/1, 146
invalidate tables for/2, 234
is/2, 134
is acyclic/1, 159
is attv/1, 148
is charlist/1, 148
is charlist/2, 148
is cyclic/1, 159
is list/1, 147
is most general term/1, 148
is number atom/1, 148
keysort/2, 144
library directory/1, 26
listing/0, 189
listing/1, 190
load dyn/1, 207
load dyn/2, 208
load dync/1, 208
load dync/2, 209
load forest log/1, 279
log/1, 137
log10/1, 137
log forest/2, 279
max/2, 135
message/1, 124
message queue create/2, 253
message queue destroy/1, 254
messageln/1, 124
min/2, 135
misc error/3, 297
mod/2, 136
module property/2, 189
mutex create/1, 257
mutex destroy/1, 257
mutex lock/1, 258
mutex property/2, 259
mutex trylock/1, 258
mutex unlock/1, 258
mutex unlock all/0, 259

INDEX 330

name/2, 161
nl/0, 113
nl/1, 113
nodebug/0, 273
nonvar/1, 146
nospy/1, 273
not/1, 138
notrace/0, 271
number/1, 146
number chars/2, 163
number codes/2, 160
number digits/2, 163
numbervars/1, 124
numbervars/3, 124
numbervars/4, 123
once/1, 177
op/3, 61
open/3, 105
open/4, 106
otherwise/0, 137
parsort/4, 144
path sysop/2, 132, 133
path sysop/3, 132, 133
peek byte/1, 117
peek byte/2, 117
peek char/1, 115
peek char/2, 114
peek code/1, 115
peek code/2, 115
permission error/4, 296
phrase/2, 286
phrase/3, 287
pi/0, 137
predicate property/2, 187
print backtrace/1, 299
print incomplete tables/0, 227
print incomplete tables/1, 227
prompt/2, 193
proper hilog/1, 149
put/1, 116
put byte/1, 117
put byte/2, 117
put char/1, 116
put char/2, 115
put code/1, 116

put code/2, 116
read/1, 117
read/2, 117
read canonical/1, 118
read canonical/2, 118
read term/2, 118
read term/3, 118
real/1, 146
rem/2, 136
remove xsb hook/1, 270
repeat/0, 139
representation error/3, 296
resource error/3, 297
retractall/1, 201
round/1, 136
see/1, 111
seeing/1, 111
seen/0, 112
set dcg style/1, 290
set dcg supported table/1, 289
set global compiler options/1, 38
set input/1, 107
set output/1, 107
set prolog flag/2, 185
set stream position/2, 109
setof/3, 170
shell/1, 130
shell/2, 130
shell to list/3, 131
shell to list/4, 131
sign/1, 137
sin/1, 137
sk not/1, 139
sort/2, 144
spy/1, 273
sqrt/1, 137
statistics/0, 193
statistics/1, 196
statistics/2, 197
storage commit/1, 212
storage delete fact/3, 211
storage delete fact bt/2, 212
storage delete keypair/3, 211
storage delete keypair bt/3, 212
storage find fact/2, 211

INDEX 331

storage find keypair/3, 211
storage insert fact/3, 211
storage insert fact bt/2, 212
storage insert keypair/4, 211
storage insert keypair bt/4, 212
storage reclaim space/1, 212
stream property/2, 108
string substitute/4, 167
structure/1, 147
sub atom/5 , 165
subsumes/2, 143
subsumes chk/2, 143
subsumes term/2, 143
tab/1, 116
table/1, 65, 96, 214
table dump/2, 224
table dump/3, 224
table once/1, 177
table state/1, 223
table state/4, 224
tan/1, 137
tell/1, 112
telling/1, 112
term depth/2, 156
term expansion/2, 283, 287
term size/2, 157
term to atom/2, 169
term to atom/3, 168
term to codes/2, 169
term to codes/3 , 169
tfindall/3, 172
thread cancel/1, 250
thread create/1, 249
thread create/2, 249
thread create/3, 247
thread detach/1, 250
thread disable cancel/0, 252
thread enable cancel/0, 252
thread exit/1, 250
thread get message/1, 255
thread get message/2, 255
thread join/2, 249
thread peek message/1, 256
thread peek message/2, 255
thread property/2, 252

