
A User’s Guide to the Z-Shell

Peter Stephenson

2003/03/23

2

Contents

1 A short introduction 11

1.1 Other shells and other guides . 12

1.2 Versions of zsh . 13

1.3 Conventions . 14

1.4 Acknowledgments . 15

2 What to put in your startup files 17

2.1 Types of shell: interactive and login shells . 17

2.1.1 What is a login shell? Simple tests . 18

2.2 All the startup files . 19

2.3 Options . 21

2.4 Parameters . 21

2.4.1 Arrays . 23

2.5 What to put in your startup files . 24

2.5.1 Compatibility options: SH_WORD_SPLIT and others 24

2.5.2 Options for csh junkies . 32

2.5.3 The history mechanism: types of history 34

2.5.4 Setting up history . 36

2.5.5 History options . 37

2.5.6 Prompts . 39

2.5.7 Named directories . 42

2.5.8 ‘Go faster’ options for power users . 43

2.5.9 aliases . 45

2.5.10 Environment variables . 46

3

4 CONTENTS

2.5.11 Path . 47

2.5.12 Mail . 48

2.5.13 Other path-like things . 49

2.5.14 Version-specific things . 50

2.5.15 Everything else . 50

3 Dealing with basic shell syntax 51

3.1 External commands . 51

3.2 Builtin commands . 53

3.2.1 Builtins for printing . 53

3.2.2 Other builtins just for speed . 56

3.2.3 Builtins which change the shell’s state . 57

3.2.4 cd and friends . 59

3.2.5 Command control and information commands 65

3.2.6 Parameter control . 68

3.2.7 History control commands . 80

3.2.8 Job control and process control . 80

3.2.9 Terminals, users, etc. 89

3.2.10 Syntactic oddments . 89

3.2.11 More precommand modifiers: exec, noglob 92

3.2.12 Testing things . 93

3.2.13 Handling options to functions and scripts 96

3.2.14 Random file control things . 98

3.2.15 Don’t watch this space, watch some other 99

3.2.16 And also . 100

3.3 Functions . 100

3.3.1 Loading functions . 100

3.3.2 Function parameters . 102

3.3.3 Compiling functions . 108

3.4 Aliases . 113

3.5 Command summary . 115

3.6 Expansions and quotes . 116

CONTENTS 5

3.6.1 History expansion . 116

3.6.2 Alias expansion . 117

3.6.3 Process, parameter, command, arithmetic and brace expansion 117

3.6.4 Filename Expansion . 123

3.6.5 Filename Generation . 126

3.7 Redirection: greater-thans and less-thans . 128

3.7.1 Clobber . 129

3.7.2 File descriptors . 129

3.7.3 Appending, here documents, here strings, read write 131

3.7.4 Clever tricks: exec and other file descriptors 132

3.7.5 Multios . 133

3.8 Shell syntax: loops, (sub)shells and so on . 134

3.8.1 Logical command connectors . 134

3.8.2 Structures . 136

3.8.3 Subshells and current shell constructs . 139

3.8.4 Subshells and current shells . 140

3.9 Emulation and portability . 142

3.9.1 Differences in detail . 142

3.9.2 Making your own scripts and functions portable 144

3.10 Running scripts . 145

4 The Z-Shell Line Editor 149

4.1 Introducing zle . 149

4.1.1 The simple facts . 150

4.1.2 Vi mode . 151

4.2 Basic editing . 152

4.2.1 Moving . 152

4.2.2 Deleting . 152

4.2.3 More deletion . 154

4.3 Fancier editing . 154

4.3.1 Options controlling zle . 154

4.3.2 The minibuffer and extended commands 155

6 CONTENTS

4.3.3 Prefix (digit) arguments . 156

4.3.4 Words, regions and marks . 156

4.3.5 Regions and marks . 157

4.4 History and searching . 158

4.4.1 Moving through the history . 158

4.4.2 Searching through the history . 159

4.4.3 Extracting words from the history . 161

4.5 Binding keys and handling keymaps . 161

4.5.1 Simple key bindings . 161

4.5.2 Removing key bindings . 162

4.5.3 Function keys and so on . 163

4.5.4 Binding strings instead of commands . 164

4.5.5 Keymaps . 165

4.6 Advanced editing . 166

4.6.1 Multi-line editing . 166

4.6.2 The builtin vared and the function zed . 168

4.6.3 The buffer stack . 169

4.7 Extending zle . 170

4.7.1 Widgets . 170

4.7.2 Executing other widgets . 171

4.7.3 Some special builtin widgets and their uses 172

4.7.4 Special parameters: normal text . 173

4.7.5 Other special parameters . 175

4.7.6 Reading keys and using the minibuffer 176

4.7.7 Examples . 177

5 Substitutions 183

5.1 Quoting . 183

5.1.1 Backslashes . 183

5.1.2 Single quotes . 185

5.1.3 POSIX quotes . 185

5.1.4 Double quotes . 187

CONTENTS 7

5.1.5 Backquotes . 189

5.2 Modifiers and what they modify . 190

5.3 Process Substitution . 192

5.4 Parameter substitution . 194

5.4.1 Using arrays . 194

5.4.2 Using associative arrays . 196

5.4.3 Substituted substitutions, top- and tailing, etc. 200

5.4.4 Flags for options: splitting and joining . 206

5.4.5 Flags for options: GLOB_SUBST and RC_EXPAND_PARAM 208

5.4.6 Yet more parameter flags . 209

5.4.7 A couple of parameter substitution tricks 210

5.4.8 Nested parameter substitutions . 210

5.5 That substitution again . 212

5.6 Arithmetic Expansion . 214

5.6.1 Entering and outputting bases . 215

5.6.2 Parameter typing . 217

5.7 Brace Expansion and Arrays . 220

5.8 Filename Expansion . 222

5.9 Filename Generation and Pattern Matching . 223

5.9.1 Comparing patterns and regular expressions 223

5.9.2 Standard features . 224

5.9.3 Extensions usually available . 225

5.9.4 Extensions requiring EXTENDED_GLOB . 227

5.9.5 Recursive globbing . 230

5.9.6 Glob qualifiers . 231

5.9.7 Globbing flags: alter the behaviour of matches 236

5.9.8 The function zmv . 242

6 Completion, old and new 247

6.1 Completion and expansion . 249

6.2 Configuring completion using shell options . 251

6.2.1 Ambiguous completions . 251

8 CONTENTS

6.2.2 ALWAYS_LAST_PROMPT . 252

6.2.3 Menu completion and menu selection . 252

6.2.4 Other ways of changing completion behaviour 254

6.2.5 Changing the way completions are displayed 255

6.3 Getting started with new completion . 256

6.4 How the shell finds the right completions . 258

6.4.1 Contexts . 258

6.4.2 Tags . 259

6.5 Configuring completion using styles . 262

6.5.1 Specifying completers and their options 263

6.5.2 Changing the format of listings: groups etc. 273

6.5.3 Styles affecting particular completions . 280

6.6 Command widgets . 287

6.6.1 _complete_help . 287

6.6.2 _correct_word, _correct_filename, _expand_word 287

6.6.3 _history_complete_word . 287

6.6.4 _most_recent_file . 288

6.6.5 _next_tags . 289

6.6.6 _bash_completions . 289

6.6.7 _read_comp . 290

6.6.8 _generic . 290

6.6.9 predict-on, incremental-complete-word 290

6.7 Matching control and controlling where things are inserted 292

6.7.1 Case-insensitive matching . 292

6.7.2 Matching option names . 293

6.7.3 Partial word completion . 294

6.7.4 Substring completion . 295

6.7.5 Partial words with capitals . 295

6.7.6 Final notes . 296

6.8 Tutorial . 297

6.8.1 The dispatcher . 299

CONTENTS 9

6.8.2 Subcommand completion: _arguments 301

6.8.3 Completing particular argument types . 303

6.8.4 The rest . 309

6.9 Writing new completion functions and widgets 309

6.9.1 Loading completion functions: compdef 310

6.9.2 Adding a set of completions: compadd . 311

6.9.3 Functions for generating filenames, etc. 312

6.9.4 The zsh/parameter module . 314

6.9.5 Special completion parameters and compset 316

6.9.6 Fancier completion: using the tags and styles mechanism 319

6.9.7 Getting the work done for you: handling arguments etc. 324

6.9.8 More completion utility functions . 328

6.10 Finally . 332

7 Modules and other bits and pieces Not written 333

7.1 Control over modules: zmodload . 333

7.1.1 Modules defining parameters . 333

7.1.2 Low-level system interaction . 333

7.1.3 ZFTP . 333

7.2 Contributed bits . 333

7.2.1 Prompt themes . 333

7.3 What’s new in 4.1 . 333

A Obtaining zsh and getting more information 335

10 CONTENTS

Chapter 1

A short introduction

The Z-Shell, ‘zsh’ for short, is a command interpreter for UNIX systems, or in UNIX jargon,
a ‘shell’, because it wraps around the commands you use. More than that, however, zsh is
a particularly powerful shell — and it’s free, and under regular maintenance — with lots
of interactive features allowing you to do the maximum work with the minimum fuss. Of
course, for that you need to know what the shell can do and how, and that’s what this guide
is for.

The most basic basics: I shall assume you have access to a UNIX system, otherwise the
rest of this is not going to be much use. You can also use zsh under Windows by installing
Cygwin, which provides a UNIX-like environment for programmes — given the weakness
of the standard Windows command interpreter, this is a good thing to do. There are ports
of older versions of zsh to Windows which run natively, i.e. without a UNIX environment,
although these have a slightly different behaviour in some respects and I won’t talk about
them further.

I’ll also assume some basic knowledge of UNIX; you should know how the filesystem works,
i.e. what /home/users/pws/.zshrc and ../file mean, and some basic commands, for
example ls, and you should have experience with using rm to delete completely the wrong
file by accident, and that sort of thing. In something like ‘rm file’, I will often refer to the
‘command’ (rm, of course) and the ‘argument(s)’ (anything else coming after the command
which is used by it), and to the complete thing you typed in one go as the ‘command line’.

You’re also going to need zsh itself; if you’re reading this, you may well already have it, but if
you don’t, you or your system administrator should read Appendix A. For now, we’ll suppose
you’re sitting in front of a terminal with zsh already running.

Now to the shell. After you log in, you probably see some prompt (a series of symbols on
the screen indicating that you can input a command), such as ‘$’ or ‘%’, possibly with some
other text in front — later, we’ll see how you can change that text in interesting ways. That
prompt comes from the shell. Type ‘print hello’, then backspace over ‘hello’ and type
‘goodbye’. Now hit the ‘Return’ key (or ‘Enter’ key, I’ll just say <RET> from now on, likewise
<TAB> for the tab key, <SPC> for the space key); unless you have a serious practical-joker
problem on your system, you will see ‘goodbye’, and the shell will come back with another
prompt. All of the time up to when you hit <RET>, you were interacting with the shell and
its editor, called ‘Z-Shell Line Editor’ or ‘zle’ for short; only then did the shell go away and
tell the print command to print out a message. So you can see that the shell is important.

However, if all you’re doing is typing simple commands like that, why do you need anything

11

12 CHAPTER 1. A SHORT INTRODUCTION

complicated? In that case, you don’t; but real life’s not that simple. In the rest of this guide,
I describe how, with zsh’s help, you can:

customise the environment in which you work, by using startup files,

write your own commands to shorten tasks and store things in shell variables (‘parameters’)
so you don’t have to remember them,

use zle to minimise the amount of typing you have to do — in zsh, you can even edit small
files that way,

pick the files you want to use for a particular command such as mv or ls using zsh’s very
sophisticated filename generation (known colloquially as ‘globbing’) system,

tell the editor what sort of arguments you use with particular commands, so that you only
need to type part of the name and it will complete the rest, using zsh’s unrivalled
programmable completion system,

use the extra add-ons (‘modules’) supplied with the latest version of zsh to do other things
you usually can’t do in a shell at all.

That’s only a tiny sample. Since there’s so much to say, this guide will concentrate on the
things zsh does best, and in particular the things it has which other shells don’t. The next
chapter gives a few of the basics, by trying to explain how to set the shell up the way you
want it. Like the rest of the guide, it’s not intended to be exhaustive, for which you should
look at the shell manual.

Some other things you should probably know straight away. First, the shell is always
running, even when the command you typed is running, too; the shell simply hangs around
waiting for it to finish: you may know from other shells about putting commands in the
background by putting an ‘&’ after the command, which means that the shell doesn’t wait
for them to finish. The shell is there even if the command’s in the foreground, but in this
case doing nothing.

Second, it doesn’t just run other people’s commands, it has some of its own, called builtin
commands or just builtins, and you can even add your own commands as lists of
instructions to the shell called functions; builtins and functions always run in the shell
itself. That’s important to know, because things which don’t run in the shell itself can’t affect
it, and hence can’t alter parameters, functions, aliases, and all the other things I shall talk
about.

1.1 Other shells and other guides

If you want a basic grounding in how shells work, what their syntax is (i.e. how to write
commands), and how to write scripts and functions, you should read one of the many books
on the subject. In particular, you will get most out of a book that describes the Korn shell
(ksh), as zsh is very similar to this — so similar that it will be worth my while pointing
out differences as we go along, since they can confuse ksh users. Recent versions of zsh can
emulate ksh (strictly, the 1988 version of ksh, although there are increasingly features from
the 1993 version) quite closely, although it’s not perfect, and less perfect the more closely
you look. However, it’s important to realise that if you just start up any old zsh there is no
guarantee that it will be set up to work like ksh; unless you or your system adminstrator
have changed some settings, it certainly won’t be. You might not see that straight away, but
it affects the shell in subtle ways. I will talk about emulation a bit more later on.

1.2. VERSIONS OF ZSH 13

A few other shells are worth mentioning. The grandfather of all UNIX shells is sh, now
known as the Bourne shell but originally just referred to as ‘the shell’. The story is similar to
ksh: zsh can emulate sh quite closely (much more closely than ksh, since sh is considerably
simpler), but in general you need to make sure it’s set up to do that before you can be sure it
will emulate sh.

You may also come across the ‘Bourne-Again Shell’, bash. This is a freely-available
enhancement of sh written by the GNU project — but it is not always enhanced along the
lines of ksh, and hence in many ways it is very different from zsh. On some free UNIX-like
systems such as Linux/GNU (which is what people usually mean by Linux), the command
sh is really bash, so there you should be extra careful when trying to ensure that something
which runs under the so-called ‘sh’ will also run under zsh. Some Linux systems also have
another simpler Bourne shell clone, ash; as it’s simpler, it’s more like the original Bourne
shell.

Some more modern operating systems talk about ‘the POSIX shell’. This is an attempt to
standardize UNIX shells; it’s most like the Korn shell, although, a bit confusingly, it’s often
just called sh, because the standard says that it should be. Usually, this just means you get
a bit extra free with your sh and it still does what you expect. Zsh has made some attempts
to fit the standard, but you have to tell it to — again, simply starting up ‘zsh’ will not have
the right settings for that.

There is another common family of shells with, unfortunately, incompatible syntax. The
source of this family is the C-Shell, csh, so called because its syntax looks more like the C
programming language. This became widespread when the only other shell available was
sh because csh had better interactive features, such as job control. It was then enhanced
to make tcsh, which has many of the interactive features you will also find in zsh, and so
became very popular. Despite these common features, the syntax of zsh is very different, so
you should not try and use csh/tcsh commands beyond the very simplest in zsh; but if you are
a tcsh user, you will find virtually every capability you are used to in zsh somewhere, plus a
lot more.

1.2 Versions of zsh

At the time of writing, the most recent version of zsh available for widespread use was 4.0.6.
You will commonly find two sets of older zsh’s around. The 3.0 series, of which the last
release was 3.0.9, was a stable release, with only bug fixes since the first release of zsh 3.
The 3.1 series were beta versions, with lots of new features; the last of these, 3.1.9, was not
so different from 4.0.1; the main change is that the shell has now been declared stable, so
that as with zsh 3 there will be a set of bug fixes, labelled 4.0, and a set with new functions
in, labelled 4.1. As 4.0 replaces all zsh 3 versions, I will try to keep things simple and talk
about that; but every now and then it will be helpful to point out where older versions were
different.

One notable feature of zsh is the completion of command line arguments. The system
changed in 3.1.6 and 3.1.7 to make it a lot more configurable, and (provided you keep your
wits about you) a little less obscure. I therefore won’t describe the old completion system,
which used the ‘compctl’ command, in any detail; a very brief introduction is given in the zsh
FAQ. The old system remains available, however we strongly recommend new users to start
with the new one. See chapter 6 ‘Completion, old and new’ for the lowdown on new-style
completion.

There won’t be a big difference between 4.0 and 4.1, just bug fixes and a few evolutionary

14 CHAPTER 1. A SHORT INTRODUCTION

changes, plus some extra modules. There will be some notes in chapter 7 about new features
in 4.1, but nothing you write for 4.0 is likely to become obsolete in the foreseeable future.

1.3 Conventions

Most of what I say will be reasonably self-contained (which means I use phrases like ‘as I
said before’ and ‘as I’ll discuss later on’ more than a real stylist would like, and the number
times I refer to other chapters is excessive), but there are some points I should perhaps draw
your attention to before you leap in.

I will often write chunks of code as you would put them in a file for execution (a ‘script’ or a
‘function’, the differences to be discussed passim):

if [[$ZSH_VERSION = 3.*]]; then
print This is a release of the third version of zsh.

else
print This is either very new or very old.

fi

but sometimes I will show both what you type into a shell interactively, and what the shell
throws back at you:

% print $ZSH_VERSION
3.1.9
% print $CPUTYPE
i586

Here, ‘%’ shows the prompt the shell puts up to tell you it is expecting input (and the space
immediately after is part of it). Actually, you probably see something before the percent sign
like the name of the machine or your user name, or maybe something fancier. I’ve pruned it
to the minimum to avoid confusion, and kept it as reminder that this is the line you type.

If you’re reading an electronic version of this guide, and want to copy lines with the ‘%’ in
front into a terminal to be executed, there’s a neat way of doing this where you don’t even
have to edit the line first:

alias %=’ ’

Then % at the start of a line is turned into nothing whatsoever; the space just indicates that
any following aliases should be expanded. So the line ‘% print $CPUTYPE’ will ignore the ‘%’
and execute the rest of the line. (I hope it’s obvious, but your own prompt is always ignored;
this is just if you copy the prompts from the guide into the shell.)

There are lots of different types of object in zsh, but one of the most common is parameters,
which I will always show with a ‘$’ sign in front, like ‘$ZSH_VERSION’, to remind you they are
parameters. You need to remember that when you’re setting or fiddling with the parameter
itself, rather than its value, you omit the ‘$’. When you do and don’t need it should become
clearer as we go along.

The other objects I’ll show specially are shell options — choices about how the shell is to
work — which I write like this: ‘SH_WORD_SPLIT’, ‘NO_NOMATCH’, ‘ZLE’. Again, that’s not the

1.4. ACKNOWLEDGMENTS 15

whole story since whenever the shell expects options you can write them in upper or lower
case with as many or as few underscores as you like; and often in code chunks I’ll use the
simplest form instead: ‘shwordsplit’, ‘nonomatch’, ‘zle’. If you’re philosophical you can
think of it as expressing the category difference between talking about programming and
actual programming, but really it’s just me being inconsistent.

1.4 Acknowledgments

I am grateful for comments from various zsh users. In particular, I have had detailed
comments and corrections from Bart Schaefer, Sven ‘Mr Completion’ Wischnowsky and
Oliver Kiddle. It’s usual to add that any remaining errors are my own, but that’s so stark
staringly obvious as to be ridiculous. I mean, who wrote this? Never mind.

Most of this written on one or another release of Linux Mandrake (a derivative of Red Hat),
with the usual GNU and XFree86 tools. Since all of this was free, it only seems fair to say
‘thank you’ for the gift. It also works a lot better than the operating system that came with
this particular PC.

16 CHAPTER 1. A SHORT INTRODUCTION

Chapter 2

What to put in your startup files

There are probably various changes you want to make to the shell’s behaviour. All shells
have ‘startup’ files, containing commands which are executed as soon as the shell starts.
Like many others, zsh allows each user to have their own startup files. In this chapter, I
discuss the sorts of things you might want to put there. This will serve as an introduction to
what the shell does; by the end, you should have an inkling of many of the things which will
be discussed in more detail later on and why they are interesting. Sometimes you will find
out more than you want to know, such as how zsh differs from other shells you’re not going
to use. Explaining the differences here saves me having to lie about how the shell works and
correcting it later on: most people will simply want to know how the shell normally works,
and note that there are other ways of doing it.

2.1 Types of shell: interactive and login shells

First, you need to know what is meant by an interactive and a login shell. Basically, the
shell is just there to take a list of commands and run them; it doesn’t really care whether the
commands are in a file, or typed in at the terminal. In the second case, when you are typing
at a prompt and waiting for each command to run, the shell is interactive; in the other case,
when the shell is reading commands from a file, it is, consequently, non-interactive. A list
of commands used in this second way — typically by typing something like zsh filename,
although there are shortcuts — is called a script, as if the shell was acting in a play when it
read from it (and shells can be real hams when it comes to playacting). When you start up a
script from the keyboard, there are actually two zsh’s around: the interactive one you’re
typing at, which is waiting for another, non-interactive one to finish running the script.
Almost nothing that happens in the second one affects the first; they are different copies
of zsh.

Remember that when I give examples for you to type, I often show them as they would appear
in a script, without prompts in front. What you actually see on the screen if you type them
in will have a lot more in front.

When you first log into the computer, the shell you are presented with is interactive, but
it is also a login shell. If you type ‘zsh’, it starts up a new interactive shell: because you
didn’t give it the name of a file with commands in, it assumes you are going to type them
interactively. Now you’ve got two interactive shells at once, one waiting for the other: it
doesn’t sound all that useful, but there are times when you are going to make some radical

17

18 CHAPTER 2. WHAT TO PUT IN YOUR STARTUP FILES

changes to the shell’s settings temporarily, and the easiest thing to do is to start another
shell, do what you want to do, and exit back to the original, unaltered, shell — so it’s not as
stupid as it sounds.

However, that second shell will not be a login shell. How does zsh know the difference? Well,
the programme that logs you in after you type your password (called, predictably, login),
actually sticks a ‘-’ in front of the name of the shell, which zsh recognises. The other way of
making a shell a login shell is to run it yourself with the option -l; typing ‘zsh -l’ will start
a zsh that also thinks it’s a login shell, and later I’ll explain how to turn on options within
the shell, which you can do with the login option too. Otherwise, any zsh you start yourself
will not be a login shell. If you are using X-Windows, and have a terminal emulator such as
xterm running a shell, that is probably not a login shell. However, it’s actually possible to
get xterm to start a login shell by giving it the option -ls, so if you type ‘xterm -ls &’, you
will get a window running a login shell (the & means the shell in the first window doesn’t
wait for it to finish).

The first main difference between a login shell and any other interactive shell is the one to do
with startup files, described below. The other one is what you do when you’re finished. With
a login shell you can type ‘logout’ to exit the shell; with another you type ‘exit’. However,
‘exit’ works for all shells, interactive, non-interactive, login, whatever, so a lot of people just
use that. In fact, the only difference is that ‘logout’ will tell you ‘not login shell’ if you
use it anywhere else and fail to exit. The command ‘bye’ is identical to ‘exit’, only shorter
and less standard. So my advice is just to use ‘exit’.

As somebody pointed out to me recently, login shells don’t have to be interactive. You can
always start a shell in the two ways that make it a login shell; the ways that make it an
interactive shell or not are independent. In fact, some start-up scripts for windowing systems
run a non-interactive login shell to incorporate definitions from the appropriate login scripts
before executing the commands to start the windowing session.

2.1.1 What is a login shell? Simple tests

Telling if the shell you are looking at is interactive is usually easy: if there’s a prompt, it’s
interactive. As you may have gathered, telling if it’s a login shell is more involved because
you don’t always know how the shell was started or if the option got changed. If you want to
know, you can type the following (one line at a time if you like, see below),

if [[-o login]]; then
print yes

else
print no

fi

which will print ‘yes’ or ‘no’ according to whether it’s a login shell or not; the syntax will
be explained as we go along. There are shorter ways of doing it, but this illustrates the
commonest shell syntax for testing things, something you probably often want to do in a
startup file. What you’re testing goes inside the ‘[[...]]’; in this case, the -o tells the
shell to test an option, here login. The next line says what to do if the test succeeded; the
line after the ‘else’ what to do if the test failed. This syntax is virtually identical to ksh;
in this guide, I will not give exhaustive details on the tests you can perform, since there are
many of them, but just show some of the most useful. As always, see the manual — in this
case, ‘Conditional Expressions’ in the zshmisc manual pages.

2.2. ALL THE STARTUP FILES 19

Although you usually know when a shell is interactive, in fact you can test that in exactly
the same way, too: just use ‘[[-o interactive]]’. This is one option you can’t change
within the shell; if you turn off reading from the keyboard, where is the shell supposed to
read from? But you can at least test it.

Aside for beginners in shell programming: maybe the semicolon looks a bit funny; that’s
because the ‘then’ is really a separate command. The semicolon is just instead of putting it
on a new line; the two are interchangeable. In fact, I could have written,

if [[-o login]]; then; print yes; else; print no; fi

which does exactly the same thing. I could even have missed out the semicolons after ‘then’
and ‘else’, because the shell knows that a command must come after each of those — though
the semicolon or newline before the then is often important, because the shell does not
know a command has to come next, and might mix up the then with the arguments of the
command after the ‘if’: it may look odd, but the ‘[[...]]’ is actually a command. So you
will see various ways of dividing up the lines in shell programmes. You might also like to
know that print is one of the builtin commands referred to before; in other words, the whole
of that chunk of programme is executed by the shell itself. If you’re using a newish version
of the shell, you will notice that zsh tells you what it’s waiting for, i.e. a ‘then’ or an ‘else’
clause — see the explanation of $PS2 below for more on this. Finally, the spaces I put before
the ‘print’ commands were simply to make it look prettier; any number of spaces can appear
before, after, or between commands and arguments, as long as there’s at least one between
ordinary words (the semicolon is recognised as special, so you don’t need one before that,
though it’s harmless if you do put one in).

Second aside for users of sh: you may remember that tests in sh used a single pair of
brackets, ‘if [...]; then ...’, or equivalently as a command called test, ‘if test
...; then ...’. The Korn shell was deliberately made to be different, and zsh follows that.
The reason is that ‘[[’ is treated specially, which allows the shell to do some extra checks and
allows more natural syntax. For example, you may know that in sh it’s dangerous to test a
parameter which may be empty: ‘[$var = foo]’ will fail if $var is empty, because in that
case the word is missed out and the shell never knows it was supposed to be there; with ‘[[
...]]’, this is quite safe because the shell is aware there’s a word before the ‘=’, even if it’s
empty. Also, you can use ‘&&’ and ‘||’ to mean logical ‘and’ and ‘or’, which agrees with the
usual UNIX/C convention; in sh, they would have been taken as starting a new command,
not as part of the test, and you have to use the less clear ‘-a’ and ‘-o’. Actually, zsh provides
the old form of test for backward compatibility, but things will work a lot more smoothly if
you don’t use it.

2.2 All the startup files

Now here’s a list of the startup files and when they’re run. You’ll see they fall into two
classes: those in the /etc directory, which are put there by the system administrator and
are run for all users, and those in your home directory, which zsh, like many shells, allows
you to abbreviate to a ‘~’. It’s possible that the latter files are somewhere else; type ‘print
$ZDOTDIR’ and if you get something other than a blank line, or an error message telling you
the parameter isn’t set, it’s telling you a directory other than ‘~’ where your startup files live.
If $ZDOTDIR (another parameter) is not already set, you won’t want to set it without a good
reason.

/etc/zshenv Always run for every zsh.

20 CHAPTER 2. WHAT TO PUT IN YOUR STARTUP FILES

~/.zshenv Usually run for every zsh (see below).

/etc/zprofile Run for login shells.

~/.zprofile Run for login shells.

/etc/zshrc Run for interactive shells.

~/.zshrc Run for interactive shells.

/etc/zlogin Run for login shells.

~/.zlogin Run for login shells.

Now you know what login and interactive shells are, this should be straightforward. You
may wonder why there are both ~/.zprofile and ~/.zlogin, when they are both for login
shells: the answer is the obvious one, that one is run before, one after ~/.zshrc. This is
historical; Bourne-type shells run /etc/profile, and csh-type shells run ~/.login, and
zsh tries to cover the bases with its own startup files.

The complication is hinted at by the ‘see below’. The file /etc/zshenv, as it says, is always
run at the start of any zsh. However, if the option NO_RCS is set (or, equivalently, the RCS
option is unset: I’ll talk about options shortly, since they are important in startup files),
none of the others are run. The most common way of setting this option is with a flag
on the command line: if you start the shell as ‘zsh -f’, the option becomes set, so only
/etc/zshenv is run and the others are skipped. Often, scripts do this as a way of trying to
get a basic shell with no frills, as I’ll describe below; but if something is set in /etc/zshenv,
there’s no way to avoid it. This leads to the First Law of Zsh Administration: put as little
as possible in the file /etc/zshenv, as every single zsh which starts up has to read it. In
particular, if the script assumes that only the basic options are set and /etc/zshenv has
altered them, it might well not work. So, at the absolute least, you should probably surround
any option settings in /etc/zshenv with

if [[! -o norcs]]; then
... <commands to run if NO_RCS is not set,

such as setting options> ...
fi

and your users will be eternally grateful. Settings for interactive shells, such as prompts,
have no business in /etc/zshenv unless you really insist that all users have them as
defaults for every single shell. Script writers who want to get round problems with options
being changed in /etc/zshenv should put ‘emulate zsh’ at the top of the script.

There are two files run at the end: /etc/zlogout and ~/.zlogout, in that order. As their
names suggest, they are counterparts of the zlogin files, and therefore are only run for
login shells — though you can trick the shell by setting the login option. Note that whether
you use exit, bye or logout to leave the shell does not affect whether these files are run: I
wasn’t lying (this time) when I said that the error message was the only difference between
exit and logout. If you want to run a file at the end of any other type of shell, you can do
it another way:

TRAPEXIT() {
commands to run here, e.g. if you
always want to run .zlogout:
if [[! -o login]]; then

2.3. OPTIONS 21

don’t do this in a login shell
because it happens anyway
. ~/.zlogout

fi
}

If you put that in .zshrc, it will force .zlogout to be run at the end of all interactive
shells. Traps will be mentioned later, but this is rather a one-off; it’s really just a hack to get
commands run at the end of the shell. I won’t talk about logout files, however, since there’s
little that’s standard to put in them; some people make them clear the screen to remove
sensitive information with the ‘clear’ command. Other than that, you might need to tidy a
few files up when you exit.

2.3 Options

It’s time to talk about options, since I’ve mentioned them several times. Each option describes
one particular shell behaviour; they are all Boolean, i.e. can either be on or off, with no other
state. They have short names and in the documentation and this guide they are written in
uppercase with underscores separating the bits (except in actual code, where I’ll write them
in the short form). However, neither of those is necessary. In fact, NO_RCS and norcs and
__N_o_R_c_S__ mean the same thing and are all accepted by the shell.

The second thing is that an option with ‘no’ in front just means the opposite of the option
without. I could also have written the test ‘[[! -o norcs]]’ as ‘[[-o rcs]]’; the
‘!’ means ‘not’, as in C. You can only have one ‘no’; ‘nonorcs’ is meaningless. Unfortunately,
there is an option ‘NOMATCH’ which has ‘no’ as part of its basic name, so in this case the
opposite really is ‘NO_NOMATCH’; NOTIFY, of course, is also a full name in its own right.

The usual way to set and unset options is with the commands setopt and unsetopt which
take a string of option names. Some options also have flags, like the ‘-f’ for NO_RCS, which
these commands also accept, but it’s much clearer to use the full name and the extra time
and space is negligible. The command ‘set -o’ is equivalent to setopt; this comes from
ksh. Note that set with no ‘-o’ does something else — that sets the positional parameters,
which is zsh’s way of passing arguments to scripts and functions.

Almost everybody sets some options in their startup files. Since you want them in
every interactive shell, at the least, the choice is between putting them in ~/.zshrc or
~/.zshenv. The choice really depends on how you use non-interactive shells. They can be
started up in unexpected places. For example, if you use Emacs and run commands from
inside it, such as grep, that will start a non-interactive shell, and may require some options.
My rule of thumb is to put as many options as possible into ~/.zshrc, and transfer them to
~/.zshenv if I find I need them there. Some purists object to setting options in ~/.zshenv
at all, since it affects scripts; but, as I’ve already hinted, you have to work a bit harder to
make sure scripts are unaffected by that sort of thing anyway. In the following, I just assume
they are going to be in ~/.zshrc.

2.4 Parameters

One more thing you’ll need to know about in order to write startup files is parameters,
also known as variables. These are mostly like variables in other programming languages.

22 CHAPTER 2. WHAT TO PUT IN YOUR STARTUP FILES

Simple parameters can be stored like this (an assignment):

foo=’This is a parameter.’

Note two things: first, there are no spaces around the ‘=’. If there was a space before, zsh
would think ‘foo’ was the name of a command to execute; if there was a space after it, it
would assign an empty string to the parameter foo. Second, note the use of quotes to stop the
spaces inside the string having the same effect. Single quotes, as here, are the nuclear option
of quotes: everything up to another single quote is treated as a simple string — newlines,
equal signs, unprintable characters, the lot, in this example all would be assigned to the
variable; for example,

foo=’This is a parameter.
This is still the same parameter.’

So they’re the best thing to use until you know what you’re doing with double quotes, which
have extra effects. Sometimes you don’t need them, for example,

foo=oneword

because there’s nothing in ‘oneword’ to confuse the shell; but you could still put quotes there
anyway.

Users of csh should note that you don’t use ‘set’ to set parameters. This is important because
there is a set command, but it works differently — if you try ‘set var="this wont’t
work"’, you won’t get an error but you won’t set the parameter, either. Type ‘print $1’ to
see what you did set instead.

To get back what was stored in a parameter, you use the name somewhere on the command
line with a ‘$’ tacked on the front — this is called an expansion, or to be more precise, since
there are other types of expansion, a parameter expansion. For example, after the first
assignment above.

print -- ’$foo is "’$foo’"’

gives

$foo is "This is a parameter."

so you can see what I meant about the effect of single quotes. Note the asymmetry — there is
no ‘$’ when assigning the parameter, but there is a ‘$’ in front to have it expanded it into the
command line. You may find the word ‘substitution’ used instead of ‘expansion’ sometimes;
I’ll try and stick with the terminology in the manual.

Two more things while we’re at it. First, why did I put ‘--’ after the print? That’s because
print, like many UNIX commands, can take options after it which begin with a ‘-’. ‘--’ says
that there are no more options; so if what you’re trying to print begins with a ‘-’, it will still
print out. Actually, in this case you can see it doesn’t, so you’re safe; but it’s a good habit to
get into, and I wish I had. As always in zsh, there are exceptions; for example, if you use the
-R option to print before the ‘--’, it only recognizes BSD-style options, which means it doesn’t
understand ‘--’. Indeed, zsh programmers can be quite lax about standards and often use

2.4. PARAMETERS 23

the old, but now non-standard, single ‘-’ to show there are no more options. Currently, this
works even after -R.

The next point is that I didn’t put spaces between the single quotes and the $foo and it
was still expanded — expansion happens anywhere the parameter is not quoted; it doesn’t
have to be on its own, just separated from anything which might make it look like a different
parameter. This is one of those things that can help make shell scripts look so barbaric.

As well as defining your own parameters, there are also a number which the shell sets itself,
and some others which have a special effect when you set them. All the above still applies,
though. For the rest of this guide, I will indicate parameters with the ‘$’ stuck in front, to
remind you what they are, but you should remember that the ‘$’ is missing when you set
them, or, indeed, any time when you’re referring to the name of the parameter instead of its
value.

2.4.1 Arrays

There is a special type of parameter called an array which zsh inherited from both ksh and
csh. This is a slightly shaky marriage, since some of the things those two shells do with
them are not compatible, and zsh has elements of both, so you need to be careful if you’ve
used arrays in either. The option KSH_ARRAYS is something you can set to make them behave
more like they do in ksh, but a lot of zsh users write functions and scripts assuming it isn’t
set, so it can be dangerous.

Unlike normal parameters (known as scalars), arrays have more than one word in them. In
the examples above, we made the parameter $foo get a string with spaces in, but the spaces
weren’t significant. If we’d done

foo=(This is a parameter.)

(note the absence of quotes), it would have created an array. Again, there must be no space
between the ‘=’ and the ‘(’, though inside the parentheses spaces separate words just like
they do on a command line. The difference isn’t obvious if you try and print it — it looks just
the same — but now try this:

print -- ${foo[4]}

and you get ‘parameter.’. The array stores the words separately, and you can retrieve
them separately by putting the number of the element of the array in square brackets. Note
also the braces ‘{...}’ — zsh doesn’t always require them, but they make things much
clearer when things get complicated, and it’s never wrong to put them in: you could have
said ‘${foo}’ when you wanted to print out the complete parameter, and it would be treated
identically to ‘$foo’. The braces simply screen off the expansion from whatever else might
be lying around to confuse the shell. It’s useful too in expressions like ‘${foo}s’ to keep the
‘s’ from being part of the parameter name; and, finally, with KSH_ARRAYS set, the braces are
compulsory, though unfortunately arrays are indexed from 0 in that case.

You can use quotes when defining arrays; as before, this protects against the shell thinking
the spaces are between different elements of the array. Try:

foo=(’first element’ ’second element’)
print -- ${foo[2]}

24 CHAPTER 2. WHAT TO PUT IN YOUR STARTUP FILES

Arrays are useful when the shell needs to keep a whole series of different things together, so
we’ll meet some you may want to put in a startup file. Users of ksh will have noticed that
things are a bit different in zsh, but for now I’ll just assume you’re using the normal zsh way
of doing things.

2.5 What to put in your startup files

At the last count there were over 130 options and several dozen parameters which are special
to the shell, and many of them deal with things I won’t talk about till much later. But as
a guide to get you started, and an indication of what’s to come, here are some options and
parameters you might want to think about setting in ~/.zshrc.

2.5.1 Compatibility options: SH_WORD_SPLIT and others

I’ve already mentioned that zsh works differently from ksh, its nearest standard relative,
and that some of these differences can be confusing to new users, for example the use of
arrays. Some options like KSH_ARRAYS exist to allow you to have things work the ksh way.
Most of these are fairly finnicky, but one catches out a lot of people. Above, I said that after

foo=’This is a parameter.’

then $foo would be treated as one word. In traditional Bourne-like shells including sh, ksh
and bash, however, the shell will split $foo on any spaces it finds. So if you run a command

command $foo

then in zsh the command gets a single argument ‘This is a parameter.’, but in the
other shells it gets the first argument ‘This’, the second argument ‘is’, and so on. If you
like this, or are so used to it it would be confusing to change, you should set the option
SH_WORD_SPLIT in your ~/.zshrc. Most experienced zsh users use arrays when they want
word splitting, since as I explained you have control over what is split and what is not; that’s
why SH_WORD_SPLIT is not set by default. Users of other shells just get used to putting
things in double quotes,

command "$foo"

which, unlike single quotes, allow the ‘$’ to remain special, and have the side effect that
whatever is in quotes will remain a single word (though there’s an exception to that, too: the
parameter $@).

There are a lot of other options doing similar things to keep users of standard shells happy.
Many of them simply turn features off, because the other shell doesn’t have them and
hence unexpected things might happen, or simply tweak a feature which is a little different
or doesn’t usually matter. Currently such options include NO_BANG_HIST, BSD_ECHO
(sh only), IGNORE_BRACES, INTERACTIVE_COMMENTS, KSH_OPTION_PRINT, NO_MULTIOS,
POSIX_BUILTINS, PROMPT_BANG, SINGLE_LINE_ZLE (I’ve written them how they would
appear as an argument to setopt to put the option the way the other shell expects, so some
have ‘NO_’ in front). Most people probably won’t change those unless they notice something
isn’t working how they expect.

2.5. WHAT TO PUT IN YOUR STARTUP FILES 25

Some others have more noticeable effects. Here are a few of the ones most likely to make you
scratch your head if you’re changing from another Bourne-like shell.

BARE_GLOB_QUAL, GLOB_SUBST, SH_FILE_EXPANSION, SH_GLOB, KSH_GLOB

These are all to do with how pattern matching works. You probably already know that the
pattern ‘*.c’ will be expanded into all the files in the current directory ending in ‘.c’. Simple
uses like this are the same in all shells, and the way filenames are expanded is often referred
to as ‘globbing’ for historical reasons (apparently it stood for ‘global replacement’), hence the
name of some of these options.

However, zsh and ksh differ over more complicated patterns. For example, to match either
file foo.c or file bar.c, in ksh you would say @(foo|bar).c. The usual zsh way of doing
things is (foo|bar).c. To turn on the ksh way of doing things, set the option KSH_GLOB; to
turn off the zsh way, set the options SH_GLOB and NO_BARE_GLOB_QUAL. The last of those
turns off qualifiers, a very powerful way of selecting files by type (for example, directories
or executable files) instead of by name which I’ll talk about in chapter 5.

The other two need a bit more explanation. Try this:

foo=’*’
print $foo

In zsh, you usually get a ‘*’ printed, while in ksh the ‘*’ is expanded to all the files in the
directory, just as if you had typed ‘print *’. This is a little like SH_WORD_SPLIT, in that
ksh is pretending that the value of $foo appears on the command line just as if you typed
it, while zsh is using what you assigned to foo without allowing it to be changed any more.
To allow the word to be expanded in zsh, too, you can set the option GLOB_SUBST. As with
SH_WORD_SPLIT, the way around the ksh behaviour if you don’t want the value changed is
to use double quotes: "$foo".

You are less likely to have to worry about SH_FILE_EXPANSION. It determines when the
shell expands things like ~/.zshrc to the full path, e.g. /home/user2/pws/.zshrc. In
the case of zsh, this is usually done quite late, after most other forms of expansion such as
parameter expansion. That means if you set GLOB_SUBST and do

foo=’~/.zshrc’
print $foo

you would normally see the full path, starting with a ‘/’. If you also set
SH_FILE_EXPANSION, however, the ‘~’ is tested much earlier, before $foo is replaced when
there isn’t one yet, so that ‘~/.zshrc’ would be printed. This (with both options) is the
way ksh works. It also means I lied when I said ksh treats $foo exactly as if its value had
been typed, because if you type print ~/.zshrc the ‘~’ does get expanded. So you see how
convenient lying is.

NOMATCH, BAD_PATTERN

These also relate to patterns which produce file names, but in this case they determine what
happens when the pattern doesn’t match a file for some reason. There are two possible
reasons: either no file happened to match, or you didn’t use a proper pattern. In both cases,
zsh, unlike ksh, prints an error message. For example,

26 CHAPTER 2. WHAT TO PUT IN YOUR STARTUP FILES

% print nosuchfile*
zsh: no matches found: nosuchfile*
% print [-
zsh: bad pattern: [-

(Remember the ‘%’ lines are what you type, with a prompt in front which comes from the
shell.) You can see there are two different error messages: you can stop the first by setting
NO_NOMATCH, and the second by setting NO_BAD_PATTERN. In both cases, that makes the
shell print out what you originally type without any expansion when there are no matching
files.

BG_NICE, NOTIFY

All UNIX shells allow you to start a background job by putting ‘&’ at the end of the line; then
the shell doesn’t wait for the job to finish, so you can type something else. In zsh, such jobs
are usually run at a lower priority (a ‘higher nice value’ in UNIX-speak), so that they don’t
use so much of the processor’s time as foreground jobs (all the others, without the ‘&’) do.
This is so that jobs like editing or using the shell don’t get slowed down, which can be highly
annoying. You can turn this feature off by setting NO_BG_NICE.

When a background job finishes, zsh usually tells you immediately by printing a message,
which interrupts whatever you’re doing. You can stop this by setting NO_NOTIFY. Actually,
this is an option in most versions of ksh, too, but it’s a little less annoying in zsh because if
it happens while you’re typing something else to the shell, the shell will reprint the line you
were on as far as you’ve got. For example:

% sleep 3 &
[1] 40366
% print The quick brown
[1] + 40366 done sleep 3
% print The quick brown

The command sleep simply does nothing for however many seconds you tell it, but here it did
it in the background (zsh printed a message to tell you). After you typed for three seconds,
the job exited, and with NOTIFY set it printed out another message: the ‘done’ is the key
thing, as it tells you the job has finished. But zsh was smart enough to know the display
was messed up, so it reprinted the line you were editing, and you can continue. If you were
already running another programme in the foreground, however, that wouldn’t know that
zsh had printed the message, so the display would still be messed up.