thread self/1, 250
thread send message/2, 255
thread signal/2, 251
thread sleep/1, 253
thread yield/0, 252
time/1, 198
timed call/3, 175
timed call/4, 175
tmpfile open/1, 111
tnot/1, 77, 138
told/0, 112
tphrase/1, 287
tphrase set string/1, 289
tphrase set string auto abolish/1, 289
tphrase set string keeping tables/1, 289
trace/0, 271
trace/2, 272
trie bulk delete/2, 267
trie bulk insert/2, 266
trie bulk unify/3, 267
trie create/2, 263
trie delete/2, 265
trie drop/1, 266
trie insert/2, 264
trie property/2, 268
trie truncate/1, 266
trie unify/2, 265
trimcore/0, 193
true/0, 137
truncate/1, 137
type error/4, 297
unifiable/3, 142
unify with occurs check/2, 141
unnumbervars/3, 124
url decode/2, 113
url encode/2, 112
var/1, 145
variant/2, 143
variant get residual/2, 222
warning/1, 124
with mutex/2, 256
word/3, 286
write/1, 120
write/2, 121
write canonical/1, 122

INDEX 332

write canonical/2, 122
write prolog/1, 122, 123
write term/2, 119
write term/3, 120
writeln/1, 122
writeln/2, 122
writeq/1, 121
writeq/2, 121
xor/2, 135
xsb assert hook/1, 270
xsb backtrace/1, 299
xsb configuration/2, 190
xsb exit hook/1, 270
xsb retract hook/1, 270
64-bit architectures, 11

abort
trace facility, 272

acc, 9
aggregate predicates

prolog, 169
aliases

message queues, 253
mutexes, 257
streams, 104

user error, 104
user input, 104
user message, 104
user output, 104
user warning, 104

threads, 247
tries, 263

answer abstraction, 86
answer substitution, 213
attributed variables, 3, 68, 101, 120, 122, 123,

148, 156, 157, 182, 279

base file name, 19
byte code

files
compiler, 36

canonical format, 35, 122, 208
cc, 9
Compiler, 36

cmplib, 36

directives, 45
inlines, 51
invoking, 36
options, 38
specialization, 43

compiler options
mi warn, 43
modeinfer, 42
optimize, 38
spec dump, 42
spec off, 42
spec repr, 42
ti dump, 42
ti long names, 42
unfold off, 42
xpp on, 39

configuration, 7
Constraint Handling Rules, 3
control, 138
cut, 138, 174, 282, 283, 288

debugger, 271
ports, 271

declarations
auto table, 42, 47, 67
document export/1, 25
document import/1, 25
export/1, 20
import/1, 28
import/2, 20
index/2, 49
local/1, 20
module/2, 20
multifile/2, 36
suppl table, 42, 48, 67
table as, 70
use module/2, 20

definite clause grammars, 282
datalog mode, 286
list mode, 285
style, 290

directives
Compiler, 45
indexing, 49
modes, 46

INDEX 333

tabling, 47
dynamic loading of files, 35

emulator
command line options, 28

exceptions, 291

Flora, 5
Flora-2, 158

garbage collection, 32, 181
atoms, 169
dynamic clauses, 203
heap, 193
tables, 233

gcc, 9
GPP, 36, 39

gpp include dir, 39
gpp options, 39
quit on error, 42
xpp dump/N, 40
xpp dump, 40
xpp on/N, 40

grammars
definite clause, 282

high-level tracing, 271

indexing, 199, 200, 203, 279
composite, 204
directives, 49
dynamic predicates, 203
hash-based, 203
multiple-argument, 204
star, 3, 204
transformational, 49
trie-based, 204, 260

inlines
Compiler, 51

installation into shared directories, 7
InterProlog, 4
InterProlog Interface, 9
invoking the Compiler, 36
ISO