HUP

Signals are the way of persuading a job to do something it doesn’t want to, such as die; when
you type ^C, it sends a signal (called SIGINT in this case) to the job. In zsh, if you have
a background job running when the shell exits, the shell will assume you want that to be
killed; in this case it is sent a particular signal called ‘SIGHUP’ which stands for ‘hangup’ (as
in telephone, not as in Woody Allen) and is the UNIX equivalent of ‘time to go home’. If you
often start jobs that should go on even when the shell has exited, then you can set the option
NO_HUP, and background jobs will be left alone.

2.5. WHAT TO PUT IN YOUR STARTUP FILES 27

KSH_ARRAYS

I’ve already mentioned this, but here are the details. Suppose you have defined an array
arr, for example with

arr=(foo bar)

although the syntax in ksh, which zsh also allows, is

set -A arr foo bar

In zsh, $arr gives out the whole array; in ksh it just produces the first element. In zsh,
${arr[1]} refers to the first element of the array, i.e. foo, while in ksh the first element
is referred to as ${arr[0]} so that ${arr[1]} gives you bar. Finally, in zsh you can
get away with $arr[1] to refer to an element, while ksh insists on the braces. By setting
KSH_ARRAYS, zsh will switch to the ksh way of doing things. This is one option you need to
be particularly careful about when writing functions and scripts.

FUNCTION_ARG_ZERO

Shell functions are a useful way of specifying a set of commands to be run by the shell. Here’s
a simple example:

% fn() { print My name is $0; }
% fn
My name is fn

Note the special syntax: the ‘()’ appears after a function name to say you are defining
one, then a set of commands appears between the ‘{ ... }’. When you type the name
of the function, those commands are executed. If you know the programming language C,
the syntax will be pretty familiar, although note that the ‘()’ is a bit of a delusion: you might
think you would put arguments to the function in there, but you can’t, it must always appear
simply as ‘()’. If you don’t know C, it doesn’t matter; nothing from C really applies in detail,
it’s just a superficial resemblance.

In this case, zsh printed the special parameter ‘$0’ (‘argument zero’) and, as you see, that
turned into the name of the function. Now $0 outside a function means the name of the shell,
or the name of the script for a non-interactive shell, so if you type ‘print $0’ it will probably
say ‘zsh’. In most versions of ksh, this is $0’s only use; it doesn’t change in functions, and
‘fn’ would print ‘ksh’. To get this behaviour, you can set NO_FUNCTION_ARG_ZERO. There’s
probably no reason why you would want to, but zsh functions quite often test their own name,
so this is one reason why they might not work.

There’s another difference when defining functions, irrespective of FUNCTION_ARG_ZERO: in
zsh, you can get away without the final ‘;’ before the end of the definition of fn, because it
knows the ‘}’ must finish the last command as well as the function; but ksh is not so forgiving
here. Lots of syntactic know-alls will probably be able to tell you why that’s a good thing, but
fortunately I can’t.

28 CHAPTER 2. WHAT TO PUT IN YOUR STARTUP FILES

KSH_AUTOLOAD

There’s an easy way of loading functions built into both ksh and zsh. Instead of putting them
all together in a big startup file, you can put a single line in that,

autoload fn

and the function ‘fn’ will only be loaded when you run it by typing its name as a command.
The shell needs to know where the function is stored. This is done by a special parameter
called $fpath, an array which is a list of directories; it will search all the directories for a
file called fn, and use that as the function definition. If you want to try this you can type
‘autoload fn; fpath=(. $fpath)’ and write a file called fn in the current directory.

Unfortunately ksh and zsh disagree a bit about what should be in that file. The normal
zsh way of doing things is just putting the body of the function there. So if the file fn is
autoloadable and contains,

this is a simple function
print My name is $0

then typing ‘fn’ will have exactly the same effect as the function fn above, printing ‘My name
is fn’. Zsh users tend to like this because the function is written the same way as a script;
if instead you had typed zsh fn, to call the file as a script with a new copy of zsh of its own,
it would have worked the same way. The first line is a comment; it’s ignored, and in zsh not
even autoloaded when the function is run, so it’s not only much clearer to add explanatory
contents, it also doesn’t use any more memory either. It uses more disk space, of course, but
nowadays even home PCs come with the sort of disk size which allows you a little indulgence
with legibility.

However, ksh does things differently, and here the file fn needs to contain

fn() {
this is a simple function
print My name is $0

}

in other words, exactly what you would type to define the function. The advantage of this
form is that you can put other things in the file, which will then be run straight away and
forgotten about, such as defining things that fn may need to use but which don’t need to
be redefined every single time you run fn. The option to force zsh to work the ksh way
here is called KSH_AUTOLOAD. (If you wanted to try the second example, you would need to
type ‘unfunction fn; autoload fn’ to remove the function from memory and mark it for
autoloading again.)

Actually, zsh is a little bit cleverer. If the option KSH_AUTOLOAD is not set, but the file
contains just a function definition in the ksh form and nothing else (like the last one above,
in fact), then zsh assumes that it needs to run the function just loaded straight away. The
other possibility would be that you wanted to define a function which did nothing other than
define a function of the same name, which is assumed to be unlikely — and if you really want
to do that, you will need to trick zsh by putting a do-nothing command in the same file, such
as a ‘:’ on the last line.

2.5. WHAT TO PUT IN YOUR STARTUP FILES 29

A final complication — sorry, but this one actually happens — is that sometimes in zsh you
want to define not just the function to be called, but some others to help it along. Then you
need to do this:

fn() {
this is the function after which the file is named

}
helper() {

goodness knows what this does
}
fn "$@"
this actually calls the function the first time,
with any arguments passed (see the subsection
‘Function Parameters’ in the section ‘Functions’
of the next chapter for the "$@").

That last non-comment line is unnecessary with KSH_AUTOLOAD. The functions supplied
with zsh assume that KSH_AUTOLOAD is not set, however, so you shouldn’t turn it on unless
you need to. You could just make fn into the whole body, as usual, and define helper inside
that; the problem is that helper would be redefined each time you executed fn, which is
inefficient. A better way of avoiding the problem would be to define helper as a completely
separate function, itself autoloaded: in both zsh and ksh, it makes no difference whether a
function is defined inside another function or outside it, unlike (say) Pascal or Scheme.

LOCAL_OPTIONS, LOCAL_TRAPS

These two options also refer to functions, and here the ksh way of doing things is usually
preferable, so many people set at least LOCAL_OPTIONS in a lot of their functions. The first
versions of zsh didn’t have these, which is why you need to turn them on by hand.

If LOCAL_OPTIONS is set in a function (or was already set before the function, and not unset
inside it), then any options which are changed inside the function will be put back the way
they were when the function finishes. So

fn() {
setopt localoptions kshglob
...

}

allows you to use a function with the ksh globbing syntax, but will make sure that the option
KSH_GLOB is restored to whatever it was before when the function exits. This works even if
the function was interrupted by typing ^C. Note that LOCAL_OPTIONS will itself be restored
to the way it was.

The option LOCAL_TRAPS, which first appeared in version 3.1.6, is for a similar reason but
refers to (guess what) traps, which are a way of stopping signals sent to the shell, for
example by typing ^C to cancel something (SIGINT, short for ‘signal interrupt’), or ^Z to
suspend it temporarily (SIGTSTP, ‘signal terminal stop’), or SIGHUP which we’ve already
met, and so on. To do something of your own when the shell gets a ^C, you can do

trap ’print I caught a SIGINT’ INT

30 CHAPTER 2. WHAT TO PUT IN YOUR STARTUP FILES

and the set of commands in quotes will be run when the ^C arrives (you can even try it
without running anything). If the string is empty (just ’’ with nothing inside), the signal
will be ignored; typing ^C has no effect. To put it back to normal, the command is ‘trap -
INT’.

Traps are most useful in functions, where you may temporarily (say) not want things to stop
when you hit ^C, or you may want to clear up something before returning from the function.
So now you can guess what LOCAL_TRAPS does; with

fn() {
setopt localoptions localtraps
trap ’’ INT
...

}

the shell will ignore ^C’s to the end of the function, but then put back the trap that was
there before, or remove it completely if there was none. Traps are described in more detail
in chapter 3.

There is a very convenient shorthand for making options and traps local, as well as for setting
the others to their standard values: put ‘emulate -L zsh’ at the start of a function. This
sets the option values back to the ones set when zsh starts, but with LOCAL_OPTIONS and
LOCAL_TRAPS set too, so you now know exactly how things are going to work for the rest of
the function, whatever options are set in the outside world. In fact, this only changes the
options which affect normal programming; you can set every option which it makes sense
to set to its standard value with ‘emulate -RL zsh’ (it doesn’t, for example, make sense to
change options like login at this point). Furthermore, you can make the shell behave as
much like ksh as it knows how to by doing ‘emulate -L ksh’, with or without the -R.

The -L option to emulate actually only appears in versions from 3.0.6 and 3.1.6. Before that
you needed

emulate zsh
setopt localoptions

since localtraps didn’t exist, and indeed doesn’t exist in 3.0.6 either.

PROMPT_PERCENT, PROMPT_SUBST

As promised, setting prompts will be discussed later, but for now there are two ways of
getting information into prompts, such as the parameter $PS1 which determines the usual
prompt at the start of a new command line. One is by using percent escapes, which means
a ‘%’ followed by another character, maybe with a number between the two. For example,
the default zsh prompt is ‘%m%# ’. The first percent escape turns into the name of the host
computer, the second usually turns into a ‘%’, but a ‘#’ for the superuser. However, ksh doesn’t
have these, so you can turn them off by setting NO_PROMPT_PERCENT.

The usual ksh way of doing things, on the other hand, is by putting parameters in the prompt
to be substituted. To get zsh to do this, you have to set PROMPT_SUBST. Then assigning

PS1=’${PWD}% ’

2.5. WHAT TO PUT IN YOUR STARTUP FILES 31

is another way of putting the name of the current directory (‘$PWD’ is presumably named after
the command ‘pwd’ to ‘print working directory’) into the prompt. Note the single quotes, so
that this happens when the prompt is shown, not when it is assigned. If they weren’t there, or
were double quotes, then the $PWD would be expanded to the directory when the assignment
took place, probably your home directory, and wouldn’t change to reflect the directory you
were actually in. Of course, you need the quotes for the space, too, else it just gets swallowed
up when the assignment is executed.

As there is potentially much more information available in parameters than the fixed number
of predefined percent escapes, you may wish to set PROMPT_SUBST anyway. Furthermore,
you can get the output of commands into prompts since other forms of expansion are done on
them, not just that of parameters; in fact, prompts with PROMPT_SUBST are expanded pretty
much the same as a string inside double quotes every time the prompt is displayed.

RM_STAR_SILENT

Everybody at some time or another deletes more files than they mean to (and that’s a gross
understatement); my favourite is:

rm *>o

That ‘>’ should be a ‘.’, but I still had the shift key pressed. This removes all files, echoing the
output (there isn’t any) into a file ‘o’. Delightfully, the empty file ‘o’ is not removed. (Don’t try
this at home.)

There is a protection mechanism built into zsh to stop you deleting all the files in a directory
by accident. If zsh finds that the command is ‘rm’, and there is a ‘*’ on the command line
(there may be other stuff as well), then it will ask you if you really want to delete all those
files. You can turn this off by setting RM_STAR_SILENT. Overreliance on this option is a bad
idea; it’s only a last line of defence.

SH_OPTION_LETTERS

Many options also have single letters to stand for them; you can set an option in this way
by, for example, ‘set -f’, which sets NO_RCS. However, even where sh, ksh and zsh share
options, not all have the same letters. This option allows the single letter options to be more
like those in sh and ksh. Look them up in the manual if you want to know, but I already
recommended that you use the full names for options anyway.

SH_WORD_SPLIT

I’ve already talked about this, see above, but it’s mentioned here so you don’t forget it, since
it’s an important difference.

Starting zsh as ksh

Finally on the subject of compatibility, you might like to know that as well as ‘emulate’ there
is another way of forcing zsh to behave as much like sh or ksh as possible. This is by actually

32 CHAPTER 2. WHAT TO PUT IN YOUR STARTUP FILES

calling zsh under the name ksh. You don’t need to rename zsh, you can make a link from the
name zsh to the name ksh, which will be enough to convince it.

There is an easier way when you are doing this from within zsh itself. The parameter $ARGV0
is special; it is the value which will be passed as the first argument of a command which is
run by the shell. Normally this is the name of the command, but it doesn’t have to be since
the command only finds out what it is after it has already been run. You can use it to trick a
programme into thinking its name is different. So

ARGV0=ksh zsh

will start a copy of zsh that tries to make itself like ksh. Note this doesn’t work unless you’re
already in zsh, as the $ARGV0 won’t be special.

I haven’t mentioned putting a parameter assignment before a command name, but that
simply assigns the parameter (strictly an environment variable in this case) for the duration
of the command; the value $ARGV0 won’t be set after that command (the ksh-like zsh)
finishes, as you can easily test with print. While I’m here, I should mention a few of its
other features. First, the parameter is automatically exported to the environment, meaning
it’s available for other programmes started by zsh (including, in this case, the new zsh) — see
the section on environment variables below. Second, this doesn’t do what you might expect:

FOO=bar print $FOO

because of the order of expansion: the command line and its parameters are expanded before
execution, giving whatever value $FOO had before, probably none, then FOO=bar is put into
the environment, and then the command is executed but doesn’t use the new value of $FOO.

2.5.2 Options for csh junkies

As well as old ksh users, there are some options available to make old csh and tcsh users
feel more at home. As you will already have noticed, the syntax is very different, so you are
never going to feel completely at home and it might be best just to remember the fact. But
here is a brief list. The last, CSH_NULL_GLOB, is actually quite useful.

CSH_JUNKIE_HISTORY

Zsh has the old csh mechanism for referring to words on a previous command line using a
‘!’; it’s less used, now the editor is more powerful, but is still a convenient shorthand for
extracting short bits from the previous line. This mechanism is sometimes called bang-
history, since busy people sometimes like to say ‘!’ as ‘bang’. This option affects how a
single ‘!’ works. For example,

% print foo bar
% print open closed
% print !-2:1 !:2

In the last line, ‘!-2’ means two entries ago, i.e. the line ‘print foo bar’. The ‘:1’ chooses
the first word after the command, i.e. ‘foo’. In the second expression, no number is given
after the ‘!’. Usually zsh interprets that to mean that the same item just selected, in

2.5. WHAT TO PUT IN YOUR STARTUP FILES 33

this case -2, should be used. With CSH_JUNKIE_HISTORY set, it refers instead to the last
command. Note that if you hadn’t given that -2, it would refer to the last command in any
case, although the explicit way of referring to the last command is ‘!!’ — you have to use
that if there are no ‘:’ bits following. In summary, zsh usually gives you ‘print foo bar’;
with CSH_JUNKIE_HISTORY you get ‘print foo closed’.

There’s another option controlling this, BANG_HIST. If you unset that, the mechanism won’t
work at all. There’s also a parameter, $histchars. The first character is the main history
expansion character, normally ‘!’ of course; the second is for rapid substitutions (normally ‘^’
— use of this is described below); the third is the character introducing comments, normally
‘#’. Changing the third character is definitely not recommended. There’s little real reason to
change any.

CSH_JUNKIE_LOOPS

Normal zsh loops look something like this,

while true; do
print Never-ending story

done

which just prints the message over and over (type it line-by-line at the prompt, if you like,
then ^C to stop it). With CSH_JUNKIE_LOOPS set, you can instead do

while true
print Never-ending story

end

which will, of course, make your zsh code unlike most other people’s, so for most users it’s
best to learn the proper syntax.

CSH_NULL_GLOB

This is another of the family of options like NO_NOMATCH, already mentioned. In this case,
if you have a command line consisting of a set of patterns, at least one of them must match
at least one file, or an error is caused; any that don’t match are removed from the command
line. The default is that all of them have to match. There is one final member of this set
of options, NULL_GLOB: all non-matching patterns are removed from the command line, no
error is caused. As a summary, suppose you enter the command ‘print file1* file2*’
and the directory contains just the file file1.c.

1. By default, there must be files matching both patterns, so an error is reported.

2. With NO_NOMATCH set, any patterns which don’t match are left alone, so ‘file1.c
file2*’ is printed.

3. With CSH_NULL_GLOB set, file1* matched, so file2* is silently removed; ‘file1.c’
is reported. If that had not been there, an error would have been reported.

4. With NULL_GLOB set, any patterns which don’t match are removed, so again ‘file1.c’
is printed, but in this case if that had not been there a blank line would have been
printed, with no error.

34 CHAPTER 2. WHAT TO PUT IN YOUR STARTUP FILES

CSH_NULL_GLOB is good thing to have set since it can keep you on the straight and narrow
without too many unwanted error messages, so this time it’s not just for csh junkies.

CSH_JUNKIE_QUOTES

Here just for completeness. Csh and friends don’t allow multiline quotes, as zsh does; if you
don’t finish a pair of quotes before a new line, csh will complain. This option makes zsh do the
same. But multi-line quotes are very useful and very common in zsh scripts and functions;
this is only for people whose minds have been really screwed up by using csh.

2.5.3 The history mechanism: types of history

The name ‘history mechanism’ refers to the fact that zsh keeps a ‘history’ of the commands
you have typed. There are three ways of getting these back; all these use the same set
of command lines, but the mechanisms for getting at them are rather different. For some
reason, items in the history list (a complete line of input typed and executed at once) have
become known as ‘events’.

Editing the history directly

First, you can use the editor; usually hitting up-arrow will take you to the previous line, and
down-arrow takes you back. This is usually the easiest way, since you can see exactly what
you’re doing. I will say a great deal more about the editor in chapter 4; the first thing to know
is that its basic commands work either like emacs, or like vi, so if you know one of those, you
can start editing lines straight away. The shell tries to guess whether to use emacs or vi from
the environment variables $VISUAL or $EDITOR, in that order; these traditionally hold the
name of your preferred editor for programmes which need you to edit text. In the old days,
$VISUAL was a full-screen editor and $EDITOR a line editor, like ed of blessed memory, but
the distinction is now very blurred. If either contains the string vi, the line editor will start
in vi mode, else it will start in emacs mode. If you’re in the wrong mode, ‘bindkey -e’ in
~/.zshrc takes you to emacs mode and ‘bindkey -v’ to vi mode. For vi users, the thing to
remember is that you start in insert mode, so type ‘ESC’ to be able to enter vi commands.

‘Bang’-history

Second, you can use the csh-style ‘bang-history’ mechanism (unless you have set the option
NO_BANG_HIST); the ‘bang’ is the exclamation mark, ‘!’, also known as ‘pling’ or ‘shriek’ (or
factorial, but that’s another story). Thus ‘!!’ retrieves the last command line and executes
it; ‘!-2’ retrieves the second last. You can select words: ‘!!:1’ picks the first word after the
command of the last command (if you were paying attention above, you will note you just
need one ‘!’ in that case); 0 after colon would pick the command word itself; ‘*’ picks all
arguments after the command; ‘$’ picks the last word. You can even have ranges: ‘!!:1-3’
picks those three words, and things like ‘!!:3-$’ work too.

After the word selector, you can have a second set of colons and then some special commands
called modifiers — these can be very useful to remember, since they can be applied to
parameters and file patterns to, so here’s some more details. The ‘:t’ (tail) modifier picks the
last part of a filename, everything after the last slash; conversely, ‘:h’ (head) picks everything
before that. So with a history entry,

2.5. WHAT TO PUT IN YOUR STARTUP FILES 35

% print /usr/bin/cat
/usr/bin/cat
% print !!:t
print cat
cat

Note two things: first, the bang-history mechanism always prints what it’s about to execute.
Secondly, you don’t need the word selector; the shell can tell that the ‘:t’ is a modifier, and
assumes you want it applied to the entire previous command. (Be careful here, since actually
the :t will reduce the expression to everything after the last slash in any word, which is a
little unexpected.)

With parameters:

% foo=/usr/bin/cat
% print ${foo:h}
/usr/bin

(you can usually omit the ‘{’ and ‘}’, but it’s clearer and safer with them). And finally with
files — this won’t work if you set NO_BARE_GLOB_QUAL for sh-like behaviour:

% print /usr/bin/cat(:t)
cat

where you need the parentheses to tell the shell the ‘:t’ isn’t just part of the file name.

For a complete list, see the zshexpn manual, or the section Modifiers in the printed or
Info versions of the manual, but here are a few more of the most useful. ‘:r’ removes the
suffix of a file, turning file.c into file; ‘:l’ and ‘:u’ make the word(s) all lowercase or all
uppercase; ‘:s/foo/bar/’ substitutes the first occurrence of foo with bar in the word(s);
‘:gs/foo/bar’ substitutes all occurrences (the ‘g’ stands for global); ‘:&’ repeats the last
such substitution, even if you did it on a previous line; ‘:g&’ also works. So

% print this is this line
this is this line
% !!:s/this/that/
print that is this line
that is this line
% print this is no longer this line
this is no longer this line
% !!:g&
print that is no longer that line
that is no longer that line

Finally, there is a shortcut: ^old^new^ is exactly equivalent to !!:s/old/new/; you can
even put another modifier after it. The ‘^’ is actually the second character of $histchars
mentioned above. You can miss out the last ‘^’ if there’s nothing else to follow it. By the
way, you can put modifiers together, but each one needs the colon with it: :t:r applied to
‘dir/file.c’ produces ‘file’, and repeated applications of :h get you shorter and shorter
paths.

Before we leave bang-history, note the option HIST_VERIFY. If that’s set, then after a
substitution the line appears again with the changes, instead of being immediately printed

36 CHAPTER 2. WHAT TO PUT IN YOUR STARTUP FILES

and executed. As you just have to type <RET> to execute it, this is a useful trick to save you
executing the wrong thing, which can easily happen with complicated bang-history lines; I
have this set myself.

And one last tip: the shell’s expansion and completion, which I will enthuse about at
length later on, allows you to expand bang-history references straight away by hitting TAB
immediately after you’ve typed the complete reference, and you can usually type control
together with slash (on some keyboards, you are restricted to ^Xu) to put it back the way it
was if you don’t like the result — this is part of the editor’s ‘undo’ feature.

Ksh-style history commands

The third form of history uses the fc builtin. It’s the most cumbersome: you have to tell the
command which complete lines to execute, and may be given a chance to edit them first (but
using an external editor, not in the shell). You probably won’t use it that way, but there are
three things which are actually controlled by fc which you might use: first, the ‘r’ command
repeats the last command (ignoring r’s), which is a bit like ‘!!’. Secondly, the command
called ‘history’ is also really fc in disguise. It gives you a list of recent commands. They
have numbers next to them; you can use these with bang-history instead of using negative
numbers to count backward in the way I originally explained, the advantage being they
don’t change as you enter more commands. You can give ranges of numbers to history, the
first number for where to start listing, and the second where to stop: a particular example
is ‘history 1’, which lists all commands (even if the first command it still remembers is
higher than 1; it just silently omits all those). The third use of fc is for reading and writing
your history so you can keep it between sessions.

2.5.4 Setting up history

In fact, the shell is able to read and write history without being told. You need to tell it
where to save the history, however, and for that you have to set the parameter $HISTFILE
to the name of the file you want to use (a common choice is ‘~/.history’). Next, you need
to set the parameter $SAVEHIST to the number of lines of your history you want saved.
When these two are set, the shell will read $HISTSIZE lines from $HISTFILE at the start
of an interactive session, and save the last $SAVEHIST lines you executed at the end of the
session. For it to read or write in the middle, you will either need to set one of the options
described below (INC_APPEND_HISTORY and SHARE_HISTORY), or use the fc command: fc
-R and fc -W read and write the history respectively, while fc -A appends it to the the file
(although pruning it if it’s longer than $SAVEHIST); fc -WI and fc -AI are similar, but the
I means only write out events since the last time history was written.

There is a third parameter $HISTSIZE, which determines the number of lines the shell will
keep within one session; except for special reasons which I won’t talk about, you should set
$SAVEHIST to be no more than $HISTSIZE, though it can be less. The default value for
$HISTSIZE is 30, which is a bit stingy for the memory and disk space of today’s computers;
zsh users often use anything up to 1000. So a simple set of parameters to set in .zshrc is

HISTSIZE=1000
SAVEHIST=1000
HISTFILE=~/.history

and that is enough to get things working. Note that you must set $SAVEHIST and $HISTFILE

2.5. WHAT TO PUT IN YOUR STARTUP FILES 37

for automatic reading and writing of history lines to work.

2.5.5 History options

There are also many options affecting history; these increased substantially with version
3.1.6, which provided
for the first time INC_APPEND_HISTORY, SHARE_HISTORY, HIST_EXPIRE_DUPS_FIRST,
HIST_IGNORE_ALL_DUPS, HIST_SAVE_NO_DUPS and HIST_NO_FUNCTIONS. I have already
described BANG_HIST, CSH_JUNKIE_HISTORY and HIST_VERIFY and I won’t talk about
them again.

APPEND_HISTORY, INC_APPEND_HISTORY, SHARE_HISTORY

Normally, when it writes a history file, zsh just overwrites everything that’s there.
APPEND_HISTORY allows it to append the new history to the old. The shell will make an
effort not to write out lines which should be there already; this can get complicated if you
have lots of zshs running in different windows at once. This option is a good one for most
people to use. INC_APPEND_HISTORY means that instead of doing this when the shell exits,
each line is added to the history in this way as it is executed; this means, for example, that if
you start up a zsh inside the main shell its history will look like that of the main shell, which
is quite useful. It also means the ordering of commands from different shells running at the
same time is much more logical — basically just the order they were executed — so for 3.1.6
and higher this option is recommended.

SHARE_HISTORY takes this one stage further: as each line is added, the history file is
checked to see if anything was written out by another shell, and if so it is included in the
history of the current shell too. This means that zsh’s running in different windows but
on the same host (or more generally with the same home directory) share the same history.
Note that zsh tries not to confuse you by having unexpected history entries pop up: if you
use !-style history, the commands from other session don’t appear in the history list until
you explicitly type the history command to display them, so that you can be sure what
command you are actually reexecuting. The Korn shell always behaves as if SHARE_HISTORY
is set, presumably because it doesn’t store history internally.

EXTENDED_HISTORY

This makes the format of the history entry more complicated: in addition to just the
command, it saves the time when the command was started and how long it ran for. The
history command takes three options which use this: history -d prints the start time
of the command; history -f prints that as well as the date; history -D (which you can
combine with -f or -d) prints the command’s elapsed time. The date format can be changed
with -E for European (day.month.year) and -i for international (year-month-day) formats.
The main reasons why you wouldn’t want to set this would be shortage of disk space, or
because you wanted your history file to be read by another shell.

38 CHAPTER 2. WHAT TO PUT IN YOUR STARTUP FILES

HIST_IGNORE_DUPS, HIST_IGNORE_ALL_DUPS, HIST_EXPIRE_DUPS_FIRST,
HIST_SAVE_NO_DUPS, HIST_FIND_NO_DUPS

These options give ways of dealing with the duplicate lines that often appear in the history.
The simplest is HIST_IGNORE_DUPS, which tells the shell not to store a history line if it’s
the same as the previous one, thus collapsing a lot of repeated commands down to one; this
is a very good option to have set. It does nothing when duplicate lines are not adjacent,
so for example alternating pairs of commands will always be stored. The next two options
can help here: HIST_IGNORE_ALL_DUPS simply removes copies of lines still in the history
list, keeping the newly added one, while HIST_EXPIRE_DUPS_FIRST is more subtle: it
preferentially removes duplicates when the history fills up, but does nothing until then.
HIST_SAVE_NO_DUPS means that whatever options are set for the current session, the shell
is not to save duplicated lines more than once; and HIST_FIND_NO_DUPS means that even if
duplicate lines have been saved, searches backwards with editor commands don’t show them
more than once.

HIST_ALLOW_CLOBBER, HIST_REDUCE_BLANKS

These allow the history mechanism to make changes to lines as they are entered. The first
affects output redirections, where you use the symbol > to redirect the output of a command
or set of commands to a named file, or use >> to append the output to that file. If you have
the NO_CLOBBER option set, then

touch newfile
echo hello >newfile

fails, because the ‘touch’ command has created newfile and NO_CLOBBER won’t let you
overwrite (clobber) it in the next line. With HIST_ALLOW_CLOBBER, the second line appears
in the history as

echo hello >|newfile

where the >| overrides NO_CLOBBER. So to get round the NO_CLOBBER you can just go back
to the previous line and execute it without editing it.

The second option, HIST_REDUCE_BLANKS, will tidy up the line when it is entered into the
history by removing any excess blanks that mean nothing to the shell. This can also mean
that the line becomes a duplicate of a previous one even if it would not have been in its
untidied form. It is smart enough not to remove blanks which are important, i.e. are quoted.

HIST_IGNORE_SPACE, HIST_NO_STORE, HIST_NO_FUNCTIONS

These three options allow you to say that certain lines shouldn’t go into the history at all.
HIST_IGNORE_SPACE means that lines which begin with a space don’t go into the history;
the idea is that you deliberately type a space, which is not otherwise significant to the shell,
before entering any line you want to be forgotten immediately afterwards. In zsh 4.0.1 this is
implemented so that you can always recall the immediately preceding line for editing, even
if it had a space; but when the next line is executed and entered into the history, the line
beginning with the space is forgotten.

2.5. WHAT TO PUT IN YOUR STARTUP FILES 39

HIST_NO_STORE tells the shell not to store history or fc commands. while
HIST_NO_FUNCTIONS tells it not to store function definitions as these, though usually
infrequent, can be tiresomely long. A function definition is anything beginning ‘function
funcname {...’ or ‘funcname () { ...’.

NO_HIST_BEEP

Finally, HIST_BEEP is used in the editor: if you try to scroll up or down beyond the end of
the history list, the shell will beep. It is on by default, so use NO_HIST_BEEP to turn it off.

2.5.6 Prompts

Most people have some definitions in .zshrc for altering the prompt you see at the start
of each line. I’ve already mentioned PROMPT_PERCENT (set by default) and PROMPT_SUBST
(unset by default); I’ll assume here you haven’t changed these settings, and point out some
of the possibilities with prompt escapes, sequences that start with a ‘%’. If you get really
sophisticated, you might need to turn on PROMPT_SUBST.

The main prompt is in a parameter called either $PS1 or $PROMPT or $prompt; the reason
for having all these names is historical — they come from different shells — so I’ll just stick
with the shortest. There is also $RPS1, which prints a prompt at the right of the screen. The
point of this is that it automatically disappears if you type so far along the line that you run
into it, so it can help make the best use of space for showing long things like directories.

$PS2 is shown when the shell is waiting for some more input, i.e. it knows that what you
have typed so far isn’t a complete line: it may contain the start of a quoted expression, but
not the end, or the start of some syntactic structure which is not yet finished. Usually you
will keep it different from $PS1, but all the same escapes are understood in all five prompts.

$PS3 is shown within a loop started by the shell’s select mechanism, when the shell wants
you to input a choice: see the zshmisc manual page as I won’t say much about that.

$PS4 is useful in debugging: there is an option XTRACE which causes the shell to print out
lines about to be executed, preceded by $PS4. Only from version 3.1.6 has it started to be
substituted in the same way as the other prompts, though this turns out to be very useful —
see ‘Location in script or function’ in the following list.

Here are some of the things you might want to include in your prompts. Note that you can
try this out before you alter the prompt by using ‘print -P’: this expands strings just are as
they are in prompts. You will probably need to put the string in single quotes.

The time

Zsh allows you lots of different ways of putting the time into your prompt with percent
escapes. The simplest are %t and %T, the time in 12 and 24 hour formats, and %*, the same
as %T but with seconds; you can also have the date as (e.g.) ‘Wed 22’ using %w, as ‘9/22/99’
(US format) using %W, or as ‘99-09-22’ (International format) using %D. However, there
is another way of using %D to get many more possibilities: a following string in braces,
‘%D{...}’ can contain a completely different set of percent escapes all of which refer to
elements of the time and date. On most systems, the documentation for the strftime
function will tell you what these are. zsh has a few of its own, given in the zshmisc manual

40 CHAPTER 2. WHAT TO PUT IN YOUR STARTUP FILES

page in the PROMPT EXPANSION section. For example, I use %D{%L:%M} which gives the
time in hours and minutes, with the hours as a single digit for 1 to 9; it looks more homely
to my unsophisticated eyes.

You can have more fun by using the ‘%(numX.true.false)’ syntax, where X is one of t or T. For
t, if the time in minutes is the same as num (default zero), then true is used as the text for
this section of the prompt, while false is used otherwise. T does the same for hours. Hence

PS1=’%(t.Ding!.%D{%L:%M})%# ’

prints the message ‘Ding!’ at zero minutes past the hour, and a more conventional time
otherwise. The ‘%#’ is the standard sequence which prints a ‘#’ if you are the superuser
(root), or a ‘%’ for everyone else, which occurs in a lot of people’s prompts. Likewise, you could
use ‘%(30t.Dong!....’ for a message at half past the hour.

The current directory

The sequence ‘%~’ prints out the directory, with any home or named directories (see below)
shortened to the form starting with ~; the sequence ‘%/’ doesn’t do that shortening, so usually
‘%~’ is better. Directories can be long, and there are various ways to deal with it. First, if
you are using a windowing system you can put the directory in the title bar, rather than
anywhere inside the window. Second, you can use $RPS1 which disappears when you type
near it. Third, you can pick segments out of ‘%~’ or ‘%/’ by giving them a number after the ‘%’:
for example, ‘%1~’ just picks out the last segment of the path to the current directory.

The fourth way gives you the most control. Prompts or parts of prompts, not just bits
showing the directory, can be truncated to any length you choose. To truncate a path on
the left, use something like ‘%10<...<%~’. That works like this: the ‘%<<’ is the basic form
for truncation. The 10 after the ‘%’ says that anything following is limited to 10 characters,
and the characters ‘...’ are to be displayed whenever the prompt would otherwise be longer
than that (you can leave this empty). This applies to anything following, so now the %~
can’t be longer than 10 characters, otherwise it will be truncated (to 7 characters, once the
‘...’ has been printed). You can turn off truncation with ‘%<<’, i.e. no number after the ‘%’;
truncation then applies to the entire region between where it was turned on and where it was
turned off (this has changed from older versions of zsh, where it just applied to individual ‘%’
constructs).

What are you waiting for?

The prompt $PS2 appears when the shell is waiting for you to finish entering something,
and it’s useful to know what the shell is waiting for. The sequence ‘%_’ shows this. It’s part
of the default $PS2, which is ‘%_> ’. Hence, if you type ‘if true; then’ and <RET>, the
prompt will say ‘then> ’. You can also use it in the trace prompt, $PS4, to show the same
information about what is being executed in a script or function, though as there is usually
enough information there (as described next) it’s not part of the default. In this case, a
number after the ‘%’ will limit the depth shown, so with ‘%1_’ only the most recent thing will
be mentioned.

2.5. WHAT TO PUT IN YOUR STARTUP FILES 41

Location in script or function

The default $PS4 contains ‘%N’ and ‘%i’, which tell you the name of the most recently started
function, script, or sourced file, and the line number being executed inside it; they are not
very useful in other prompts. However, ‘%i’ in $PS1 will tell you the current interactive line
number, which zsh keeps track of, though doesn’t usually show you; the parameter $LINENO
contains the same information.

Another point to bear about ‘%i’ in mind is that the line number shown applies to the version
of a function first read in, not how it appears with the ‘functions’ command, which is tidied
up. If you use autoloaded functions, however, the file containing the function will usually be
what you want to alter, so this shouldn’t be a problem when debugging.

Remember, the $PS4 display only happens when the XTRACE option is set; as options may be
local to functions, and always are to scripts, you will often need to put an explicit ‘setopt
xtrace’ at the top of whatever you are debugging. Alternatively, you can use ‘typeset
-ft funcname’ to turn on tracing for that function (something I only just discovered); use
‘typeset +ft funcname’ to turn it off again.

Other bits and pieces

There are many other percent escapes described in the zshmisc manual page, mostly
straightforward. For example, ‘%h’ shows you the history entry number, useful if you are
using bang-history; ‘%m’ shows you the current host name up to any dot; ‘%n’ shows the
username.

There are two other features I happen to use myself. First, it’s sometimes convenient to know
when the last command failed. Every command returns a status, which is a number: zero for
success, some other number for some type of failure. You can get this from the parameter ‘$?’
or ‘$status’ (again, they refer to the same thing). It’s also available in the prompt as ‘%?’,
and there’s also one of the so-called ‘ternary’ expressions with parentheses I described for
time, which pick different strings depending on a test. Here the test is, reasonably enough,
‘%(?...’. Putting these two together, you can get a message which is only displayed when the
exit status is non-zero; I’ve put an extra set of parentheses around the number just to make
it clearer, where the ‘)’ needs to be turned into ‘%)’ to stop it marking the end of the group:

PS1=’%(?..(%?%))%# ’

It’s also sometimes convenient to know if you’re in a subshell, that is if you’ve started
another shell within the main one by typing ‘zsh’. You can do this by using another ternary
expression:

PS1=’%(2L.+.)%# ’

This checks the parameter SHLVL, which is incremented every time a new zsh starts, so if
there was already one running (which would have set SHLVL to 1), it will now be 2; and if
SHLVL is at least 2, an extra ‘+’ is printed in front of the prompt, otherwise nothing. If you’re
using a windowing system, you may need to turn the 2 into 3 as there may be a zsh already
running when you first log in, so that the shells in the windows have SHLVL set to 2 already.
This depends a good deal on how your windowing system is set up; finding out more is left as
an exercise for the reader.

42 CHAPTER 2. WHAT TO PUT IN YOUR STARTUP FILES

Colours

Many terminals can now display colours, and it is quite useful to be able to put these into
prompts to distinguish those from the surrounding text. I often find a programme has just
dumped a whole load of output on my terminal and it’s not obvious where it starts. Being
able to find the prompt just before helps a lot.

Colors, like bold or underlined text, use escape sequences which don’t move the cursor. The
golden rule for inserting any such escape sequences into prompts is to surround them with
‘%{’ at the start and ‘%}’ at the end. Otherwise, the shell will be confused about the length of
the line. This affects what happens when the line editor needs to redraw the line, and also
changes the position of the right prompt $RPS1, if you use that. You don’t need that with the
special sequences %B and %b, which start and stop bold text, because the shell already knows
what to do with those; it’s only random characters which you happen to know don’t move the
cursor, though the shell doesn’t, that cause the problem.

In the case of colours, there is a shell function colors supplied with the standard
distribution to help you. When loaded and run, it defines associative array parameters
$fg and $bg which you use to extract the escape sequences for given colours, for example
${fg[red]}${bg[yellow]} produces the sequences for red text on a yellow background.
So for example,

PS1="%{${bg[white]}${fg[red]}%}%(?..(%?%))\
%{${fg[yellow]}${bg[black]}%}%# "

produces a red-on-white ‘(1)’ if the previous programme exited with status 1, but nothing if
it exited with status 0, followed by a yellow-on-black ‘%’ or ‘#’ if you are the superuser. Note
the use of the double quotes here to force the parameters to be expanded straight away — the
escape sequences are fixed, so they don’t need to be re-extracted from the parameters every
time the prompt is shown.

Even if your terminal does support colour, there’s no guarantee all the possibilities work,
although the basic ANSI colour scheme is fairly standard. The colours understood are: cyan,
white, yellow, magenta, black, blue, red, grey, green. You can also used ‘default’, which puts
the terminal back how it was to begin with. In addition, you can use the basic colours with
the parameters $bg_bold and $fg_bold for bold varieties of the colours and $bg_no_bold
and $fg_no_bold to switch explicitly back to non-bold.

Themes

There are also a set of themes provided as functions to set up your prompt to various
predefined possibilities. These make use of the colours set up as described above. See the
zshcontrib manual page for how to do this (search for ‘prompt themes’).

2.5.7 Named directories

As already mentioned, ‘~/’ at the start of a filename expands to your home directory. More
generally, ‘~user/’ allows you to refer to the home directory of any other user. Furthermore,
zsh lets you define your own named directories which use this syntax. The basic idea is
simple, since any parameter can be a named directory:

2.5. WHAT TO PUT IN YOUR STARTUP FILES 43

dir=/tmp/mydir
print ~dir

prints ‘/tmp/mydir’. So far, this isn’t any different from using the parameter as $dir. The
difference comes if you use the ‘%~’ construct, described above, in your prompt. Then when
you change into that directory, instead of seeing the message ‘/tmp/mydir’, you will see the
abbreviation ‘~dir’.

The shell will not register the name of the directory until you force it to by using ‘~dir’
yourself at least once. You can do the following in your .zshrc:

dir=/tmp/mydir
bin=~/myprogs/bin
: ~dir ~bin

where ‘:’ is a command that does nothing — but its arguments are checked for parameters
and so on in the usual way, so that the shell can put dir and bin into its list of named
directories. A more simple way of doing this is to set the option AUTO_NAME_DIRS; then any
parameter created which refers to a directory will automatically be turned into a name. The
directory must have an absolute path, i.e. its expanded value, after turning any ‘~’s at the
start into full paths, must begin with a ‘/’. The parameter $PWD, which shows the current
directory, is protected from being turned into ~PWD, since that would tell you nothing.

2.5.8 ‘Go faster’ options for power users

Here are a few more random options you might want to set in your .zshrc.

NO_BEEP

Normally zsh will beep if it doesn’t like something. This can get extremely
annoying; ‘setopt nobeep’ will turn it off. I refer to this informally as the
OPEN_PLAN_OFFICE_NO_VIGILANTE_ATTACKS option.

AUTO_CD

If this option is set, and you type something with no arguments which isn’t a command, zsh
will check to see if it’s actually a directory. If it is, the shell will change to that directory. So
‘./bin’ on its own is equivalent to ‘cd ./bin’, as long as the directory ‘./bin’ really exists.
This is particularly useful in the form ‘..’, which changes to the parent directory.

CD_ABLE_VARS

This is another way of saving typing when changing directory, though only one character. If a
directory doesn’t exist when you try to change to it, zsh will try and find a parameter of that
name and use that instead. You can also have a ‘/’ and other bits after the parameter. So ‘cd
foo/dir’, if there is no directory ‘foo’ but there is a parameter $foo, becomes equivalent to
‘cd $foo/dir’.

44 CHAPTER 2. WHAT TO PUT IN YOUR STARTUP FILES

EXTENDED_GLOB

Patterns, to match the name of files and other things, can be very sophisticated in zsh, but
to get the most out of them you need to use this option, as otherwise certain features are
not enabled, so that people used to simpler patterns (maybe just ‘*’, ‘?’ and ‘[...]’) are not
confused by strange happenings. I’ll say much more about zsh’s pattern features, but this
is to remind you that you need this option if you’re doing anything clever with ‘~’, ‘#’, ‘^’ or
globbing flags — and also to remind you that those characters can have strange effects if you
have the option set.

MULTIOS

I mentioned above that to get zsh to behave like ksh you needed to set NO_MULTIOS, but I
didn’t say what the MULTIOS option did. It has two different effects for output and input.

First, for output. Here it’s an alternative to the tee programme. I’ve mentioned once, but
haven’t described in detail, that you could use >filename to tell the shell to send output
into a file with a given name instead of to the terminal. With MULTIOS set, you can have
more than one of those redirections on the command line:

echo foo >file1 >file2

Here, ‘foo’ will be written to both the named files; zsh copies the output. The pipe
mechanism, which I’ll describe better in chapter 3, is a sort of redirection into another
programme instead of into a file: MULTIOS affects this as well:

echo foo >file1 | sed ’s/foo/bar/’

Here, ‘foo’ is again written to file1, but is also sent into the pipe to the programme sed
(‘stream editor’) which substitutes ‘foo’ into ‘bar’ and (since there is no output redirection
in this part) prints it to the terminal.

Note that the second example above has several times been reported as a bug, often in a form
like:

some_command 2>&1 >/dev/null | sed ’s/foo/bar/’

The intention here is presumably to send standard error to standard output (the ‘2>&1’,
a very commonly used shell hieroglyphic), and not send standard output anywhere (the
‘>/dev/null’). (If you haven’t met the concept of ‘standard error’, it’s just another output
channel which goes to the same place as normal output unless you redirect it; it’s used,
for example to send error messages to the terminal even if your output is going somewhere
else.) In this example, too, the MULTIOS feature forces the original standard output to go to
the pipe. You can see this happening if we put in a version of ‘some_command’:

{ echo foo error >&2; echo foo not error; } 2>&1 >/dev/null |
sed ’s/foo/bar/’

where you can consider the stuff inside the ‘{...}’ as a black box that sends the message
‘foo error’ to standard error, and ‘foo not error’ to standard output. With MULTIOS, however,
the result is

2.5. WHAT TO PUT IN YOUR STARTUP FILES 45

error bar
not error bar

because both have been sent into the pipe. Without MULTIOS you get the expected result,

error bar

as any other Bourne-style shell would produce. There

On input, MULTIOS arranges for a series of files to be read in order. This time it’s a bit like
using the programme cat, which combines all the files listed after it. In other words,

cat file1 file2 | myprog

(where myprog is some programme that reads all the files sent to it as input) can be replaced
by

myprog <file1 <file2

which does the same thing. Once again, a pipe counts as a redirection, and the pipe is read
from first, before any files listed after a ‘<’:

echo then this >testfile
echo this first | cat <testfile

CORRECT, CORRECT_ALL

If you have CORRECT set, the shell will check all the commands you type and if they don’t
exist, but there is one with a similar name, it will ask you if you meant that one instead.
You can type ‘n’ for no, don’t correct, just go ahead; ‘y’ for yes, correct it then go ahead; ‘a’ for
abort, don’t do anything; ‘e’ for edit, return to the editor to edit the same line again. Users of
the new completion system should note this is not the same correction you get there: it’s just
simple correction of commands.