errors, 294
ISO Compatability, 51

load search path, 26
low-level tracing, 275

memory management, 32
Message Queues, 241
mode analysis

compiler options, 42
modes

directives, 46
modules

compatability syntax, 20
name, 20
XSB syntax, 20

multi-threading, 3
Mutexes

User defined, 256

negation
stable models, 83
stratified, 75
unstratified, 78

notational conventions, 5

occurs check, 140, 157, 183
ODBC Interface, 4, 9
options

command line arguments, 28
compiler, 38

Oracle Interface, 9

packages, 27
bootstrap userpackage/3, 27
package configuration/2, 28
unload package/1, 28

permanent variables, 299
predicate indicator, 179
preprocessing, 36
Prolog flags, 180

atom garbage collection, 169, 181
backtrace on error, 181, 299
bounded, 180
clause garbage collection, 181
dcg style, 181
debug, 180
dialect, 180
double quotes, 180

INDEX 334

goal, 181
heap garbage collection, 181, 193
heap margin, 181
integer rounding function, 180
max answer list action, 157, 182
max answer list depth, 157, 182
max answer term action, 157, 182
max answer term depth, 157, 182
max integer, 180
max memory, 33, 183
max queue size, 184
max table subgoal action, 92, 157, 182
max table subgoal depth, 92, 157, 182
max threads, 184, 236
min integer, 180
shared predicates, 184
table gc action, 181, 229–232
thread complsize, 183, 248
thread detached, 184, 248
thread glsize, 183, 248
thread pdlsize, 183, 248
thread tcpsize, 183, 248
tracing, 181
unify with occurs check, 140, 157, 183
unknown, 24, 180
version data, 180
warning action, 124, 181
write attributes, 120, 181
write depth, 181

Prolog-commons, 180
Prologs

SWI, 198
YAP, 198

scheduling strategy, 10
sets, bags, 169
shared predicates, 32, 184, 237
Silk, 158
skeleton, 214
SModels Interface, 9
source file designator, 19
specialization

Compiler, 43
compiler options, 42

stable models, 82

stacks
default sizes, 28
expanding, 28

standard predicates, 28, 39, 43
state of the system, 179
streams, 103

STDDBG, 104
STDERR, 104, 124, 181, 297
STDFDBK, 104, 124
STDIN, 104
STDMSG, 104, 124
STDOUT, 104, 124
STDWARN, 104, 124
system, 104, 111

substitution factor, 213
system, state of, 179

tabling
answer completion, 81
answer subsumption, 67, 84–87, 100, 187,

214
automatic, 42
call subsumption, 28, 31, 67–69, 100, 187,

193, 214, 216, 217
interaction with meta-logical predicates,

73
call variance, 67, 68, 100, 187, 193, 214,

216, 217
compiler options, 42
complete evaluation, 76
conditional answers, 78
consumer, 64
cuts, 72
directives, 47, 214
dynamic predicates, 214
incremental, 93, 100, 187, 193, 214, 264
negation, 75
opaque, 96, 214
private, 214
producer, generator, 64
scheduling strategies, 70
shared, 31, 214
similarity measures, 67
strategy selection, 214
supplemental, 42

INDEX 335

table deletion, 228
table inspection, 216

Tck/Tk, 9
term depth, 182

definition, 156
term indicator, 179
term size

definition, 157
termination, 48, 66, 67

answer subsumption, 85
subgoal abstraction, 91

terms
comparison of, 140
cyclic, 140, 142, 156, 157, 183, 264, 267,

300
unification of, 140

thread
thread status, 240
valid, 239

trace
logging, 272
options, 271

tracing
low-level, 275
Prolog Programs, 271

transaction logic, 210
tries, 99, 260

unification factoring
compiler options, 42

well-founded semantics, 81

XASP, 5, 9
xsbdoc, 5, 25
xsbrc.P initialization file, 26

Index of Predicates Standard in XSB

\+/1, 138
\=/2, 141
\==/2, 142
ˆ /2, 137
!/0, 138
’∨’/2, 135
’∧’/2, 135
’/’/2, 134
’//’/2, 134
’<<’/2, 135
’><’/2, 135
’>>’/2, 135
**/2, 137
*/2, 134
+/2, 134
-/1, 135
-/2, 134
=../2, 154
=/2, 141
==/2, 141
?=/2, 142
@</2, 142
@= /2, 142
@=< /2, 142
@>/2, 142
@>= /2, 142
ISO, 146, 180, 193, 199, 201
[]/1 (consult), 34
$trace/0, 275
^ /2, 173
^=../2, 155
throw/1, 296
‘C’/3, 288
abolish/1, 201
abolish all private tables/0, 232
abolish all shared tables/0, 233

abolish all tables/0, 232
abolish module tables/1, 233
abolish table call/1, 231
abolish table call/2, 232
abolish table pred/1, 230
abolish table pred/2, 231
acos/1, 137
acyclic term/1, 159
arg/3, 152
arg0/3, 153
asin/1, 137
assert/1, 200
assert/3, 200
assertz/1, 200
at end of stream/0, 109
at end of stream/1, 109
atan/1, 137
atan/2, 137
atan2/2, 137
atom/1, 146
atom chars/2, 162
atom codes/2, 159
atom concat/3, 164
atom length/2, 163
atomic/1, 146
bagof/3, 171
break/0, 192
call/1, 174
call/[2,10], 174
call cleanup/2, 177
call tv/2, 175
callable/1, 148
catch/3, 297
ceiling/1, 136
char code/2, 163
clause/2, 202

336

INDEX OF PREDICATES STANDARD IN XSB 337

close/1, 107
close/2, 106
compare/3, 142
compile/1, 34, 37
compile/2, 34, 37
compound/1, 147
copy term/2, 156
cos/1, 137
current atom/1, 187
current functor/1, 186
current index/2, 186
current input/1, 180
current module/1, 186
current module/2, 186
current op/3, 191
current predicate/1, 185
current prolog flag/2, 180
debug/0, 273
debug ctl/2, 274
debugging/0, 274
default user error handler/1, 297
delete returns/2, 234
div/2, 134
dynamic/1, 96, 205
e/0, 137
ensure loaded/1, 35
ensure loaded/2, 210
epsilon/0, 137
expand term/2, 287
fail/0, 138
fail if/1, 138
false/0, 138
file clone/3, 110
file exists/1, 112
file read line atom/1, 128
file read line atom/2, 128
file read line list/1, 127
file read line list/2, 127
file reopen/3, 109
findall/3, 171
findall/4, 172
float/1, 136
floor/1, 136
flush output/0, 109
flush output/1, 108

fmt read/3, 125
fmt read/4, 125
fmt write/2, 125
fmt write/3, 126
fmt write string/3, 127
forall/2, 177
functor/3, 149
gc atoms/0, 169
gc dynamic/1, 203
gc heap/0, 193
gc tables/1, 233
get/1, 114
get0/1, 114
get byte/1, 117
get byte/2, 117
get call/3, 217
get calls/3, 218
get calls for table/2, 219
get char/1, 114
get char/2, 113
get code/1, 114
get code/2, 114
get residual/2, 222
get returns/2, 220
get returns/3, 221
get returns for call/2, 221
ground/1, 142
ground and acyclic/1, 142
ground or cyclic/1, 143
hilog arg/3, 153
hilog functor/3, 151
hilog op/3, 192
hilog symbol/1, 191
include/1, 45
index/2, 203
integer/1, 146
invalidate tables for/2, 234
is/2, 134
is acyclic/1, 159
is attv/1, 148
is charlist/1, 148
is charlist/2, 148
is cyclic/1, 159
is list/1, 147
is most general term/1, 148