CORRECT_ALL applies to all the words on the line. It’s a little less useful, because currently
the shell has to assume that they are supposed to be filenames, and will try to correct them if
they don’t exist as such, but of course many of the arguments to a command are not filenames.
If particular commands generate too many attempts to correct their arguments, you can turn
this off by putting ‘nocorrect’ in front of the command name. An alias is a very good way
of doing this, as described next.

2.5.9 aliases

An alias is used like a command, but it expands into some other text which is itself used as
a command. For example,

alias foo=’print I said foo’
foo

46 CHAPTER 2. WHAT TO PUT IN YOUR STARTUP FILES

prints (guess what) ‘I said foo’. Note the syntax for definition — you need the ‘=’, and you
need to make sure the whole alias is treated by the shell as one word; you can give a whole list
of aliases to the same ‘alias’ command. You may be able to think of some aliases you want
to define in your startup files; .zshrc is probably the right place. If you have CORRECT_ALL
set, the way to avoid the ‘mkdir’ command spell-checking its arguments — which is useless,
because they have to be non-existent for the command to work — is to define:

alias mkdir=’nocorrect mkdir’

This shows one useful feature about aliases: the alias can contain something of the same
name as itself. When it is encountered in the expansion text (the right hand side), the shell
knows it is not to expand the alias again, but this time to treat it as a real command. Note
that functions do not have this property: functions are more powerful than aliases and in
some cases it is useful for them to call themselves, It’s a common mistake to have functions
call themselves over and over again until the shell complains. I’ll describe ways round this
in chapter 3.

One other way functions are more powerful than aliases is that functions can take arguments
while aliases can’t — in other words, there is no way of referring inside the alias to what
follows it on the command line, unlike a function, and also unlike aliases in csh (because
that has no functions, that’s why). It is just blindly expanded, and the remainder of the
command line stuck on the end. Hence aliases in zsh are usually kept for quite simple
things, and functions are written for anything more complicated. You couldn’t do that trick
with ‘nocorrect’ using a function, though, since the function is called too late: aliases are
expanded straight away, so the nocorrect is found in time to be useful. You can almost
think of them as just plain typing abbreviations.

Normal aliases only work when in command position, i.e. at the start of the command line
(more strictly, when zsh is expecting a command). There are other things called ‘global
aliases’, which you define by the ‘-g’ option to alias, which will be expanded at any position
on the command line. You should think seriously before defining these, as they can have a
drastic effect. Note, however, that quoting a word, or even a single character, will stop an
alias being expanded for it.

I only tend to use aliases in interactive shells, so I define them from .zshrc, but you may
want to use .zshenv if you use aliases more widely. In fact, to keep my .zshrc neat I save
all the aliases in a separate file called .aliasrc and in .zshrc I have:

if [[-r ~/.aliasrc]]; then
. ~/.aliasrc

fi

which checks if there is a readable file ~/.aliasrc, and if there is, it runs it in exactly the
same way the normal startup files are run. You can use ‘source’ instead of ‘.’ if it means
more to you; ‘.’ is the traditional Bourne and Korn shell name, however.

2.5.10 Environment variables

Often, the manual for a programme will tell you to define certain environment variables,
usually a collection of uppercase letters with maybe numbers and the odd underscore. These
can pass information to the programme without you needing to use extra arguments. In
zsh, environment variables appear as ordinary shell parameters, although they have to be

2.5. WHAT TO PUT IN YOUR STARTUP FILES 47

defined slightly differently: strictly, the environment is a special region outside the shell, and
zsh has to be told to put a copy there as well as keeping one of its own. The usual syntax is

export VARNAME=’value’

in other words, like an ordinary assignment, but with ‘export’ in front. Note there is no ‘$’
before the name of the environment variable; all ‘export’ and similar statements work the
same way. The easiest place to put these is in .zshenv — hence it’s name. Environment
variables will be passed to any programmes run from a shell, so it may be enough to define
them in .zlogin or .zprofile: however, any shell started for you non-interactively won’t
run those, and there are other possible problems if you use a windowing system which is
started by a shell other than zsh or which doesn’t run a shell start-up file at all — I had to
tweak mine to make it do so. So .zshenv is the safest place; it doesn’t take long to define
environment variables. Other people will no doubt give you completely contradictory views,
but that’s people for you.

Note that you can’t export arrays. If you export a parameter, then assign an array to it,
nothing will appear in the environment; you can use the external command ‘printenv
VARNAME’ (again no ‘$’ because the command needs to know the name, not the value) to
check. There’s a more subtle problem with arrays, too. The export builtin is just a special
case of the builtin typeset, which defines a variable without marking it for export to the
environment. You might think you could do

typeset array=(this doesn\’t work)

but you can’t — the special array syntax is only understood when the assignment does not
follow a command, not in normal arguments like the case here, so you have to put the array
assignment on the next line. This is a very easy mistake to make. More uses of typeset will
be described in chapter 3; they include creating local parameters in functions, and defining
special attributes (of which the ‘export’ attribute is just one) for parameters.

2.5.11 Path

It helps to be able to find external programmes, i.e. anything not part of the shell, any
command other than a builtin, function or alias. The $path array is used for this. Actually,
what the system needs is the environment variable $PATH, which contains a list of directories
in which to search for programmes, separated from each other by a colon. These directories
are the individual components of the array $path. So if $path contains

path=(/bin /usr/bin /usr/local/bin .)

then $PATH will automatically contain the effect of

PATH=/bin:/usr/bin:/usr/local/bin:.

without you having to set that. The idea is simply that, while the system needs $PATH
because it doesn’t understand arrays, it’s much more flexible to be able to use arrays within
the shell and hence pretty much forget about the $PATH form.

Changes to the path are similar to changes to environment variables described above, so all
that applies. There’s a slight difficulty in setting $path in .zshenv however, even though

48 CHAPTER 2. WHAT TO PUT IN YOUR STARTUP FILES

the reasons given above for doing so still apply. Usually, the path will be set for you, either
by the system, or by the system administrator in one of the global start up files, and if you
change path you will simply want to add to it. But if your .zshenv contains

path=(~/bin ~/progs/bin $path)

— which is the right way of adding something to the front of $path — then every time
.zshenv is called, ~/bin and ~/progs/bin are stuck in front, so if you start another zsh
you will have two sets there.

You can add tests to see if something’s already there, of course. Zsh conveniently allows you
to test for the existence of elements in an array. By preceding an array index by (r) (for
reverse), it will try to find a matching element and return that, else an empty string. Here’s
a way of doing that (but don’t add this yet, see the next paragraph):

for dir in ~/bin ~/progs/bin; do
if [[-z ${path[(r)$dir]}]]; then

path=($dir $path)
fi

done

That for... do ... done is another special shell construct. It takes each thing after ‘in’ and
assigns it in turn to the parameter named before the ‘in’ — $dir, but because this is a form
of assignment, the ‘$’ is left off — so the first time round it has the effect of dir=~/bin, and
the next time dir=~/progs/bin. Then it executes what’s in the loop. The test -z checks
that what follows is empty: in this case it will be if the directory $dir is not yet in $path, so
it goes ahead and adds it in front. Note that the directories get added in the reverse of the
order they appear.

Actually, however, zsh takes all that trouble away from you. The incantation ‘typeset -U
path’, where the -U stands for unique, tells the shell that it should not add anything to
$path if it’s there already. To be precise, it keeps only the left-most occurrence, so if you
added something at the end it will disappear and if you added something at the beginning,
the old one will disappear. Thus the following works nicely in .zshenv:

typeset -U path
path=(~/bin ~/progs/bin $path)

and you can put down that ‘for’ stuff as a lesson in shell programming. You can list all the
variables which have uniqueness turned on by typing ‘typeset +U’, with ‘+’ instead of ‘-’,
because in the latter case the shell would show the values of the parameters as well, which
isn’t what you need here. The -U flag will also work with colon-separated arrays, like $PATH.

2.5.12 Mail

Zsh will check for new mail for you. If all you need is to be reminded of something arriving in
your normal folder every now and then, you just need to set the parameter $MAIL to wherever
that is: it’s typically one of /usr/spool/mail, /var/spool/mail, or /var/mail.

The array $mailpath allows more possibilities. Like $path, it has a colleague in uppercase,
$MAILPATH, which is a colon-separated array. The system doesn’t need that, this time, so

2.5. WHAT TO PUT IN YOUR STARTUP FILES 49

it’s mainly there so that you can export it to another version of zsh; exporting arrays won’t
work. As may by now be painfully clear, if you set in .zshenv or .zshrc, you don’t need to
export it, because it’s set in each instance of the shell. The elements of $mailpath work like
$MAIL, so you can specify different places where mail arrives. That’s most useful if you have
a programme like filter or procmail running to redistribute arriving mail to different
folders. You can specify a different message for each folder by putting ‘?message’ at the end.
For example, mine looks like this.

mailpref=/temp/pws/Mail
mailpath=($mailpref/newmail

$mailpref/zsh-new’?New zsh mail’
$mailpref/list-new’?New list mail’
$mailpref/urth-new’?New Urth mail’)

Note that zsh knows the array isn’t finished until the ‘)’, even though the elements are on
different lines; this is one very good reason for setting $mailpath rather than $MAILPATH,
which needs one long chunk.

The other parameter of interest is $MAILCHECK, which gives the frequency in seconds when
zsh should check for new mail. The default is 60. Actually, zsh only checks just after a
command has finished running and it is about to print a prompt. Since checking files doesn’t
take long, you can usually set this to its minimum value, which is MAILCHECK=1; zero doesn’t
work because it switches off checking. One reason why you wouldn’t want to do that might
be because $MAIL and $mailpath can contain directories instead of ordinary files; these will
be checked recursively for any files with something new in them, so this can be slow.

Finally, there is one associated option, MAIL_WARNING (though MAIL_WARN is also accepted
for the same thing for reasons of compatibility with less grammatical shells). The shell
remembers when it found the mail file was checked; next time it checks, it compares the
date. If there is no new mail, but the date of the file changed anyway, it will print a warning
message. This will happen if you read the mail with your mail reader and put the messages
somewhere else. Presumably you know you did that, so the warning may not be all that
useful.

2.5.13 Other path-like things

There are other pairs like $path and $PATH. I will keep back talk of $cdpath until I say
more about the way zsh handles directories. When I mentioned $fpath, I didn’t say there
was also $FPATH, but there is. Then there is $manpath and $MANPATH; these aren’t used
by the shell at all, but $MANPATH, if exported, is used by the man external command, and
$manpath gives an easier way to set it.

From 3.1.6 there is a mechanism to define your own such combinations; if this had been
available before, there would have been no need to build in $manpath and $MANPATH. In
.zshenv you would put,

export -TU TEXINPUTS texinputs

to define such a pair. The -T (for tie) is the key to that; I’ve used ‘export’ even though
the basic variable declaration command is ‘typeset’ because you nearly always want to get
the colon-separated version ($TEXINPUTS here) visible to the environment, and I’ve set -U
as described above for $path because it’s a neat feature anyway. Now you can assign to the

50 CHAPTER 2. WHAT TO PUT IN YOUR STARTUP FILES

array $texinputs and let the programme (TeX or its derivatives) see $TEXINPUTS. Another
useful variable to do this with is $LD_LIBRARY_PATH, which on most modern versions of
UNIX (and Linux) tells the system where to find the libraries which provide extra functions
when it runs a programme.

2.5.14 Version-specific things

Since zsh changes faster than almost any other command interpreter known to humankind,
you will often find you need to find out what version you are using. This can get a bit verbose;
indeed, the parameter you need to check, which is now $ZSH_VERSION, used simply to be
called $VERSION before version 3.0. If you are not using legacy software of that kind, you
can probably get away with tests like this:

if [[$ZSH_VERSION == 3.1.<5->* ||
$ZSH_VERSION == 3.<2->* ||
$ZSH_VERSION == <4->*]]; then

set feature which appeared first in 3.1.5
fi

It’s like that to be futureproof: it says that if this is a 3.1 release, it has to be at least 3.1.5, but
any 3.2 release (there weren’t any), or any release 4 or later, will also be OK. The ‘<5->’ etc.
are advanced pattern matching tests: pattern matching uses the same symbols as globbing,
but to test other things, here what’s on the left of the ‘==’. This one matches any number
which is at least 5, for example 6 or 10 or 252, but not 1 or 4. There are also development
releases; nowadays the version numbers look like X.Y.Z-tag-N (tag is some short word, the
others are numbers) but unless you’re keeping up with development you won’t need to look
for those, since they aren’t released officially. That ‘==’ in the test could also be just ‘=’, but
the manual says the former is preferred, so I’ve used them here, even though people usually
don’t bother.

Version 4 of zsh provides a function is-at-least to do this for you: it looks only at the
numbers X, Y and Z (and N if it exists), ignoring all letters and punctuation. You give it
the minimum version of the shell you need and it returns true if the current shell is recent
enough. For example, ‘is-at-least 3.1.6-pws-9’ will return true if the current version
of zsh is 3.1.6-dev-20 (or 3.1.9, or 4.0.1, and so on), which is the correct behaviour. As with
any other shell function, you have to arrange for is-at-least to be autoloaded if you
want to use it.

2.5.15 Everything else

There are many other possibilities for things to go in startup files; in particular, I haven’t
touched on defining things for the line editor and setting up completion. There’s quite a lot
to explain for those, so I’ll come back to those in the appropriate chapters. You just need to
remember that all that stuff should go in .zshrc, since you need it for all interactive shells,
and for no others.

Chapter 3

Dealing with basic shell syntax

This chapter is a more thorough examination of much of what appeared in the chapter 2; to be
more specific, I assume you’re sitting in front of your terminal about to use the features you
just set up in your initialisation files and want to know enough to get them going. Actually,
you will probably spend most of the time editing command lines and in particular completing
commands — both of these activities are covered in later chapters. For now I’m going to talk
about commands and the syntax that goes along with using them. This will let you write
shell functions and scripts to do more of your work for you.

In the following there are often several consecutive paragraphs about quite minor features.
If you find you read this all through the first time, maybe you need to get out more. Most
people will probably find it better to skim through to find what the subject matter is, then
come back if they later find they want to know more about a particular aspect of the shell’s
commands and syntax.

One aspect of the syntax is left to chapter 5: there’s just so much to it, and it can be so
useful if you know enough to get it right, that it can’t all be squashed in here. The subject is
expansion, covering a multitude of things such as parameter expansion, globbing and history
expansions. You’ve already met the basics of these in chapter 2; but if you want to know how
to pick a particular file with a globbing expression with pinpoint accuracy, or how to make
a single parameter expansion reduce a long expression to the words you need, you should
read that chapter; it’s more or less self-contained, so you don’t necessarily need to know
everything in this one.

We start with the most basic issue in any command line interpreter, running commands.
As you know, you just type words separated by spaces, where the first word is a command
and the remainder are arguments to it. It’s important to distinguish between the types of
command.

3.1 External commands

External commands are the easiest, because they have the least interaction with the shell —
many of the commands provided by the shell itself, which are described in the next section,
are built into the shell especially to avoid this difficulty.

The only major issue is therefore how to find them. This is done through the parameters
$path and $PATH, which, as I described in chapter 2, are tied together because although

51

52 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

the first one is more useful inside the shell — being an array, its various parts can be
manipulated separately — the second is the one that is used by other commands called by
the shell; in the jargon, $PATH is ‘exported to the environment’, which means exactly that
other commands called by the shell can see its value.

So suppose your $path contains

/home/pws/bin /usr/local/bin /bin /usr/bin

and you try to run ‘ls’. The shell first looks in /home/pws/bin for a command called ls,
then in /usr/local/bin, then in /bin, where it finds it, so it executes /bin/ls. Actually,
the operating system itself knows about paths if you execute a command the right way, so
the shell doesn’t strictly need to.

There is a subtlety here. The shell tries to remember where the commands are, so it can
find them again the next time. It keeps them in a so-called ‘hash table’, and you find the
word ‘hash’ all over the place in the documentation: all it means is a fast way of finding some
value, given a particular key. In this case, given the name of a command, the shell can find
the path to it quickly. You can see this table, in the form ‘key=value’, by typing ‘hash’.

In fact the shell only does this when the option HASH_CMDS is set, as it is by default. As you
might expect, it stops searching when it finds the directory with the command it’s looking for.
There is an extra optimisation in the option HASH_ALL, also set by default: when the shell
scans a directory to find a command, it will add all the other commands in that directory
to the hash table. This is sensible because on most UNIX-like operating systems reading a
whole lot of files in the same directory is quite fast.

The way commands are stored has other consequences. In particular, zsh won’t look for
a new command if it already knows where to find one. If I put a new ls command in
/usr/local/bin in the above example, zsh would continue to use /bin/ls (assuming it
had already been found). To fix this, there is the command rehash, which actually empties
the command hash table, so that finding commands starts again from scratch. Users of csh
may remember having to type rehash quite a lot with new commands: it’s not so bad in
zsh, because if no command was already hashed, or the existing one disappeared, zsh will
automatically scan the path again; furthermore, zsh performs a rehash of its own accord
if $path is altered. So adding a new duplicate command somewhere towards the head of
$path is the main reason for needing rehash.

One thing that can happen if zsh hasn’t filled its command hash table and so doesn’t know
about all external commands is that the AUTO_CD option, mentioned in the previous chapter
and again below, can think you are trying to change to a particular directory with the same
name as the command. This is one of the drawbacks of AUTO_CD.

To be a little bit more technical, it’s actually not so obvious that command hashing is needed
at all; many modern operating systems can find commands quickly without it. The clincher
in the case of zsh is that the same hash table is necessary for command completion, a very
commonly used feature. If you type ‘compr<TAB>’, the shell completes this to ‘compress’. It
can only do this if it has a list of commands to complete, and this is the hash table. (In this
case it didn’t need to know where to find the command, just its name, but it’s only a little
extra work to store that too.) If you were following the previous paragraphs, you’ll realise zsh
doesn’t necessarily know all the possible commands at the time you hit TAB, because it only
looks when it needs to. For this purpose, there is another option, HASH_LIST_ALL, again set
by default, which will make sure the command hash table is full when you try to complete
a command. It only needs to do this once (unless you alter $path), but it does mean the
first command completion is slow. If HASH_LIST_ALL is not set, command completion is not

3.2. BUILTIN COMMANDS 53

available: the shell could be rewritten to search the path laboriously every single time you
try to complete a command name, but it just doesn’t seem worth it.

The fact that $PATH is passed on from the shell to commands called from it (strictly only if
the variable is marked for export, as it usually is — this is described in more detail with the
typeset family of builtin commands below) also has consequences. Some commands call
subcommands of their own using $PATH. If you have that set to something unusual, so that
some of the standard commands can’t be found, it could happen that a command which is
found nonetheless doesn’t run properly because it’s searching for something it can’t find in
the path passed down to it. That can lead to some strange and confusing error messages.

One important thing to remember about external commands is that the shell continues to
exist while they are running; it just hangs around doing nothing, waiting for the job to
finish (though you can tell it not to, as we’ll see). The command is given a completely new
environment in which to run; changes in that don’t affect the shell, which simply starts up
where it left off after the command has run. So if you need to do something which changes
the state of the shell, an external command isn’t good enough. This brings us to builtin
commands.

3.2 Builtin commands

Builtin commands, or builtins for short, are commands which are part of the shell itself.
Since builtins are necessary for controlling the shell’s own behaviour, introducing them
actually serves as an introduction to quite a lot of what is going on in the shell. So a fair
fraction of what would otherwise appear later in the chapter has accumulated here, one way
or another. This does make things a little tricksy in places; count how many times I use the
word ‘subtle’ and keep it for your grandchildren to see.

I just described one reason for builtins, but there’s a simpler one: speed. Going through
the process of setting up an entirely new environment for the command at the beginning,
swapping between this command and anything else which is being run on the computer,
then destroying it again at the end is considerable overkill if all you want to do is, say, print
out a message on the screen. So there are builtins for this sort of thing.

3.2.1 Builtins for printing

The commands ‘echo’ and ‘print’ are shell builtins; they just show what you typed, after
the shell has removed all the quoting. The difference between the two is really historical:
‘echo’ came first, and only handled a few simple options; ksh provided ‘print’, which had
more complex options and so became a different command. The difference remains between
the two commands in zsh; if you want wacky effects, you should look to print. Note that
there is usually also an external command called echo, which may not be identical to zsh’s;
there is no standard external command called print, but if someone has installed one on
your system, the chances are it sends something to the printer, not the screen.

One special effect is ‘print -z’ puts the arguments onto the editing buffer stack, a list
maintained by the shell of things you are about to edit. Try:

print -z print -z print This is a line

(it may look as if something needs quoting, but it doesn’t) and hit return three times. The

54 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

first time caused everything after the first ‘print -z’ to appear for you to edit, and so on.

For something more useful, you can write functions that give you a line to edit:

fn() { print -z print The time now is $(date); }

Now when you type ‘fn’, the line with the date appears on the command line for you to edit.
The option ‘-s’ is a bit similar; the line appears in the history list, so you will see it if you
use up-arrow, but it doesn’t reappear automatically.

A few other useful options, some of which you’ve already seen, are

-r don’t interpret special character sequences like ‘\n’

-P use ‘%’ as in prompts

-n don’t put a newline at the end in case there’s more output to follow

-c print the output in columns — this means that ‘print -c *’ has the effect of a sort of
poor person’s ‘ls’, only faster

-l use one line per argument instead of one column, which is sometimes useful for sticking
lists into files, and for working out what part of an array parameter is in each element.

If you don’t use the -r option, there are a whole lot of special character sequences. Many of
these may be familiar to you from C.

\n newline

\t tab

\e or \E escape character

\a ring the bell (alarm), usually a euphemism for a hideous beep

\b move back one character.

\c don’t print a newline — like the -n option, but embedded in the string. This alternative
comes from Berkeley UNIX.

\f form feed, the phrase for ‘advance to next page’ from the days when terminals were called
teletypes, maybe more familiar to you as ^L

\r carriage return — when printed, the annoying ^M’s you get in DOS files, but actually
rather useful with ‘print’, since it will erase everything to the start of the line. The
combination of the -n option and a \r at the start of the print string can give the
illusion of a continuously changing status line.

\v vertical tab, which I for one have never used (I just tried it now and it behaved like a
newline, only without assuming a carriage return, but that’s up to your terminal).

In fact, you can get any of the 255 characters possible, although your terminal may not like
some or all of the ones above 127, by specifying a number after the backslash. Normally
this consists of three octal characters, but you can use two hexadecimal characters after \x
instead — so ‘\n’, ‘\012’ and ‘\x0a’ are all newlines. ‘\’ itself escapes any other character,
i.e. they appear as themselves even if they normally wouldn’t.

3.2. BUILTIN COMMANDS 55

Two notes: first, don’t get confused because ‘n’ is the fourteenth letter of the alphabet;
printing ‘\016’ (fourteen in octal) won’t do you any good. The remedy, after you discover
your text is unreadable (for VT100-like terminals including xterm), is to print ‘\017’.

Secondly, those backslashes can land you in real quoting difficulties. Normally a backslash
on the command line escapes the next character — this is a different form of escaping to
print’s — so

print \n

doesn’t produce a newline, it just prints out an ‘n’. So you need to quote that. This means

print \\

passes a single backslash to quote, and

print \\n

or

print ’\n’

prints a newline (followed by the extra one that’s usually there). To print a real backslash,
you would thus need

print \\\\

Actually, you can get away with the two if there’s nothing else after — print just shrugs its
shoulders and outputs what it’s been given — but that’s not a good habit to get into. There
are other ways of doing this: since single quotes quote anything, including backslashes (they
are the only way of making backslashes behave like normal characters), and since the ‘-r’
option makes print treat characters normally,

print -r ’\’

has the same effect. But you need to remember the two levels of quoting for backslashes.
Quotes aren’t special to print, so

print \’

is good enough for printing a quote.

echotc

There’s an oddity called ‘echotc’, which takes as its argument ‘termcap’ capabilities. This
now lives in its own module, zsh/termcap.

Termcap is a now rather old-fashioned way of giving the commands necessary for performing
various standard operations on terminals: moving the cursor, clearing to the end of the

56 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

line, turning on standout mode, and so on. It has now been replaced almost everywhere
by ‘terminfo’, a completely different way of specifying capabilities, and by ‘curses’, a more
advanced system for manipulating objects on a character terminal. This means that the
arguments you need to give to echotc can be rather hard to come by; try the termcap
manual page; if there are two, it’s probably the one in section five which gives the codes,
i.e. ‘man 5 zsh’ or ‘man -s 5 zsh’ on Solaris. Otherwise you’ll have to search the web.
The reason the zsh manual doesn’t give a list is that the shell only uses a few well-known
sequences, and there are very many others which will work with echotc, because the
sequences are interpreted by a the terminal, not the shell.

This chunk gives you a flavour:

zmodload -i zsh/termcap
echotc md
echo -n bold
echotc mr
echo -n reverse
echotc me
echo

First we make sure the module is loaded into the shell; on some older operating systems,
this only works if it was compiled in when zsh was installed. The option -i to zmodload
stops the shell from complaining if the module was already loaded. This is a sensible way
of ensuring you have the right facilities available in a shell function, since loading a module
makes it available until it is explicitly unloaded.

You should see ‘bold’ in bold characters, and ‘reverse’ in bold reverse video. The ‘md’
capability turns on bold mode; ‘mr’ turns on reverse video; ‘me’ turns off both modes. A
more typical zsh way of doing this is:

print -P ’%Bbold%Sreverse%b%s’

which should show the same thing, but using prompt escapes — prompts are the most
common use of special fonts. The ‘%S’ is because zsh calls reverse ‘standout’ mode, because it
does. (On a colour xterm, you may find ‘bold’ is interpreted as ‘blue’.)

There’s a lot more you can do with echotc if you really try. The shell has just acquired a
way of printing terminfo sequences, predictably called echoti, although it’s only available
on systems where zsh needs terminfo to compile — this happens when the termcap code is
actually a part of terminfo. The good news about this is that terminfo tends to be better
documented, so you have a good chance of finding out the capabilities you want from the
terminfo manual page. The echoti command lives in another predictably named module,
zsh/terminfo.

3.2.2 Other builtins just for speed

There are only a few other builtins which are there just to make things go faster. Strictly,
tests could go into this category, but as I explained in the last chapter it’s useful to have tests
in the form

if [[$var1 = $var2]]; then
print doing something

3.2. BUILTIN COMMANDS 57

fi

be treated as a special syntax by the shell, in case $var1 or $var2 expands to nothing which
would otherwise confuse it. This example consists of two features described below: the test
itself, between the double square brackets, which is true if the two substituted values are the
same string, and the ‘if’ construct which runs the commands in the middle (here just the
print) if that test was true.

The builtins ‘true’ and ‘false’ do nothing at all, except return a command status zero or
one, respectively. They’re just used as placeholders: to run a loop forever — while will also
be explained in more detail later — you use

while true; do
print doing something over and over

done

since the test always succeeds.

A synonym for ‘true’ is ‘:’; it’s often used in this form to give arguments which have side
effects but which shouldn’t be used — something like

: ${param:=value}

which is a common idiom in all Bourne shell derivatives. In the parameter expansion,
$param is given the value value if it was empty before, and left alone otherwise. Since that
was the only reason for the parameter expansion, you use : to ignore the argument. Actually,
the shell blithely builds the command line — the colon, followed by whatever the value of
$param is, whether or not the assignment happened — then executes the command; it just
so happens that ‘:’ takes no notice of the arguments it was given. If you’re switching from
ksh, you may expect certain synonyms like this to be aliases, rather than builtins themselves,
but in zsh they are actually builtins; there are no aliases predefined by the shell. (You can
still get rid of them using ‘disable’, as described below.)

3.2.3 Builtins which change the shell’s state

A more common use for builtins is that they change something inside the shell, or report
information about what’s going on in the shell. There is one vital thing to remember
about external commands. It applies, too, to other cases we’ll meet where the shell ‘forks’,
literally splitting itself into two parts, where the forked-off part behaves just like an external
command. In both of these cases, the command is in a different process, UNIX’s basic unit
of things that run. (In fact, even Windows knows about processes nowadays, although they
interact a little bit differently with one another.)

The vital thing is that no change in a separate process started by the shell affects the shell
itself. The most common case of this is the current directory — every process has its own
current directory. You can see this by starting a new zsh:

% pwd # show the current directory
~
% zsh # start a new shell, which

is a separate process

58 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

% cd tmp
% pwd # now I’m in a different

directory...
~/tmp
% exit # leave the new shell...
% pwd # now I’m back where I was...
~

Hence the cd command must be a shell builtin, or this would happen every time you ran it.

Here’s a more useful example. Putting parentheses around a command asks the shell to
start a different process for it. That’s useful when you specifically don’t want the effects
propagating back:

(cd some-other-dir; run-some-command)

runs the command, but doesn’t change the directory the ‘real’ shell is in, only its forked-off
‘subshell’. Hence,

% pwd
~
% (cd /; pwd)
/
% pwd
~

There’s a more subtle case:

cd some-other-dir | print Hello

Remember, the ‘|’ (‘pipe’) connects the output of the first command to the input of the next
— though actually no information is passed that way in this example. In zsh, all but the last
portion of the ‘pipeline’ thus created is run in different processes. Hence the cd doesn’t affect
the main shell. I’ll refer to it as the ‘parent’ shell, which is the standard UNIX language for
processes; when you start another command or fork off a subshell, you are creating ‘children’
(without meaning to be morbid, the children usually die first in this case). Thus, as you
would guess,

print Hello | cd some-other-dir

does have the effect of changing the directory. Note that other shells do this differently; it
is always guaranteed to work this way in zsh, because many people rely on it for setting
parameters, but many shells have the left hand of the pipeline being the bit that runs in the
parent shell. If both sides of the pipe symbol are external commands of some sort, both will
of course run in subprocesses.

There are other ways you change the state of the shell, for example by declaring parameters
of a particular type, or by telling it how to interpret certain commands, or, of course, by
changing options. Here are the most useful, grouped in a vaguely logical fashion.

3.2. BUILTIN COMMANDS 59

3.2.4 cd and friends

You will not by now be surprised to learn that the ‘cd’ command changes directory. There
is a synonym, ‘chdir’, which as far as I know no-one ever uses. (It’s the same name as the
system call, so if you had been programming in C or Perl and forgot that you were now using
the shell, you might use ‘chdir’. But that seems a bit far-fetched.)

There are various extra features built into cd and chdir. First, if you miss out the directory
to which you want to change, you will be taken to your home directory, although it’s not as if
‘cd ~’ is all that hard to type.

Next, the command ‘cd -’ is special: it takes you to the last directory you were in. If you do
a sequence of cd commands, only the immediately preceding directory is remembered; they
are not stacked up.

Thirdly, there is a shortcut for changing between similarly named directories. If you type ‘cd
<old> <new>’, then the shell will look for the first occurrence of the string ‘<old>’ in the
current directory, and try to replace it with ‘<new>’. For example,

% pwd
~/src/zsh-3.0.8/Src
% cd 0.8 1.9
~/src/zsh-3.1.9/Src

The cd command actually reported the new directory, as it usually does if it’s not entirely
obvious where it’s taken you.

Note that only the first match of <old> is taken. It’s an easy mistake to think you can
change from
/home/export1/pws/mydir1/something to /home/export1/pws/mydir2/something
with ‘cd 1 2’, but that first ‘1’ messes it up. Arguably the shell could be smarter here. Of
course, ‘cd r1 r2’ will work in this case.

cd’s friend ‘pwd’ (print working directory) tells you what the current working directory is; this
information is also available in the shell parameter $PWD, which is special and automatically
updated when the directory changes. Later, when you know all about expansion, you will find
that you can do tricks with this to refer to other directories. For example, ${PWD/old/new}
uses the parameter substitution mechanism to refer to a different directory with old
replaced by new — and this time old can be a pattern, i.e. something with wildcard matches
in it. So if you are in the zsh-3.0.8/Src directory as above and want to copy a file from the
zsh-3.1.9/Src directory, you have a shorthand:

cp ${PWD/0.8/1.9}/myfile.c .

Symbolic links

Zsh tries to track directories across symbolic links. If you’re not familiar with these, you
can think of them as a filename which behaves like a pointer to another file (a little like
Windows’ shortcuts, though UNIX has had them for much longer and they work better). You
create them like this (ln is not a builtin command, but its use to make symbolic links is very
standard these days):

ln -s existing-file-name name-of-link

60 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

for example

ln -s /usr/bin/ln ln

creates a file called ln in the current directory which does nothing but point to the file
/usr/bin/ln. Symbolic links are very good at behaving as much like the original file as
you usually want; for example, you can run the ln link you’ve just created as if it were
/usr/bin/ln. They show up differently in a long file listing with ‘ls -l’, the last column
showing the file they point to.

You can make them point to any sort of file at all, including directories, and that is why they
are mentioned here. Suppose you create a symbolic link from your home directory to the root
directory and change into it:

ln -s / ~/mylink
cd ~/mylink

If you don’t know it’s a link, you expect to be able to change to the parent directory by doing
‘cd ..’. However, the operating system — which just has one set of directories starting from
/ and going down, and ignores symbolic links after it has followed them, they really are just
pointers — thinks you are in the root directory /. This can be confusing. Hence zsh tries to
keep track of where you probably think you are, rather than where the system does. If you
type ‘pwd’, you will see ‘/home/you/mylink’ (wherever your home directory is), not ‘/’; if
you type ‘cd ..’, you will find yourself back in your home directory.

You can turn all this second-guessing off by setting the option CHASE_LINKS; then ‘cd
~/mydir; pwd’ will show you to be in /, where changing to the parent directory has no effect;
the parent of the root directory is the root directory, except on certain slightly psychedelic
networked file systems. This does have advantages: for example, ‘cd ~/mydir; ls ..’
always lists the root directory, not your home directory, regardless of the option setting,
because ls doesn’t know about the links you followed, only zsh does, and it treats the ..
as referring to the root directory. Having CHASE_LINKS set allows ‘pwd’ to warn you about
where the system thinks you are.

An aside for non-UNIX-experts (over 99.9% of the population of the world at the last count):
I said ‘symbolic links’ instead of just ‘links’ because there are others called ‘hard links’. This
is what ‘ln’ creates if you don’t use the -s option. A hard link is not so much a pointer to a
file as an alternative name for a file. If you do

ln myfile othername
ls -l

where myfile already exists you can’t tell which of myfile and othername is the original
— and in fact the system doesn’t care. You can remove either, and the other will be perfectly
happy as the name for the file. This is pretty much how renaming files works, except that
creating the hard link is done for you in that case. Hard links have limitations — you can’t
link to directories, or to a file on another disk partition (and if you don’t know what a disk
partition is, you’ll see what a limitation that can be). Furthermore, you usually want to know
which is the original and which is the link — so for most users, creating symbolic links is
more useful. The only drawback is that following the pointers is a tiny bit slower; if you
think you can notice the difference, you definitely ought to slow down a bit.

The target of a symbolic link, unlike a hard link, doesn’t actually have to exist and no
checking is performed until you try to use the link. The best thing to do is to run ‘ls -lL’

3.2. BUILTIN COMMANDS 61

when you create the link; the -L part tells ls to follow links, and if it worked you should see
that your link is shown as having exactly the same characteristics as the file it points to. If
it is still shown as a link, there was no such file.

While I’m at it, I should point out one slight oddity with symbolic links: the name of the
file linked to (the first name), if it is not an absolute path (beginning with / after any ~
expansion), is treated relative to the directory where the link is created — not the current
directory when you run ln. Here:

ln -s ../mydir ~/links/otherdir

the link otherdir will refer to mydir in its own parent directory, i.e. ~/links — not, as you
might think, the parent of the directory where you were when you ran the command. What
makes it worse is that the second word, if is not an absolute path, is interpreted relative to
the directory where you ran the command.

$cdpath and AUTO_CD

We’re nowhere near the end of the magic you can do with directories yet (and, in fact, I
haven’t even got to the zsh-specific parts). The next trick is $cdpath and $CDPATH. They
look a lot like $path and $PATH which you met in the last chapter, and I mentioned them
briefly back in the last chapter in that context: $cdpath is an array of directories, while
$CDPATH is colon-separated list behaving otherwise like a scalar variable. They give a list
of directories whose subdirectories you may want to change into. If you use a normal cd
command (i.e. in the form ‘cd dirname’, and dirname does not begin with a / or ~, the shell
will look through the directories in $cdpath to find one which contains the subdirectory
dirname. If $cdpath isn’t set, as you’d guess, it just uses the current directory.

Note that $cdpath is always searched in order, and you can put a . in it to represent the
current directory. If you do, the current directory will always be searched at that point,
not necessarily first, which may not be what you expect. For example, let’s set up some
directories:

mkdir ~/crick ~/crick/dna
mkdir ~/watson ~/watson/dna
cdpath=(~/crick .)
cd ~/watson
cd dna

So I’ve moved to the directory ~/watson, which contains the subdirectory dna, and done ‘cd
dna’. But because of $cdpath, the shell will look first in ~/crick, and find the dna there,
and take you to that copy of the self-reproducing directory, not the one in ~/watson. Most
people have . at the start of their cdpath for that reason. However, at least cd warns you
— if you tried it, you will see that it prints the name of the directory it’s picked in cases like
this.

In fact, if you don’t have . in your directory at all, the shell will always look there first;
there’s no way of making cd never change to a subdirectory of the current one, short of
turning cd into a function. Some shells don’t do this; they use the directories in $cdpath,
and only those.

There’s yet another shorthand, this time specific to zsh: the option AUTO_CD which I
mentioned in the last chapter. That way a command without any arguments which is really

62 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

a directory will take you to that directory. Normally that’s perfect — you would just get a
‘command not found’ message otherwise, and you might as well make use of the option. Just
occasionally, however, the name of a directory clashes with the name of a command, builtin
or external, or a shell function, and then there can be some confusion: zsh will always pick
the command as long as it knows about it, but there are cases where it doesn’t, as I described
above.

What I didn’t say in the last chapter is that AUTO_CD respects $cdpath; in fact, it really is
implemented so that ‘dirname’ on its own behaves as much like ‘cd dirname’ as is possible
without tying the shell’s insides into knots.

The directory stack

One very useful facility that zsh inherited from the C-shell family (traditional Korn shell
doesn’t have it) is the directory stack. This is a list of directories you have recently been in.
If you use the command ‘pushd’ instead of ‘cd’, e.g. ‘pushd dirname’, then the directory you
are in is saved in this list, and you are taken to dirname, using $CDPATH just as cd does.
Then when you type ‘popd’, you are taken back to where you were. The list can be as long as
you like; you can pushd any number of directories, and each popd will take you back through
the list (this is how a ‘stack’, or more precisely a ‘last-in-first-out’ stack usually operates in
computer jargon, hence the name ‘directory stack’).

You can see the list — which always starts with the current directory — with the dirs
command. So, for example:

cd ~
pushd ~/src
pushd ~/zsh
dirs

displays

~/zsh ~/src ~

and the next popd will take you back to ~/src. If you do it, you will see that pushd reports
the list given by dirs automatically as it goes along; you can turn this off with the option
PUSHD_SILENT, when you will have to rely on typing dirs explicitly.

In fact, a lot of the use of this comes not from using simple pushd and popd combinations,
but from two other features. First, ‘pushd’ on its own swaps the top two directories on the
stack. Second, pushd with a numeric argument preceded by a ‘+’ or ‘-’ can take you to one of
the other directories in the list. The command ‘dirs -v’ tells you the numbers you need; 0
is the current directory. So if you get,

0 ~/zsh
1 ~/src
2 ~

then ‘pushd +2’ takes you to ~. (A little suspension of disbelief that I didn’t just use AUTO_CD
and type ‘..’ is required here.) If you use a -, it counts from the other end of the list; -0
(with apologies to the numerate) is the last item, i.e. the same as ~ in this case. Some

3.2. BUILTIN COMMANDS 63

people are used to having the ‘-’ and ‘+’ arguments behave the other way around; the option
PUSHD_MINUS exists for this.

Apart from PUSHD_SILENT and PUSHD_MINUS, there are a few other relevant options.
Setting PUSHD_IGNORE_DUPS means that if you pushd to a directory which is already
somewhere in the list, the duplicate entry will be silently removed. This is useful for most
human operations — however, if you are using pushd in a function or script to remember
previous directories for a future matching popd, this can be dangerous and you probably
want to turn it off locally inside the function.

AUTO_PUSHD means that any directory-changing command, including an auto-cd, is treated
as a pushd command with the target directory as argument. Using this can make the
directory stack get very long, and there is a parameter $DIRSTACKSIZE which you can set to
specify a maximum length. The oldest entry (the highest number in the ‘dirs -v’ listing) is
automatically removed when this length is exceeded. There is no limit unless this is explicitly
set.

The final pushd option is PUSHD_TO_HOME. This makes pushd on its own behave like cd
on its own in that it takes you to your home directory, instead of swapping the top two
directories. Normally a series of ‘pushd’ commands works pretty much like a series of ‘cd -’
commands, always taking you the directory you were in before, with the obvious difference
that ‘cd -’ doesn’t consult the directory stack, it just remembers the previous directory
automatically, and hence it can confuse pushd if you just use ‘cd -’ instead.

There’s one remaining subtlety with pushd, and that is what happens to the rest of the list
when you bring a particular directory to the front with something like ‘pushd +2’. Normally
the list is simply cycled, so the directories which were +3, and +4 are now right behind the
new head of the list, while the two directories which were ahead of it get moved to the end.
If the list before was:

dir1 dir2 dir3 dir4

then after pushd +2 you get

dir3 dir4 dir1 dir2

That behaviour changed during the lifetime of zsh, and some of us preferred the old
behaviour, where that one directory was yanked to the front and the rest just closed the
gap:

Old behaviour
dir3 dir1 dir2 dir4

so that after a while you get a ‘greatest hits’ group at the front of the list. If you like
this behaviour too (I feel as if I’d need to have written papers on group theory to like the
new behaviour) there is a function pushd supplied with the source code, although it’s short
enough to repeat here — this is in the form for autoloading in the zsh fashion:

pushd function to emulate the old zsh behaviour.
With this, pushd +/-n lifts the selected element
to the top of the stack instead of cycling
the stack.

64 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

emulate -R zsh
setopt localoptions

if [[ARGC -eq 1 && "$1" == [+-]<->]] then
setopt pushdignoredups
builtin pushd ~$1

else
builtin pushd "$@"

fi

The ‘&&’ is a logical ‘and’, requiring both tests to be true. The tests are that there is exactly
one argument to the function, and that it has the form of a ‘+’ or a ‘-’ followed by any number
(‘<->’ is a special zsh pattern to match any number, an extension of forms like ‘<1-100>’
which matches any number in the range 1 to 100 inclusive).

Referring to other directories

Zsh has two ways of allowing you to refer to particular directories. They have in common
that they begin with a ~ (in very old versions of zsh, the second form actually used an ‘=’, but
the current way is much more logical).

You will certainly be aware, because I’ve made a lot of use of it, that a ‘~’ on its own or
followed by a / refers to your own home directory. An extension of this — again from the
C-shell, although the Korn shell has it too in this case — is that ~name can refer to the home
directory of any user on the system. So if your user name is pws, then ~ and ~pws are the
same directory.

Zsh has an extension to this; you can actually name your own directories. This was described
in chapter 2, à propos of prompts, since that is the major use:

host% PS1=’%~? ’
~? cd zsh/Src
~/zsh/Src? zsrc=$PWD
~/zsh/Src? echo ~zsrc
/home/pws/zsh/Src
~zsrc?

Consult that chapter for the ways of forcing a parameter to be recognised as a named
directory.

There’s a slightly more sophisticated way of doing this directly:

hash -d zsrc=~/zsh/Src

makes ~zsrc appear in prompts as before, and in this case there is no parameter $zsrc.
This is the purist’s way (although very few zsh users are purists). You can guess what
‘unhash -d zsrc’ does; this works with directories named via parameters, too, but leaves
the parameter itself alone.

It’s possible to have a named directory with the same name as a user. In that case ‘~name’
refers to the directory you named explicitly, and there is no easy way of getting name’s home
directory without removing the name you defined.

3.2. BUILTIN COMMANDS 65

If you’re using named directories with one of the cd-like commands or AUTO_CD, you can set
the option CDABLEVARS which allows you to omit the leading ~; ‘cd zsrc’ with this option
would take you to ~zsrc. The name is a historical artifact and now a misnomer; it really is
named directories, not parameters (i.e. variables), which are used.

The second way of referring to directories with ~’s is to use numbers instead of names: the
numbers refer to directories in the directory stack. So if dirs -v gives you

0 ~zsf
1 ~src

then ~+1 and ~-0 (not very mathematical, but quite logical if you think about it) refer to
~src. In this case, unlike pushd arguments, you can omit the + and use ~1. The option
PUSHD_MINUS is respected. You’ll see this was used in the pushd function above: the trick
was that ~+3, for example, refers to the same element as pushd +3, hence pushd ~+3
pushed that directory onto the front of the list. However, we set PUSHD_IGNORE_DUPS, so
that the value in the old position was removed as well, giving us the effect we wanted of
simply yanking the directory to the front with no trick cycling.

3.2.5 Command control and information commands

Various builtins exist which control how you access commands, and which show you
information about the commands which can be run.

The first two are strictly speaking ‘precommand modifiers’ rather than commands: that
means that they go before a command line and modify its behaviour, rather than being
commands in their own right. If you put ‘command’ in front of a command line, the command
word (the next one along) will be taken as the name of an external command, however it
would normally be interpreted; likewise, if you put ‘builtin’ in front, the shell will try to
run the command as a builtin command. Normally, shell functions take precedence over
builtins which take precedence over external commands. So, for example, if your printer
control system has the command ‘enable’ (as many System V versions do), which clashes
with a builtin I am about to talk about, you can run ‘command enable lp’ to enable a
printer; otherwise, the builtin enable would have been run. Likewise, if you have defined cd
to be a function, but this time want to call the normal builtin cd, you can say ‘builtin cd
mydir’.

A common use for command is inside a shell function of the same name. Sometimes you want
to enhance an ordinary command by sticking some extra stuff around it, then calling that
command, so you write a shell function of the same name. To call the command itself inside
the shell function, you use ‘command’. The following works, although it’s obviously not all
that useful as it stands:

ls() {
command ls "$[@]"

}

so when you run ‘ls’, it calls the function, which calls the real ls command, passing on the
arguments you gave it.

You can gain longer lasting control over the commands which the shell will run with the
‘disable’ and ‘enable’ commands. The first normally takes builtin arguments; each such

66 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

builtin will not be recognised by the shell until you give an ‘enable’ command for it. So
if you want to be able to run the external enable command and don’t particularly care
about the builtin version, ‘disable enable’ (sorry if that’s confusing) will do the trick. Ha,
you’re thinking, you can’t run ‘enable enable’. That’s correct: some time in the dim and
distant past, builtin enable enable’ would have worked, but currently it doesn’t; this
may change, if I remember to change it. You can list all disabled builtins with just ‘disable’
on its own — most of the builtins that do this sort of manipulation work like that.

You can manipulate other sets of commands with disable and enable by giving different
options: aliases with the option -a, functions with -f, and reserved words with -r. The
first two you probably know about, and I’ll come to them anyway, but ‘reserved words’
need describing. They are essentially builtin commands which have some special syntactic
meaning to the shell, including some symbols such as ‘{’ and ‘[[’. They take precedence over
everything else except aliases — in fact, since they’re syntactically special, the shell needs to
know very early on that it has found a reserved word, it’s no use just waiting until it tries to
execute a command. For example, if the shell finds ‘[[’ it needs to know that everything until
‘]]’ must be treated as a test rather than as ordinary command arguments. Consequently,
you wouldn’t often want to disable a reserved word, since the shell wouldn’t work properly.
The most obvious reason why you might would be for compatibility with some other shell
which didn’t have one. You can get a complete list with:

whence -wm ’*’ | grep reserved

which I’ll explain below, since I’m coming to ‘whence’.

Furthermore, I tend to find that if I want to get rid of aliases or functions I use the commands
‘unalias’ and ‘unfunction’ to get rid of them permanently, since I always have the original
definitions stored somewhere, so these two options may not be that useful either. Disabling
builtins is definitely the most useful of the four possibilities for disable.

External commands have to be manipulated differently. The types given above are handled
internally by the shell, so all it needs to do is remember what code to call. With external
commands, the issue instead is how to find them. I mentioned rehash above, but didn’t tell
you that the hash command, which you’ve already seen with the -d option, can be used to
tell the shell how to find an external command:

hash foo=/path/to/foo

makes foo execute the command using the path shown (which doesn’t even have to end in
‘foo’). This is rather like an alias — most people would probably do this with an alias, in fact
— although a little faster, though you’re unlikely to notice the difference. You can remove
this with unhash. One gotcha here is that if the path is rehashed, either by calling rehash
or when you alter $path, the entire hash table is emptied, including anything you put in in
this way; so it’s not particularly useful.

In the midst of all this, it’s useful to be able to find out what the shell thinks a particular
command name does. The command ‘whence’ tells you this; it also exists, with slightly
different options, under the names where, which and type, largely to provide compatibility
with other shells. I’ll just stick to whence.

Its standard output isn’t actually sparklingly interesting. If it’s a command somehow known
to the shell internally, it gets echoed back, with the alias expanded if it was an alias; if it’s
an external command it’s printed with the full path, showing where it came from; and if it’s
not known the command returns status 1 and prints nothing.

3.2. BUILTIN COMMANDS 67

You can make it more useful with the -v or -c options, which are more verbose; the
first prints out an information message, while the second prints out the definitions of any
functions it was asked about (this is also the effect of using ‘which’ instead of ‘whence). A
very useful option is -m, which takes any arguments as patterns using the usual zsh pattern
format, in other words the same one used for matching files. Thus

whence -vm "*"

prints out every command the shell knows about, together with what it thinks of it.

Note the quotes around the ‘*’ — you have to remember these anywhere where the pattern
is not to be used to generate filenames on the command line, but instead needs to be passed
to the command to be interpreted. If this seems a rather subtle distinction, think about what
would happen if you ran

Oops. Better not try this at home.
(Even better, don’t do it at work either.)
whence -vm *

in a directory with the files ‘foo’ and (guess what) ‘bar’ in it. The shell hasn’t decided what
command it’s going to run when it first looks at the command line; it just sees the ‘*’ and
expands the line to

whence -vm foo bar

which isn’t what you meant.

There are a couple of other tricks worth mentioning: -p makes the shell search your path for
them, even if the name is matched as something else (say, a shell function). So if you have
ls defined as a function,

which -p ls

will still tell what ‘command ls’ would find. Also, the option -a searches for all commands; in
the same example, this would show you both the ls command and the ls function, whereas
whence would normally only show the function because that’s the one that would be run.
The -a option also shows if it finds more than one external command in your path.

Finally, the option -w is useful because it identifies the type of a command with a single
word: alias, builtin, command, function, hashed, reserved or none. Most of those
are obvious, with command being an ordinary external command; hashed is an external
command which has been explicitly given a path with the hash builtin, and none means it
wasn’t recognised as a command at all. Now you know how we extracted the reserved words
above.

A close relative of whence is functions, which applies, of course, to shell functions; it
usually lists the definitions of all functions given as arguments, but its relatives (of which
autoload is one) perform various other tricks, to be described in the section on shell
functions below. Be careful with function, without the ‘s’, which is completely different
and not like command or builtin — it is actually a keyword used to define a function.

68 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

3.2.6 Parameter control

There are various builtins for controlling the shells parameters. You already know how to
set and use parameters, but it’s a good deal more complicated than that when you look at the
details.

Local parameters

The principal command for manipulating the behaviour of parameters is ‘typeset’. Its
easiest usage is to declare a parameter; you just give it a list of parameter names, which
are created as scalar parameters. You can create parameters just by assigning to them, but
the major point of ‘typeset’ is that if a parameter is created that way inside a function, the
parameter is restored to its original value, or removed if it didn’t previously exist, at the end
of the function — in other words, it has ‘local scope’ like the variables which you declare in
most ordinary programming languages. In fact, to use the jargon it has ‘dynamical’ rather
than ‘syntactic’ scope, which means that the same parameter is visible in any function called
within the current one; this is different from, say, C or FORTRAN where any function or
subroutine called wouldn’t see any variable declared in the parent function.

The following makes this more concrete.

var=’Original value’
subfn() {

print $var
}
fn() {

print $var
typeset var=’Value in function’
print $var
subfn

}
fn
print $var

This chunk of code prints out

Original value
Value in function
Value in function
Original value

The first three chunks of the code just define the parameter $var, and two functions, subfn
and fn. Then we call fn. The first thing this does is print out $var, which gives ‘Original
value’ since we haven’t changed the original definition. However, the typeset next does
that; as you see, we can assign to the parameter during the typeset. Thus when we print
$var out again, we get ‘Value in function’. Then subfn is called, which prints out the
same value as in fn, because we haven’t changed it — this is where C or FORTRAN would
differ, and wouldn’t recognise the variable because it hadn’t been declared in that function.
Finally, fn exits and the original value is restored, and is printed out by the final ‘print’.

Note the value changes twice: first at the typeset, then again at the end of fn. The value
of $var at any point will be one of those two values.

3.2. BUILTIN COMMANDS 69

Although you can do assignments in a typeset statement, you can’t assign to arrays (I
already said this in the last chapter):

typeset var=(Doesn\’t work\!)

because the syntax with the parentheses is special; it only works when the line consists of
nothing but assignments. However, the shell doesn’t complain if you try to assign an array
to a scalar, or vice versa; it just silently converts the type:

typeset var=’scalar value’
var=(array value)

I put in the assignment in the typeset statement to rub the point in that it creates scalars,
but actually the usual way of setting up an array in a function is

typeset var
var=()

which creates an empty scalar, then converts that to an empty array. Recent versions of the
shell have ‘typeset -a var’ to do that in one go — but you still can’t assign to it in the
same statement.

There are other catches associated with the fact that typeset and its relatives are just
ordinary commands with ordinary sets of arguments. Consider this:

% typeset var=‘echo two words‘
% print $var
two

What has happened to the ‘words’? The answer is that backquote substitution, to be
discussed below, splits words when not quoted. So the typeset statement is equivalent
to

% typeset var=two words

There are two ways to get round this; first, use an ordinary assignment:

% typeset var
% var=‘echo two words‘

which can tell a scalar assignment, and hence knows not to split words, or quote the
backquotes,

% typeset var="‘echo two words‘"

There are three important types we haven’t talked about; both of these can only be created
with typeset or one of the similar builtins I’ll list in a moment. They are integer types,
floating point types, and associative array types.

70 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

Numeric parameters

Integers are created with ‘typeset -i’, or ‘integer’ which is another way of saying the
same thing. They are used for arithmetic, which the shell can do as follows:

integer i
((i = 3 * 2 + 1))

The double parentheses surround a complete arithmetic expression: it behaves as if it’s
quoted. The expression inside can be pretty much anything you might be used to from
arithmetic in other programming languages. One important point to note is that parameters
don’t need to have the $ in front, even when their value is being taken:

integer i j=12
((i = 3 * (j + 4) ** 2))

Here, j will be replaced by 12 and $i gets the value 768 (sixteen squared times three). One
thing you might not recognise is the **, which is the ‘to the power of ’ operator which occurs
in FORTRAN and Perl. Note that it’s fine to have parentheses inside the double parentheses
— indeed, you can even do

((i = (3 * (j + 4)) ** 2))

and the shell won’t get confused because it knows that any parentheses inside must be in
balanced pairs (until you deliberately confuse it with your buggy code).

You would normally use ‘print $i’ to see what value had been given to $i, of course, and
as you would expect it gets printed out as a decimal number. However, typeset allows you
to specify another base for printing out. If you do

typeset -i 16 i
print $i

after the last calculation, you should see 16#900, which means 900 in base 16 (hexadecimal).
That’s the only effect the option ‘-i 16’ has on $i — you can assign to it and use it in
arithmetical expressions just as normal, but when you print it out it appears in this form.
You can use this base notation for inputting numbers, too:

((i = 16#ff * 2#10))

which means 255 (ff in hexadecimal) times 2 (10 in binary). The shell understands C
notation too, so ‘16#ff’ could have been expressed ‘0xff’.

Floating point variables are very similar. You can declare them with ‘typeset -F’ or
‘typeset -E’. The only difference between the two is, again, on output; -F uses a fixed
point notation, while -E uses scientific (mnemonic: exponential) notation. The builtin
‘float’ is equivalent to ‘typeset -E’ (because Korn shell does it, that’s why). Floating
point expressions also work the way you are probably used to:

typeset -E e
typeset -F f
((e = 32/3, f = 32.0/3.0))
print $e $f

3.2. BUILTIN COMMANDS 71

prints

1.000000000e+01 10.6666666667

Various points: the ‘,’ can separate different expressions, just like in C, so the e and f
assignments are performed separately. The e assignment was actually an integer division,
because neither 32 nor 3 is a floating point number, which must contain a dot. That means
an integer division was done, producing 10, which was then converted to a floating point
number only at the end. Again, this is just how grown-up languages work, so it’s no use
cursing. The f assignment was a full floating point performance. Floating point parameters
weren’t available before version 3.1.7.

Although this is really a matter for a later chapter, there is a library of floating point
functions you can load (actually it’s just a way of linking in the system mathematical library).
The usual incantation is ‘zmodload zsh/mathfunc’; you may not have ‘dynamic loading’ of
libraries on your system, which may mean that doesn’t work. If it does, you can do things
like

((pi = 4.0 * atan(1.0)))

Broadly, all the functions which appear in most system mathematical libraries (see the
manual page for math) are available in zsh.

Like all other parameters created with typeset or one of its cousins, integer and floating
point parameters are local to functions. You may wonder how to create a global parameter
(i.e. one which is valid outside as well as inside the function) which has an integer or floating
point value. There’s a recent addition to the shell (in version 3.1.6) which allows this: use
the flag -g to typeset along with any others. For example,

fn() {
typeset -Fg f
((f = 42.75))

}
fn
print $f

If you try it, you will see the value of $f has survived beyond the function. The g stands for
global, obviously, although it’s not quite that simple:

fn() {
typeset -Fg f

}
outerfn() {

typeset f=’scalar value’
fn
print $f

}
outerfn

The function outerfn creates a local scalar value for f; that’s what fn sees. So it was not
really operating on a ‘global’ value, it just didn’t create a new one for the scope of fn. The
error message comes because it tried to preserve the value of $f while changing its type, and
the value wasn’t a proper floating point expression. The error message,

72 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

fn: bad math expression: operator expected at ‘value’

comes about because assigning to numeric parameters always does an arithmetic evaluation.
Operating on ‘scalar value’ it found ‘scalar’ and assumed this was a parameter, then
looked for an operator like ‘+’ to come next; instead it found ‘value’. If you want to
experiment, change the string to ‘scalar + value’ and set ‘value=42’, or whatever, then
try again. This is a little confusing (which is a roundabout way of saying it confused me), but
consistent with how zsh usually treats parameters.

Actually, to a certain extent you don’t need to use the integer and floating point parameters.
Any time zsh needs a numeric expression it will force a scalar to the right value, and any
time it produces a numeric expression and assigns it to a scalar, it will convert the result to
a string. So

typeset num=3 # This is the *string* ‘3’.
((num = num + 1)) # But this works anyway

($num is still a string).

This can be useful if you have a parameter which is sometimes a number, sometimes a string,
since zsh does all the conversion work for you. However, it can also be confusing if you always
want a number, because zsh can’t guess that for you; plus it’s a little more efficient not to
have to convert back and forth; plus you lose accuracy when you do, because if the number
is stored as a string rather than in the internal numeric representation, what you say is
what you get (although zsh tends to give you quite a lot of decimal places when converting
implicitly to strings). Anyway, I’d recommend that if you know a parameter has to be an
integer or floating point value you should declare it as such.

There is a builtin called let to handle mathematical expressions, but since

let "num = num + 1"

is equivalent to

((num = num + 1))

and the second form is easier and more memorable, you probably won’t need to use it. If
you do, remember that (unlike BASIC) each mathematical expression should appear as one
argument in quotes.

Associative arrays

The one remaining major type of parameter is the associative array; if you use Perl, you may
call it a ‘hash’, but we tend not to since that’s really a description of how it’s implemented
rather than what it does. (All right, what it does is hash things. Now shut up.)

These have to be declared by a typeset statement — there’s no getting round it. There are
some quite eclectic builtins that produce a filled-in associative array for you, but the only
way to tell zsh you want your very own associative array is

typeset -A assoc

3.2. BUILTIN COMMANDS 73

to create $assoc. As to what it does, that’s best shown by example:

typeset -A assoc
assoc=(one eins two zwei three drei)
print ${assoc[two]}

which prints ‘zwei’. So it works a bit like an ordinary array, but the numeric subscript of an
ordinary array which would have appeared inside the square bracket is replaced by the string
key, in this case two. The array assignment was a bit deceptive; the ‘values’ were actually
pairs, with ‘one’ being the key for the value ‘eins’, and so on. The shell will complain if there
are an odd number of elements in such a list. This may also be familiar from Perl. You can
assign values one at a time:

assoc[four]=vier

and also unset one key/value pair:

unset ’assoc[one]’

where the quotes stop the square brackets from being interpreted as a pattern on the
command line.

Expansion has been held over, but you might like to know about the ways of getting back
what you put in. If you do

print $assoc

you just see the values — that’s exactly the same as with an ordinary array, where the
subscripts 1, 2, 3, etc. aren’t shown. Note they are in random order — that’s the other main
difference from ordinary arrays; associative arrays have no notion of an order unless you
explicitly sort them.

But here the keys may be just as interesting. So there is:

print ${(k)assoc}
print ${(kv)assoc}

giving (if you’ve followed through all the commands above):

four two three
four vier two zwei three drei

which print out the keys instead of the values, and the key and value pairs much as you
entered them. You can see that, although the order of the pairs isn’t obvious, it’s the same
each time. From this example you can work out how to copy an associative array into another
one:

typeset -A newass
newass=(${(kv)assoc})

74 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

where the ‘(kv)’ is important — as is the typeset just before the assignment, otherwise
$newass would be a badass ordinary array. You can also prove that ${(v)assoc} does what
you would probably expect. There are lots of other tricks, but they are mostly associated with
clever types of parameter expansion, to be described in chapter 5.

Other typeset and type tricks

There are variants of typeset, some mentioned sporadically above. There is nothing you
can do with any of them that you can’t do with typeset — that wasn’t always the case;
we’ve tried to improve the orthogonality of the options. They differ in the options which are
set by default, and the additional options which are allowed. Here’s a list: declare, export,
float, integer, local, readonly. I won’t confuse you by describing all in detail; see the
manual.

If there is an odd one out, it’s export, which not only marks a parameter for export but
has the -g flag turned on by default, so that that parameter is not local to the function; in
other words, it’s equivalent to typeset -gx. However, one holdover from the days when the
options weren’t quite so logical is that typeset -x behaves like export, in other words the
-g flag is turned on by default. You can fix this by unsetting the option GLOBAL_EXPORT —
the option only exists for compatibility; logically it should always be unset. This is partly
because in the old days you couldn’t export local parameters, so typeset -x either had to
turn on -g or turn off -x; that was fixed for the 3.1.9 release, and (for example) ‘local -x’
creates a local parameter which is exported to the environment; both the parameter itself,
and the value in the environment, will be restored when the function exits. The builtin
local is essentially a form of typeset which renounces the -g flag and all its works.

Another old restriction which has gone is that you couldn’t make special parameters, in
particular $PATH, local to a function; you just modified the original parameter. Now if you
say ‘typeset PATH’, things happen the way you probably expect, with $PATH having its
usual effect, and being restored to its old value when the function exits. Since $PATH is
still special, though, you should make sure you assign something to it in the function before
calling external commands, else it will be empty and no commands will be found. It’s possible
that you specifically don’t want some parameter you make local to have the special property;
3.1.7 and after allow the typeset flag -h to hide the specialness for that parameter, so in
‘typeset -h PATH’, PATH would be an ordinary variable for the duration of the enclosing
function. Internally, the same value as was previously set would continue to be used for
finding commands, but it wouldn’t be exported.

The second main use of typeset is to set attributes for the parameters. In this case it can
operate on an existing parameter, as well as creating a new one. For example,

typeset -r msg=’This is an important message.’

sets the readonly flag (-r) for the parameter msg. If the parameter didn’t exist, it would be
created with the usual scoping rules; but if it did exist at the current level of scoping, it would
be made readonly with the value assigned to it, meaning you can’t set that particular copy
of the parameter. For obvious reasons, it’s normal to assign a value to a readonly parameter
when you first declare it. Here’s a reality check on how this affects scoping:

msg=’This is an ordinary parameter’
fn() {

typeset msg=’This is a local ordinary parameter’
print $msg

3.2. BUILTIN COMMANDS 75

typeset -r msg=’This is a local readonly parameter’
print $msg
msg=’Watch me cause an error.’

}
fn
print $msg
msg=’This version of the parameter’\
’ can still be overwritten’
print $msg

outputs

This is a local ordinary parameter
This is a local readonly parameter
fn:5: read-only variable: msg
This is an ordinary parameter
This version of the parameter can still be overwritten

Unfortunately there was a bug with this code until recently — thirty seconds ago, actually:
the second typeset in fn incorrectly added the readonly flag to the existing msg before
attempting to set the new value, which was wrong and inconsistent with what happens if
you create a new local parameter. Maybe it’s reassuring that the shell can get confused
about local parameters, too. (I don’t find it reassuring in the slightest, since typeset is one
of the parts of the code where I tend to fix the bugs, but maybe you do.)

Anyway, when the bug is fixed, you should get the output shown, because the first typeset
created a local variable which the second typeset made readonly, so that the final assignment
caused an error. Then the $msg in the function went out of scope, and the ordinary
parameter, with no readonly restriction, was visible again.

I mentioned another special typeset option in the previous chapter:

typeset -T TEXINPUTS texinputs

to tie together the scalar $TEXINPUTS and the array $texinputs in the same way that
$PATH and $path work. This is a one-off; it’s the only time typeset takes exactly two
parameter names on the command line. All other uses of typeset take a list of parameters to
which any flags given are applied. See the manual for the remaining flags, although most of
the more interesting ones have been discussed.

The other thing you need to know about flags is that you use them with a ‘+’ sign to turn off
the corresponding attribute. So

typeset +r msg

allows you to set $msg again. From version 4.1, you won’t be able to turn off the readonly
attribute for a special parameter; that’s because there’s too much scope for confusion,
including attempting to set constant strings in the code. For example, ‘$ZSH_VERSION’
always prints a fixed string; attempting to change that is futile.

The final use of typeset is to list parameters. If you type ‘typeset’ on its own, you get a
complete list of parameters and their values. From 3.1.7, you can turn on the flag -H for a
parameter, which means to hide its value while you’re doing this. This can be useful for some

76 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

of the more enormous parameters, particularly special parameters which I’ll talk about in
the section in chapter 7 on modules, which tend to swamp the display typeset produces.

You can also list parameters of a particular type, by listing the flags you want to know about.
For example,

typeset -r

lists all readonly parameters. You might expect ‘typeset +r’ to list parameters which don’t
have that attribute, but actually it lists the same parameters but without showing their
value. ‘typeset +’ lists all parameters in this way.

Another good way of finding out about parameters is to use the special expansion
‘${(t)param}’, for example

print ${(t)PATH}

prints ‘scalar-export-special’: $PATH is a scalar parameter, with the -x flag set, and
has a special meaning to the shell. Actually, ‘special’ means something a bit more than
that: it means the internal code to get and set the parameter behaves in a way which has side
effects, either to the parameter itself or elsewhere in the shell. There are other parameters,
like $HISTFILE, which are used by the shell, but which are get and set in a normal way —
they are only special in that the value is looked at by the shell; and, after all, any old shell
function can do that, too. Contrast this with $PATH which has all that paraphernalia to do
with hashing commands to take care of when it’s set, as I discussed above, and I hope you’ll
see the difference.

Reading into parameters

The ‘read’ builtin, as its name suggests, is the opposite to ‘print’ (there’s no ‘write’
command in the shell, though there is often an external command of that name to send a
message to another user), but reading, unlike printing, requires something in the shell to
change to take the value, so unlike print, read is forced to be a builtin. Inevitably, the
values are read into a parameter. Normally they are taken from standard input, very often
the terminal (even if you’re running a script, unless you redirected the input). So the simplest
case is just

read param

and if you type a line, and hit return, it will be put into $param, without the final newline.

The read builtin actually does a bit of processing on the input. It will usually strip any
initial or final whitespace (spaces or tabs) from the line read in, though any in the middle
are kept. You can read a set of values separated by whitespace just by listing the parameters
to assign them to; the last parameter gets all the remainder of the line without it being split.
Very often it’s easiest just to read into an array:

% read -A array
this is a line typed in now, \

by me, in this space
% print ${array[1]} ${array[12]}
this space

3.2. BUILTIN COMMANDS 77

(I’m assuming you’re using the native zsh array format, rather than the one set with
KSH_ARRAYS, and shall continue to assume this.)

It’s useful to be able to print a prompt when you want to read something. You can do this
with ‘print -n’, but there’s a shorthand:

% read line’?Please enter a line: ’
Please enter a line: some words
% print $line
some words

Note the quotes surround the ‘?’ to prevent it being taken as part of a pattern on the
command line. You can quote the whole expression from the beginning of ‘line’, if you
like; I just write it like that because I know parameter names don’t need quoting, because
they can’t have funny characters in. It’s almost logical.

Another useful trick with read is to read a single character; the ‘-k’ option does this, and in
fact you can stick a number immediately after the ‘k’ which specifies a number to read. Even
easier, the ‘-q’ option reads a single character and returns status 0 if it was y or Y, and status
1 otherwise; thus you can read the answer to yes/no questions without using a parameter at
all. Note, however, that if you don’t supply a parameter, the reply gets assigned in any case
to $REPLY if it’s a scalar — as it is with -q — or $reply if it’s an array — i.e. if you specify
-A, but no parameter name. These are more examples of the non-special parameters which
the shell uses — it sets $REPLY or $reply, but only in the same way you would set them;
there are no side-effects.

Like print, read has a -r flag for raw mode. However, this just has one effect for read:
without it, a \ at the end of the line specifies that the next line is a continuation of the current
one (you can do this when you’re typing at the terminal). With it, \ is not treated specially.

Finally, a more sophisticated note about word-splitting. I said that, when you are reading
to many parameters or an array, the word is split on whitespace. In fact the shell splits
words on any of the characters found in the (genuinely special, because it affects the shell’s
guts) parameter $IFS, which stands for ‘input field separator’. By default — and in the vast
majority of uses — it contains space, tab, newline and a null character (character zero: if
you know that these are usually used to mark the end of strings, you might be surprised the
shell handles these as ordinary characters, but it does, although printing them out usually
doesn’t show anything). However, you can set it to any string: enter

fn() {
local IFS=:
read -A array
print -l $array

}
fn

and type

one word:two words:three words:four

The shell will show you what’s in the array it’s read, one ‘word’ per line:

one word

78 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

two words
three words
four

You’ll see the bananas, er, words (joke for the over-thirties) have been treated as separated
by a colon, not by whitespace. Making $IFS local didn’t work in old versions of zsh, as with
other specials; you had to save it and restore it.

The read command in zsh doesn’t let you do line editing, which some shells do. For that, you
should use the vared command, which runs the line editor to edit a parameter, with the -c
option, which allows vared to create a new parameter. It also takes the option -p to specify
a prompt, so one of the examples above can be rewritten

vared -c -p ’Please enter a line: ’ line

which works rather like read but with full editing support. If you give the option -h (history),
you can even retrieve values from previous command lines. It doesn’t have all the formatting
options of read, however, although when reading an array (use the option -a with -c if
creating a new array) it will perform splitting.

Other builtins to control parameters

The remaining builtins which handle parameters can be dealt with more swiftly.

The builtin set simply sets the special parameter which is passed as an argument to
functions or scripts, and which you access as $* or $@, or $<number> (Bourne-like format),
or via $argv (csh-like format), known however you set them as the ‘positional parameters’:

% set a whole load of words
% print $1
a
% print $*
a whole load of words
% print $argv[2,-2]
whole load of

It’s exactly as if you were in a function and had called the function with the arguments ‘a
whole load of words’. Actually, set can also be used to set shell options, either as flags,
e.g. ‘set -x’, or as words after ‘-o’ , e.g. ‘set -o xtrace’ does the same as the previous
example. It’s generally easier to use setopt, and the upshot is that you need to be careful
when setting arguments this way in case they begin with a ‘-’. Putting ‘--’ before the real
arguments fixes this.

One other use of set is to set any array, via

set -A any_array words to assign to any_array

which is equivalent to (and the standard Korn shell version of)

any_array=(words to assign to any_array)

3.2. BUILTIN COMMANDS 79

One case where the set version is more useful is if the name of an array itself comes from a
parameter:

arrname=myarray
set -A $arrname words to assign

has no easy equivalent in the other form; the left hand side of an ordinary assignment won’t
expand a parameter:

Doesn’t work; syntax error
$arrname=(words to assign)

This worked in old versions of zsh, but that was on the non-standard side. The eval
command, described below, gives another way around this.

Next comes ‘shift’, which simply moves an array up one element, deleting the original first
one. Without an array name, it operates on the positional parameters. You can also give it a
number to shift other than one, before the array name.

shift array

is equivalent to

array=(${array[2,-1]})

(almost — I’ll leave the subtleties here for the chapter on expansion) which picks the second
to last elements of the array and assigns them back to the original array. Note, yet again,
that shift operates using the name, not the value of the array, so no ‘$’ should appear in
front, otherwise you get something similar to the trick I showed for ‘set -A’.

Finally, unset unsets a parameter, and I already showed you could unset a key/value pair
of an associative array. There is one subtlety to be mentioned here. Normally, unset just
makes the parameter named disappear off the face of the earth. However, if you call unset
in a function, its ghost lives on in the sense that any parameter you create in the same name
will be scoped as the original parameter was. Hence:

var=’global value’
fn() {

typeset var=’local value’
unset var
var=’what about this?’

}
fn
print $var

The final statement prints ‘global value’: even though the local copy of $var was unset,
the shell remembers that it was local, so the second $var in the function is also local and its
value disappears at the end of the function.

80 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

3.2.7 History control commands

The easiest way to access the shell’s command history is by editing it directly. The second
easiest way is to use the ‘!’-history mechanism. Other ways of manipulating it are based
around the fc builtin, which probably once stood for something (according to Oliver Kiddle,
‘fix command’, which is as good as anything). I talked quite a bit about it in the last chapter,
and don’t really have anything to add. Just note that the two other commands based around
it are history and r.

3.2.8 Job control and process control

One of the major contributions of the C-shell was job control. You need to know about
foreground and background tasks, and again I introduced these in the last chapter along
with the options that control them. Here is an introduction to the relevant builtins.

You start a background job in two ways. First, directly, by putting an ‘&’ after it:

sleep 10 &

and secondly by starting it in the normal way (i.e. in the foreground), then typing ^Z, and
using the bg command to put it in the background. Between typing ^Z and bg, the job is still
there, but is not running; it is ‘suspended’ or ‘stopped’ (systems use different descriptions
for the same thing), waiting for you to decide what to do with it. In either case, the job
then continues without the shell waiting for it. It will still try and read from or write to the
terminal if that’s how you started it; you need to use the shell’s redirection facilities right
at the start if you want to change that, there’s nothing you can do after the job has already
started.

By the way, ‘sleep’ isn’t a builtin. Oddly enough, you can suspend a builtin command or
sequence of commands (such as shell function) with ^Z, although since the shell has to
continue executing your commands as well as being suspended, it does the only thing it
can do — fork, so that the commands you suspend are put into the background. Probably
you will only rarely do this with builtins. No other shell, so far as I know, has this feature.

A job will stop if it needs to read from the terminal. You see a message like:

[1] + 1348 suspended (tty input) jobname and arguments

which means the job is suspended very much like you had just typed ^Z. You need to bring
the job into the forground, as described below, so that you can type something to it.

By the way, the key to type to suspend a command may not be ^Z; it usually is, but that can
be changed. Run ‘stty -a’ and look for what is listed after ‘susp =’ — probably, but not
necessarily, ^Z. So if you want to use another character — it must be a single character; this
is handled deep in the terminal interface, not in the shell — you can run

stty susp ’^]’

or whatever. You will note from the stty output that various other job control characters
can be changed similarly. The stty command is external and its format for both output and
input can vary quite a bit from system to system.

3.2. BUILTIN COMMANDS 81

Instead of putting the command into the background, you can bring it back to the foreground
again with fg. This is useful for temporarily stopping what you are doing so you can do
something else. These days you would probably do it in another window; in the old days
when people logged in from simple terminals this was even more useful. A typical example
of this is

more file # look at file
^Z # suspend
[1] + 8592 suspended more file # message printed
... # do something else
fg %1 # resume the ‘more’

The ‘%’ is the usual way of referring to jobs. The number after it is what appeared in square
brackets with the suspended message; I don’t know why the shell doesn’t use the ‘%’ notation
there, too. You also see that with the ‘continued’ message when you put something into the
background, and again at the end with the ‘done’ message which tells you a background job
is finished. The ‘%’ can take other forms; the most common is to follow it by the name of a
command, such as ‘%more’ in this case. The forms %+ and %- refer to the most recent and
second most recent jobs — the ‘+’ in the ‘suspended’ message is telling you that the more job
could be referred to like that.

Most of the job control commands will actually assume you are talking about ‘%+’ if you don’t
give an argument, so assuming I hadn’t started any other commands in the background, I
could just have put ‘fg’ at the end of the sequence of commands above. This actually cuts
both ways: fg is the default operation on jobs referred to with the ‘%’ notation, so just typing
‘%1’ with no command name would have worked, too.

You can jog your memory about what’s going on with the ‘jobs’ command. It looks like a
series of messages of the form beginning with the number in square brackets; usually the
jobs will either be ‘running’ or ‘suspended’. This will tell you the numbers you need.

One other useful thing you can do with a job is to tell the shell to forget about it. This is only
really useful if it is already running in the background; then you can run ‘disown’ with the
job identifier. It’s useful for jobs you want to continue after you’ve logged out, as well as jobs
that have their own windows which you can therefore control directly. With disowned jobs,
the shell doesn’t warn you that they are still there when you log out. You can actually disown
a background job when you start it by putting ‘&|’ or ‘&!’ at the end of the line instead of
simply ‘&’. Note that if the job was suspended when you disowned it, it will stay disowned;
this is pretty pointless, so you probably should run ‘bg’ on it first.

The next most likely thing you want to do with a job is kill it, or maybe suspend it when
it’s already in the background and you can’t just type ^Z. This is where the kill builtin
comes in. There’s more to this than there is to the builtins mentioned above. First, you can
use kill with other processes that weren’t started from the current shell. In that case, you
would use a number to identify it, with no % — that’s why the %’s were there in the other
cases. Of course, you need to find out the number; the usual way is with the ps command,
which is not a builtin but which appears on all UNIX-like systems. As a stupid example,
here I start a disowned process which does very little, look for it, then kill it:

% sleep 60 &|
% ps -f
UID PID PPID C STIME TTY TIME CMD
pws 623 614 0 22:12 pts/0 00:00:00 zsh
pws 8613 623 0 23:12 pts/0 00:00:00 sleep 60

82 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

pws 8615 623 0 23:12 pts/0 00:00:00 ps -f
% kill 8613
% ps -f
UID PID PPID C STIME TTY TIME CMD
pws 623 614 0 22:12 pts/0 00:00:00 zsh
pws 8616 623 0 23:12 pts/0 00:00:00 ps -f

The process has disappeared the second time I look. Notice that in the usual lugubrious
UNIX way the shell didn’t bother to tell you the process had been killed; however, it will
report an error if it failed to send it the signal. Sending it the signal is all the shell cares
about; the shell won’t warn if you if the process decided it didn’t want to die when told to, so
it’s still a good idea to check.

Sometimes you want to wait for a process to exit; the wait builtin can do this, and like
kill can take a process number as well as a job number. However, that’s a bit deceptive
— you can’t actually wait for a process which wasn’t started directly from the shell. Indeed,
the mechanism for waiting is all bound up with the way UNIX handles processes; unless
its parent waits for it, a process becomes a ‘zombie’ and hangs around until the system’s
foster parent, the ‘init’ process (always process number 1) waits for it instead. It’s all a little
bit baroque, but for the shell user, wait just means you can hang on until something you
started has finished. Indeed, that’s how foreground processes work: the shell in effect uses
the internal version of wait to hang around until the job exits. (Well, actually that’s a lie;
the system wakes it up from whatever it’s doing to tell it a child has finished, so all it has to
do is doze off to wait.)

Furthermore, you can wait for a process even if job control isn’t running. Job control,
basically anything involving those %’s, is only useful when you are sitting at a terminal
fiddling with commands; it doesn’t operate when you run scripts, say. Then the shell has
much less freedom in how to control its jobs, but it can still wait for a background process,
and it can still use kill on a process if it knows its number. For this purpose, the shell stores
the ID of the last process started in the background in the parameter $!; there’s probably a
good reason for the ‘!’, but I don’t know what it is. This happens regardless of job control.

Signals

The kill command can do a good deal more than just kill a process. That is the default
action, which is why the command has that name. But what it’s really doing is sending
a ‘signal’ to a process. Signals are the simplest way of communicating to another process;
in fact, they are about the only simple way if you haven’t made special arrangements for
the process to read messages from you. Signal names are written like SIGINT, SIGTSTP,
SIGKILL; to send a particular signal to a process, you remove the SIG, stick a hyphen in
front, and use that as the first argument to kill, e.g.:

kill -KILL 8613

Some of the things you already know about are actually doing just that. When you type ^C
to stop a process, you are actually sending it a SIGINT for ‘interrupt’, as if you had done

kill -INT 8613

The usual signal sent by kill is not, as you might have guessed, SIGKILL, but actually
SIGTERM for ‘terminate’; SIGKILL is stronger as the process can’t block that signal, as it can

3.2. BUILTIN COMMANDS 83

with many (we’ll see how the shell can do that in a moment). It’s familiar to UNIX hackers
as ‘kill -9’, because all the signals also have numbers. You can see the list of signals in
zsh by doing:

% print $signals
EXIT HUP INT QUIT ILL TRAP ABRT BUS FPE KILL USR1
SEGV USR2 PIPE ALRM TERM STKFLT CLD CONT STOP TSTP
TTIN TTOU URG XCPU XFSZ VTALRM PROF WINCH POLL PWR
UNUSED ZERR DEBUG

Your list will probably be different from mine; this is for Linux, and the list is very system-
specific, even though the first nine are generally the same, and many of the others are
virtually always present. Actually, SIGEXIT is an invention by the shell for you to allow
the shell to do something when a function exits (see the section on ‘traps’ below); you can’t
actually use ‘kill -EXIT’. Thus SIGHUP is the first real signal, and indeed that’s number
one, so you have to shift the contents of $signals along one to get the right numbers.
SIGTERM and SIGINT usually have the same effect, stopping the process, unless that has
decided to handle the signal some other way.

The last two signals are bogus, too: SIGZERR is to allow the shell to do something on an error
(non-zero exit status), while with SIGDEBUG you can do it on every command. Again, the
‘something’ to be executed is a ‘trap’, as I’ll discuss in a short while.

Typing ^Z to suspend a process actually sends the process a SIGTSTP (terminal stop, since
it usually comes from the terminal), while SIGSTOP is similar but usually doesn’t come from
a terminal. Even restarting a process as with bg sends it a signal, in this case SIGCONT. It
seems a bit odd to signal a process to restart; why can’t the operating system just restart it
when you ask? The real answer is probably that signals provide an easy way for you to talk
to the operating system without grovelling around in the dirt too much.

Before I talk about how you make the shell handle signals it receives, there is one extra
oddment: the suspend builtin effectively sends the shell a signal to suspend it, as if you’d
typed ^Z, though as you’ve probably found by now that doesn’t suspend the shell itself. It’s
only useful to do this if the shell is running under some other programme, else there’s no way
of restoring it and suspending is effectively the same as exiting the shell. For this reason,
the shell won’t let you call suspend in a login shell, because it assumes that is running as
the top level (though in the previous chapter you learnt there’s actually nothing that special
about login shells; you can start one just with ‘zsh -l’). If you’re logged in remotely via rsh or
ssh, it’s usually more convenient to use the keystrokes ‘~^Z’ which those define, rather than
zsh’s mechanism; they have to be at the beginning of a line, so hit return first if necessary.
This returns you to your local terminal; you can resume the remote login with ‘fg’ just like
any other programme.

Traps

The way of making the shell handle signals is called ‘traps’. There are actually two
mechanisms for this. I’ll present the more standard one and then talk about the advantages
and drawbacks of the other one at the end.

The standard version (shared with other shells) is via the ‘trap’ builtin. The first argument
is a chunk of shell code to execute, which obviously needs to be quoted when you pass it as
an argument, and the remaining arguments are a list of signals to handle, minus the SIG
prefix. So:

84 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

trap "echo I\\’m trapped." INT

tells the shell what to do on SIGINT, i.e. ^C. Note the extra layer of quoting: the double
quotes surround the code, so that when they are stripped trap sees the chunk

echo I\’m trapped

Usually the shell would abort what it was doing and return to the main prompt when you
hit ^C. Now, however, it will simply print the message and carry on. You can try this, for
example, with

read line

If you hit ^C while it’s waiting for input, you’ll see the message go up, but the shell will still
wait for you to type a line.

A warning about this: ^C is only trapped within the shell itself. If you start up an external
programme, it will have its own mechanism for handling signals, and if it usually aborts on
^C it still will. But there’s a sting in the tail: do

cat

which waits for input to output again (you need to use ^D to exit normally). If you type ^C
here, the command will be aborted, as I said — but you still get the message ‘I’m trapped’.
That’s because the shell is able to tell that the command got that particular signal, and calls
the trap when the cat exits. Not all shells do this; furthermore, some commands which
handle signals themselves won’t give the shell enough information to know that a signal
arrived, and in that case the trap won’t be called. Such commands are usually the more
sophisticated things like editors or screen managers or whatever; you just have to find out
by trial and error.

You can also make the shell ignore the signal completely. To do this, the first argument
should be an empty string:

trap ’’ INT

Now ^C will have no effect, and this time the effect is passed on directly to commands called
from the shell — try the cat example and you won’t be able to interrupt it; type ^D or use
the lesser known but more powerful ^\ (control with backslash), which sends SIGQUIT. If it
hasn’t been disabled, this will also produce a file core, which contains debugging information
about what the programme was doing when it exited — never call your own files core. You
can trap SIGQUIT too, if you want. (The shell itself usually ignores SIGQUIT; it’s only useful
for external commands.)

Now the other sort of trap. I could have written for the first example:

TRAPINT() {
print I\’m trapped.

}

As you can see, this is just a function: functions beginning TRAP are special. However, it’s
a real function too; you can call it by hand with the command ‘TRAPINT’, and it will run
perfectly happily with no funny side effects.

3.2. BUILTIN COMMANDS 85

There is a difference between the way the two types work. In the ‘trap’ sort of trap, the code
is just evaluated just as if it appeared as instructions to the shell at the point where the trap
happened. So if you were in a function, you would see the environment of that function with
its local variables; if you set a local variable with typeset, it would be visible in the function
just as if it were created there.

However, in the function type of trap, the code is provided with its own function environment.
Now if you use typeset the parameter created is local only to the trap. In most cases, that’s
all the difference there is; it’s up to you to decide which is more convenient. As you can see,
the function type of trap doesn’t require the extra layer of quoting, so looks a little smarter.
Conveniently, the ‘trap’ command on its own lists all traps in the form of the shell code you’d
need to recreate them, and you can see which sort is which.

There are two cases where the difference sticks out. One is that the function type has some
extra wiring to allow you both to trap a signal, and pretend to anyone watching that the shell
didn’t handle it. An example will show this:

TRAPINT() {
print "Signal caught, stopping anyway."
return $((128 + $1))

}

That second line may look as rococo as the Amalienburg, but it’s meaning is this: $1, the first
argument to the function, is set to the number of the signal. In this case it will be 2 because
that’s the standard number for SIGINT. That means the arithmetic substitution $((...))
returns 130, the command ‘return 130’ is executed, and the function returns with status
130. Returning with non-zero status is special in function traps: it tells the shell you want to
abort the surrounding command even though the trap was handled, and that you want the
status associated with that to be 130. It so happens that this is how UNIX handles returns
from normal traps. Without setting a trap, do

% cat
^C
% print $?

and you’ll see that this, too, has given the status 130, 128 plus the value of SIGINT. So if you
do have the trap set, you’ll see the message, but the command will abort — even if it was
running inside the shell.

Try

% read line
^C

to see that happening. If you look at the status in $? you’ll find it’s actually 1, not 130; that’s
because the read command, when it aborted, overrode the return value from the trap. But it
does that with an untrapped ^C, too, so that’s not really an exception to what I’ve just said.

If you’ve been paying attention, you’ll realise that traps set with the trap builtin can’t do
it in quite this way, because the function they return from would be whatever function you
were in. You can see that:

trap ’echo Returning...; return;’ INT

86 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

fn() {
print In fn...
read param
print Leaving fn..

}

If you run fn and hit ^C, the signal is trapped and the message printed, but because of the
return, the shell quits fn immediately and you don’t see the final message. If you missed out
the ‘return;’ (try it), the shell would carry on with the rest of fn after you typed something
to read. Of course you can use this mechanism to leave functions after trapping a signal;
it just so happens that in this case the mechanism with TRAPINT is a little closer to what
untrapped signals do and hence a little neater.

One final flourish of late Baroque splendour: the trap for SIGEXIT, the one called when a
function (or the shell itself, in fact) exits is a bit special because in the case of exiting a
function it will be called in the environment of the calling function. So if you need to do
something like set a local variable for an enclosing function you can have

trap ’typeset param_in_enclosing_func=value’ EXIT

do it for you; you couldn’t do that with TRAPEXIT because the code would have its own
function, so that even though it would be called after the first function exited, it wouldn’t
run directly in the enclosing one but in a separate TRAPEXIT function. You can even set an
EXIT trap for the enclosing function by defining a nested ‘trap .. EXIT’ inside that trap
itself.

I lied, because there is one more special thing about TRAPEXIT: it’s always reset after you exit
a function and the trap itself has been called. Most traps just hang around until you explicitly
unset them. There is an option, LOCAL_TRAPS, which makes traps set inside functions as
well insulated as possible from those outside, or inside deeper functions. In other words,
the old trap is saved and then restored when you exit the function; the scoping works pretty
much like that for typeset, and in the same way traps for the enclosing scope, apart from
any for EXIT, remain in effect inside a function unless you explicitly override them; and,
again in the same way, if you unset it inside the function it will still be restored on exit.

LOCAL_TRAPS is the fixed behaviour of some other shells. In zsh, without the option set:

trap ’echo Hi.’ INT
fn() {

trap ’echo Bye.’ INT
}

Calling fn simply replaces the trap defined outside the function with the one defined inside
while:

trap ’echo Hi.’ INT
fn() {

setopt localtraps
trap ’echo Bye.’ INT

}

puts the original ‘Hi’ trap back after the function exits.

I haven’t told you how to unset a trap for good: the answer is

3.2. BUILTIN COMMANDS 87

trap - INT

As you would guess, you can use unfunction with function-type traps; that will correctly
remove the trap as well as deleting the function. However, ‘trap -’ works with both, so
that’s the recommended way.

Limits on processes

One other way that jobs started by the shell can be controlled is by using limits. These are
actually limits set by the operating system, but the shell gives you a way of controlling them:
the limit and unlimit commands. Type ‘limit’ on its own to see a summary. I get:

cputime unlimited
filesize unlimited
datasize unlimited
stacksize 8MB
coredumpsize 0kB
memoryuse unlimited
maxproc 2048
descriptors 1024
memorylocked unlimited
addressspace unlimited

where the item on the left of each line is what is being limited, and on the right is the value.
The manual page to look at, at least on Linux is for the function getrusage; that’s the
function the shell is calling when you run limit or unlimit.

In this case, the items are:

cputime the total CPU time used by a process

filesize maximum size of a file

datasize the maximum size of data in use by a programme

stacksize the maximum size of the stack, which is the area of memory used to store
information during function calls

coredumpsize the maximum size of a core file, which is an image of memory left by a
programme that crashes, allowing you to debug it with gdb, dbx, ddd or some other
debugger

memoryuse the maximum main memory, i.e. programme memory which is in active use and
hasn’t been ‘swapped out’ to disk

maxproc the maximum number of simultaneous processes

descriptors the maximum number of simultaneously open files (‘descriptors’ are the
internal mechanism for referring to an open file on UNIX-like systems)

memorylocked the maximum amount of memory locked in (I don’t know what that is,
either)

addressspace the total amount of virtual memory, i.e. any memory whether it is main
memory, or refers to somewhere on a disk, or indeed anything else.

88 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

You may well see other names; the shell decides when it is compiled what limits are
supported by the system.

Of those, the one I use most commonly is coredumpsize: sometimes when I’m debugging
a file I want a crashed programme to produce a ‘core’ files so I can run gdb or dbx on it
(‘unlimit coredumpsize’), while other times they are just untidy (‘limit coredumpsize
0’). Probably you would only alter any of the others if you knew there was a problem, for
example a number-crunching programme used so much memory that the rest of the system
was badly affected and you wanted to limit datasize to 64 megabyte or whatever. You could
write this as:

limit datasize 64m

There is a distinction made between ‘hard’ and ‘soft’ limits. Both have the same effect
on programmes, but you can remove or reduce ‘soft’ limits, while only the superuser (the
system administrator’s login, root) can do that to ‘hard’ limits. Usually, therefore, limit and
unlimit manipulate soft limits; to show or set hard limits, give the option -h. If I do ‘limit
-h’, I get the same list of limits as above, but with stacksize and coredumpsize unlimited
— that means I can reduce or remove the limits on those if I want, they’re just set for my
own convenience.

Why is stacksize set in this way? As I said, it refers to the memory in which the functions
in programmes store variables and any other local information. If one function calls another,
it uses more memory. You can get into a situation where functions call themselves recursively
and there is no way out until the machine runs out of memory; limiting stacksize prevents
this. You can actually see this with zsh itself (probably better not to try this if you’d rather
the shell you’re running didn’t crash):

% fn() { fn; }
% fn

defines a function which keeps calling itself. To do this, all the functions inside zsh are calling
themselves as well, using more and more stack memory. Actually, zsh uses other forms of
memory inside each function and my version of zsh crashes due to exhaustion of that memory
instead. However, it depends on the system how this works out.

Times

One way of returning information on process resources is with the ‘times’ command. It
simply shows the total CPU time used by the shell and by the programmes called for it — in
that order, and without description, so you need to remember. On each line, the first number
is the time spent in user space and the second is the time spent in system space. If you’re
not concerned about the details of programmes the difference is pretty irrelevant, but if you
are, then the difference is very roughly that between the time spent in the code you actually
see before you compile a programme, and the time spent in ‘hidden’ code where the system is
doing something for you. It’s not such an obvious distinction, because many library routines,
such as mathematical functions, are run in user mode as no privileged access to internal bits
of the system is required. Typically, system time is concerned with the details of input and
output — though even there it’s not so simple, because the C output routines printf, puts,
fread and others have user mode code which then calls the system routines read, write
and so on.

3.2. BUILTIN COMMANDS 89

You can measure the time taken by a particular external command by putting ‘time’, in the
singular this time, in front of it; this is essentially another precommand modifier, and is a
shell reserved word rather than a builtin. This gives fairly obvious information. You can
specify the information using the $TIMEFMT parameter, which has its own percent escapes,
different from the ones used in prompts. It exists partly because the shell allowed you to
access all sorts of other information about the process which ran, such as ‘page faults’ —
occasions when the system had to fetch a part of the programme or data from disk because
it wasn’t in the main memory. However, that disappeared because it was too much work to
convert the feature to configure itself automatically for different operating systems. It may
be time to resurrect it.

You can also force the time to be shown automatically by setting the parameter
$REPORTTIME; if a command runs for more than this many seconds, the $TIMEFMT output
will be shown automatically.

3.2.9 Terminals, users, etc.

Watching for other users

Although this is more associated with parameters than builtins, the ‘log’ command will tell
you whether any of a group of people you want to watch out for have logged in or out. To use
this, you set the $watch array parameter to a list of user names, or ‘all’ for everyone, or
‘notme’ for everyone except yourself. Even if you don’t use log, any changes will be reported
just before the shell prints a prompt. It will be printed using the $WATCHFMT parameter:
once again, this takes its own set of percent escapes, listed in the zshparam manual.

ttyctl

There is a command ttyctl which is designed to keep badly behaved external commands
from messing up the terminal settings. Most programmes are careful to restore any settings
they change, but there are exceptions. After ‘ttyctl -f’, the terminal is frozen; zsh will
restore the settings, no matter what an external programme does with it. This includes
deliberate attempts to change the terminal settings with the ‘stty’ command, so the default
is unfrozen, ‘ttyctl -u’.

3.2.10 Syntactic oddments

This section collects together a few builtins which, rather than controlling the behaviour of
some feature of the shell, have some other special effect.

Controlling programme flow

The four functions here are exit, return, break, continue and source or .: they
determine what the shell does next. You’ve met exit — leave the shell altogether — and
return — leave the current function. Be very careful not to confuse them. Calling exit in
a shell function is usually bad:

% fn() { exit; }

90 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

% fn

This makes you entire shell session go away, not just the function. If you write C
programmes, you should be very familiar with both, although there is one difference in
this case: return at the top level in an interactive shell actually does nothing, rather than
leaving the shell as you might expect. However, in a script, return outside a function does
cause the entire script to stop. The reason for this is that zsh allows you to write autoloaded
functions in the same form as scripts, so that they can be used as either; this wouldn’t work
if return did nothing when the file was run as a script. Other shells don’t do this: return
does nothing at the top level of a script, as well as interactively. However, other shells don’t
have the feature that function definition files can be run as scripts, either.

The next two commands, break and continue, are to do with constructs like ‘if’-blocks and
loops, and it will be much easier if I introduce them when I talk about those below. They will
also already be familiar to C programmers. (If you are a FORTRAN programmer, however,
continue is not the statement you are familiar with; it is instead equivalent to CYCLE in
FORTRAN90.)

The final pair of commands are . and source. They are similar to one another and cause
another file to be read as a stream of commands in the current shell — not as a script, for
which a new shell would be started which would finish at the end of the script. The two
are intended for running a series of commands which have some effect on the current shell,
exactly like the startup files. Indeed, it’s a very common use to have a call to one or other in
a startup file; I have in my ~/.zshrc

[[-f ~/.aliasrc]] && . ~/.aliasrc

which tests if the file ~/.aliasrc exists, and if so runs the commands in it; they are treated
exactly as if they had appeared directly at that point in .zshrc.

Note that your $path is used to find the file to read from; this is a little surprising if you
think of this as like a script being run, since zsh doesn’t search for a script, it uses the name
exactly as you gave it. In particular, if you don’t have ‘.’ in your $path and you use the form
‘.’ rather than ‘source’ you will need to say explicitly when you want to source a file in the
current directory:

. ./file

otherwise it won’t be found.

It’s a little bit like running a function, with the file as the function body. Indeed, the shell will
set the positional parameters $* in just the same way. However, there’s a crucial difference:
there is no local parameter scope. Any variables in a sourced file, as in one of the startup
files, are in the same scope as the point from which it was started. You can, therefore, source
a file from inside a function and have the parameters in the sourced file local, but normally
the only way of having parameters only for use in a sourced file is to unset them when you
are finished.

The fact that both . and source exist is historical: the former comes from the Bourne shell,
and the latter from the C shell, which seems deliberately to have done everything differently.
The point noted above, that source always searches the current directory (and searches it
first), is the only difference.

3.2. BUILTIN COMMANDS 91

Re-evaluating an expression

Sometimes it’s very useful to take a string and run it as if it were a set of shell commands.
This is what eval does. More precisely, it sticks the arguments together with spaces and
calls them. In the case of something like

eval print Hello.

this isn’t very useful; that’s no different from a simple

print Hello.

The difference comes when what’s on the command line has something to be expanded, like
a parameter:

param=’print Hello.’
eval $param

Here, the $param is expanded just as it would be for a normal command. Then eval gets
the string ‘print Hello.’ and executes it as shell command line. Everything — really
everything — that the shell would normally do to execute a command line is done again; in
effect, it’s run as a little function, except that no local context for parameters is created. If
this sounds familiar, that’s because it’s exactly the way traps defined in the form

trap ’print Hello.’ EXIT

are called. This is one simple way out of the hole you can sometimes get yourself into when
you have a parameter which contains the name of another parameter, instead of some data,
and you want to get your hands on the data:

somewhere above...
origdata=’I am data.’
but all you know about is
paramname=origdata
so to extract the data you can do...
eval data=\$$paramname

Now $data contains the value you want. Make sure you understand the series of expansions
going on: this sort of thing can get very confusing. First the command line is expanded just
as normal. This turns the argument to eval into ‘data=$origdata’. The ‘$’ that’s still there
was quoted by a backslash; the backslash was stripped and the ‘$’ left; the $paramname was
evaluated completely separately — quoted characters like the \$ don’t have any effect on
expansions — to give origdata. Eval calls the new line ‘data=$origdata’ as a command
in its own right, with the now obvious effect. If you’re even slightly confused, the best thing
to do is simply to quote everything you don’t want to be immediately expanded:

eval ’data=$’$paramname

or even

92 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

eval ’data=${’$paramname’}’

may perhaps make your intentions more obvious.

It’s possible when you’re starting out to confuse ‘eval’ with the ‘...‘ and $(...)
commands, which also take the command in the middle ‘...’ and evaluate it as a command
line. However, these two (they’re identical except for the syntax) then insert the output of
that command back into the command line, while eval does no such thing; it has no effect at
all on where input and output go. Conversely, the two forms of command substitution don’t
do an extra level of expansion. Compare:

% foo=’print bar’
% eval $foo
bar

with

% foo=’print bar’
% echo $($foo)
zsh: command not found: print bar

The $(...) substitution took $foo as the command line. As you are now painfully aware, zsh
doesn’t split scalar parameters, so this was turned into the single word ‘print bar’, which
isn’t a command. The blank line is ‘echo’ printing the empty result of the failed substitution.

3.2.11 More precommand modifiers: exec, noglob

Sometimes you want to run a command instead of the shell. This sometimes happens when
you write a shell script to process the arguments to an external command, or set parameters
for it, then call that command. For example:

export MOZILLA_HOME=/usr/local/netscape
netscape "$@"

Run as a script, this sets an environment variable, then starts netscape. However, as
always the shell waits for the command to finish. That’s rather wasteful here, since there’s
nothing more for the shell to do; you’d rather it simply magically turned into the netscape
command. You can actually do this:

export MOZILLA_HOME=/usr/local/netscape
exec netscape "$@"

‘exec’ tells the shell that it doesn’t need to wait; it can just make the command to run replace
the shell. So this only uses a single process.

Normally, you should be careful not to use exec interactively, since normally you don’t want
the shell to go away. One legitimate use is to replace the current zsh with a brand new one
if (say) you’ve set a whole load of options you don’t like and want to restore the ones you
usually have on startup:

3.2. BUILTIN COMMANDS 93

exec zsh

Or you may have the bad taste to start a completely different shell altogether. Conversely,
a good piece of news about exec is that it is common to all shells, so you can use it from
another shell to start zsh in the way I’ve just shown.

Like ‘command’ and ‘builtin’, ‘exec’ is a ‘precommand modifier’ in that it alters the way a
command line is interpreted. Here’s one more:

noglob print *

If you’ve remembered what ‘glob’ means, this is all fairly obvious. It instructs the shell not
to turn the ‘*’ into a list of all the files in the directory, but instead to let well alone. You
can do this by quoting the ‘*’, of course; often noglob is used as part of an alias to set
up commands where you never need filename generation and don’t want to have to bother
quoting everything. However, note that noglob has no effect on any other type of expansion:
parameter expansion and backquote (‘....‘) expansion, for example, happen as normal;
the only thing that doesn’t is turning patterns into a list of matching files. So it doesn’t take
away the necessity of knowing the rules of shell expansion. If you need that, the best thing
to do is to use read or vared (see below) to read a line into a parameter, which you pass to
your function:

read -r param
print $param

The -r makes sure $param is the unadulterated input.

3.2.12 Testing things

I told you in the last chapter that the right way to write tests in zsh was using the ‘[[...
]]’ form, and why. So you can ignore the two builtins ‘test’ and ‘[’, even though they’re the
ones that resemble the Bourne shell. You can safely write

if [[$foo = ’’]]; then
print The parameter foo is empty. O, misery me.

fi

or

if [[-z $foo]]; then
print Alack and alas, foo still has nothing in it.

fi

instead of monstrosities like

if test x$foo != x; then
echo The emptiness of foo. Yet are we not all empty\?

fi

94 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

because even if $foo does expand to an empty string, which is what is implied if the tests are
true, ‘[[...]]’ remembers there was something there and gets the syntax right. Rather
than a builtin, this is actually a reserved word — in fact it has to be, to be syntactically
special — but you probably aren’t too bothered about the difference.

There are two sorts of tests, both shown above: those with three arguments, and those with
two. The three-argument forms all have some comparison in the middle; in addition to ‘=’
(or ‘==’, which means the same here, and which according to the manual page we should be
using, though none of us does), there are ‘!=’ (not equal), ‘<’, ‘>’, ‘<=’ and ‘>=’. All these do
string comparisons, i.e. they compare the sort order of the strings.

Since there are better ways of sorting things in zsh, the ‘=’ and ‘!=’ forms are by far the most
common. Actually, they do something a bit more than string comparison: the expression
on the right can be a pattern. The patterns understood are just the same as for matching
filenames, except that ‘/’ isn’t special, so it can be matched by a ‘*’. Note that, because ‘=’
and ‘!=’ are treated specially by the shell, you shouldn’t quote the patterns: you might think
that unless you do, they’ll be turned into file names, but they won’t. So

if [[biryani = b*]]; then
print Word begins with a b.

fi

works. If you’d written ’b*’, including the quotes, it wouldn’t have been treated as a
pattern; it would have tested for a string which was exactly the two letters ‘b*’ and nothing
else. Pattern matching like this can be very powerful. If you’ve done any Bourne shell
programming, you may remember the only way to use patterns there was via the ‘case’
construction: that’s still in zsh (see below), and uses the same sort of patterns, but the test
form shown above is often more useful.

Then there are other three-argument tests which do numeric comparison. Rather oddly,
these use letters rather than mathematical symbols: ‘-eq’, ‘-lt’ and ‘-le’ compare if two
numbers are equal, less than, or less than or equal, to one another. You can guess what ‘-gt’
and ‘-ge’ do. Note this is the other way round to Perl, which much more logically uses ‘==’ to
test for equality of numbers (not ‘=’, since that’s always an assignment operator in Perl) and
‘eq’ (minus the minus) to test for equality of strings. Unfortunately we’re now stuck with
it this way round. If you are only comparing numbers, it’s better to use the ‘((...))’
expression, because that has a proper understanding of arithmetic. However,

if [[$number -gt 3]]; then
print Wow, that\’s big

fi

and

if (($number > 3)); then
print Wow, that\’s STILL big

fi

are essentially equivalent. In the second case, the status is zero (true) if the number in the
expression was non-zero (sorry if I’m confusing you again) and vice versa. This means that

if ((3)); then
print It seems that 3 is non-zero, Watson.

fi

3.2. BUILTIN COMMANDS 95

is a perfectly valid test. As in C, the test operators in arithmetic return 1 for true and 0 for
false, i.e. ‘$number > 3’ is 1 if $number is greater than 3 and 0 otherwise; the inversion to
shell logic, zero for true, only occurs at the final step when the expression has been completely
evaluated and the ‘((...))’ command returns. At least with ‘[[...]]’ you don’t
need to worry about the extra negation; you can simply think in logical terms (although
that’s hard enough for a lot of people).

Finally, there are a few other odd comparisons in the three-argument form:

if [[file1 -nt file2]]; then
print file1 is newer than file2

fi

does the test implied by the example; there is also ‘-ot’ to test for an older file, and there
is also the little-used ‘-ef’ which tests for an ‘equivalent file’, meaning that they refer to
the same file — in other words, are linked; this can be a hard or a symbolic link, and in
the second case it doesn’t matter which of the two is the symbolic link. (If you were paying
attention above, you’ll know it can’t possibly matter in the first case.)

In addition to these tests, which are pretty recognisable from most programming languages
— although you’ll just have to remember that the ‘=’ family compares strings and not
numbers — there are another set which are largely peculiar to UNIXy scripting languages.
These are all in the form of a hyphen followed by a letter as the test, which always takes a
single argument. I showed one: ‘-z $var’ tests whether ‘$var’ has zero length. It’s opposite
is ‘-n $var’ which tests for non-zero length. Perhaps this is as good a time as any to point out
that the arguments to these commands can be any single word expression, not just variables
or filenames. You are quite at liberty to test

if [[-z "$var is sqrt(‘print bibble‘)"]]; then
print Flying pig detected.

fi

if you like. In fact, the tests are so eager to make sure that they only have a one word
argument that they will treat things like arrays, which usually return a whole set of words,
as if they were in double quotes, joining the bits with spaces:

array=(two words)
if [[$array = ’two words’]]; then

print "The array \$array is OK. O, joy."
fi

Apart from ‘-z’ and ‘-n’, most of the two-argument tests are to do with files: ‘-e’ tests that
the file named next exists, whatever type of file it is (it might be a directory or something
weirder); ‘-f’ tests if it exists and is a regular file (so it isn’t a directory or anything weird
this time); ‘-x’ tests whether you can execute it. There are all sorts of others which are listed
in the manual page for various properties of files. Then there are a couple of others: ‘-o
<option>’ you’ve met and tests whether the option is set, and ‘-t <fd>’ tests whether the
file descriptor is attached to a terminal. A file descriptor is a number which for the shell
must be between 0 and 9 inclusive (others may exist, but you can’t access them directly); 0
is the standard input, 1 the standard output, and 2 the channel on which errors are usually
printed. Hence ‘[[-t 0]]’ tests whether the input is coming from a terminal.

There are only four other things making up tests. ‘&&’ and ‘||’ mean logical ‘and’ and ‘or’,
‘!’ negates the effect of a test, and parentheses ‘(...)’ can be used to surround a set of

96 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

tests which are to be treated as one. These are all essentially the same as in C. So

if [[3 -gt 2 && (me > you || ! -z bah)]]; then
print will I, won\’t I...

fi

will, because 3 is numerically greater than 2; the expression in parentheses is evaluated and
though ‘me’ actually comes before ‘you’ in the alphabet, so the first test fails, ‘-z bah’ is false
because you gave it a non-empty string, and hence ‘! -z bah’ is true. So both sides of the
‘&&’ are true and the test succeeds.

3.2.13 Handling options to functions and scripts

It’s often convenient to have your own functions and scripts process single-letter options in
the way a lot of builtin commands (as well as a great many other UNIX-style commands) do.
The shell provides a builtin for this called ‘getopts’. This should always be called in some
kind of loop, usually a ‘while’ loop. It’s easiest to explain by example.

testopts() {
$opt will hold the current option
local opt
while getopts ab: opt; do

loop continues till options finished
see which pattern $opt matches...
case $opt in

(a)
print Option a set
;;

(b)
print Option b set to $OPTARG
;;

matches a question mark
(and nothing else, see text)

(\?)
print Bad option, aborting.
return 1
;;

esac
done
((OPTIND > 1)) && shift $((OPTIND - 1))
print Remaining arguments are: $*

}

There’s quite a lot here if you’re new to shell programming. You might want to read the stuff
on structures like while and case below and then come back and look at this. First let’s see
what it does.

% testopts -b foo -a -- args
Option b set to foo
Option a set
Remaining arguments are: args

3.2. BUILTIN COMMANDS 97

Here’s what’s happening. ‘getopts ab: opt’ is the argument to the ‘while’. That means
that the getopts gets run; if it succeeds (returns status zero), then the loop after the ‘do’
is run. When that’s finished, the getopts command is run again, and so on until it fails
(returns a non-zero status). It will do that when there are no more options left on the
command line. So the loop processes the options one by one. Each time through, the number
of the next argument to look at is left in the parameter $OPTIND, so this gradually increases;
that’s how getopts knows how far it has got.

The first argument to the getopts is ‘ab:’. That means ‘a’ is an option which doesn’t take
an argument, while ‘b’ is an argument which takes a single argument, signified by the colon
after it. You can have any number of single-letter (or even digit) arguments, which are
case-sensitive; for example ‘ab:c:ABC:’ are six different options, three with arguments. If
the option found has an argument, that is stored in the parameter $OPTARG; getopts then
increments $OPTIND by however much is necessary, which may be 2 or just 1 since ‘-b foo’
and ‘-bfoo’ are both valid ways of giving the argument.

If an option is found, we use the ‘case’ mechanism to find out what it was. The idea of this
is simple, even if the syntax has the look of an 18th-century French chateau: the argument
‘$opt’ is tested against all of the patterns in the ‘pattern)’ lines until one matches, and the
commands are executed until the next ‘;;’. It’s the shell’s equivalent of C’s ‘switch’. In this
example, we just print out what the getopts brought in. Note the last line, which is called
if $opt is a question mark — it’s quoted because ‘?’ on its own can stand for any single
character. This is how getopts signals an unknown option. If you try it, you’ll see that
getopts prints its own error message, so ours was unnecessary: you can turn the former off
by putting a colon right at the start of the list of options, making it ‘:ab:’ here.

Actually, having this last pattern as an unquoted ‘?’ isn’t such a bad idea. Suppose you add
a letter to the list that getopts should handle and forget to add a corresponding item in
the case list for it. If the last item matches any character, you will get the behaviour for an
unhandled option, which is probably the best thing to do. Otherwise nothing in the case list
will match, the shell will sail blithely on to the next call to getopts, and when you try to
use the function with the new option you will be left wondering quite what happened to it.

The last piece of the getopts jigsaw is the next line, which tests if $OPTIND is larger than
1, i.e. an option was found and $OPTIND was advanced — it is automatically set to 1 at the
start of every function or script. If it was, the ‘shift’ builtin with a numeric argument, but
no array name, moves the positional parameters, i.e. the function’s arguments, to shift away
the options that have been processed. The print in the next line shows you that only the
remaining non-option arguments are left. You don’t need to do that — you can just start
using the remaining arguments from $argv[$OPTIND] on — but it’s a pretty good way of
doing it.

In the call, I showed a line with ‘--’ in it: that’s the standard way of telling getopts that
the options are finished; even if later words start with a -, they are not treated as options.
However, getopts stops anyway when it reaches a word not beginning with ‘-’, so that
wasn’t necessary here. But it works anyway.

You can do all of what getopts does without that much difficulty with a few extra lines
of shell programming, of course. The best argument for using getopts is probably that it
allows you to group single-letter options, e.g. ‘-abc’ is equivalent to ‘-a -b -c’ if none of
them was defined to have an argument. In this case, getopts has to remember the position
inside the word on the command line for you to call it next, since the ‘a’ ‘b’ and ‘c’ still appear
on different calls. Rather unsatisfactorily, this is hidden inside the shell (as it is in other
shells — we haven’t fixed all of everybody else’s bad design decisions); you can’t get at it or
reset it without altering $OPTIND. But if you read the small print at the top of the guide,

98 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

you’ll find I carefully avoided saying everything was satisfactory.

While we’re at it, why do blocks starting with ‘if’ and ‘then’ end with ‘fi’, and blocks
starting with ‘case’ end with ‘esac’, while those starting with ‘while’ and ‘do’ end with
‘done’, not ‘elihw’ (perfectly pronounceable in Welsh, after all) or ‘od’? Don’t ask me.

3.2.14 Random file control things

We’re now down into the odds and ends. If you know UNIX at all, you will already be familiar
with the umask command and its effect on file creation, but as it is a builtin I will describe it
here. Create a file and look at it:

% touch tmpfile
% ls -l tmpfile
-rw-r--r-- 1 pws pws 0 Jul 19 21:19 tmpfile

(I’ve shortened the output line for the TeX version of this document.) You’ll see that the
permissions are read for everyone, write-only for the owner. How did the command (touch,
not a builtin, creates an empty file if there was none, or simply updates the modification time
of an existing file) know what permissions to set?

% umask
022
% umask 077
% rm tmpfile; touch tmpfile
% ls -l tmpfile
-rw------- 1 pws pws 0 Jul 19 21:22 tmpfile

umask was how it knew. It gives an octal number corresponding to the permissions which
should not be given to a newly created file (only newly created files are affected; operations
on existing files don’t involve umask). Each digit is made up of a 4 for read, 2 for write, 1 for
executed, in the same order that ls shows for permissions: user, then group, then everyone
else. (On this Linux/GNU-based system, like many others, users have their own groups, so
both are called ‘pws’.) So my original ‘022’ specified that everything should be allowed except
writing for group and other, while ‘077’ disallowed any operation by group and other. These
are the two most common settings, although here ‘002’ or ‘007’ would be useful because of the
way groups are specific to users, making it easier to grant permission to specific other users
to write in my directories. (Except there aren’t any other users.)

You can also use chmod-like permission changing expressions in umask. So

% umask go+rx

would restore group and other permissions for reading and executing, hence returning the
mask to 022. Note that because it is adding permissions, just like chmod does, it is removing
numbers from the umask.

You might have wondered about execute permissions, since ‘touch’ didn’t give any, even
where it was allowed by umask. That’s because only operations which create executable
programmes, such as running a compiler and linker, set that bit; the normal way of opening
a new file — internally, the UNIX open function, with the O_CREAT flag set — doesn’t touch

3.2. BUILTIN COMMANDS 99

it. For the same reason, if you create shell scripts which you want to be able to execute by
typing the name, you have to make them executable yourself:

% chmod +x myscript

and, indeed, you can think of chmod as umask’s companion for files which already exist. It
doesn’t need to be a builtin, because the files you are operating on are external to zsh; umask,
on the other hand, operates when you create a file from within zsh or any child process, so
needs to be a builtin. The fact that it’s inherited means you can set umask before you start
an editor, and files created by that editor will reflect the permissions.

Note that the value set by umask is also inherited and used by chmod. In the example
of chmod I gave, I didn’t see which type of execute permission to add; chmod looks at my
umask and decides based on that — in other words, with 022, everybody would be allowed
to execute myscript, while with 077, only I would, because of the 1’s in the number:
(0+0+0)+(4+2+1)+(4+2+1). Of course, you can be explicit with chmod and say ‘chmod u+x
myscript’ and so on.

Something else that may or may not be obvious: if you run a script by passing it as an
argument to the shell,

% zsh myscript

what matters is read permission. That’s what the shell’s doing to the script to find the
commands, after all. Execute permission applies when the system (or, in some cases,
including zsh, the parent shell where you typed ‘myscript’) has to decide whether to find a
shell to run the script by itself.

3.2.15 Don’t watch this space, watch some other

Finally for builtins, some things which really belong elsewhere. There are three commands
you use to control the shell’s editor. These will be described in chapter 4, where I talk all
about the editor.

The bindkey command allows you to attach a set of keystrokes to a command. It
understands an abbreviated notation for the keystrokes.

% bindkey ’^Xc’ copy-prev-word

This binds the keystrokes consisting of Ctrl held down with x, then c, to the command which
copies the previous word on the line to the current position. The commands are listed in the
zshzle manual page. bindkey can also do things with keymaps, which are a complete set
of mappings between keys and commands like the one I showed.

The vared command is an extremely useful builtin for editing a shell variable. Usually much
the easiest way to change $path (or $PS1, or whatever) is to run ‘vared path’: note the
lack of a ‘$’, since otherwise you would be editing whatever $path was expanded to. This is
because very often you want to leave most of what’s there and just change the odd character
or word. Otherwise, you would end up doing this with ordinary parameter substitutions,
which are a lot more complicated and error prone. Editing a parameter is exactly like editing
a command line, except without the prompt at the start.

100 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

Finally, there is the zle command. This is the most mysterious, as it offers a fairly low-level
interface to the line editor; you use it to define your own editing commands. So I’ll leave this
alone for now.

3.2.16 And also

There is one more standard builtin that I haven’t covered: zmodload, which allows you to
manipulate add-on packages for zsh. Many extras are supplied with the shell which aren’t
normally loaded to keep down the use of memory and to avoid having too many rarely used
builtins, etc., getting in the way. In the last chapter I will talk about some of these. To be
more honest, a lot of the stuff in between actually uses these addons, generically referred to
as modules — the line editor, zle, is itself a separate module, though heavily dependent
on the main shell — and you’ve probably forgotten I mentioned above using ‘zmodload
zsh/mathfunc’ to load mathematical functions.

3.3 Functions

Now it’s time to look at functions in more detail. The various issues to be discussed are:
loading functions, handling parameters, compiling functions, and repairing bike tyres when
the rubber solution won’t stick to the surface. Unfortunately I’ve already used so much space
that I’ll have to skip the last issue, however topical it might be for me at the moment.

3.3.1 Loading functions

Well, you know what happens now. You can define functions on the command line:

fn() {
print I am a function

}

which you call under the name ‘fn’. As you type, the shell knows that it’s in the middle of a
function definition, and prompts you until you get to the closing brace.

Alternatively, and much more normally, you put a file called fn somewhere in a directory
listed in the $fpath array. At this point, you need to be familiar with the KSH_AUTOLOAD
option described in the last chapter. From now on, I’m just going to assume your autoloadable
function files contain just the body of the function, i.e. KSH_AUTOLOAD is not set. Then the
file fn would contain:

print I am a function

and nothing else.

Recent versions of zsh, since 3.1.6, set up $fpath for you. It contains two
parts, although the second may have multiple directories. The first is, typically,
/usr/local/share/zsh/site-functions, although the prefix may vary. This is empty
unless your system administrator has put something in it, which is what it’s there for.

3.3. FUNCTIONS 101

The remaining part may be either a single
directory such as /usr/local/share/zsh/3.1.9/functions, or a whole set of directories
starting with that path. It simply depends whether the person installing zsh wanted to keep
all the functions in the same directory, or have them sorted according to what they do. These
directories are full of functions. However, none of the functions is autoloaded automatically,
so unless you specifically put ‘autoload ...’ in a startup file, the shell won’t actually take
any notice of them. As you’ll see, part of the path is the shell version. This makes it very
easy to keep multiple versions of zsh with functions which use features that may be different
between the two versions. By the way, if these directories don’t exist, you should check
$fpath to see if they are in some other location, and if you can’t find any correspondence
between what’s in $fpath and what’s on the disk even when you start the shell with zsh
-f to suppress loading of startup files, complain to the system administrator: he or she has
either not installed them properly, or has made /etc/zshenv stomp on $fpath, both of
which are thoroughly evil things to do. (/etc/zshrc, /etc/zprofile and /etc/zlogin
shouldn’t stomp on $fpath either, of course. In fact, they shouldn’t do very much; that’s up
to the user.)

One point about autoload is the ‘-U’ option. This turns off the use of any aliases you have
defined when the function is actually loaded — the flag is remembered with the name of the
function for future reference, rather than being interpreted immediately by the autoload
command. Since aliases can pretty much redefine any command into any other, and are
usually interpreted while a function is being defined or loaded, you can see that without this
flag there is fair scope for complete havoc.

alias ls=’echo Your ls command has been requisitioned.’
lsroot() {

ls -l /
}
lsroot

That’s not what the function writer intended. (Yes, I know it actually is, because I wrote it
to show the problem, but that’s not what I meant.) So -U is recommended for all standard
functions, where you have no easy way of telling quite what could be run inside.

Recently, the functions for the new completion system (described in chapter 6) have been
changing the fastest. They either begin with comp or an underscore, ‘_’. If the functions
directory is subdivided, most of the subdirectories refer to this. There are various other
classes of functions distributed with the shell:

• Functions beginning zf are associated with zftp, a builtin system for FTP transfers.
Traditional FTP clients, ones which don’t use a graphical interface, tend to be based
around a set of commands on a command line — exactly what zsh is good at. This also
makes it very easy to write macros for FTP jobs — they’re just shell functions. This
is described in the final chapter along with other modules. It’s based around a single
builtin, zftp, which is loaded from the module zsh/zftp.

• Functions beginning prompt, which may be in the Prompts subdirectory, are part of
a ‘prompt themes’ system which makes it easy for you to switch between preexisting
prompts. You load it with ‘autoload -U promptinit; promptinit’. Then ‘prompt
-h’ will tell you what to do next. If you have new completion loaded (with ‘autoload
-U compinit; compinit’, what else) the arguments to ‘prompt’ can be listed with
^D and completed with a TAB; they are various sorts of prompt which you may or may
not like.

102 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

• Functions with long names and hyphens, like predict-on and
incremental-complete-word. These are editor functions; you use them with

zle -N predict-on
bindkey <keystroke> predict-on

Here, the predict-on function automatically looks back in the history list for
matching lines as you type. You should also bind predict-off, which is loaded when
predict-on is first called. incremental-complete-word is a fairly simple attempt
at showing possible completions for the current word as you type; it could do with
improving.

• Everything else; these may be in the Misc subdirectory. These are a very mixed bag
which you should read to see if you like any. One of the most useful is zed, which allows
you to edit a small file (it’s really just a simple front-end to vared). The run-help file
shows you the sort of thing you might want to define for use with the \eh (run-help)
keystroke. is-at-least is a function for finding out if the version of the shell running
is recent enough, assuming you know what version you need for a given feature. Several
of the other functions refer to the old completion system — which you won’t need, since
you will be reading chapter 6 and using the new completion system, of course.

If you have your own functions — and if you use zsh a lot, you almost certainly will eventually
— it’s a good idea to add your own personal directory to the front of $fpath, so that
everything there takes precedence over the standard functions. That allows you to override
a completion function very easily, just by copying it and editing it. I tend to do something
like this in my .zshenv:

[[$fpath = *pws*]] || fpath=(~pws/bin/fns $fpath)

to protect against the possibility that the directory I want to add is already there, in case I
source that startup file again, and there are other similar ways. (You may well find your own
account isn’t called pws, however.)

Chances are you will always want your own functions to be autoloaded. There is an easy way
of doing this: put it just after the line I showed above:

autoload ${fpath[1]}/*(:t)

The ${fpath[1]}/* expands to all the files in the directory at the head of the $fpath
array. The (:t) is a ‘glob modifier’: applied to a filename generation pattern, it takes the
tail (basename) of all the files in the list. These are exactly the names of the functions you
want to autoload. It’s up to you whether you want the -U argument here.

3.3.2 Function parameters

I covered local parameters in some detail when I talked about typeset, so I won’t talk about
that here. I didn’t mention the other parameters which are effectively local to a function, the
ones that pass down the arguments to the function, so here is more detail. They work pretty
much identically in scripts.

There are basically two forms. There is the form inherited from Bourne shell via Korn shell,
with the typically uninformative names: $#, $*, $@ and the numerical parameters $1 etc. —

3.3. FUNCTIONS 103

as high a number as the shell will parse is allowed, not just single digits. Then there is the
form inherited from the C shell: $ARGC and $argv. I’ll mainly use the Bourne shell versions,
which are far more commonly used, and come back to some oddities of the C shell variety at
the end.

$# tells you how many arguments were passed to the function, while $* gives those
arguments as an array. This was the only array available in the Bourne shell, otherwise
there would probably have been a more obvious way of doing it. To get the size and the
number of elements of the array you don’t use ${#*} and ${*[1]} etc. (well, you usually
don’t — zsh is typically permissive here), you use $1, $2. Despite the syntax, these are rather
like ordinary array elements; if you refer to one off the end, you will get an empty string, but
no error, unless you have the option NO_UNSET set. It is this not-quite array which gets
shifted if you use the shift builtin without an argument: the old $1 disappears, the old $2
becomes $1, and so on, while $# is reduced by one. If there were no arguments ($# was zero),
nothing happens.

The form $@ is very similar to $*, and you can use it in place of that in most contexts. There is
one place where they differ. Let’s define a function which prints the number of its arguments,
then the arguments.

args() {
print $# $*

}

Now some arguments. We’ll do this for the current shell — it’s a slightly odd idea, that you
can set the arguments for what’s already running, or that an interactive shell has arguments
at all, but nonetheless it’s true:

set arguments to the shell
print $*

sets $* and hence prints the message ‘arguments to the shell’. We now pass these
arguments on to the function in two different ways:

args $*
args $@

This outputs

4 arguments to the shell
4 arguments to the shell

– no surprises so far. Remember, too, that zsh doesn’t split words on spaces unless you ask it
too. So:

% set ’one word’
% args $*
1 one word
% args $@
1 one word

Now here’s the difference:

104 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

% set two words
% args "$*"
1 two words
% args "$@"
2 two words

In quotes, "$*" behaves as a normal array, joining the words with spaces. However, "$@"
doesn’t — it still behaves as if it was unquoted. You can’t see from the arguments themselves
in this case, but you can from the digit giving the number of arguments the function has.

This probably seems pretty silly. Why quote something to have it behave like an unquoted
array? The original answer lies back in Bourne shell syntax, and relates to the vexed
question of word splitting. Suppose we turn on Bourne shell behaviour, and try the example
of a word with spaces again:

% setopt shwordsplit
% set ’one word’
% args $*
2 one word
% args $@
2 one word
% args "$*"
1 one word
% args "$@"
1 one word

Aha! This time "$@" kept the single word with the space intact. In other words, "$@" was a
slightly primitive mechanism for suppressing splitting of words, while allowing the splitting
of arrays into elements. In zsh, you would probably quite often use $*, not "$@", safe in
the knowledge that nothing was split until you asked it to be; and if you wanted it split, you
would use the special form of substitution ${=*} which does that:

% unsetopt shwordsplit
% args $*
1 one word
% args ${=*}
2 one word

(I can’t tell you why the ‘=’ was chosen for this purpose, except that it consists of two split
lines, or in an assignment it splits two things, or something.) This works with any parameter,
whether scalar or array, quoted or unquoted.

However, that’s actually not quite the whole story. There are times when the shell removes
arguments, because there’s nothing there:

% set hello ’’ there
% args $*
2 hello there

The second element of the array was empty, as if you’d typed

2=

3.3. FUNCTIONS 105

— yes, you can assign to the individual positional parameters directly, instead of using set.
When the array was expanded on the command line, the empty element was simply missed
out altogether. The same happens with all empty variables, including scalars:

% empty=
% args $empty
0

But there are times when you don’t want that, any more than you want word splitting —
you want all arguments passed just as you gave them. This is another side effect of the "$@"
form.

% args "$@"
3 hello there

Here, the empty element was passed in as well. That’s why you often find "$@" being used
in zsh when wordsplitting is already turned off.

Another note: why does the following not work like the example with $*?

% args hello ’’ there
3 hello there

The quotes were kept here. Why? The reason is that the shell doesn’t elide an argument if
there were quotes, even if the result was empty: instead, it provides an empty string. So this
empty string was passed as the second argument. Look back at:

set hello ’’ there

Although you probably didn’t think about it at the time, the same thing was happening here.
Only with the ’’ did we get an empty string assigned to $2; later, this was missed out when
passing $* to the function. The same difference occurs with scalars:

% args $empty
0
% args "$empty"
1

The $empty expanded to an empty string in each case. In the first case it was unquoted and
was removed; this is like passing an empty part of $* to a command. In the second case, the
quotes stopped that from being removed completely; this is similar to setting part of $* to an
empty string using ”.

That’s all thoroughly confusing the first time round. Here’s a table to try and make it a bit
clearer.

| Number of arguments
| if $* contains...
| (two words)

Expression Word | ’one word’
on line splitting? | empty string

106 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

--
$* n | 2 1 0
$@ n | 2 1 0
"$*" n | 1 1 1
"$@" n | 2 1 1

|
$* y | 2 2 0
$@ y | 2 2 0
"$*" y | 1 1 1
"$@" y | 2 1 1

|
${=*} n | 2 2 0
${=@} n | 2 2 0
"${=*}" n | 2 2 1
"${=@}" n | 2 2 1

On the left is shown the expression to be passed to the function, and in the three right hand
columns the number of arguments the function will get if the positional parameters are set to
an array of two words, a single word with a space in the middle, or a single word which is an
empty string (the effect of ‘set - ’’’) respectively. The second column shows whether word
splitting is in effect, i.e. whether the SH_WORD_SPLIT option is set. The first four lines show
the normal zsh behaviour; the second four show the normal sh/ksh behaviour, with word
splitting turned on — only the case where a word has a space in it changes, and then only
when no quotes are supplied. The final four show what happens when you use the ‘${=..}’
method to turn on word splitting, for convenience: that’s particularly simple, since it always
forces words to be split, even inside quotation marks.

I would recommend that anyone not wedded to the Bourne shell behaviour use the top set as
standard: in particular, ‘$*’ for normal array behaviour with removal of empty items, ‘"$@"’
for normal array behaviour with empty items left as empty items, and ‘"$*"’ for turning
arrays into single strings. If you need word-splitting, you should use ‘${=*}’ or ‘"${=@}"’
for splitting with/without removal of empty items (obviously there’s no counterpart to the
quoted-array behaviour here). Then keep SH_WORD_SPLIT turned off. If you are wedded to
the Bourne shell behaviour, you’re on your own.

It’s a bug

There’s a bug in handling of the the form ${1+"$@"}. This looks rather an arcane and
unlikely combination, but actually it is commonly used to get around a bug in some versions
of the Bourne shell (which is not in zsh): that "$@" generates a single empty argument if
there are no arguments. The form shown tests whether there is a first argument, and if so
substitutes "$@", else it doesn’t substitute anything, avoiding the bug.

Unfortunately, in zsh, when shwordsplit is set — which is the time you usually run across
attempts like this to standardise the way different shells work — this will actually cause too
much word-splitting. The way the shell is written at the moment, the embedded "$@" will
force extra splitting on spaces inside the arguments. So if the first argument is ‘one word’,
and shwordsplit is set, ${1+"$@"} produces two words ‘one’ and ‘word’.

Oliver Kiddle spotted a way of getting round this which has been adapted for use in the GNU
autoconf package: in your initialisation code, have

[x$ZSH_VERSION != x] && alias -g ’${1+"$@"}’=’"$@"’

3.3. FUNCTIONS 107

This uses a global alias to turn ${1+"$@"} wherever it occurs as a single word into "$@"
which doesn’t have the problem. Aliasing occurs so early in processing that the fact that most
of the characters have a special meaning to the shell is irrelevant; the shell behaves as if it
read in "$@". The only catch is that for this to work the script or function must use exactly
the character string ${1+"$@"}, with no leading or trailing word characters (whitespace,
obviously, or characters which terminate parsing such as ‘;’ are all right). Some day, we may
fix the underlying bug, but it’s not very easy with the way the parameter substitution code
is written at the moment.

Parameters inherited from csh

The final matter is the C-shell syntax. There are two extra variables but, luckily, there is
not much extra in the way of complexity. $ARGC is essentially identical to $#, and $argv
corresponds to $*, but is a real array this time, so instead of $1 you have ${argv[1]}
and so on. They use the convention that scalars used by the shell are all uppercase, while
arrays are all lowercase. This feature is probably the only reason anyone would need these
variants. For example, ${argv[2,-1]} means all arguments from the second to the last,
inclusive: negative indices count from the end, and a comma indicates a slice of an array, so
that ${argv[1,-1]} is always the same as the full array. Otherwise, my advice would be
to stick with the Bourne shell variants, however cryptic they may look at first sight, for the
usual reason that zsh isn’t really like the C shell and if you pretend it is, you will come a
cropper sooner or later.

It looks like you’re missing "$@", but actually you can do that with "${argv[@]}". This,
like negative indices and slices, works with all arrays.

There’s one slight oddity with $ARGC and $argv, which isn’t really a deliberate feature of
the shell at all, but just in case you run into it: although the values in them are of course
local to functions, the variables $ARGC and $argv themselves are actually treated like global
variables. That means if you apply a typeset -g command to them, it will affect the
behaviour of $ARGC and $argv in all functions, even though they have different values. It’s
probably not a good idea to rely on this behaviour.

nusubsect(Arguments to all commands work the same)

I’ve been a little tricky here, because I’ve been talking about two levels of functions at once:
$* and friends as set in the current function, or even at the top level, as well as how they are
passed down to commands such as my args function. Of course, in the second case the same
behaviour applies to all commands, not just functions. What I mean is, in

fn() {
cat $*
cat "$*"

}

the ‘cat’ command will see the differences in behaviour between the two calls just as args
would. That should be obvious.

It’s not a bug

Let me finally mention again a feature I noted in passing:

108 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

1=’first argument’

sets the first command argument for the current shell or function, independently of any
others. People sometimes complain that

1000000=’millionth argument’

suddenly makes the shell use a lot more memory. That’s not a bug at all: you’ve asked the
shell to set the millionth element of an array, but not any others, so the shell creates an array
a million elements long with the first 999,999 empty, except for any arguments which were
already set. It’s not surprising this takes up a lot of memory.

3.3.3 Compiling functions

Since version 3.1.7, it has been possible to compile functions to their internal format. It
doesn’t make the functions run any faster, it just reduces their loading time; the shell just
has to bring the function into memory, then it ‘runs it as it does any other function. On many
modern computers, therefore, you don’t gain a great deal from this. I have to admit I don’t
use it, but there are other definite advantages.

Note that when I say ‘compiled’ I don’t mean the way a C compiler, say, would take a file
and turn it into the executable code which the processor understands; here, it’s simply the
format that the shell happens to use internally — it’s useless without a suitable version of
zsh to run it. Also, it’s no use thinking you can hide your code from prying eyes this way,
like you can to some extent with an ordinary compiler (disassembling anything non-trivial
from scratch being a time-consuming job): first of all, ordinary command lines appear inside
the compiled files, except in slightly processed form, and secondly running ‘functions’ on
a compiled function which has been loaded will show you just as much as it would if the
function had been loaded normally.

One other advantage is that you can create ‘digest’ files, which are sets of functions stored in
a single file. If you often use a large fraction of those files, or they are small, or you like the
function itself to appear when you run ‘functions’ rather than a message saying it hasn’t been
loaded, then this works well. In fact, you can compile all the functions in a single directory
in one go. You might think this uses a lot of memory, but often zsh will simply ‘memory map’
the file, which means rather than reserving extra main memory for it and reading it in — the
obvious way of reading files — it will tell the operating system to make the file available as if
it were memory, and the system will bring it into memory piece by piece, ‘paging’ the file as
it is needed. This is a very efficient way of doing it. Actually, zsh supports both this method
and the obvious method of simply reading in the file (as long as your operating system does);
this is described later on.

A little extra, in case you’re interested: if you read in a file normally, the system will usually
reserve space on a disk for it, the ‘swap’, and do paging from there. So in this case you still
get the saving of main memory — this is standard in all modern operating systems. However,
it’s not as efficient: first of all, you had to read the file in in the first place. Secondly it eats
up swap space, which is usually a fixed amount of disk, although if you’ve got enough main
memory, the system probably won’t bother allocating swap. Thirdly — this is probably the
clincher for standard zsh functions on a large system — if the file is directly mapped read-
only, as it is in this case, the system only needs one place in main memory, plus the single
original file on disk, to keep the function, which is very much more efficient. With the other
method, you would get multiple copies in both main memory and (where necessary) swap.

3.3. FUNCTIONS 109

This is how the system treats directly executable programmes like the shell itself — the data
is specific to each process, but the programme itself can be shared because it doesn’t need to
be altered when it’s running.

Here’s a simple example.

% echo ’echo hello, world’ >hw
% zcompile hw
% ls
hw hw.zwc
% rm hw
% fpath=(. $fpath)
% autoload hw
% hw
hello, world

We created a simple ‘hello, world’ function, and compiled it. This produces a file called
‘hw.zwc’. The extension stands for ‘Z-shell Word Code’, because it’s based on the format
of words (integers longer than a single byte) used internally by the shell. Then we made
sure the current directory was in our $fpath, and autoloaded the function, which ran as
expected. We deleted the original file for demonstration purposes, but as long as the ‘.zwc’
file is newer, that will be used, so you don’t need to remove the originals in normal use. In
fact, you shouldn’t, because you will lose any comments and formatting information in it;
you can regenerate the function itself with the ‘functions’ command (try it here), but the
shell only remembers the information actually needed to run the commands. Note that the
function was in the zsh autoload format, not the ksh one, in this case (but see below).

And there’s more

Now some bells and whistles. Remember the KSH_AUTOLOAD thing? When you compile
a function, you can specify which format — native zsh or ksh emulation — will be used
for loading it next time, by using the option -k or -z, instead of the default, which is to
examine the option (as would happen if you were autoloading directly from the file). Then
you don’t need to worry about that option. So, for example, you could compile all the standard
zsh functions using ‘zcompile -z’ and save people the trouble of making sure they are
autoloaded correctly.

You can also specify that aliases shouldn’t be expanded when the files are compiled by using
-U: this has roughly the same effect as saying autoload -U, since when the shell comes to
load a compiled file, it will never expand aliases, because the internal format assumes that
all processing of that kind has already been done. The difference in this case is if you don’t
specify -U: then the aliases found when you compile the file, not when you load the function
from it, will be used.

Now digest files. Here’s one convenient way of doing it.

% ls ~/tmp/fns
hw1 hw2
% fpath=(~/tmp/fns $fpath)
% cd ~/tmp
% zcompile fns fns/*
% ls
fns fns.zwc

110 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

We’ve made a directory to put functions in, ~/tmp/fns, and stuck some random files in it.
The zcompile command, this time, was given several arguments: a filename to use for the
compiled functions, and then a list of functions to compile into it. The new file, fns.zwc, sits
in the same directory where the directory fns, found in $fpath, is. The shell will actually
search the digest file instead of the directory. More precisely, it will search both, and see
which is the more recent, and use that as the function. So now

% autoload hw1
% hw1
echo hello, first world

You can test what’s in the digest file with:

% zcompile -t fns
zwc file (read) for zsh-3.1.9-dev-3
fns/hw1
fns/hw2

Note that the names appear as you gave them on the command line, i.e. with fns/ in front.
Only the basenames are important for autoloading functions. The note ‘(read)’ in the first
line means that zsh has marked the functions to be read into the shell, rather than memory
mapped as discussed above; this is easier for small functions, particularly if you are liable
to remove or alter a file which is mapped, which will confuse the shell. It usually decides
which method to use based on size; you can force memory mapping by giving the -M option.
Memory mapping doesn’t work on all systems (currently including Cygwin).

I showed this for compiling files, but you can actually tell the shell to output compiled
functions — in other words, it will look along $fpath and compile the functions you specify.
I find compiling files easier, when I do it at all, since then I can use patterns to find them as
I did above. But if you want to do it the other way, you should note two other options: -a will
compile files by looking along $fpath, while -c will output any functions already loaded by
the shell (you can combine the two to use either). The former is recommended, because then
you don’t lose any information which was present in the autoload file, but not in the function
stored in memory —- this is what would happen if the file defined some extra widgets (in the
non-technical sense) which weren’t part of the function called subsequently.

If you’re perfectly happy with the shell only searching a digest file, and not comparing
the datestamp with files in the directory, you can put that directly into your $fpath, i.e.
~/tmp/fns.zwc in this case. Then you can get rid of the original directory, or archive it
somewhere for reuse.

You can compile scripts, too. Since these are in the same format as a zsh autoload file, you
don’t need to do anything different from compiling a single function. You then run (say)
script.zwc by typing ‘zsh script’ — note that you should omit the .zwc, as zsh decides
if there’s a compiled version of a script by explicitly appending the suffix. What’s more, you
can run it using ‘.’ or ‘source’ in just the same way (‘. script’) — this means you can
compile your startup files if you find they take too long to run through; the shell will spot a
~/.zshrc.zwc as it would any other sourceable file. It doesn’t make much sense to use the
memory mapping method in this case, since once you’ve sourced the files you never want to
run them again, so you might as well specify ‘zcompile -R’ to use the reading (non-memory-
mapping) method explicitly.

If you ever look inside a .zwc file, you will see that the information is actually included
twice. That’s because systems differ about the order in which numbers are stored: some have

3.3. FUNCTIONS 111

the least significant byte first (notably Intel and some versions of Mips) and some the most
significant (notably SPARC and Cambridge Consultants’ XAP processor, which is notable
here mainly because I spend my working hours programming for it — you can’t run zsh on
it). Since zsh uses integers a great deal in the compiled code, it saves them in both possible
orders for ease of use. Why not just save it for the machine where you compiled it? Then you
wouldn’t be able to share the files across a heterogeneous network — or even worse, if you
made a distribution of compiled files, they would work on some machines, and not on others.
Think how Emacs users would complain if the .elc files that arrived weren’t the right ones.
(Worse, think how the vi users would laugh.) The shell never reads or maps in the version it
doesn’t use, however; only extra disk space is used.

A little -Xtra help

There are two final autoloading issues you might want to know about. In versions of zsh
since 3.1.7, you will see that when you run functions on a function which is marked for
autoload but hasn’t yet been loaded, you get:

afunctionmarkedforautoloadwhichhasntbeenloaded () {
undefined
builtin autoload -XU

}

The ‘# undefined’ is just printed to alert you that this was a function marked as
autoloadable by the autoload command: you can tell, because it’s the only time functions
will emit a comment (though there might be other ‘#’ characters around). What’s interesting
is the autoload command with the -X option. That option means ‘Mark me for autoloading
and run me straight away’. You can actually put it in a function yourself, and it will have the
same effect as running ‘autoload’ on a not-yet-existent function. Obviously, the autoload
command will disappear as soon as you do run it, to be replaced by the real contents. If you
put this inside a file to be autoloaded, the shell will complain — the alternative is rather
more unpalatable.

Note also the -U option was set in that example: that simply means that I used autoload
with the -U option when I originally told the shell to autoload the function.

There’s another option, +X, the complete opposite of -X. This one can only be used with
autoload outside the function you’re loading, just as -X was only meaningful inside. It means
‘load the file immediately, but don’t run it’, so it’s a more active (or, as they say nowadays,
since they like unnecessarily long words, proactive) form of autoload. It’s useful if you
want to be able to run the functions command to see the function, but don’t want to run
the function itself.

Special functions

I’m in danger of simply quoting the manual, but there are various functions with a special
meaning to the shell (apart from TRAP... functions, which I’ve already covered). That is,
the functions themselves are perfectly normal, but the shell will run them automatically on
certain occasions if they happen to exist, and silently skip them if they don’t.

The two most frequently used are chpwd and precmd. The former is called whenever the
directory changes, either via cd, or pushd, or an AUTO_CD — you could turn the first two

112 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

into functions, and avoid needing chpwd but not the last. Here’s how to force an xterm, or a
similar windowing terminal, to put the current directory into the title bar.

chpwd() {
[[-t 1]] || return
case $TERM in

(sun-cmd) print -Pn "\e]l%~\e\\"
;;

(*xterm*|rxvt|(dt|k|E)term) print -Pn "\e]2;%~\a"
;;

esac
}

The first line tests that standard output is really a terminal — you don’t want to print the
string in the middle of a script which is directing its output to a file. Then we look to see
if we have a sun-cmd terminal, which has its own sui generis sequence for putting a string
into the title bar, or something which recognises xterm escape sequences. In either case, the
special sequences (a bit like termcap sequences as discussed for echotc) are interpreted by
the terminal, and instead of being printed out cause it to put the string in the middle into the
title bar. The string here is ‘%~’: I added the -P option to print so it would expand prompt
escapes. I could just have used $PWD, but this way has the useful effect of shortening your
home directory, or any other named directory, into ~-notation, which is a bit more readable.
Of course, you can put other stuff there if you like, or, if you’re really sophisticated, put in a
parameter $HEADER and define that elsewhere.

If programmes other than the shell alter what appears in the xterm title bar, you might
consider changing that chwpd function to precmd. The function precmd is called just before
every prompt; in this case it will restore the title line after every command has run. Some
people make the mistake of using it to set up a prompt, but there are enough ways of getting
varying information into a fixed prompt string that you shouldn’t do that unless you have
very odd things in your prompt. It’s a big nuisance having to redefine precmd to alter
your prompt — especially if you don’t know it’s there, since then your prompt apparently
magically returns to the same format when you change it. There are some good reasons
for using precmd, too, but most of them are fairly specialised. For example, on one system
I use it to check if there is new input from a programme which is sending data to the shell
asynchronously, and if so printing it out onto the terminal. This is pretty much what happens
with job control notification if you don’t have the NOTIFY option set.

The name precmd is a bit of a misnomer: preprompt would have been better. It usurps
the name more logically applied to the function actually called preexec, which is run after
you finished editing a command line, but just before the line is executed. preexec has one
additional feature: the line about to be executed is passed down as an argument. You can’t
alter what’s going to be executed by editing the parameter, however: that has been suggested
as an upgrade, but it would make it rather easy to get the shell into a state where you can’t
execute any commands because preexec always messes them up. It’s better, where possible,
to write function front-ends to specific commands you want to handle specially. For example,
here’s my ls function:

local ls
if [[-n $LS_COLORS]]; then

ls=(ls --color=auto)
else

ls=(ls -F)
fi

3.4. ALIASES 113

command $ls $*

This handles GNU and non-GNU versions of ls. If $LS_COLORS is set, it assumes we are
using GNU ls, and hence colouring (or colorizing, in geekspeak) is available. Otherwise, it
uses the standard option -F to show directories and links with a special symbol. Then it uses
command to run the real ls — this is a key thing to remember any time you use a function
front-end to a command. I could have done this another way: test in my initialisation files
which version of ls I was using, then alias ls to one of the two forms. But I didn’t.

Apart from the trap functions, there is one remaining special function. It is periodic, which
is executed before a prompt, like precmd, but only every now and then, in fact every $PERIOD
seconds; it’s up to you to set $PERIOD when you defined periodic. If $PERIOD isn’t set, or
is zero, nothing happens. Don’t get $PERIOD confused with $SECONDS, which just counts up
from 0 when the shell starts.

3.4 Aliases

Aliases are much simpler than functions. In the C shell and its derivatives, there are no
functions, so aliases take their place and can have arguments, which involve expressions
rather like those which extract elements of previous history lines with ‘!’. Zsh’s aliases, like
ksh’s, don’t take arguments; you have to use functions for that. However, there are things
aliases can do which functions can’t, so sometimes you end up using both, for example

zfget() {
function to retrieve a file by FTP,
using globbing on the remote host

}
alias zfget=’noglob zfget’

The function here does the hard work; this is a function from the zftp function suite, supplied
with the shell, which retrieves a file or set of files from another machine. The function allows
patterns, so you can retrieve an entire directory with ‘zfget *’. However, you need to avoid
the ‘*’ being expanded into the set of files in the current directory on the machine you’re
logged into; this is where the alias comes in, supplying the ‘noglob’ in front of the function.
There’s no way of doing this with the function alone; by the time the function is called, the
‘*’ would already have been expanded. Of course you could quote it, but that’s what we’re
trying to avoid. This is a common reason for using the alias/function combination.

Remember to include the ‘=’ in alias definition, necessary in zsh, unlike csh and friends. If
you do:

alias zfget noglob zfget

they are treated as a list of aliases. Since none has the ‘=’ and a definition, the shell thinks
you want to list the definitions of the listed words; I get the output

zfget=’noglob zfget’
zfget=’noglob zfget’

since zfget was aliased as before, but noglob wasn’t aliased and was skipped, although
the failed alias lookup caused status 1 to be returned. Remember that the alias command

114 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

takes as many arguments as you like; any with ‘=’ is a definition, any without is a request to
print the current definition.

Aliases can in fact be allowed to expand to almost anything the shell understands, not just
sets of words. That’s because the text retrieved from the alias is put back into the input,
and reread more or less as if you’d typed it. That means you can get away with strange
combinations like

alias tripe="echo foo | sed ’s/foo/bar/’ |"
tripe cat

which is interpreted exactly the same way as

echo foo | sed ’s/foo/bar/’ | cat

where the word ‘foo’ is sent to the stream editor, which alters it to ‘bar’ (‘s/old/new/’ is
sed’s syntax for a substitution), and passes it on to ‘cat’, which simply dumps the output.
It’s useless, of course, but it does show what can lurk behind an apparently simple command
if it happens to be an alias. It is usually not a good idea to do this, due to the potential
confusion.

As the manual entry explains, you can prevent an alias from being expanded by quoting it.
This isn’t like quoting any other expansion, though; there’s no particular important character
which has to be interpreted literally to stop the expansion. The point is that because aliases
are expanded early on in processing of the command line, looking up an alias is done on
a string without quotes removed. So if you have an alias ‘drivel’, none of the strings
‘\drivel’, ‘’d’rivel’, or ‘drivel""’ will be expanded as the alias: they all would have the
same effect as proper commands, after the quotes are removed, but as aliases they appear
different. The manual entry also notes that you can actually make aliases for any of these
special forms, e.g. ‘alias ’\drivel’=...’ (note the quotes, since you need the backslash
to be passed down to the alias command). You would need a pretty good reason to do so.

Although my ‘tripe’ example was silly, you know from the existence of ‘precommand
modifiers’ that it’s sometimes useful to have a special command which precedes a command
line, like noglob or the non-shell command nice. Since they have commands following, you
would probably expect aliases to be expanded there, too. But this doesn’t work:

% alias foo=’echo an alias for foo’
% noglob foo
zsh: command not found: foo

because the foo wasn’t in command position. The way round this is to use a special feature:
aliases whose definitions end in a space force the next word along to be looked up as a possible
alias, too:

% alias noglob=’noglob ’
% noglob foo
an alias for foo

which is useful for any command which can take a command line after it. This also shows
another feature of aliases: unlike functions, they remember that you have already called an
alias of a particular name, and don’t look it up again. So the ‘noglob’ which comes from
expanding the alias is not treated as an alias, but as the ordinary precommand modifier.

3.5. COMMAND SUMMARY 115

You may be a little mystified about this difference. A simple answer is that it’s useful that
way. It’s sometimes useful for functions to call themselves; for example if you are handling a
directory hierarchy in one go you might get a function to examine a directory, do something
for every ordinary file, and for every directory file call itself with the new directory name
tacked on. Aliases are too simple for this to be a useful feature. Another answer is that it’s
particularly easy to mark aliases as being ‘in use’ while they are being expanded, because it
happens while the strings inside them are being examined, before any commands are called,
where things start to get complicated.

Lastly, there are ‘global aliases’. If aliases can get you into a lot of trouble, global aliases can
get you into a lot of a lot of trouble. They are defined with the option -g and are expanded
not just in command position, but anywhere on the command line.

alias -g L=’| less’
echo foo L

This turns into ‘echo foo |less’. It’s a neat trick if you don’t mind your command lines
having only a minimal amount to do with what is actually executed.

I already pointed out that alias lookups are done so early that aliases are expanded when
you define functions:

% alias hello=’echo I have been expanded’
% fn() {
function> hello
function> }
% which fn
fn () {

echo I have been expanded
}

You can’t stop this when typing in functions directly, except by quoting part of the name
you type. When autoloading, the -U option is available, and recommended for use with any
non-trivial function.

A brief word about that ‘function>’ which appears to prompt you while you are editing
a function; I mentioned this in the previous chapter but here I want to be clearer about
what’s going on. While you are being prompted like that, the shell is not actually executing
the commands you are typing in. Only when it is satisfied that it has a complete set of
commands will it go away and execute them (in this case, defining the function). That means
that it won’t always spot errors until right at the end. Luckily, zsh has multi-line editing, so
if you got it wrong you should just be able to hit up-arrow and edit what you typed; hitting
return will execute the whole thing in one go. If you have redefined $PS2 (or $PROMPT2), or
you have an old version of the shell, you may not see the full prompt, but you will usually
see something ending in ‘>’ which means the same.

3.5 Command summary

As a reminder, the shell looks up commands in this order:

• aliases, which will immediately be interpreted again as texts for commands, possible
even other aliases; they can be deleted with ‘unalias’,

116 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

• reserved words, those special to the shell which often need to be interpreted differently
from ordinary commands due to the syntax, although they can be disabled if you really
need to,

• functions; these can also be disabled, although it’s usually easier to ‘unfunction’ them,

• builtin commands, which can be disabled, or called as a builtin by putting ‘builtin’ in
front,

• external commands, which can be called as such, even if the name clashes with one of
the above types, by putting ‘command’ in front.

3.6 Expansions and quotes

As I keep advertising, there will be a whole chapter dedicated to the subject of shell
expansions and what to do with them. However, it’s a rather basic subject, which definitely
comes under the heading of basic shell syntax, so I shall here list all the forms of expansion.
As given in the manual, there are five stages.

3.6.1 History expansion

This is the earliest, and is only done on an interactive command line, and only if you have not
set NO_BANG_HIST. It was described in the section ‘The history mechanism; types of history’
in the previous chapter. It is almost independent of the shell’s processing of the command
line; it takes place as the command line is read in, not when the commands are interpreted.
However, in zsh it is done late enough that the ‘!’s can be quoted by putting them in single
quotes:

echo ’Hello!!’

doesn’t insert the previous line at that point, but

echo "Hello!!"

does. You can always quote active ‘!’s with a backslash, so

echo "Hello\!\!"

works, with or without the double quotes. Amusingly, since single quotes aren’t special in
double quotes, if you set the HIST_VERIFY option, which puts the expanded history line
back on the command line for possible further editing, and try the first two of the three
possibilities above in order, then keep hitting return, you will find ever increasing command
lines:

% echo ’Hello!!’
Hello!!
% echo "Hello!!"
% echo "Helloecho ’Hello!!’"
% echo "Helloecho ’Helloecho ’Hello!!’’"
% echo "Helloecho ’Helloecho ’Helloecho ’Hello!!’’’"

3.6. EXPANSIONS AND QUOTES 117

and if you understand why, you have a good grasp of how quotes work.

There’s another way of quoting exclamation marks in a line: put a ‘!"’ in it. It can appear
anywhere (as long as it’s not in single quotes) and will be removed from the line, but it has
the effect of disabling any subsequent exclamation marks till the end of the line. This is the
only time quote marks which are significant to the shell (i.e. are not themselves quoted) don’t
have to occur in a matching pair.

Note that as exclamation marks aren’t active in any text read non-interactively — and this
includes autoloaded functions and sourced files, such as startup files, read inside interactive
shells — it is an error to quote any ‘!’s in double quotes in files. This will simply pass on the
backslashes to the next level of parsing. Other forms of quoting are all right: ‘\!’, because
any character quoted with a backslash is treated as itself, and ’!’ because single quotes can
quote anything anyway.

3.6.2 Alias expansion

As discussed above, alias expansion also goes on as the command line is read, so is to a
certain extent similar to history expansion. However, while a history expansion may produce
an alias for expansion, ‘!’s in the text resulting from alias expansions are normal characters,
so it can be thought of as a later phase (and indeed it’s implemented that way).

3.6.3 Process, parameter, command, arithmetic and brace
expansion

There are a whole group of expansions which are done together, just by looking at the
line constructed from the input after history and alias expansion and reading it from left
to right, picking up any active expansions as the line is examined. Whenever a complete
piece of expandable text is found, it is expanded; the text is not re-examined, except in the
case of brace expansion, so none of these types of expansion is performed on any resulting
text. Whether later forms of expansion — in other words, filename generation and filename
expansion are performed — is another matter, depending largely on the GLOB_SUBST option
as discussed in the previous chapter. Here’s a brief summary of the different types.

Process substitution

There are three forms that result in a command line argument which refers to a file from or
to which input or output is taken: ‘<(process)’ runs the process which is expected to generate
output which can be used as input by a command; ‘>(process)’ runs the process which will
take input to it; and ‘=(process)’ acts like the first one, but it is guaranteed that the file is a
plain file.

This probably sounds like gobbledygook. Here are some simple examples.

cat < <(echo This is output)

(There are people in the world with nothing better to do than compile lists of dummy uses of
the ‘cat’ command, as in that example, and pour scorn on them, but I’ll just have to brave it
out.) What happens is that the command ‘echo This is output’ is run, with the obvious
result. That output is not put straight into the command line, as it would be with command

118 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

substitution, to be described shortly. Instead, the command line is given a filename which,
when read, gets that output. So it’s more like:

echo This is output >tmpfile
cat < tmpfile
rm tmpfile

(note that the temporary file is cleaned up automatically), except that it’s more compact. In
this example I could have missed out the remaining ‘<’, since cat does the right thing with a
filename, but I put it there to emphasise the fact that if you want to redirect input from the
process substitution you need an extra ‘<’, over and above the one in the substitution syntax.

Here’s an example for the corresponding output substitution:

echo This is output > \
>(sed ’s/output/rubbish/’ >outfile)

which is a perfectly foul example, but works essentially like:

echo This is output >tmpfile
sed ’s/output/rubbish/’ <tmpfile >outfile

There’s an obvious relationship to pipes here, and in fact this example could be better written,

echo This is output | sed ’s/output/rubbish/’ >outfile

A good example of an occasion where the output process substitution can’t be replaced by a
pipe is when it’s on the error output, and standard output is being piped:

./myscript 2> >(grep -v idiot >error.log) |
process-output >output.log

a little abstract, but here the main point of the script ‘myscript’ is to produce some output
which undergoes further processing on the right-hand side of the pipe. However, we want to
process the error output here, by filtering out occurrences of lines which use the word ‘idiot’,
before dumping those errors into a file error.log. So we get an effect similar to having two
pipelines at once, one for output and one for error. Note again the two ‘>’ signs present next
to one another to get that effect.

Finally, the ‘=(process)’ form. Why do we need this as well as the one with ‘<’? To understand
that, you need to know a little of how zsh tries to implement the latter type efficiently. Most
modern UNIX-like systems have ‘named pipes’, which are essentially files that behave like
the ‘|’ on the command line: one process writes to the file, another reads from it, and the
effect is essentially that data goes straight through. If your system has them, you will usually
find the following demonstration works:

% mknod tmpfile p
% echo This is output >tmpfile &
[2] 1507
% read line <tmpfile
%

3.6. EXPANSIONS AND QUOTES 119

[2] + 1507 done echo This is output >> tmpfile
% print -- $line
This is output
%

The syntax to create a named pipe is that rather strange ‘mknod’ command, with ‘p’ for pipe.
We stick this in the background, because it won’t do anything yet: you can’t write to the pipe
when there’s no-one to read it (a fundamental rule of pipes which isn’t quite as obvious as it
may seem, since it is possible for data to lurk in the pipe, buffered, before the process reading
from it extracts it), so we put that in the background to wait for action. This comes in the
next line, where we read from the pipe: that allows the echo to complete and exit. Then we
print out the line we’ve read.

The problem with pipes is that they are just temporary storage spaces for data on the way
through. In particular, you can’t go back to the beginning (in C-speak, ‘you can’t seek
backwards on a pipe’) and re-read what was there. Sometimes this doesn’t matter, but some
commands, such as editors, need that facility. As the ‘<’ process substitution is implemented
with named pipes (well, maybe), there is also the ‘=’ form, which produces a real, live
temporary file, probably in the ‘/tmp’ directory, containing the output from the file, and
then puts the name of that file on the command line. The manual notes, unusually helpfully,
that this is useful with the ‘diff’ command for comparing the output of two processes:

diff =(./myscript1) =(./myscript2)

where, presumably, the two scripts produce similar, but not identical, output which you want
to compare.

I said ‘well, maybe’ in that paragraph because there’s another way zsh can do ‘<’ process
substitutions. Many modern systems allow you to access a file with a name like ‘/dev/fd/0’
which corresponds to file descriptor 0, in this case standard input: to anticipate the section
on redirection, a ‘file descriptor’ is a number assigned to a particular input or output stream.
This method allows you to access it as a file; and if this facility is available, zsh will use it
to pass the name of the file in process substitution instead of using a named pipe, since in
this case it doesn’t have to create a temporary file; the system does everything. Now, if you
are really on the ball, you will realise that this doesn’t get around the problem of pipes —
where is data on this file descriptor going to come from? The answer is that it will either
have to come from a real temporary file — which is pointless, because that’s what we wanted
to avoid — or from a pipe opened from some process — which is equivalent to the named
pipe method, except with just a file descriptor instead of a name. So even if zsh does it this
way, you still need the ‘=’ form for programmes which need to go backwards in what they’re
reading.

Parameter substitution

You’ve seen enough of this already. This comes from a ‘$’ followed either by something
in braces, or by alphanumeric characters forming the name of the parameter: ‘$foo’ or
‘${foo}’, where the second form protects the expansion from any other strings at the ends
and also allows a veritable host of extra things to appear inside the braces to modify the
substitution. More detail will be held over to till chapter 5; there’s a lot of it.

120 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

Command substitution

This has two forms, $(process) and ‘process‘. They function identically; the first form has
two advantages: substitutions can be nested, since the end character is different from the
start character, and (because it uses a ‘$’) it reminds you that, like parameter substitutions,
command substitutions can take place inside double-quoted strings. In that case, like most
other things in quotes, the result will be a single word; otherwise, the result is split into
words on any field separators you have defined, usually whitespace or the null character. I’ll
use the args function again:

% args() { print $# $*; }
% args $(echo two words)
2 two words
% args "$(echo one word)"
1 one word

The first form will split on newlines, not just spaces, so an equivalent is

% args $(echo two; echo words)
2 two words

Thus entire screens of text will be flattened out into a single line of single-word command
arguments. By contrast, with the double quotes no processing is done whatsoever; the entire
output is put verbatim into one command argument, with newlines intact. This means that
the quite common case of wanting a single complete line from a file per command argument
has to be handled by trickery; zsh has such trickery, but that’s the stuff of chapter 5.

Note the difference from process substitution: no intermediate file name is involved, the
output itself goes straight onto the command line. This form of substitution is considerably
more common, and, unlike the other, is available in all UNIX shells, though not in all shells
with the more modern form ‘$(...)’.

The rule that the command line is evaluated only once, left to right, is adhered to here, but
it’s a little more complicated in this case since the expression being substituted is scanned
as a complete command line, so can include anything a command usually can, with all the
rules of quoting and expansion being applied. So if you get confused about what a command
substitution is actually up to, you should extract the commands from it and think of them
as a command line in their own right. When you’ve worked out what that’s doing, decide
what it’s output will be, and that’s the result of the substitution. You can ignore any error
output; that isn’t captured, so will go straight to the terminal. If you want to ignore it,
use the standard trick (see below) ‘2>/dev/null’ inside the command substitution — not
on the main command line, where it won’t work because substitutions are performed before
redirection of the main command line, and in any case that will have the obvious side effect
of changing the error output from the command line itself.

The only real catch with command substitution is that, as it is run as a separate process —
even if it only involves shell builtins — no effects other than the output will percolate back
to the main shell:

% print $(bar=value; print bar is $bar)
bar is value
% print bar is $bar
bar is

3.6. EXPANSIONS AND QUOTES 121

There is maybe room for a form of substitution that runs inside the shell, instead; however,
with modern computers the overhead in starting the extra process is pretty small — and in
any case we seem to have run out of new forms of syntax.

Once you know and are comfortable with command substitution, you will probably start
using it all the time, so there is one good habit to get into straight away. A particularly
common use is simply to put the contents of a file onto the command line.

Don’t do this, do the other.
process_cmd ‘cat file_arguments‘

But there’s a shortcut.

Do do this, don’t do the other
process_cmd $(<file_arguments)

It’s not only less writing, it’s more efficient: zsh spots the special syntax, with the <
immediately inside the parentheses, reads the file directly without bothering to start ‘cat’,
and inserts its contents: no external process is involved. You shouldn’t confuse this with ‘null
redirections’ as described below: the syntax is awfully similar, unfortunately, but the feature
shown here is not dependent on that other feature being enabled or set up in a particular
way. In fact, this feature works in ksh, which doesn’t have zsh’s null redirections.

You can quote the file-reading form too, of course: in that case, the contents of the file
‘cmd_arguments’ would be passed as just one argument, with newlines and spaces intact.

Sometimes, the rule about splitting the result of a command substitution can get you into
trouble:

% typeset foo=‘echo words words‘
% print $foo
words

You probably expected the command substitution not to be split here. but it was, and the
shell executed typeset with the arguments ‘foo=words’ and ‘words’. That’s because in zsh
arguments to typeset are treated pretty much normally, except for some jiggery pokery
with tildes described below. Other shells do this differently, and zsh (from 4.0.2 and 4.1.1)
provides a compatibility option, KSH_TYPESET. In earlier versions you need to use quotes:

% typeset foo="‘echo words words‘"
% print $foo
words words

A really rather technical afterword: using ‘$(cat file_arguments)’, you might have
counted two extra processes to be started, one being the usual one for a command
substitution, and another the ‘cat’ process, since that’s an external command itself. That
would indeed be the obvious way of doing it, but in fact zsh has an optimisation in cases
like this: if it knows the shell is about to exit — in this case, the forked process which is
just interpreting the command line for the substitution — it will not bother to start a new
process for the last command, and here just replaces itself with the cat. So actually there’s
only one extra process here. Obviously, an interactive shell is never replaced in this way,
since clairvoyance is not yet a feature of the shell.

122 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

Arithmetic substitution

Arithmetic substitution is easy to explain: everything I told you about the ((...))
command under numerical parameters, above, applies to arithmetic substitution. You simply
bang a ‘$’ in front, and it becomes an expansion.

% print $((32 + 2 * 5))
42

You can perform everything inside arithmetic substitution that you can inside the builtin,
including assignments; the only difference is that the status is not set, instead the value is
put directly onto the command line in place of the original expression. As in C, the value of
an assignment is the value being assigned, ‘$((param = 3 + 2))’ substitutes the value 5
as well as assigning it to $param.

By the way, there’s an extra level of substitution involved in all arithmetic expansions, since
scalar parameters are subject to arithmetic expansion when they’re read in. This is simple
if they only contain numbers, but less obvious if they contain complete expressions:

% foo=3+5
% print $((foo + 2))
10

The foo was evaluated into 8 before it was substituted in. Note this means there were two
evaluations: this doesn’t work:

% foo=3+
% print $((foo 2))
zsh: bad math expression: operand expected at ‘’

— the complaint here is about the missing operand after the ‘+’ in the $foo. However the
following does work:

% foo=3+
% print $(($foo 2))
5

That’s because the scalar $foo is turned into 3+ first. This is more logical than you
might think: with the rule about left to right evaluation, the $foo is picked up inside
the $((...)) and expanded as an ordinary parameter substitution while the argument
of $((...)) is being scanned. Then the complete argument ‘3+ 2’ is expanded as an
arithmetical expression. (Unfortunately, zsh isn’t always this logical; there could easily be
cases where we haven’t thought it through — you should feel free to bring these to our
attention.)

There’s an older form with single square brackets instead of double parentheses; there is
now no reason to use it, as it’s non-standard, but you may sometimes still meet it.

Brace expansion

Brace expansion is a feature acquired from the C shell and it’s relatives, although some
versions of ksh have it, as it’s a compile time option there. It’s a useful way of saving you

3.6. EXPANSIONS AND QUOTES 123

from typing the same thing twice on a single command line:

% print -l {foo,bar}’ is used far too often in examples’
foo is used far too often in examples
bar is used far too often in examples

‘print’ is given two arguments which it is told to print out one per line. The text in quotes
is common to both, but one has ‘foo’ in front, while the other has ‘bar’ in front. The brace
expression can equally be in the middle of an argument: for example, a common use of this
among programmers is for similarly named source files:

% print zle_{tricky,vi,word}.c
zle_tricky.c zle_vi.c zle_word.c

As you see, you’re not limited to two; you can have any number. You can quote a comma if
you need a real one:

% print -l \‘{\,,.}\’’ is a punctuation character’
‘,’ is a punctuation character
‘.’ is a punctuation character

The quotes needed quoting with a backslash to get them into the output. The second comma
is the active one for the braces.

You can nest braces. Once again, this is done left to right. In

print {now,th{en,ere{,abouts}}}

the first argument of the outer brace is ‘now’, and the second is ‘th{en,ere{,abouts}}’.
This brace expands to ‘then’ and then the expansion of ‘there{,abouts}’, which is ‘there
thereabouts’ — there’s nothing to stop you having an empty argument. Putting this all
together, we have

print now then there thereabouts

There’s more to know about brace expansion, which will appear in chapter 5 on clever
expansions.

3.6.4 Filename Expansion

It’s a shame the names ‘filename expansion’ and ‘filename generation’ sound so similar, but
most people just refer to ‘~ and = expansion’ and ‘globbing’ respectively, which is all that is
meant by the two. The first is by far the simpler. The rule is: unquoted ‘~’s at the beginning
of words perform expansion of named directories, which may be your home directory:

% print ~
/home/pws

some user’s home directory:

124 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

% print ~root
/root

(that may turn up ‘/’ on your system), a directory named directly by you:

% t=/tmp
% print ~t
/tmp

a directory you’ve recently visited:

% pwd
/home/pws/zsh/projects/zshguide
% print ~+
/home/pws/zsh/projects/zshguide
% cd /tmp
% print ~-
/home/pws/zsh/projects/zshguide

or a directory in your directory stack:

% pushd /tmp
% pushd ~
% pushd /var/tmp
% print ~2
/tmp

These forms were discussed above. There are various extra rules. You can add a ‘/’ after any
of them, and the expansions still take place, so you can use them to specify just the first part
of a longer expression (as you almost certainly have done with a simple ‘~’). If you quote the
‘~’ in any of the ways quoting normally takes place, the expansion doesn’t happen.

A ~ in the middle of the word means something completely different, if you have the
EXTENDED_GLOB option set; if you don’t, it doesn’t mean anything. There are a few exceptions
here; assignments are a fairly natural one:

% foo=~pws
% print $foo
/home/pws

(note that the ‘~pws’, being unquoted, was expanded straight away at the assignment, not at
the print statement). But the following works too:

% PATH=$PATH:~pws/bin

because colons are special in assignments. Note that this happens even if the variable isn’t
a colon-separated path; the shell doesn’t know what use you’re going to make of all the
different variables.

The companion of ‘~’ is ‘=’, which again has to occur at the start of a word or assignment to
be special. The remainder of the word (here the entire remainder, because directory paths
aren’t useful) is taken as the name of an external command, and the word is expanded to the
complete path to that command, using $PATH just as if the command were to be executed:

3.6. EXPANSIONS AND QUOTES 125

% print =ls
/bin/ls

and, slightly confusingly,

% foo==ls
% print $foo
/bin/ls

where the two ‘=’s have two different meanings. This form is useful in a number of cases. For
example, you might want to look at or edit a script which you know is in your path; the form

% vi =scriptname

is more convenient than the more traditional

% vi ‘whence -p ls‘

where I put the ‘-p’ in to force whence to follow the path, ignoring builtins, functions, etc.
This brings us to another use for ‘=’ expansion,

% =ls

is a neat and extremely short way of referring to an external command when ls is usually a
function. It has some of the same effect as ‘command ls’, but is easier to type.

In versions up to and including 4.0, this syntax will also expand aliases, so you need to be a
bit careful if you really want a path to an external command:

% alias foo=’ls -F’
% print =foo
ls -F

(Path expansion is done in preference, so you are safe if you use ls, unless your $PATH is
strange.) Putting ‘=foo’ at the start of the command line doesn’t work, and the reason why
bears examination: =-expansion occurs quite late on, after ordinary alias expansion and word
splitting, so that the result is the single word ‘ls -F’, where the space is part of the word,
which probably doesn’t mean anything (and if it does, don’t lend me your computer when I
need something done in a hurry). It’s probably already obvious that alias expansion here is
more trouble than it’s worth. A less-than-exhaustive search failed to find anyone who liked
this feature, and it has been removed from the shell from 4.1, so that ‘=’-expansion now only
expands paths to external commands.

If you don’t like =-expansion, you can turn it off by setting the option NO_EQUALS. One catch,
which might make you want to do that, is that the commands mmv, mcp and mln, which are
a commonly used though non-standard piece of free software, use ‘=’ followed by a number to
replace a pattern, for example

mmv ’*.c’ ’=1.old.c’

126 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

renames all files ending with .c to end with .old.c. If you were not alert, you might forget
to quote the second word. Otherwise, however, =’ isn’t very common at the start of a word, so
you’re probably fairly safe. For a way to do that with zsh patterns, see the discussion of the
function zmv below (the answer is ‘zmv ’(*).c’ ’$1.old.c’’).

Note that zsh is smart enough to complete the names of commands after an ‘=’ of the
expandable sort when you hit TAB.

3.6.5 Filename Generation

Filename generation is exactly the same as ‘globbing’: the expanding of any unquoted
wildcards to match files. This is only done in one directory at a time. So for example

print *.c

won’t match files in a subdirectory ending in ‘.c’. However, it is done on all parts of a path,
so

print */*.c

will match all ‘.c’ files in all immediate subdirectories of the current directory. Furthermore,
zsh has an extension — one of its most commonly used special features — to match files in
any subdirectory at any depth, including the current directory: use two ‘*’s as part of the
path:

print **/*.c

will match ‘prog.c’, ‘version1/prog.c’, ‘version2/test/prog.c’,
‘oldversion/working/saved/prog.c’, and so on. I will talk about filename generation
and other uses of zsh’s extremely powerful patterns at much greater length in chapter 5. My
main thrust here is to fit it into other forms of expansion; the main thing to remember is that
it comes last, after everything has already been done.

So although you would certainly expect this to work,

print ~/*

generating all files in your home directory, you now know why: it is first expanded to
‘/home/pws/*’ (or wherever), then the shell scans down the path until it finds a pattern,
and looks in the directory it has reached (/home/pws) for matching files. Furthermore,

foo=~/
print $foo*

works. However, as I explained in the last chapter, you need to be careful with

foo=*
print ~/$foo

3.6. EXPANSIONS AND QUOTES 127

This just prints ‘/home/pws/*’. To get the ‘*’ from the parameter to be a wildcard, you need
to tell the shell explicitly that’s what you want:

foo=*
print ~/${~foo}

As also noted, other shells do expand the * as a wildcard anyway. The zsh attitude here, as
with word splitting, is that parameters should do exactly what they’re told rather than waltz
off generating extra words or expansions.

Be even more careful with arrays:

foo=(*)

will expand the * immediately, in the current directory — the elements of the array
assignment are expanded exactly like a normal command line glob. This is often very useful,
but note the difference from scalar assignments, which do other forms of expansion, but not
globbing.

I’ll mention a few possible traps for the unwary, which might confuse you until you are a zsh
globbing guru. Firstly, parentheses actually have two uses. Consider:

print (foo|bar)(.)

The first set of parentheses means ‘match either foo or bar’. If you’ve used egrep, you will
probably be familiar with this. The second, however, simply means ‘match only regular files’.
The ‘(.)’ is called a ‘globbing qualifier’, because it limits the scope of any matches so far
found. For example, if either or both of foo and bar were found, but were directories, they
would not now be matched. There are many other possibilities for globbing qualifiers. For
now, the easiest way to tell if something at the end is not a globbing qualifier is if it contains
a ‘|’.

The second point is about forms like this:

print file-<1-10>.dat

The ‘<’ and ‘>’ smell of redirection, as described next, but actually the form ‘<’, optional
start number, ‘-’, optional finish number, ‘>’ means match any positive integer in the range
between the two numbers, inclusive; if either is omitted, there is no limit on that end, hence
the cryptic but common ‘<->’ to match any positive integer — in other words, any group of
decimal digits (bases other than ten are not handled by this notation). Older versions of
the shell allowed the form ‘<>’ as a shorthand to match any number, but the overlap with
redirection was too great, as you’ll see, so this doesn’t work any more.

Another two cryptic symbols are the two that do negation. These only work with the option
‘EXTENDED_GLOB’ set: this is necessary to get the most out of zsh’s patterns, but it can be a
trap for the unwary by turning otherwise innocuous characters into patterns:

print ^foo

This means any file in the current directory except the file foo. One way of coming unstuck
with ‘^’ is something like

128 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

stty kill ^u

where you would hope ‘^u’ means control with ‘u’, i.e. ASCII character 21. But it doesn’t,
if EXTENDED_GLOB is set: it means ‘any file in the current directory except one called ‘u’ ’,
which is definitely a different thing. The other negation operator isn’t usually so fraught, but
it can look confusing:

print *.c~f*

is a pattern of two halves; the shell tries to match ‘*.c’, but rejects any matches which also
match ‘f*’. Luckily, a ‘~’ right at the end isn’t special, so

rm *.c~

removes all files ending in ‘.c~’ — it wouldn’t be very nice if it matched all files ending in ‘.c’
and treated the final ‘~’ as an instruction not to reject any, so it doesn’t. The most likely case
I can think of where you might have problems is with Emacs’ numeric backup files, which
can have a ‘~’ in the middle which you should quote. There is no confusion with the directory
use of ‘~’, however: that only occurs at the beginning of a word, and this use only occurs in
the middle.

The final oddments that don’t fit into normal shell globbing are forms with ‘#’. These also
require that EXTENDED_GLOB be set. In the simplest use, a ‘#’ after a pattern says ‘match
this zero or more times’. So ‘(foo|bar)#.c’ matches foo.c, bar.c, foofoo.c, barbar.c,
foobarfoo.c, ... With an extra #, the pattern before (or single character, if it has no special
meaning) must match at least once. The other use of ‘#’ is in a facility called ‘globbing flags’,
which look like ‘(#X)’ where ‘X’ is some letter, possibly followed by digits. These turn on
special features from that point in the pattern and are one of the newest features of zsh
patterns; they will receive much more space in chapter 5.

3.7 Redirection: greater-thans and less-thans

Redirection means retrieving input from some other file than the usual one, or sending
output to some other file than the usual one. The simplest examples of these are ‘<’ and
‘>’, respectively.

% echo ’This is an announcement’ >tempfile
% cat <tempfile >newfile
% cat newfile
This is an announcement

Here, echo sends its output to the file tempfile; cat took its input from that file and sent
its output — the same as its input — to the file newfile; the second cat takes its input from
newfile and, since its output wasn’t redirected, it appeared on the terminal.

The other basic form of redirection is a pipe, using ‘|’. Some people loosely refer to all
redirections as pipes, but that’s rather confusing. The input and output of a pipe are both
programmes, unlike the case above where one end was a file. You’ve seen lots of examples
already:

3.7. REDIRECTION: GREATER-THANS AND LESS-THANS 129

echo foo | sed ’s/foo/bar/’

Here, echo sends its output to the programme sed, which substitutes foo by bar, and sends
its own output to standard output. You can chain together as many pipes as you like; once
you’ve grasped the basic behaviour of a single pipe, it should be obvious how that works:

echo foo is a word |
sed ’s/foo/bar/’ |
sed ’s/a word/an unword/’

runs another sed on the output of the first one. (You can actually type it like that, by the
way; the shell knows a pipe symbol can’t be at the end of a command.) In fact, a single sed
will suffice:

echo foo is a word |
sed -e ’s/foo/bar/’ -e ’s/a word/an unword/’

has the same effect in this case.

Obviously, all three forms of redirection only work if the programme in question expects
input from standard input, and sends output to standard output. You can’t do:

echo ’edit me’ | vi

to edit input, since vi doesn’t use the input sent to it; it always deals with files. Most simple
UNIX commands can be made to deal with standard input and output, however. This is a
big difference from other operating systems, where getting programmes to talk to each other
in an automated fashion can be a major headache.

3.7.1 Clobber

The word ‘clobber’, as in the option NO_CLOBBER which I mentioned in the previous chapter,
may be unfamiliar to people who don’t use English as their first language. Its basic meaning
is ‘hit’ or ‘defeat’ or ‘destroy’, as in ‘Itchy and Scratchy clobbered each other with mallets’. If
you do:

% echo first go >file
% echo second go >file

then file will contain only the words ‘second go’. The first thing you put into the file, ‘first
go’, has been clobbered. Hence the NO_CLOBBER option: if this is set, the shell will complain
when you try to overwrite the file. You can use ‘>|file’ or ‘>! file’ to override this. You
usually can’t use ‘>!file’ because history expansion will try to expand ‘!file’ before the
shell parses the line; hence the form with the vertical bar tends to be more useful.

3.7.2 File descriptors

UNIX-like systems refer to different channels such as input, output and error by ‘file
descriptors’, which are small integers. Usually three are special: 0, standard input; 1,

130 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

standard output; and 2, standard error. Bourne-like shells (but not csh-like shells) allow
you to refer to a particular file descriptor, instead of standard input or output, by putting the
integer immediately before the ‘<’ or ‘>’ (no space is allowed). What’s more, if the ‘<’ or ‘>’
is followed immediately by ‘&’, a file descriptor can follow the redirection (the one before is
optional as usual). A common use is:

% echo This message will go to standard error >&2

The command sends its message to standard output, file descriptor 1. As usual, ‘>’ redirects
standard output. This time, however, it is redirected not to a file, but to file descriptor 2,
which is standard error. Normally this is the same device as standard output, but it can be
redirected completely separately. So:

% { echo A message
cursh> echo An error >&2 } >file
An error
% cat file
A message

Apologies for the slightly unclear use of the continuation prompt ‘cursh>’: this guide goes
into a lot of different formats, and some are a bit finicky about long lines in preformatted
text. As pointed out above, the ‘>file’ here will redirect all output from the stuff in braces,
just as if it were a single command. However, the ‘>&2’ inside redirects the output of the
second echo to standard error. Since this wasn’t redirected, it goes straight to the terminal.

Note the form in braces in the previous example — I’m going to use that in a few more
examples. It simply sends something to standard output, and something else to standard
error; that’s its only use. Apart from that, you can treat the bit in braces as a black box —
anything which can produce both sorts of output.

Sometimes you want to redirect both at once. The standard Bourne-like way of doing this is:

% { echo A message
cursh> echo An error >&2 } >file 2>&1

The ‘>file’ redirects standard output from the {...} to the file; the following 2>&1 redirects
standard error to wherever standard output happens to be at that point, which is the same
file. This allows you to copy two file descriptors to the same place. Note that the order is
important; if you swapped the two around, ‘2>&1’ would copy standard error to the initial
destination of standard output, which is the terminal, before it got around to redirecting
standard output.

Zsh has a shorthand for this borrowed from csh-like shells:

% { echo A message
cursh> echo An error >&2 } >&file

is exactly equivalent to the form in the previous paragraph, copying standard output and
standard error to the same file. There is obviously a clash of syntax with the descriptor-
copying mechanism, but if you don’t have files whose names are numbers you won’t run into
it. Note that csh-like shells don’t have the descriptor-copying mechanism: the simple ‘>&’
and the same thing with pipes are the only uses of ‘&’ for redirections, and it’s not possible
there to refer to particular file descriptors.

3.7. REDIRECTION: GREATER-THANS AND LESS-THANS 131

To copy standard error to a pipe, there are also two forms:

% { echo A message
cursh> echo An error >&2 } 2>&1 | sed -e ’s/A/I/’
I message
In error
% { echo A message
cursh> echo An error >&2 } |& sed -e ’s/A/I/’
I message
In error

In the first case, note that the pipe is opened before the other redirection, so that ‘2>&1’
copies standard error to the pipe, not the original standard output; you couldn’t put that
after the pipe in any case, since it would refer to the ‘sed’ command’s output. The second
way is like csh; unfortunately, ‘|&’ has a different meaning in ksh (start a coprocess), so zsh
is incompatible with ksh in this respect.

You can also close a file descriptor you don’t need: the form ‘2<&-’ will close standard error
for the command where it appears.

One thing not always appreciated about redirections is that they can occur anywhere on the
command line, not just at the end.

% >file echo foo
% cat file
foo

3.7.3 Appending, here documents, here strings, read write

There are various other forms which use multiple ‘>’s and ‘<’s. First,

% echo foo >file
% echo bar >>file
% cat file
foo
bar

The ‘>>’ appends to the file instead of overwriting it. Note, however, that if you use this a lot
you may find there are neater ways of doing the same thing. In this example,

% { echo foo
cursh> echo bar } >file
% cat file
foo
bar

Here, ‘cursh>’ is a prompt from the shell that it is waiting for you to close the ‘{’ construct
which executes a set of commands in the current shell. This construct can have a redirection
applied to the entire sequence of commands: ‘>file’ after the closing brace therefore
redirects the output from both echos.

132 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

In the case of input, doubling the sign has a totally different effect. The word after the << is
not a file, but a string which will be used to mark in the end of input. Input is read until a
line with only this string is found:

% sed -e ’s/foo/bar/’ <<HERE
heredoc> This line has foo in it.
heredoc> There is another foo in this one.
heredoc> HERE
This line has a bar in it.
There is another bar in this one.

The shell prompts you with ‘heredoc>’ to tell you it is reading a ‘here document’, which is
how this feature is referred to. When it finds the final string, in this case ‘HERE’, it passes
everything you have typed as input to the command as if it came from a file. The command
in this case is the stream editor, which has been told to replace the first ‘foo’ on each line
with a ‘bar’. (Replacing things with a bar is a familiar experience from the city centre of my
home town, Newcastle upon Tyne.)

So far, the features are standard in Bourne-like shells, but zsh has an extension to here
documents, sometimes referred to as ‘here strings’.

% sed -e ’s/string/nonsense/’ \
> <<<’This string is the entire document.’
This nonsense is the entire document.

Note that ‘>’ on the second line is a continuation prompt, not part of the command line; it
was just too long for the TeX version of this document if I didn’t split it. This is a shorthand
form of ‘here’ document if you just want to pass a single string to standard input.

The final form uses both symbols: ‘<>file’ opens the file for reading and writing — but
only on standard input. In other words, a programme can now both read from and write to
standard input. This isn’t used all that often, and when you do use it you should remember
that you need to open standard output explicitly to the same file:

% echo test >/tmp/redirtest
% sed ’s/e/Z/g’ <>/tmp/redirtest 1>&0
% cat /tmp/redirtest
tZtst

As standard input (the 0) was opened for writing, you can perform the unusual trick of
copying standard output (the 1) into it. This is generally not a particularly safe way of doing
in-place editing, however, though it seems to work fine with sed. Note that in older versions
of zsh, ‘<>’ was equivalent to ‘<->’, which is a pattern that matches any number; this was
changed quite some time ago.

3.7.4 Clever tricks: exec and other file descriptors

All Bourne-like shells have two other features. First, the ‘command’ exec, which I described
above as being used to replace the shell with the command you give after it, can be used
with only redirections after it. These redirections then apply permanently to the shell itself,
rather than temporarily to a single command. So

3.7. REDIRECTION: GREATER-THANS AND LESS-THANS 133

exec >file

makes file the destination for standard output from that point on. This is most useful in
scripts, where it’s quite common to want to change the destination of all output.

The second feature is that you can use file descriptors which haven’t even been opened yet,
as long as they are single digits — in other words, you can use numbers 3 to 9 for your own
purposes. This can be combined with the previous feature for some quite clever effects:

exec 3>&1
3 refers to stdout
exec >file
stdout goes to ‘file’, 3 untouched

random commands output to ‘file’
exec 1>&3
stdout is now back where it was
exec 3>&-
file descriptor 3 closed to tidy up

Here, file descriptor 3 has been used simply as a placeholder to remember where standard
output was while we temporarily divert it. This is an alternative to the ‘{...} >file’ trick.
Note that you can put more than one redirection on the exec line: ‘exec 3>&1 >file’ also
works, as long as you keep the order the same.

3.7.5 Multios

Multios allow you to do an implicit ‘cat’ (concatenate files) on input and ‘tee’ (send the same
data to different files) on output. They depend on the option MULTIOS being set, which it is
by default. I described this in the last chapter in discussing whether or not you should have
the option set, so you can look at the examples there.

Here’s one fact I didn’t mention. You use output multios like this:

command-generating-output >file1 >file2

where the command’s output is copied to both files. This is done by a process forked off by
the shell: it simply sits waiting for input, then copies it to all the files in its list. There’s a
problem in all versions of the shell to date (currently 4.0.6): this process is asynchronous,
so you can’t rely on it having finished when the shell starts executing the next command.
In other words, if you look at file1 or file2 immediately after the command has finished,
they may not yet contain all the output because the forked process hasn’t finished writing to
it.

This is really a bug, but for the time being you will have to live with it as it’s quite complicated
to fix in all cases. Multios are most useful as a shorthand in interactive use, like so much of
zsh; in a script or function it is safer to use tee,

command-generating-output | tee file1 file2

which does the same thing, but as tee is handled as a synchronous process file1 and file2
are guaranteed to be complete when the pipeline exits.

134 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

3.8 Shell syntax: loops, (sub)shells and so on

3.8.1 Logical command connectors

I have been rather cavalier in using a couple of elements of syntax without explaining them:

true && print Previous command returned true
false || print Previous command returned false

The relationship between ‘&&’ and ‘||’ and tests is fairly obvious, but in this case they connect
complete commands, not test arguments. The ‘&&’ executes the following command if the one
before succeeded, and the ‘||’ executes the following command if the one before failed. In
other words, the first is equivalent to

if true; then
print Previous command returned true

fi

but is more compact.

There is a perennial argument about whether to use these or not. In the comp.unix.shell
newsgroup on Usenet, you see people arguing that the ‘&&’ syntax is unreadable, and only
an idiot would use it, while other people argue that the full ‘if’ syntax is slower and
clumsier, and only an idiot would use that for a simple test; but Usenet is like that, and
both answers are a bit simplistic. On the one hand, the difference in speed between the two
forms is minute, probably measurable in microseconds rather than milliseconds on a modern
computer; the scheduling of the shell process running the script by the operating system is
likely to make more difference if these are embedded inside a much longer script or function,
as they will be. And on the other hand, the connection between ‘&&’ and a logical ‘and’ is so
strong in the minds of many programmers that to anyone with moderate shell experience
they are perfectly readable. So it’s up to you. I find I use the ‘&&’ and ‘||’ forms for a pair of
simple commands, but use ‘if’ for anything more complicated.

I would certainly advise you to avoid chains like:

true || print foo && print bar || false

If you try that, you will see ‘bar’ but not ‘foo’, which is not what a C programmer might
expect. Using the usual rules of precedence, you would parse it as: either true must be true;
or both the print statements must be true; or the false must be true. However, the shell
parses it differently, using these rules:

• If you encounter an ‘&&’,

– if the command before it (really the complete pipeline) succeeded, execute the
command immediately after, and execute what follows normally

– else if the command failed, skip the next command and any others until an ‘||’ is
encountered, or until the group of commands is ended by a newline, a semicolon,
or the end of an enclosing group. Then execute whatever follows in the normal
way.

• If you encounter an ‘||’,

3.8. SHELL SYNTAX: LOOPS, (SUB)SHELLS AND SO ON 135

– if the command before it succeeded, skip the next command and any others until
an ‘&&’ is encountered, or until the end of the group, and execute what follows
normally

– else if the command failed, execute the command immediately after the ‘||’.

If that’s hard to follow, just note that the rule is completely symmetric; a simple summary
is that the logical connectors don’t remember their past state. So in the example shown, the
‘true’ succeeds, we skip ‘print foo’ but execute ‘print bar’ and then skip false. The
expression returns status zero because the last thing it executed did so. Oddly enough, this
is completely standard behaviour for shells. This is a roundabout way of saying ‘don’t use
combined chains of ‘&&’s and ‘||’s unless you think Gödel’s theorem is for sissies’.

Strictly speaking, the and’s and or’s come in a hierarchy of things which connect commands.
They are above pipelines, which explains my remark above — an expression like ‘echo
$ZSH_VERSION |sed ’/dev//’’ is treated as a single command between any logical
connectors — and they are below newlines and semicolons — an expression like ‘true
&& print yes; false ||print no’ is parsed as two distinct sets of logically connected
command sequences. In the manual, a list is a complete set of commands executed in one go:

echo foo; echo bar

echo small furry animals

— a shell function is basically a glorified list with arguments and a name. A sublist is a set
of commands up to a newline or semicolon, in other words a complete expression possibly
involving the logical connectors:

show -nomoreproc |
grep -q foo &&
print The word ’‘foo’\’ occurs.

A pipeline is a chain of one or more commands connected by ‘|’, for example both individual
parts of the previous sublist,

show -nomoreproc | grep -q foo

and

print The word ’‘foo’\’ occurs.

count as pipelines. A simple command is one single unit of execution with a command name,
so to use the same example that includes all three of the following,

show -nomoreproc
grep -q foo
print The word ’‘foo’\’ occurs.

This means that in something like

print foo

136 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

where the command is terminated by a newline and then executed in one go, the expression
is all of the above — list, sublist, pipeline and simple command. Mostly I won’t need to make
the formal distinction; it sometimes helps when you need to break down a complicated set of
commands. It’s a good idea, and usually possible, to write in such a way that it’s obvious how
the commands break down. It’s not too important to know the details, as long as you’ve got a
feel for how the shell finds the next command.

3.8.2 Structures

I’ve shown plenty of examples of one sort of shell structure already, the if statement:

if [[black = white]]; then
print Yellow is no colour.

fi

The main points are: the ‘if’ itself is followed by some command whose return status is
tested; a ‘then’ follows as a new command; any number of commands may follow, as complex
as you like; the whole sequence is ended by a ‘fi’ as a command on its own. You can write
the ‘then’ on a new line if you like, I just happen to find it neater to stick it where it is. If
you follow the form here, remember the semicolon before it; the then must start a separate
command. (You can put another command immediately after the then without a newline or
semicolon, though, although people tend not to.)

The double-bracketed test is by far the most common thing to put here in zsh, as in ksh, but
any command will do; only the status is important.

if true; then
print This always gets executed

fi
if false; then

print This never gets executed
fi

Here, true always returns true (status 0), while false always returns false (status 1 in zsh,
although some versions return status 255 — anything nonzero will do). So the statements
following the prints are correct.

The if construct can be extended by ‘elif’ and ‘else’:

read var
if [[$var = yes]]; then

print Read yes
elif [[$var = no]]; then

print Read no
else

print Read something else
fi

The extension is pretty straightforward. You can have as many ‘elif’s with different tests
as you like; the code following the first test to succeed is executed. If no test succeeded, and
there is an ‘else’ (there doesn’t need to be), the code following that is executed. Note that the

3.8. SHELL SYNTAX: LOOPS, (SUB)SHELLS AND SO ON 137

form of the ‘elif’ is identical to that of ‘if’, including the ‘then’, while the else just appears
on its own.

The while-loop is quite similar to if. There are two differences: the syntax uses while, do
and done instead of if, then and fi, and after the loop body is executed (if it is), the test is
evaluated again. The process stops as soon as the test is false. So

i=0
while ((i++ < 3)); do

print $i
done

prints 1, then 2, then 3. As with if, the commands in the middle can be any set of zsh
commands, so

i=0
while ((i++ < 3)); do

if ((i & 1)); then
print $i is odd

else
print $i is even

fi
done

tells you that 1 and 3 are odd while 2 is even. Remember that the indentation is irrelevant;
it is purely there to make the structures more easy to understand. You can write the code on
a single line by replacing all the newlines with semicolons.

There is also an until loop, which is identical to the while loop except that the loop is
executed until the test is true. ‘until [[...’ is equivalent to ‘while ! [[...’.

Next comes the for loop. The normal case can best be demonstrated by another example:

for f in one two three; do
print $f

done

which prints out ‘one’ on the first iteration, then ‘two’, then ‘three’. The f is set to each of
the three words in turn, and the body of the loop executed for each. It is very useful that the
words after the ‘in’ may be anything you would normally have on a shell command line. So
‘for f in *; do’ will execute the body of the loop once for each file in the current directory,
with the file available as $f, and you can use arrays or command substitutions or any other
kind of substitution to generate the words to loop over.

The for loop is so useful that the shell allows a shorthand that you can use on the command
line: try

for f in *; print $f

and you will see the files in the current directory printed out, one per line. This form, without
the do and the done, involves less typing, but is also less clear, so it is recommended that
you only use it interactively, not in scripts or functions. You can turn the feature off with
NO_SHORT_LOOPS.

138 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

The case statement is used to test a pattern against a series of possibilities until one
succeeds. It is really a short way of doing a series of if and elif tests on the same pattern:

read var
case $var in

(yes) print Read yes
;;

(no) print Read no
;;

(*) print Read something else
;;

esac

is identical to the if/elif/else example above. The $var is compared against each pattern
in turn; if one matches, the code following that is executed — then the statement is exited;
no further matches are looked for. Hence the ‘*’ at the end, which can match anything, acts
like the ‘else’ of an if statement.

Note the quirks of the syntax: the pattern to test must appear in parentheses. For historical
reasons, you can miss out the left parenthesis before the pattern. I haven’t done that mainly
because unbalanced parentheses confuse the system I am using for writing this guide. Also,
note the double semicolon: this is the only use of double semicolons in the shell. That explains
the fact that if you type ‘;;’ on its own the shell will report a ‘parse error’; it couldn’t find a
case to associate it with.

You can also use alternative patterns by separating them with a vertical bar. Zsh allows
alternatives with extended globbing anyway; but this is actually a separate feature, which
is present in other shells which don’t have zsh’s extended globbing feature; it doesn’t depend
on the EXTENDED_GLOB option:

read var
case $var in

(yes|true|1) print Reply was affirmative
;;

(no|false|0) print Reply was negative
;;

(*) print Reply was cobblers
;;

esac

The first ‘print’ is used if the value of $var read in was ‘yes’, ‘true’ or ‘1’, and so on. Each
of the separate items can be a pattern, with any of the special characters allowed by zsh, this
time depending on the setting of the option EXTENDED_GLOB.

The select loop is not used all that often, in my experience. It is only useful with interactive
input (though the code may certainly appear in a script or function):

select var in earth air fire water; do
print You selected $var

done

This prints a menu; you must type 1, 2, 3 or 4 to select the corresponding item; then the body
of the loop is executed with $var set to the value in the list corresponding to the number.

3.8. SHELL SYNTAX: LOOPS, (SUB)SHELLS AND SO ON 139

To exit the loop hit the break key (usually ^G) or end of file (usually ^D: the feature is so
infrequently used that currently there is a bug in the shell that this tells you to use ‘exit’
to exit, which is nonsense). If the user entered a bogus value, then the loop is executed with
$var set to the empty string, though the actual input can be retrieved from $REPLY. Note
that the prompt printed for the user input is $PROMPT3, the only use of this parameter in
the shell: all normal prompt substitutions are available.

There is one final type of loop which is special to zsh, unlike the others above. This is
‘repeat’. It can be used two ways:

% repeat 3 print Hip Hip Hooray
Hip Hip Hooray
Hip Hip Hooray
Hip Hip Hooray

Here, the first word after repeat is a count, which could be a variable as normal
substitutions are performed. The rest of the line (or until the first semicolon) is a command
to repeat; it is executed identically each time.

The second form is a fully fledged loop, just like while:

% repeat 3; do
repeat> print Hip Hip Hooray
repeat> done
Hip Hip Hooray
Hip Hip Hooray
Hip Hip Hooray

which has the identical effect to the previous one. The ‘repeat>’ is the shell’s prompt to
show you that it is parsing the contents of a ‘repeat’ loop.

3.8.3 Subshells and current shell constructs

More catching up with stuff you’ve already seen. The expression in parentheses here:

% (cd ~; ls)
<all the files in my home directory>
% pwd
<where I was before, not necessarily ~>

is run in a subshell, as if it were a script. The main difference is that the shell inherits almost
everything from the main shell in which you are typing, including options settings, functions
and parameters. The most important thing it doesn’t inherit is probably information about
jobs: if you run jobs in a subshell, you will get no output; you can’t use fg to resume a job
in a subshell; you can’t use ‘kill %n’ to kill a job (though you can still use the process ID);
and so on. By now you should have some feel for the effect of running in a separate process.
Running a command, or set of commands, in a different directory, as in this example, is one
quite common use for this construct. (In zsh 4.1, you can use jobs in a subshell; it lists the
jobs running in the parent shell; this is because it is very useful to be able to pipe the output
of jobs into some processing loop.)

On the other hand, the expression in braces here:

140 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

% {cd ~; ls}
<all the files in my home directory>
% pwd
/home/pws

is run in the current shell. This is what I was blathering on about in the section on
redirection. Indeed, unless you need some special effect like redirecting a whole set of
commands, you won’t use the current-shell construct. The example here would behave just
the same way if the braces were missing.

As you might expect, the syntax of the subshell and current-shell forms is very similar. You
can use redirection with both, just as with simple commands, and they can appear in most
places where a simple command can appear:

[[$test = true]] && {
print Hello.
print Well, this is exciting.

}

That would be much clearer using an ‘if’, but it works. For some reason, you often find
expressions of this form in system start-up files located in the directory /etc/rc.d or, on
older systems, in files whose names begin with ‘/etc/rc.’. You can even do:

if { foo=bar; [[$foo = bar]] }; then
print yes

fi

but that’s also pretty gross.

One use for {...} is to make sure a whole set of commands is executed at once. For example,
if you copy a set of commands from a script in one window and want them to be run in one
go in a shell in another window, you can do:

% {
cursh> # now paste your commands in here...
...

cursh> }

and the commands will only be executed when you hit return after the final ‘}’. This is also
a workaround for some systems where cut and paste has slightly odd effects due to the way
different states of the terminal are handled. The current-shell construct is a little bit like an
anonymous function, although it doesn’t have any of the usual features of functions — you
can’t pass it arguments, and variables declared inside aren’t local to that section of code.

3.8.4 Subshells and current shells

In case you’re confused about what happens in the current shell and what happens in a
subshell, here’s a summary.

The following are run in the current shell.

3.8. SHELL SYNTAX: LOOPS, (SUB)SHELLS AND SO ON 141

1. All shell builtins and anything which looks like one, such as a precommand modifier
and tests with ‘[[’.

2. All complex statements and loops such as if and while. Tests and code inside the
block must both be considered separately.

3. All shell functions.

4. All files run by ‘source’ or ‘.’ as well as startup files.

5. The code inside a ‘{...}’.

6. The right hand side of a pipeline: this is guaranteed in zsh, but don’t rely on it for other
shells.

7. All forms of substitution except ‘...‘, $(...), =(...), <(...) and >(...).

The following are run in a subshell.

1. All external commands.

2. Anything on the left of a pipe, i.e. all sections of a pipeline but the last.

3. The code inside a ‘(...)’.

4. Substitutions involving execution of code, i.e. ‘...‘, $(...), =(...), <(...) and >(...). (TCL
fans note that this is different from the ‘[...]’ command substitution in that language.)

5. Anything started in the background with ‘&’ at the end.

6. Anything which has ever been suspended. This is a little subtle: suppose you execute
a set of commands in the current shell and suspend it with ^Z. Since the shell needs
to return you to the prompt, it forks a subshell to remember the commands it was
executing when you interrupted it. If you use fg or bg to restart, the commands will
stay in the subshell. This is a special feature of zsh; most shells won’t let you interrupt
anything in the current shell like that, though you can still abort it with ^C.

With an alias, you can’t tell where it will be executed — you need to find out what it expands
too first. The expansion naturally takes place in the current shell.

Of course, if for some reason the current set of commands is already running in a subshell,
it doesn’t get magically returned to the current shell — so a shell builtin on the left hand
side of a pipeline is running in a subshell. However, it doesn’t get an extra subshell, as an
external command would. What I mean is:

{ print Hello; cat file } |
while read line; print $line; done

The shell forks, producing a subshell, to execute the left hand side of the pipeline, and
that subshell forks to execute the cat external command, but nothing else in that set of
commands will cause a new subshell to be created.

(For the curious only: actually, that’s not quite true, and I already pointed this out when
I talked about command substitutions: the shell keeps track of occasions when it is in a
subshell and has no more commands to execute. In this case it will not bother forking to
create a new process for the cat, it will simply replace the subshell which is not needed any
more. This can only happen in simple cases where the shell has no clearing up to do.)

142 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

3.9 Emulation and portability

I described the options you need to set for compatibility with ksh in the previous chapter.
Here I’m more interested in the best way of running ksh scripts and functions.

First, you should remember that because of all zsh’s options you can’t assume that a piece
of zsh code will simply run a piece of sh or ksh code without any extra changes. Our old
friend SH_WORD_SPLIT is the most common problem, but there are plenty of others. In
addition to options, there are other differences which simply need to be worked around. I
will list some of them a bit later. Generally speaking, Bourne shell is simple enough that
zsh emulates it pretty well — although beware in case you are using bash extensions, since
to many Linux users bash is the nearest approximation to the Bourne shell they ever come
across. Zsh makes no attempt to emulate bash, even though some of bash’s features have
been incorporated.

To make zsh emulate ksh or sh as closely as it knows how, there are various things you can
do.

1. Invoke zsh under the name sh or ksh, as appropriate. You can do this by creating a
symbolic link from zsh to sh or ksh. Then when zsh starts up all the options will be set
appropriately. If you are starting that shell from another zsh, you can use the feature
of zsh that tricks a programme into thinking it has a different name: ‘ARGV0=sh zsh’
runs zsh under the name sh, just like the symbolic link method.

2. Use ‘emulate ksh’ at the top of the script or function you want to run. In the case
of a function, it is better to run ‘emulate -L ksh’ since this makes sure the normal
options will be restored when the function exits; this is irrelevant for a script as the
options cannot be propagated to the process which ran the script. You can also use the
option ‘-R’ after emulate, which forces more options to be like ksh; these extra options
are generally for user convenience and not relevant to basic syntax, but in some cases
you may want the extra cover provided.
If it’s possible the script may already be running under ksh, you can instead use

[[-z $ZSH_VERSION]] && emulate ksh

or for sh, using the simpler test command there,

[x$ZSH_VERSION = x] && emulate sh

Both these methods have drawbacks, and if you plan to be a heavy zsh user there’s no
substitute for simply getting used to zsh’s own basic syntax. If you think there is some
useful element of emulation we missed, however, you should certainly tell the zsh-workers
mailing list about it.

Emulation of ksh88 is much better than emulation of ksh93. Support for the latter is
gradually being added, but only patchily.

There is no easy way of converting code written for any csh-like shell; you will just have to
convert it by hand. See the FAQ for some hints on converting aliases to functions.

3.9.1 Differences in detail

Here are some differences from ksh88 which might prove significant for ksh programmers.
This is lifted straight from the corresponding section of the FAQ; it is not complete, and

3.9. EMULATION AND PORTABILITY 143

indeed some of the ‘differences’ could be interpreted as bugs. Those marked ‘*’ perform in a
ksh-like manner if the shell is invoked with the name ‘ksh’, or if ‘emulate ksh’ is in effect.

• Syntax:

– * Shell word splitting.
– * Arrays are (by default) more csh-like than ksh-like: subscripts start at 1, not 0;
array[0] refers to array[1]; $array refers to the whole array, not $array[0];
braces are unnecessary: $a[1] == ${a[1]}, etc. The KSH_ARRAYS option is now
available.

– Coprocesses are established by coproc; |& behaves like csh. Handling of coprocess
file descriptors is also different.

– In cmd1 && cmd2 &, only cmd2 instead of the whole expression is run in the
background in zsh. The manual implies this is a bug. Use { cmd1 && cmd2 }
& as a workaround.

• Command line substitutions, globbing etc.:

– * Failure to match a globbing pattern causes an error (use NO_NOMATCH).
– * The results of parameter substitutions are treated as plain text: foo="*";
print $foo prints all files in ksh but * in zsh (unset GLOB_SUBST).

– * $PSn do not do parameter substitution by default (use PROMPT_SUBST).
– * Standard globbing does not allow ksh-style ‘pattern-lists’. See chapter 5 for a list

of equivalent zsh forms. The ^, ~ and # (but not |) forms require EXTENDED_GLOB.
From version 3.1.3, the ksh forms are fully supported when the option KSH_GLOB
is in effect.
[1] Note that ~ is the only globbing operator to have a lower precedence than
/. For example, **/foo~*bar* matches any file in a subdirectory called foo,
except where bar occurred somewhere in the path (e.g. users/barstaff/foo
will be excluded by the ~ operator). As the ** operator cannot be grouped (inside
parentheses it is treated as *), this is the way to exclude some subdirectories from
matching a **.

– Unquoted assignments do file expansion after colons (intended for PATHs).
– integer does not allow -i.
– typeset and integer have special behaviour for assignments in ksh, but not in

zsh. For example, this doesn’t work in zsh:

integer k=$(wc -l ~/.zshrc)

because the return value from wc includes leading whitespace which causes
wordsplitting. Ksh handles the assignment specially as a single word.

• Command execution:

– * There is no $ENV variable (use /etc/zshrc, ~/.zshrc; note also $ZDOTDIR).
– $PATH is not searched for commands specified at invocation without -c.

• Aliases and functions:

– The order in which aliases and functions are defined is significant: function
definitions with () expand aliases.

– Aliases and functions cannot be exported.

144 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

– There are no tracked aliases: command hashing replaces these.
– The use of aliases for key bindings is replaced by ‘bindkey’.
– * Options are not local to functions (use LOCAL_OPTIONS; note this may always

be unset locally to propagate options settings from a function to the calling level).

• Traps and signals:

– * Traps are not local to functions. The option LOCAL_TRAPS is available from
3.1.6.

– TRAPERR has become TRAPZERR (this was forced by UNICOS which has
SIGERR).

• Editing:

– The options emacs, gmacs, viraw are not supported. Use bindkey to change the
editing behaviour: set -o {emacs,vi} becomes bindkey -{e,v}; for gmacs,
go to emacs mode and use bindkey \^t gosmacs-transpose-characters.

– The keyword option does not exist and -k is instead interactivecomments.
(keyword will not be in the next ksh release either.)

– Management of histories in multiple shells is different: the history list is not saved
and restored after each command. The option SHARE_HISTORY appeared in 3.1.6
and is set in ksh compatibility mode to remedy this.

– \ does not escape editing chars (use ^V).
– Not all ksh bindings are set (e.g. <ESC>#; try <ESC>q).
– * # in an interactive shell is not treated as a comment by default.

• Built-in commands:

– Some built-ins (r, autoload, history, integer ...) were aliases in ksh.
– There is no built-in command newgrp: use e.g. alias newgrp="exec newgrp"

– jobs has no -n flag.
– read has no -s flag.

• Other idiosyncrasies:

– select always redisplays the list of selections on each loop.

3.9.2 Making your own scripts and functions portable

There are also problems in making your own scripts and functions available to other people,
who may have different options set.

In the case of functions, it is always best to put ‘emulate -L zsh’ at the top of the function,
which will reset the options to the default zsh values, and then set any other necessary
options. It doesn’t take the shell a great deal of time to process these commands, so try
and get into the habit of putting them any function you think may be used by other people.
(Completion functions are a special case as the environment is already standardised — see
chapter 6 for this.)

The same applies to scripts, since if you run the script without using the option ‘-f’ to zsh
the user’s non-interactive startup files will be run, and in any case the file /etc/zshenv will
be run. We urge system administrators not to set options unconditionally in that file unless
absolutely necessary; but they don’t always listen. Hence an emulate can still save a lot of
grief.

3.10. RUNNING SCRIPTS 145

3.10 Running scripts

Here are some final comments on running scripts: they apply regardless of the problems
of portability, but you should certainly also be aware of what I was saying in the previous
section.

You may be aware that you can force the operating system to run a script using a particular
interpreter by putting ‘#!’ and the path to the interpreter at the top of the script. For
example, a zsh script could start with

#!/usr/local/bin/zsh
print The arguments are $*

assuming that zsh lives in the directory /usr/local/bin. Then you can run the script
under its name as if it were an ordinary command. Suppose the script were called
‘scriptfile’ and in the current directory, and you want to run it with the arguments ‘one
two forty-three’. First you must make sure the script is executable:

% chmod +x scriptfile

and then you can run it with the arguments:

% ./scriptfile one two forty-three
The arguments are one two forty-three

The shell treats the first line as a comment, since it begins with a ‘#’, but note it still gets
evaluated by the shell; the system simply looks inside the file to see if what’s there, it doesn’t
change it just because the first line tells it to execute the shell.

I put the ‘./’ in front to refer to the current directory because I don’t usually have that in my
path — this is for safety, to avoid running things which happen to have names like commands
simply because they were in the current directory. But many people aren’t so paranoid, and
if ‘.’ is in your path, you can omit the ‘./’. Hence, obviously, it can be anywhere else in your
path: it is searched for as an ordinary executable.

The shell actually provides this mechanism even on operating systems (now few and far
between in the UNIX world) that don’t have the feature built into them. The way this works
is that if the shell found the file, and it was executable, but running it didn’t work, then it will
look for the #!, extract the name following and run (in this example) ‘/usr/local/bin/zsh
<path>/scriptfile one two forty-three’, where <path> is the path where the file was
found. This is, in fact, pretty much what the system does if it handles it itself.

Some shells search for scripts using the path when they are given as filenames at invocation,
but zsh happens not to. In other words, ‘zsh scriptfile’ only runs scriptfile in the
current directory.

There are two other features you may want to be aware of. Both are down to the operating
system, if that is what is responsible for the ‘#!’ trick (true of all the most common UNIX-
like systems at the moment). First, you are usually allowed to supply one, but only one,
argument or option in the ‘#!’ line, thus:

#!/usr/local/bin/zsh -f
print other stuff here

146 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

which stops startup files other than /etc/zshenv from being run, but otherwise works
the same as before. If you need more options, you should combine them in the same word.
However, it’s usually clearer, for anything apart from -f, -i (which forces the shell into
interactive mode) and a few other options which need to take effect immediately, to put a
‘setopt’ line at the start of the body of the script. In a few versions of zsh, there was an
unexpected consequence of the fact that the line would only be split once: if you accidentally
left some spaces at the end of the line (e.g. ‘#!/usr/local/bin/zsh -f ’) they would be
passed down to the shell, which would report an error, which was hard to interpret. The
spaces will still usually be passed down, but the shell is now smart enough to ignore spaces
in an option list.

The second point is that the length of the ‘#!’ line which will be evaluated is limited.
Often the limit is 32 characters, in total, That means if your path to zsh is long,
e.g. ‘/home/users/psychology/research/dreams/freud/solaris_2.5/bin/zsh’ the
system won’t be able to find the shell. Your only recourse is to find a shorter path, or execute
the shell directly, or some sneakier trick such as running the script under /bin/sh and
making that start zsh when it detects that zsh isn’t running yet. That’s a fairly nasty way of
doing it, but just in case you find it necessary, here’s an example:

#!/bin/sh

if [x$ZSH_VERSION = x]; then
Put the right path in here ---
or just rely on finding zsh in
$path, since ‘exec’ handles that.
exec /usr/local/bin/zsh $0 "$@"

fi

print $ZSH_VERSION
print Hello, this is $0
print with arguments $*.

Note that first ‘$0’, which passes down the name of the script that was originally executed.
Running this as ‘testexec foo bar’ gives me

3.1.9-dev-8
Hello, this is /home/pws/tmp/testexec
with arguments foo bar.

I hope you won’t have to resort to that. By the way, really, excruciatingly old versions of zsh
didn’t have $ZSH_VERSION. Rather than fix the script, I suggest you upgrade the shell. Also,
on some old Bourne shells you might need to replace "$@" with ${1+"$@"}, which is more
careful about only putting in arguments if there were any (this is the sort of thing we’ll see
in chapter 5). Usually this isn’t necessary.

You can use the same trick on ancient versions of UNIX which didn’t handle ‘#!’. On some
such systems, anything with a ‘:’ as the first character is run with the Bourne shell, so this
serves as an alternative to ‘#!/bin/sh’, while on some Berkeley systems, a plain ‘#’ caused
csh to be used. In the second case, you will need to change the syntax of the first test to be
understood by both zsh and csh. I’ll leave that as an exercise for the reader. If you have perl
(very probable these days) you can look at the perlrun manual page, which discusses the
corresponding problem of starting perl scripts from a shell, for some ideas.

There’s one other glitch you may come across. Sometimes if you type the name of a script

3.10. RUNNING SCRIPTS 147

which you know is in your path and is executable, the shell may tell you ‘file not found’,
or some equivalent message. What this usually means is that the interpreter wasn’t found,
because you mistyped the line after the ‘#!’. This confusing message isn’t the shell’s fault:
a lot of operating systems return the same system error in this case as if the script were
really not found. It’s not worth the shell searching the path to see if the script is there,
because in the vast majority of cases the error refers to the programme in the execution
path. If the operating system returned the more natural error, ‘exec format error’, then
the shell would know that there was something wrong with the file, and could investigate;
but unfortunately life’s not that simple.

148 CHAPTER 3. DEALING WITH BASIC SHELL SYNTAX

Chapter 4

The Z-Shell Line Editor

The zsh line editor is probably the first part of the shell you ever used, when you started
typing in commands. Even the most basic shells, such as sh, provide some kind of editing
capability, although in that case probably just what the system itself does — enter characters,
delete the last character, delete the entire line. Most shells you’re likely to use nowadays do
quite a lot more. With zsh you can even extend the set of editor commands using shell
functions.

4.1 Introducing zle

The zsh line editor is usually abbreviated to ‘zle’. Normally it fires itself up for any interative
shell; you don’t have to do anything special until you decide you need to change its behaviour.
If everything looks OK and you’re not interested in how zle is started up, skip to the next
subsection.

Nowadays, zle lives in its own loadable module, zsh/zle, which saves all the overhead
of having an editor if the shell isn’t interactive. However, you normally won’t need to
worry about that; I’ll say more about modules in chapter 7, but the shell knows when
you need zle and gives you it automatically. Usually the module is in a directory with a
name like ‘/usr/local/lib/zsh/4.0.4/zsh/zle.so’, where the ‘4.0.4’ is the shell’s
version number, the same as the value of the parameter $ZSH_VERSION, and everything
after that apart from the suffix ‘.so’ is the module name. The suffix may be ‘.sl’ (HP-UX)
or ‘.dll’ (Cygwin), but ‘.so’ is by far the most common form. It differs because zsh keeps
the same convention for dynamically loadable libraries, or ‘shared objects’ in UNIX-speak,
as the operating system.

If the shell is badly installed, you sometimes see error messages that it, or a command such
as ‘bindkey’, couldn’t be loaded. That means the shell couldn’t find ‘zsh/zle’ anywhere in
the module load path, the array $module_path. Then you need to complain to your system
administrator. If you’ve just compiled zsh and are having this problem, it’s because you have
to install the modules before you run the shell, even if the shell itself isn’t installed. You can
do that by saying ‘make install.modules’. Then the compiled zsh should run from where
it is.

Note that unlike bash’s line editor, readline, which is an entirely separate library, zle is an
integral part of the shell. Hence you configure it by sticking commands in your .zshrc —

149

150 CHAPTER 4. THE Z-SHELL LINE EDITOR

as it’s only useful for an interactive shell, only /etc/zshrc and .zshrc make sense for this
purpose.

One tip if you’re looking at the zsh manual using info, either with the command of that name
or \C-h i within Emacs, which I find the most convenient way: the entry for zle is called
‘Zsh Line Editor’, in full, not just ‘Zle’. Have fun looking for ‘Shell Builtin Commands’ (not
‘Builtins’) while you’re at it.

4.1.1 The simple facts

As with any editor later than ed, you can move around the line and change it using various
‘keystrokes’, in other words one or more sets of keys you type at once. For example, the
keystroke to move back a word is (maybe) ESC b. This means you first hit the escape key;
nothing happens yet. Then you hit ‘b’, and the cursor instantly jumps back to the start of the
word. (I’ll have more to say on what zle thinks is a ‘word’ — it’s not necessarily the same as
what the rest of the shell thinks is a word.)

It will probably help if I introduce the shell’s way of describing keystrokes right away; then
when you need to enter them you can just copy them straight in. The escape key is ‘\e’, so
that keystroke would be ‘\eb’. Other common keystrokes include holding down the control
key, probably near the bottom left of the keyboard, and typing another key at the same time.
The simplest way of indicate a control key is just to put ‘^’ in front; so for example ‘^x^x’
means hold down control, and press ‘x’ twice with control still held down. It has exactly the
same effect as ‘^X^X’. (You may find each time you do that it takes you to the start of the line
and back to where you were.)

I’ve already introduced the weasel word ‘maybe’ to try to avoid lying. This is because actually
zle has two modes of operation, one (the default) like Emacs, the other like vi. If you don’t
know either of those venerable UNIX editors, I suggest you stick to Emacs mode, since it
tends to interfere a little less with what you’re doing, and furthermore completion is a little
easier. Completion is an offshoot of zle behaviour which is described in chapter 6 (which, you
will notice, is longer than this one).

If you normally use vi, you may have one or both of the environment variables $EDITOR or
$VISUAL set to ‘vi’. (It all works the same way if you use ‘vim’ instead, or any editor that
happens to contain ‘vi’ such as ‘elvis’.) In that case, zle will start up in its ‘vi’ mode, where
the keystrokes are rather different. That’s why you might have found that ‘\eb’ didn’t do
what I said, even though you had made no attempt to configure zle. You can make zle always
use either emacs or vi mode by putting either

bindkey -e

or

bindkey -v

in your .zshrc. This is just one of many uses of bindkey.

If you’re not familiar with this use of the word ‘bind’, it just means ‘make a keystroke
execute a particular editor command’. Commands have long-winded names with hyphens
which give you quite a good description of what they do, such as ‘backward-delete-char’.
Normal keys which correspond to printable characters are usually ‘bound to self-insert’,
a perverse way of saying they do what you expect and show up the character you typed.

4.1. INTRODUCING ZLE 151

However, you can actually bind them to something else. In vi command mode, this is perfectly
normal.

Actually, if you use a windowing system, you might want to say ‘bindkey -me’, which binds
a whole set of ‘meta’ keys. In X Windows, one of the keys on your keyboard, possibly ALT,
may be designated a ‘meta’ key which has a special effect similar to the control key. Bindings
with the meta key held down are described a bit like they are in Emacs, ‘\M-b’. (You can
specify control keys similarly, in fact, like ‘\C-x’, but ‘^x’ is shorter.) Using the ‘-m’ option
to bindkey tells zsh that wherever it binds an escape sequence like ‘\eb’, it should also
bind the corresponding meta sequence like ‘\M-b’. Emacs always ties these together, but zsh
doesn’t — you can rebind them separately. and if you want both sequences to be bound to a
new command, you have to bind them both explicitly.

You need to be careful with ‘bindkey -m’, however; the shell can’t tell whether you are
typing a character with the top bit set, or executing a command. This is likely to become
worse as the UTF-8 encoding for characters becomes more popular, since a non-ASCII
character then consists of a whole series of bytes with the top bit set.

If you are interested in binding function keys, you may already have found the key sequences
they send apparently don’t make any sense; see the section below for more information. This
will introduce the function called zkbd which can make the process less painful. The function
also helps with ‘meta’ and ‘ALT’ keys.

4.1.2 Vi mode

I’m going to concentrate on Emacs mode for various reasons: firstly, because I use it myself;
secondly, because the most likely reason for you using vi mode is that you are already familiar
with vi and don’t need to be told how it works; thirdly, because most of the commands are the
same in both modes, just bound differently; and finally because if you don’t already know vi,
you will quite likely find vi editing mode rather counterintuitive and difficult to use.

However, here are a few remarks on it just to get it out of the way. Like the real vi editor,
there are two basic modes, insert mode, where you type in text, and command mode, where
the same keystrokes which insert characters are bound instead to editing commands. Unlike
the real vi, the line editor starts in insert mode on every new command you edit. This means
you can often simply type a line up to the ‘return’ at the end and forget you are in vi mode at
all.

To enter command mode, you hit ‘escape’, again just like normal vi. At this point you are
in the magic world of vi commands, where typing an ordinary character can have any effect
whatsoever. However, the bindings are similar to normal vi, so ‘h’ and ‘l’ move left and right.
When you want to insert more text, you can use any of the normal vi commands which allow
you to do that, such as ‘i’ (vi-insert) or ‘a’ (vi-add-next).

Apart from the separate command and insert modes and the completely different set of key
bindings, there is no basic difference between Emacs mode and vi mode. You can bind keys
in both the vi modes — they don’t have to correspond to self-insert in insert mode.
Below, I’ll describe ‘keymaps’, a complete set of descriptions for what all the keys will do
(less impressive than it sounds, since a lot of keys may be set to ‘undefined-key, which
means they don’t do anything useful), and you will see how to change the behaviour in both
modes.

152 CHAPTER 4. THE Z-SHELL LINE EDITOR

4.2 Basic editing

If you know Emacs or vi, you will very soon find out how to do simple commands like moving
the cursor, going up and down the history list, and deleting and copying words. If you don’t,
you should read the zshzle manual page for a concise description of what it can do. Here is
a summary for Emacs mode.

4.2.1 Moving

You can move forwards and backwards along the line using the cursor keys. The are a variety
of different conventions as to what keystrokes the cursor keys produce. You might naively
expect that pressing, say, cursor right, sends a signal along the lines of ‘cursor right’ to
the application. Unfortunately, there is no such character in the ASCII character set, so
programmes which read input as a string of characters like zsh have to be given an arbitrary
string of characters. (It’s different for programmes which understand other forms of input,
like windowing systems.)

The two most common conventions for cursor keys are where the up key sends ‘\e[A’ and the
other three the same with B, C and D at the end, and the convention where the ‘[’ is replaced
by an ‘O’ (uppercase letter ‘O’). In old versions of zsh, the only convention supported was the
first of those two. The second, and any other convention, were not supported at all and you
had to bind the keys yourself. This was done by something like:

bindkey "\eOA" up-line-or-history
bindkey "\eOB" down-line-or-history
bindkey "\eOC" forward-char
bindkey "\eOD" backward-char

The shell tries harder now, and provided your system has the correct information about
your terminal (zsh uses an old system called ‘termcap’ which has largely been superseded by
another called ‘terminfo’) you should be lucky. If the shell thinks your keys are too perverse
— in particular, if the keystroke it wants to bind the function too is already defined by zsh —
you will still have to do it by hand. The list above should serve as a template.

Instead of the cursor keys, traditional Emacs keys are available: ^b and ^f for backward
and forward, ^p and ^n for previous line and next line, so you can continue even if the cursor
keys don’t work.

Moving longer distances is done by \eb and \ef for a word backwards or forwards (or, as you
saw, \M-b and \M-f), and ^a and ^e for the start and the end of the line. That just about
exhausts the ones you will use the most frequently.

4.2.2 Deleting

For deleting, backspace or the delete key will delete backwards. There is an eternal battle
over these keys owing to the fact that on PC keyboards the key at the top left of the
central keyboard section is ‘backspace’ which is the character ^h, while on traditional UNIX
keyboards it is ‘delete’ which is the character 127, often written as ^? (which zsh also
understands). When you are in the system’s own primitive line editing mode, as with sh
(unless your sh is really bash), only one of these is ‘bound’, although it’s not really a key
binding, it’s a translation made by the system’s terminal driver, and it’s usually the wrong

4.2. BASIC EDITING 153

one. Hence you often find the system prints ‘^h’ on the screen when you want it to delete.
You can change the key using

stty erase ’^h’

but zsh protects you from all that — both ^h (backspace) and ^? (delete) will delete
backwards one character. Note, by the way, that zsh doesn’t understand smart names for
any keystrokes – if you try to bind a key called ‘backspace’ zsh will bind a command to that
sequence of characters, not a key of that name. See comments on ‘bindkey -s’ for when
something like this might even be useful.

To confuse matters further, the key often marked as ‘Delete’ on a 101- or 102-key PC keyboard
in the group of 6 above the cursor keys is completely different again, and probably doesn’t
send either of those sequences. On my keyboard it sends the sequence ‘\e[3~’. I find it
convenient to have this delete the next charater, which is its tradional role in the PC world,
which I do by

bindkey ’\e[3~’ delete-char

However, the tradtional Emacs way of deleting the next character is to use ‘^d’, which zsh
binds for you by default. If you look at the binding, which you can do by not giving bindkey
an editor command to bind,

% bindkey ’^d’
delete-char-or-list

you’ll see it doesn’t quite do what I suggested. The ‘-or-list’ part is for completion,
and you’ll find out about it in the next chapter. The first shell I know of to have this odd
combination was tcsh.

Since I enjoy confusion, I might as well point out that usually ^d has another use, which is
to tell the terminal driver you’ve reached the end of a file. In the case of, say, a file on a disk,
the system knows this by itself, but if you are supplying a stream of characters, the only way
of telling it is to send a special character. The default is usually ^d. You will notice that if
you type ‘^d’ at the start of the line, you see the message

zsh: use ’exit’ to exit.

That’s because zsh recognises the ^d as end-of-file in that position. By default the shell
warns you; you can turn this off by setting the option IGNORE_EOF. You can tell the system
you don’t ever want to send an end-of-file in this way with stty, again: the following are
equivalent in Linux but your system way want one or the other:

stty eof ’^-’
stty eof undef

Remember that stty is not part of the shell; it’s a way of controlling the state of the system’s
terminal driver. This means it survives as long as the terminal or terminal window is still
connected, even if you start a new shell or exit one that isn’t the login shell.

By the way, if you need to refer to a character by its number, the easiest way is probably to
use the syntax ‘\x??’, where the ‘??’ are the two hex digits for the key. In the case of delete,
it is ‘\x7f’. You can confirm this by:

154 CHAPTER 4. THE Z-SHELL LINE EDITOR

% bindkey ’\x7f’
"^?" backward-delete-char

4.2.3 More deletion

You can delete larger areas with ‘\ed’ to delete the next word and ‘\e^h’ or ‘\e^?’ (escape
followed by delete backwards) to delete the previous word. ‘^u’ usually removes the entire
line, before and after the cursor — this is not like Emacs, where ^u introduces digit
arguments as I will describe in the next subsection. It is, however, like another of those
primitive editing commands the terminal driver itself provides, this one being known to
stty as ‘kill’. The most common use of this outside zsh is for deleting your password when
you login, when you know you’ve typed it wrong but can’t see how many !@?*! characters
you’ve typed, and maybe can’t rely on the terminal agreeing with you as to which of ^h or ^?
will delete a single one.

Strictly speaking, all the keystrokes in the previous paragraph perform a ‘kill’ (zsh-speak,
not to be confused with the stty ‘kill’) rather than a ‘delete’ (or deletion, as we used to say
when we had a distinct between nouning and verbing). The difference is the same as in
Emacs — ‘killed’ text is saved for later ‘yanking’ back somewhere else, which you do with
the ^y key, whereas ‘deleted’ text as with ^? and ^d is gone forever. This is what everyone
not brought up under Emacs calls ‘cut’ and ‘paste’1. Another feature borrowed from Emacs
is that if you do multiple ‘kills’ without any other editing in between, the killed text is joined
together and you can yank it all back in one go. I will say more when I talk about point and
mark (another Emacs idea).

Actually, even deleted text isn’t gone forever: zsh has an Emacs-like editing history, and
you can undo the previous commands on the line. This is usually bound to ^xu and ^x^u,
and there is shorter binding which is described rather confusingly as ‘^_’ — confusingly,
because on all not-completely-spaced-out keyboards I’ve ever used you actually generate that
sequence by holding down control and pressing the ‘/’ key. Zsh doesn’t use ^z by default and,
if you are used to Windows, that is another suitable binding for undo.

Zsh scores in one way over Emacs — it also has ‘redo’, not bound by default. This means
that if you undo to much, you can put back what you just undid by repeatedly using the redo
command.

4.3 Fancier editing

4.3.1 Options controlling zle

Unlike completion, zle doesn’t have many options associated with it; most of the control is
done by key bindings and builtin commands. Only two are really useful; both control beeps.
The option beep can be unset to tell the shell never to make a noise on an error; the option
histbeep can be unset to disable beeps only in the case of trying to go back before the first
or forward after the last history entry.

The not-very-useful options are zle and singlelinezle. The former controls whether zle
is active at all and isn’t that useful because it’s usually on automatically whenever you need
it, in other words in interative shells, and off whenever you don’t. It’s sometimes useful to

1although since Emacs dates back to the seventies, it could be everyone else that’s wrong

4.3. FANCIER EDITING 155

test via ‘[[-o zle]]’, however; this lets you make a function do something cleverer in an
interative shell.

The option singlelinezle restricts editing to one line; if it gets too long, it will be truncated
and a ‘$’ printed where the missing bits are. It’s only there for compatibility with ksh and as
a safeguard if your terminal is really screwed up, though even in that case zsh tries to guess
whether everything it needs is available.

Other functions that affect zle include the history functions. These were described back in
chapter 2; once you’ve set it off, searching through the history works basically the same way
in zle as with the ‘!’ history commands.

4.3.2 The minibuffer and extended commands

The ‘minibuffer’ is yet another Emacs concept; it is a prompt that appears just under the
command line for you to enter some edit required by the editor itself. Usually, it comes and
goes as it pleases and you don’t need to think about it. The most common uses are entering
text for searches, and entering a command which isn’t bound to a string. That’s yet another
Emacs feature: \ex prompts you to enter the name of a command. Luckily, since the names
tend to be rather long, completion is available. So typing ‘echo foo<ESC>xba<TAB>w<TAB>’
ends up with:

% echo foo
execute: backward-word

and hitting return executes that function, taking you to the start of the foo; you might be
able to think of easier ways of doing that. This does provide a way of running commands you
don’t often use.

(I hope my notation isn’t too confusing. I write things like <TAB> when I’m showing a single
character you hit, to make it stand out from the surrounding text. However, when I’m not
showing text being entered, I would write that as ‘\t’, which is how you would enter the
character into a key sequence to be bound, or a string to be printed.)

The minibuffer only handles a very limited set of editing commands. Typing one it doesn’t
understand usually exits whatever you were trying to do with the minibuffer, then executes
the keystroke. However, in this particular case, it won’t let you exit until you have finished
typing a command; your only other option is to abort. The usual zle abort character is ^g,
‘send-break’. This is different from the more drastic ^c, which sends the shell itself an
interrupt signal. Quite often they have the same effect in zle, however. (You’ll notice ^c
is actually ‘bound to undefined-key’, in other words zle doesn’t consider it does anything.
However, the terminal driver probably causes it to send an interrupt, and zle does respond
to that.)

Another feature useful with rare commands is ‘where-is’. Surprise! it’s not bound by
default, so typing ‘<ESC>xwhere-is’ is then the way of runing it. Then you type another
editor command at the ‘Where is:’ prompt, and the shell will tell you what keystrokes, if
any, are bound to it. You can also simply use grep on the output of bindkey, which, with no
arguments, lists all bindings.

156 CHAPTER 4. THE Z-SHELL LINE EDITOR

4.3.3 Prefix (digit) arguments

Many commands can be repeated by giving them a numeric prefix or digit argument. For
example, at the end of a long line of text, type ‘<ESC>4<ESC>b’. The ‘<ESC>b’ on its own
would take you one word backwards. The ‘<ESC>4’ passes it the number four and it moves
four words backwards. Generally speaking, this works any time it make sense to repeat
a command. It works for self-insert, too, just repeatedly inserting the character. If it
doesn’t work, the prefix argument is simply ignored.

You can build up long or negative arguments by repeating both the \e and the digit or ‘-’
after it; for example, ‘<ESC>-<ESC>1<ESC>0’ specifies minus ten. It varies from command
to command how useful negative numbers are, but they generally switch from backwards to
forwards or similar: ‘<ESC>-<ESC>4<ESC>\f’ is a pointless way of executing the same as
‘<ESC>4<ESC>b’.

The shell also has Emacs’ ‘universal-argument’ feature, but it’s not bound by default —
in Emacs it is \C-u, but as we’ve seen that’s already in use. This is an alternative to all
those escapes. If you bind the command to a keystroke (it’s absolutely pointless as a shortcut
otherwise), and type that key, then an option minus followed by any digits are remembered
as a prefix. The next keystroke which is not one of those is then executed as a command,
with the prefix formed by the number typed after universal-argument.

For example, on my keyboard, the key F12 sends the key sequence ‘\e[[24~’ — see below
for how to find out what functions keys send. Hence I use

bindkey ’\e[[24~’ universal-argument

Then if I hit the characters F12, 4, 0, a, a row of forty ‘a’s is inserted onto the command line.
I’m not claiming this example is particularly useful.

4.3.4 Words, regions and marks

Words are handled a bit differently in zsh from the way they are in most editors. First, there
is a difference between what Emacs mode and vi mode consider words. That is to say, there
is a difference between the functions bound by default in those modes; you can use the same
functions in either mode by rebinding the keys.

In both vi and Emacs modes, the same logic about words applies whether you are moving
forward or backward a number of words, or deleting or killing them; the same amount of text
is removed when killing as the cursor would move in the other case.

In vi mode, words are basically the same as what vi considers words to be: a sequence of
alphanumeric characters together with underscores — essentially, characters that can occur
in identifiers, and in fact that’s how zsh internally recognises vi ‘word characters’. There
is one slight oddity about vi’s wordwise behaviour, however, which you can easily see if you
type ‘/a/filename/path/’, leave insert mode with ESC, and use ‘w’ or ‘b’ to go forward or
backward by words over it. It alternates between moving over the characters in a word, and
the characters in the separator ‘/’.

In Emacs, however, it is done a bit differently. The vi ‘word characters’ are always considered
parts of a word, but there is a parameter $WORDCHARS which gives a string of characters
which are also part of a word. This is perhaps opposite to what you would expect; given that
alphanumerics are always part of a word, you might expect there to be a parameter to which
you add characters you don’t want to be part of a word. But it’s not like that.

4.3. FANCIER EDITING 157

Also unlike vi, jumping a word always means jumping to a word character at the start of a
word. There is no extra ‘turn’ used up in jumping over the non-word characters.

The default value for $WORDCHARS is

*?_-.[]~=/&;!#$%^(){}<>

i.e. pretty much everything and the kitchen sink. Usually, therefore, you will want to
remove characters which you don’t want to be considered parts of words; ‘-’, ‘/’ and ‘.’ are
particularly likely possibilities. If you want to remove individual characters, you can do it
with some pattern matching trickery (next chapter):

% WORDCHARS=${WORDCHARS//[&.;]}
% print $WORDCHARS

*?_-[]~=/!#$%^(){}<>

shows that the operation has removed those three characters in the group, i.e. ‘&’, ‘.’ and
‘;’, from $WORDCHARS. The ‘//’ indicates a global substitution: any of the characters in the
square brackets is replaced by nothing.

Many other line editors, even those like readline with Emacs bindings, behave as if
only identifier characters were part of a word, i.e. as if $WORDCHARS was empty. This
is very easy to do with a zle shell function. Recent versions of zsh supply the functions
‘bash-forward-word’, ‘bash-kill-word’, and a set of other similar ones, for you to bind
to keys in order to have that behaviour.

Other behaviours are also possible by writing functions; for example, you can jump over real
shell words (i.e. individual command arguments) by using some more substitution trickery,
or you can consider only space-delimited words (though that’s not so far from what you get
with $WORDCHARS by adding ‘"‘’\@’).

4.3.5 Regions and marks

Another useful concept from Emacs is that of regions and marks. In Emacs-speak ‘point’
is where the cursor is and ‘mark’ is somewhere where you leave a mark to come back to
later. The command to set the mark at the current point is ‘^@’ as in Emacs, a hieroglyphic
which usually means holding down the control key and pressing the space key. On some
systems, such as the limited version of telnet provided with a well-known non-UNIX-based
windowing system, you can’t send this sequence, and you need to bind a different sequence to
set-mark-command. One possibility is ‘\e ’ (escape followed by space), as in MicroEMACS.
(Some X Windows configurations don’t allow ^@ to work in an xterm, either, though that is
usually fixable.)

To continue with Emacs language, the region between point and mark is described simply
as ‘the region’. In zsh, you can’t have this highlighted, as you might be used to with editors
running directly under windowing systems, so the easiest way to find out the ends of the
region is with ^x^x, exchange-point-and-mark, which I mentioned before — mark, by
default, is left at the beginning of the line, hence the behaviour you saw above.

Various editing commands — usually those with ‘region’ in the name — operate on
this. The most usual are those which kill or copy the region. Annoyingly, kill-region
isn’t bound — in Emacs, it’s ^w, but zsh follows the tradition of having that bound to

158 CHAPTER 4. THE Z-SHELL LINE EDITOR

backward-kill-word, even though that’s also available as the traditional Emacs binding
\e^?. So it’s probably useful to rebind it. To copy the region, the usual binding ‘\ew’ works.

You then ‘yank’ back the text copied or killed at another point with ‘^y’. The shell implements
the ‘kill ring’ feature, which means if you perform a yank, then type ‘<ESC>y’ (yank-pop)
repeatedly, the shell cycles back through previously killed or copied text, so that you have
more available than just the last one.

4.4 History and searching

Zle has access to the lines saved in the shell’s history, as described in ‘Setting up history’ in
chapter 2. There are essentially three ways of retrieving bits of the history: moving back
through it line by line, searching back for a matching line, and extracting individual words
from the history. In fact, the first two are pretty similar, and there are hybrid commands
which allow you to move back step by step but still matching only particular lines.

4.4.1 Moving through the history

The simplest behaviour is what you get with the normal cursor key bindings,
‘up-line-or-history’ and ‘down-line-or-history’. If you are in text which fits into
a single line (which may be a continuation line, i.e. it has a new prompt in the form given by
$PS2 at the start of the line), this replaces the entire line with the line before or after in the
history. The history is not circular, it has a beginning and an end. The beginning is the first
line still remembered by the shell (i.e. $HISTSIZE lines back, taking into account that the
actual number of lines present will be modified by the effects of any special history options
you have set to remove unwanted lines); the end is the line you are typing. You can use \e<
and \e> to go to the first and last line in the history.

The last phrase sounds trivial but isn’t quite. Type ‘echo This is the last line’, go
back a few lines with the up arrow, and then back down to the end, and you will see what
I mean — the shell has remembered the line you were typing, even though it hadn’t been
entered, so you can scroll up and down the history and still come back to it.

Of course, you can edit any of the earlier history lines, and hit ‘return’ so that they are
executed — that’s the whole point of being able to scroll back through the history. What is
maybe not so obvious is that the shell will remember changes you make to these lines, too,
until you hit ‘return’.

For example, type ‘echo this is the last line’ at a new shell prompt, but don’t hit
return. Now hit the up arrow once, and edit the previous line to say ‘echo this is the
previous line’. If you scroll down and up, you will see that the shell has kept both of those
lines. When you decide which one to use and hit return, that line is executed and added to
the end of the history, and any changes to previous lines in the history are forgotten.

Sometimes you don’t want to add a new line to history, instead re-execute a
whole series of earlier commands one by one. This can be done with ^o,
accept-line-and-down-history. When you hit ^o on a line in the history, that is
executed, and the line after it in the history is shown. So you just need to keep hitting it
to keep executing the commands.

There are two other similar commands I don’t use as much, infer-next-history, bound to
^x^n, and accept-and-infer-next-history, not bound by default. ‘Inferring’ the next

4.4. HISTORY AND SEARCHING 159

history means that the shell looks at what is in the current line, whatever its provenance —
you might just have typed it, for example — and looks back in the history for a matching line;
the ‘inferred’ next history line is the one following that line. In the first case, you are simply
shown that line; in the second case, the current line is executed first, then you are shown the
inferred line. Feel free to drop me a line if you find this is the best thing since sliced bread.

One slight confusion about the history is that it can be hard to remember quite where
you are in it, for example, if you were editing a line and had to scroll back to look for
something else. In cases like this, \e> is your friend, as it takes you the last line. Also,
whenever you hit return, you are guaranteed to be at the end of the history, even if
you were editing a line some back in the history, unlike certain other systems (though
accept-line-and-down-history can emulate those). So it’s usually not too hard to stay
unconfused about what you’re editing.

4.4.2 Searching through the history

Zsh has the commands you would expect to search through the history, i.e. where you hit
a search key and then type in the words to search for. However, it also has other features,
probably more used by the zsh community, where the search is based on some feature of the
current line, in particular the first word or the line up to the cursor position. These typically
enable you to search backwards more quickly, since you don’t need to tell the shell what you
are looking for.

Ordinary searching

The standard search commands, by which I mean the ones your are probably most familiar
with from ordinary text editors (if either Emacs or vi can be so called), are designed to make
Emacs and vi users feel at home.

In Emacs mode, you have incremental search: ^r to search backwards — this is usually
what you want, since you usually start at the end — and ^s to search forwards. Note that
^s is another keystroke which is often intercepted by the terminal driver; in this case, it
usually freezes output to the terminal until you type ^q to turn it back on. If you don’t like
this, you can either use ‘stty stop’ and ‘stty start’ to change the characters, or simply
‘unsetopt flowcontrol’ to turn that feature off altogether. However, the command bound
to ^s, history-incremental-search-forward, is also bound to ^xs, so you can use that
instead.

As in Emacs, for each character that you type, incremental search takes you to the nearest
history entry that matches all the characters, until the match fails. Typing the search
keystroke again at any point takes you to the next match for the characters in the minibuffer.

In vi command mode, the keystrokes available by default are the familiar ‘/’ and ‘?’. There
are various differences from vi, however. First of all, it is ‘/’ that searches backwards —
this is the one you will use more often. Secondly, you can’t search for regular expressions
(patterns); the only exception is that the character ‘^’ at the start anchors the search to the
start of a line. Everything else is just a plain string.

The other two standard vi search keystrokes are also present: ‘n’ searches for the next match
of the current string, and ‘N’ does the same but reverses the direction of the search.

160 CHAPTER 4. THE Z-SHELL LINE EDITOR

Search for the first word

The next sort of search is probably the most commonly used, but is only bound in Emacs
mode: \ep and \en search forward or backward for the next history line with the same first
word as the current line. So often to reuse a command you will type just the command name
itself, and hit \ep until the command line you want appears. These commands are called
simply ‘history-search-backward’ and ‘history-search-forward’; the name doesn’t
really describe the function all that well.

Prefix searching

Finally, you can search backwards for a line which has the entire starting point
up to the cursor position the same as the current line. This gives you a
little more control than history-search-direction. The corresponding commands,
history-beginning-search-backward and history-beginning-search-forward,
are not bound by default. I find it useful to have them bound to ^xp and ^xn since this
is similar to the initial-word searches:

bindkey ’^xp’ history-beginning-search-backward
bindkey ’^xn’ history-beginning-search-forward

Other search commands based on functions

Search commands are one of the types most often customised by writing shell functions.
Some are supplied with the latest versions of the shell; have a look in the ZLE section of the
zshcontrib manual page. You should find the functions themselves installed somewhere in
your $fpath, typically

/usr/local/share/zsh/$ZSH_VERSION/functions

or in the subdirectory Zle of that directory, depending how your version of zsh was installed.
If the shell was pre-installed, the most likely location is

/usr/share/zsh/$ZSH_VERSION/functions/Zle

These should guide you in writing your own.

One point to note is that when called from a function the history-search-direction and
history-incremental-search-direction can take a string argument specifying what to
search for. In the first case, this is just a one off search, while in the second, you remain
in incremental search and the string is used to prime the minibuffer, so you can edit it. I
will later say much more about writing zle functions, but calling a search command from a
user-defined editing function is as simple as:

zle history-search-backward search-string

and you can test the return status to see if the search succeeded.

4.5. BINDING KEYS AND HANDLING KEYMAPS 161

4.4.3 Extracting words from the history

Sometimes instead of editing a previous line you just want to extract a word from it into the
current line. This is particularly easy if the word is the last on the line, and the line isn’t far
back in the history: just hit \e. repeatedly, and the shell will cycle through the last word
on previous lines. You can give this a prefix argument to pick the Nth from last word on the
line just above the last line you picked a word from. As you can tell from the description,
this gets a little hairy; version 4.1 of the shell will probably provide a slightly more flexible
version.

Although it’s strictly not to do with the history, you can copy the previous word on the
current line with copy-prev-word, which for some reason is bound to \e^_, escape followed
(probably) by control and slash. I have this bound to \e= instead (in some versions of ksh
that key sequence is taken by the equivalent of list-choices). This copies words delimited
by whitespace, but you can copy what the shell would see as the previous complete argument
by using copy-prev-shell-word instead. This isn’t bound by default, as it is newer than
the other one, but it is arguably more useful.

Sometimes you want to complete a word from the history; this is possible using the
completion system, described in the next chapter.

4.5 Binding keys and handling keymaps

There are two topics to cover under the heading of key bindings: first, how to bind keys
themselves, and secondly, keymaps and how to use them. Manipulating both key bindings
and keymaps is done with the bindkey command. The first topic is the more immediately
useful, so I’ll start with that.

4.5.1 Simple key bindings

You’ve already seen basic use of bindkey to link editing commands to a particular sequence
of keys. You’ve seen the shorthand for naming keys, with \e being escape and ^x the
character x pressed while the control key is held down. I even said something about ‘meta’
key bindings.

Let me now launch into a little more detail. When you bind a key sequence, which you do with
‘bindkey key-sequence editor-command’, the key-sequence can consist of as many characters
as you like. It doesn’t even matter (much) if some initial set of the key sequence is already
bound. For example, you can do,

bindkey ’\eA’ backward-word
bindkey ’\eAA’ beginning-of-line

Here, I’ll follow the shell documentation in referring to \eA as the prefix of \eAA.

This introduces two points. First, note that the binding for \eA is distinct from that for \ea;
you will see the latter still does accept-and-hold (in Emacs mode), which means it excutes
the current line, then gives it back to you for editing — useful for doing a lot of quite similar
tasks. Meanwhile, \eA takes you back a word.

162 CHAPTER 4. THE Z-SHELL LINE EDITOR

This case sensitivity only applies to alphabetic characters which are a complete key in their
own right, not to those characters with the control key held down — ^x and ^X are identical.
(You may have found there are ways to bind both separately in Emacs when running under a
windowing system, since the windowing system can tell Emacs if the shift key is held down
with the others; it’s not that simple if you are using an ordinary terminal.)

If you entered both those bindkey commands, you may notice that there is a short pause
before \eA takes effect. That’s because it’s waiting to see if you type another A. If you do type
the extra A during that pause, you will be taken to the beginning of the line instead. That
pause is how the shell decides whether to execute the prefix on its own.

The time it waits is configurable and is given by the parameter $KEYTIMEOUT, which is the
delay in hundredths of a second. The default is 40, i.e. four tenths of a second. Its use is
usually down to personal preference; if you don’t type very fast, you might want to increase
it, at the expense of a longer delay when you are waiting for the prefix to be executed. If you
are editing on a remote machine over a very slow link, you also may need to increase it to be
able to get full key sequences which have such a prefix to work at all.

However, the shell only has this ambivalent behaviour if a prefix is bound in its own right; if
the initial key or keys don’t mean anything on their own, it will wait as long as you like for
you to type a full sequence which is bound. This is by far the normal case. The only common
example of a separately bound prefix is in vi insert mode, where <ESC> takes you back to
command mode, while there may be other bindings starting with \e such as the cursor keys.
We’ll see below how you can remove those if they offend your sense of vi purity. (Don’t laugh,
vi users are strange.)

Note that if the whole sequence is not bound, after all, the shell will abort as soon as it reads
a complete key sequence which is no longer a prefix. For example, if you type ‘\e[’, the
chances are the shell is waiting for more, but if you add a ‘/’, say, it will probably decide you
are being silly and abort. The next key you type then starts a new sequence.

4.5.2 Removing key bindings

If you want to remove a key binding, you can simply bind it to something else. Near all
uses of the bindkey and zle commands are smart about removing dead wood in such
cases. However you can also use ‘bindkey -r key-sequence’ to remove the binding explicitly.
You can also simply bind the sequence to the command undefined-key; this has exactly
the same effect — even down to pruning completely any bindings for long sequences. For
example, suppose you bind ‘\e\C-x\C-x’ to a command, then to undefined-key. All
memory that ‘\e\C-x\C-x’ was ever bound is removed; \e\C-x will no longer be marked
as a prefix key, unless you had some other binding with that prefix.

You can remove all bindings starting with a given prefix by adding the ‘-p option. The
example given in the manual,

bindkey -rpM viins ’\e’

(except it uses the equivalent form ‘^[’) is amongst the most useful, as it will remove the
annoying delay after you type ‘\e’ to enter vi command mode. The delay is there because the
cursor keys usually also start with \e and the shell is waiting to see if you actually typed
one of those. So if you can make do without cursor keys in vi insert mode you may want to
consider this.

Note that any binding for the prefix itself is not removed. In this example, \e stays bound

4.5. BINDING KEYS AND HANDLING KEYMAPS 163

as it was in the viins keymap, presumably to vi-cmd-mode.

All manipulations like this are specific to one particular keymap. You need to repeat them
with a different -M ... option argument, which is described below, to have the same effect in
other keymaps.

4.5.3 Function keys and so on

It’s usually possible to bind the function keys on your keyboard, including the specially
named ones such as ‘Home’ and ‘Page Up’. It depends a good deal on how your windowing
system or terminal driver handles them, but these days it’s nearly always the case that a
well set-up system will allow the function keys to send a string of characters to the terminal.
To bind the keys you need to find out what that string is.

Luckily, you are usually aided by the fact that only the first character of the string is ‘funny’,
i.e. does something other than insert a character. So there is a trick for finding out what the
sequence is. In a shell window, hit ^v (if you are using vi bindings, you will need to be in
insert mode), then the function key in question. You will probably see a string like ‘^[OP’ —
this is what I get from the F1 key. A note in my .zshrc suggests I used to get ‘\e[11~’, so be
prepared for something different, even if, like me, you are using a standard xterm terminal
emulator. A quick poll of terminal emulators on this Linux/GNU/XFree86 system suggests
these two possibilities are by far the most popular.

You may even be able to get different sequences by holding down shift or control as well
(after pressing ^v, of course). On my keyboard, combining F1 with shift gives me ‘^[O2P’,
with control ‘^[O5P’ and with both ‘^[O6P’. Again, your system may do something completely
different.

If you move the cursor back over that ‘^[’, you’ll find it’s a single character — you can position
the cursor over the ‘^’, but not the ‘[’. This is zsh’s way of inserting a real, live escape
character into the line. In fact, if you type

bindkey ’

then ^v, the function key, and the other single quote, you have a perfectly acceptable way
of binding the key on the command line. Zsh is generally quite relaxed about your use of
unprintable characters; they may not show up correctly on your terminal, but the shell is
able to handle all single-byte characters. It doesn’t yet have support for those longer than a
single byte, however.

You can also do the same in your .zshrc; the shell will handle strange characters in input
without a murmur. You can also use the two characters ‘^[’, which is just another way of
entering an escape key. However, the kosher thing to do is to turn it into ‘\e’. For example,

bindkey ’\e[OP’ where-is # F1
bindkey ’\e[O2P’ universal-argument # shift F1

and so on. Using this, you can give sensible meanings to ‘Home’, ‘End’, etc. Note
the windowing system’s sensible way of avoiding the problem with prefixes — any extra
characters are inserted before the final character, so the shell can easily tell when the
sequence is complete without having to wait and see if there is more to follow.

There is a utility supplied with zsh called zkbd which can help with all of this by finding out
and remembering the definitions for you. You can probably use it simply by autoloading it

164 CHAPTER 4. THE Z-SHELL LINE EDITOR

and running it, as it is usually installed with the other functions. It should be reasonably
self-explanatory, else consult the zshcontrib manual.

If you are using X Windows and are educated enough, you can tinker with your .Xdefaults
file to tweak how keys are interpreted by the terminal emulator. For example, the following
turns the backspace key into a delete key in anything using a ‘VT100 widget’, which is the
basis of xterm’s usual mode of operation:

*VT100.Translations: #override \
<Key>BackSpace: string(0x7F)

Part of the reason for showing this is that it makes zsh’s key binding system look wonderfully
streamlined by comparison. However, tinkering around at this level gives you very much
more control over the use of key modifiers (shift, alt, meta, control, and maybe even super
and hyper if you’re lucky). This is far beyond the scope of this guide — which I say, as
you probably realise by now, to cover up for not knowing much about it. Here’s another
example from Oliver Kiddle, though; it uses control with the left-cursor key to send an escape
sequence: insert

Ctrl<Key>Left: string(0x1b) string("[159q") \n\

into the middle of the example above — this shows how multiple definitions are handled.
Modern xterms already send special escape sequences which you can investigate and bind to
as I’ve described.

4.5.4 Binding strings instead of commands

It’s possible to assign an arbitrary string of characters to a key sequence instead of an editor
command by giving bindkey the option -s. One of the good things about this is that the
string of characters are reinterpreted by zle, so they can contain active key sequences. In
the old days, this was quite often used as a basic form of macro, to string together editor
commands. For example, the following is a simple way of moving backward two words by
repeating the Emacs mode bindings. I’ve used my F1 binding again; yours may be completely
different.

bindkey -s ’\e[OP’ ’\eb\eb’

It’s not a good idea to bind a key sequence to another string which includes itself.

This method has the obvious drawback that if someone comes along and rebinds ‘\eb’, then
F1 will stop working, too. Nowadays, this sort of task can be done much more flexibly and
clearly by writing a user-defined widget, which is described in a later section. So bindings
of this sort are going a little out of fashion. However, they do provide quick shortcuts. Two
from Oliver Kiddle:

bindkey -s ’^[[072q’ ’^V^I’ # Ctrl-Tab
bindkey -s "\C-x\C-z" "\eqsuspend\n"

You can also quite easily do some of the things you can do with global aliases.

4.5. BINDING KEYS AND HANDLING KEYMAPS 165

Remember that ‘ordinary’ characters can be rebound, too; they just usually happen to have
a binding which makes them be inserted directly. As a particularly pointless example,
consider:

bindkey -s secret ’Oh no!’

If you type ‘secret’ fast enough the letters are swallowed up and ‘Oh no!’ appears instead.
If you pause long enough anywhere in the middle, the word is inserted just as normal. That’s
because all parts of it can be interpreted as prefixes in their own right, so $KEYTIMEOUT
applies at every intervening stage. Less pointlessly, you could use this as a way of defining
abbreviations.

4.5.5 Keymaps

So far, all I’ve said about keymaps is that there are three standard ones, one for Emacs
mode and two for vi mode, and that ‘bindkey -e’ and ‘bindkey -v’ pick Emacs or vi insert
mode bindings. There’s no simple way of picking vi command mode bindings, since that’s not
usually directly available but entered by the vi-cmd-mode command, usually bound to \e,
in vi insert mode. (There is a ‘bindkey -a’, but that doesn’t pick the keymap for normal
use; it’s equivalent to, but less clear than, ‘bindkey -M vicmd’.)

Most handling of keymaps is done through bindkey. The keymaps have short names,
emacs, viins and vicmd, for use with bindkey. There is also a keymap .safe which
you don’t usually need but which never changes, so can be used if your experimentation has
completely ruined every other keymap. It only has bindings for self-insert (most keys)
and accept-line (^j and ^m), but that’s enough to enter commands.

The names are most useful in two places. First, you can use ‘bindkey -M keymap’ to define
keys in a particular map:

bindkey -M vicmd "\e[OA" up-line-or-history

binds the usual up-cursor key in vicmd mode, whatever keymap is currently set. Actually,
any version of the shell which understands the -M option probably has that bound already.

Secondly, you can force zle to use a particular keymap. This is done in a slightly non-obvious
way: zle always uses the keymap main as the current keymap (except when it’s off in vi
command mode, which is handled a bit specially). To use your own, you need to make main
an alias for that with ‘bindkey -A’. The order after this is the same as that after ln: the
existing keymap you want to refer to comes first, then what you want to make an alias for it,
in this case main. This means that

bindkey -A emacs main

has the same effect as

bindkey -e

but is more explicit, if a little more baroque. Don’t link vicmd to main, since then you can’t
use viins, which is bad. Note that ‘bindkey -M emacs’ doesn’t have this effect; it simply
lists the bindings in the emacs keymap.

166 CHAPTER 4. THE Z-SHELL LINE EDITOR

You can create your own keymaps, too. The easiest way is to copy an existing keymap, such
as

bindkey -N mymap emacs

which creates (or replaces) mymap and initialises it with the bindings from emacs. Now you
can use mymap just like emacs. The bindings in each are completely separate. If you finish
with a keymap, you can remove it with ‘bindkey -D keymap’, although you’d better make
sure it’s not linked to main first.

You can omit ‘emacs’ to create an empty keymap; this might be appropriate if your keymap
is only going to be used in certain special places and you want complete control on what goes
into it. Currently the shell isn’t very good at letting you apply your own keymaps just in
certain places, however.

There are various other keymaps you might encounter, used in special circumstances. If you
list all keymaps, which is done by ‘bindkey -l’, you may see listscroll and menuselect.
These are used by the new completion system, so if that isn’t active, you probably won’t see
them. They reside in the module zsh/complist. There will be more about their effects in
chapter 6; listscroll allows you to move up and down completion lists which more than
fill the terminal window, and menuselect allows you to select items interactively from a
displayed list. You can bind keys in them as with any other keymap.

4.6 Advanced editing

(In physics, the ‘advanced wave’ is a hypothetical wave which moves backwards in time.
Unfortunately, however useful it would be to meet deadlines, that’s not what I meant by
‘advanced editing’.)

Here are are a few bits and pieces which go beyond ordinary line editing of shell commands.
Although they haven’t been widespread in shells up to now, I use all of them every day, so
they aren’t just for the postgraduate zsh scholar.

4.6.1 Multi-line editing

All Bourne-like shells allow you to edit continuation lines; that is, if the shell can work out
for sure that you haven’t finished typing, it will show you a new prompt, given by $PS2, and
allow you to continue where you left off from the previous line. In zsh, you can even see what
it is the shell is waiting for. For a simple example, type ‘array=LPAR()first’ and then
‘return’. The shell is waiting for the final parenthesis of the array, and prints ‘array>’ at
you, unless you have altered $PS2. You can continue to add elements to the array until you
close the parentheses.

Shells derived from csh are less happy about continuation lines; historically, this is because
they try to evaluate everything in one go, and became confused if they couldn’t. The original
csh didn’t have a particularly sophisticated parser. For once, zsh doesn’t have an option to
match the csh behaviour; you just have to get used to the idea that things work in zsh.

Where zsh improves over other shells is that you aren’t just limited to editing a single
continuation line; you can actually edit a whole block of lines on screen as you would in

4.6. ADVANCED EDITING 167

a full screen editor — although you can’t scroll off the chunk of lines you’re editing, which
wouldn’t make sense.

The easiest way of doing this is to hit escape before you type a newline at the point where you
haven’t finished typing. Actually, you can do this any time, even if the line so far is complete.
For example,

% print This is line one<ESC><RET>
print This is line two

where those angle brackets at the end of the line means you type escape, then return.
Nothing happens, and there is no new prompt; you just type blithely on. Hit return,
unescaped this time, and both lines will be executed. Note there is no implicit backslash, or
anything like that; when zsh reads the whole caboodle, that escaped carriage return became
a real carriage return, just as the shell would have read it from a script.

This works because ‘\e\r’ is actually bound to the command self-insert-unmeta’ which
means ‘insert the character you get by stripping the escape or top bit from what I just typed’
— in other words, a literal carriage return. You would have got exactly the same effect by
typing ^v^j, since the ^v likewise escapes the ^j (newline), as it does any other character.

(Aside for the terminally curious only: Why newline here and not carriage return — the
‘enter’ key — as you might expect? That’s a rather grotesque story. It turns out that for
mostly historical reasons UNIX terminal drivers like to swap newline and carriage return,
so when you type carriage return (sent both by that key and by ^m, which is the same as
the character represented by \r), it comes out as newline (on most keyboards, just sent by
^j, which is the same as the character represented by \n). It is the newline character which
is the one you ‘see’ at the end of the line (by virtue of the fact it is the end of the line).
However, ^v sees through this and if you type ^m after it, it inserts a literal ^m, which just
looks like a ^m because that’s how zsh outputs it. So that’s why that doesn’t work. Actually,
self-insert-unmeta would see the ^m, too, because that’s what you get when you strip
off the \e, but it has a little extra code to make UNIX users feel at home, and behaves as if
it were a newline. Normally, ^j and ^m are treated the same way (accept-line), but the
literal characters have different behaviours. If you’re now very confused, just be thankful I
haven’t told you about the additional contortions which go on when outputting a newline.)

It probably doesn’t seem particularly useful yet, because all you’ve done is miss out a new
prompt. What makes it so is that you can now go up and down between the two (or more)
lines just using the cursor keys. I’m assuming you haven’t rebound the cursor keys, your
terminal isn’t a dumb one which doesn’t support cursor up, and the option singlelinezle
isn’t in effect — just unset it if it is, you’