INDEX OF PREDICATES STANDARD IN XSB 338

is number atom/1, 148
keysort/2, 144
library directory/1, 26
listing/0, 189
listing/1, 190
load dyn/1, 207
load dyn/2, 208
load dync/1, 208
load dync/2, 209
log/1, 137
log10/1, 137
max/2, 135
message queue create/2, 253
message queue destroy/1, 254
min/2, 135
mod/2, 136
module property/2, 189
mutex create/1, 257
mutex destroy/1, 257
mutex lock/1, 258
mutex property/2, 259
mutex trylock/1, 258
mutex unlock/1, 258
mutex unlock all/0, 259
name/2, 161
nl/0, 113
nl/1, 113
nodebug/0, 273
nonvar/1, 146
nospy/1, 273
not/1, 138
notrace/0, 271
number/1, 146
number chars/2, 163
number codes/2, 160
number digits/2, 163
once/1, 177
op/3, 61
open/3, 105
open/4, 106
otherwise/0, 137
path sysop/2, 132, 133
path sysop/3, 132, 133
peek byte/1, 117
peek byte/2, 117

peek char/1, 115
peek char/2, 114
peek code/1, 115
peek code/2, 115
phrase/2, 286
phrase/3, 287
pi/0, 137
predicate property/2, 187
prompt/2, 193
proper hilog/1, 149
put/1, 116
put byte/1, 117
put byte/2, 117
put char/1, 116
put char/2, 115
put code/1, 116
put code/2, 116
read/1, 117
read/2, 117
read canonical/1, 118
read canonical/2, 118
read term/2, 118
read term/3, 118
real/1, 146
rem/2, 136
repeat/0, 139
retractall/1, 201
round/1, 136
see/1, 111
seeing/1, 111
seen/0, 112
set dcg style/1, 290
set global compiler options/1, 38
set input/1, 107
set output/1, 107
set prolog flag/2, 185
set stream position/2, 109
setof/3, 170
shell/1, 130
shell/2, 130
shell to list/3, 131
shell to list/4, 131
sign/1, 137
sin/1, 137
sk not/1, 139

INDEX OF PREDICATES STANDARD IN XSB 339

sort/2, 144
spy/1, 273
sqrt/1, 137
statistics/0, 193
statistics/1, 196
statistics/2, 197
storage commit/1, 212
storage delete fact/3, 211
storage delete fact bt/2, 212
storage delete keypair/3, 211
storage delete keypair bt/3, 212
storage find fact/2, 211
storage find keypair/3, 211
storage insert fact/3, 211
storage insert fact bt/2, 212
storage insert keypair/4, 211
storage insert keypair bt/4, 212
storage reclaim space/1, 212
stream property/2, 108
structure/1, 147
sub atom/5 , 165
subsumes term/2, 143
tab/1, 116
table/1, 65, 96, 214
table once/1, 177
table state/1, 223
table state/4, 224
tan/1, 137
tell/1, 112
telling/1, 112
term depth/2, 156
term expansion/2, 283, 287
term size/2, 157
tfindall/3, 172
thread cancel/1, 250
thread create/1, 249
thread create/2, 249
thread create/3, 247
thread detach/1, 250
thread exit/1, 250
thread get message/1, 255
thread get message/2, 255
thread join/2, 249
thread peek message/1, 256
thread peek message/2, 255

thread property/2, 252
thread self/1, 250
thread send message/2, 255
thread signal/2, 251
thread sleep/1, 253
thread yield/0, 252
time/1, 198
timed call/3, 175
timed call/4, 175
tmpfile open/1, 111
tnot/1, 138
told/0, 112
tphrase/1, 287
tphrase set string/1, 289
trace/0, 271
trace/2, 272
true/0, 137
truncate/1, 137
unify with occurs check/2, 141
url decode/2, 113
url encode/2, 112
var/1, 145
variant get residual/2, 222
with mutex/2, 256
word/3, 286
write/1, 120
write/2, 121
write canonical/1, 122
write canonical/2, 122
write prolog/1, 122, 123
write term/2, 119
write term/3, 120
writeln/1, 122
writeln/2, 122
writeq/1, 121
writeq/2, 121
xor/2, 135
xsb configuration/2, 190

	Introduction
	Using This Manual

	Getting Started with XSB
	Installing XSB under UNIX
	Possible Installation Problems

	Installing XSB under Windows
	Using Cygnus Software's CygWin32
	Using Microsoft Visual C++

	Invoking XSB
	Compiling XSB programs
	Sample XSB Programs
	Exiting XSB

	System Description
	Entering and Exiting XSB from the Command Line
	The System and its Directories
	How XSB Finds Files: Source File Designators
	The Module System of XSB
	Standard Predicates in XSB
	The Dynamic Loader and its Search Path
	Changing the Default Search Path and the Packaging System
	Dynamically loading predicates in the interpreter

	Command Line Arguments
	Memory Management
	Compiling, Consulting, and Loading
	Static Code
	Dynamic Code
	The multifile directive

	The Compiler
	Invoking the Compiler
	Compiler Options
	Specialization
	Compiler Directives
	Inline Predicates

	A Note on ISO Compatibility

	Syntax
	Terms
	Integers
	Floating-point Numbers
	Atoms
	Variables
	Compound Terms
	Lists

	From HiLog to Prolog
	Operators

	Using Tabling in XSB: A Tutorial Introduction
	Tabling in the Context of a Prolog System
	Definite Programs
	Call Variance vs. Call Subsumption
	Table Scheduling Strategies
	Interaction Between Prolog Constructs and Tabling
	Potential Pitfalls in Tabling

	Normal Programs
	Stratified Normal Programs
	Non-stratified Programs
	On Beyond Zebra: Implementing Other Semantics for Non-stratified Programs

	Answer Subsumption
	Types of Answer Subsumption
	Examples of Answer Subsumption
	Term-Sets

	Subgoal Abstraction
	Declaring Subgoal Abstraction

	Incremental Table Maintenance
	Examples
	Predicates for Incremental Table Maintenance
	Shorthand for Complex Table and Dynamic Declarations
	Incremental Tabling using Interned Tries

	Compatability of Tabling Modes and Predicate Attributes

	Standard Predicates and Predicates of General Use
	Input and Output
	I/O Stream Implementation
	ISO Streams
	DEC-IO Style File Handling
	Character I/O
	Term I/O
	Special I/O

	Interactions with the Operating System
	The path_sysop/2 interface

	Evaluating Arithmetic Expressions through is/2
	Evaluable Functors for Arithmetic Expressions

	Convenience
	Negation and Control
	Unification and Comparison of Terms
	Sorting of Terms

	Meta-Logical
	Cyclic Terms
	Unification with and without Occurs Check
	Cyclic Terms

	Manipulation of Atomic Terms
	All Solutions and Aggregate Predicates
	Meta-Predicates
	Information about the System State
	Execution State
	Asserting, Retracting, and Other Database Modifications
	Reading Dynamic Code from Files
	The storage Module: Associative Arrays and Backtrackable Updates

	Tabled Predicate Manipulations
	Declaring and Modifying Tabled Predicates
	Predicates for Table Inspection
	Deleting Tables and Table Components

	Multi-Threaded Programming in XSB
	Getting Started with Multi-Threading
	Communication among Threads
	Thread Statuses: Joinable and Detached Threads
	Prolog Message Queues
	Thread Cancellation and Signalling
	Performance and other Considerations
	Examples of Multi-Threaded Programs in XSB
	Configuring the Multi-threaded Engine under Windows
	Predicates for Multi-Threading
	Predicates for Thread Synchronization and Communication

	Storing Facts in Tries
	Examples of Using Tries
	Predicates for Tries

	Hooks
	Adding and Removing Hooks
	Hooks Supported by XSB

	Debugging
	Prolog-style Tracing and Debugging
	Low-Level Tracing
	Analyzing the Execution of Tabled Programs
	Tracing a tabled evaluation through forest logging

	Definite Clause Grammars
	General Description
	Translation of Definite Clause Grammar rules
	Definite Clause Grammars and Tabling

	Definite Clause Grammar predicates
	Two differences with other Prologs

	Exception Handling
	Representations of ISO Errors
	Predicates to Throw and Handle Errors
	Predicates to Throw Errors
	Predicates to Handle Errors

	Convenience Predicates
	Backtraces

	Restrictions and Current Known Bugs
	Current Restrictions
	Known Bugs

	GPP - Generic Preprocessor
	Description
	Syntax
	Options
	Syntax Specification
	Evaluation Rules
	Meta-macros
	Examples
	Advanced Examples
	Author

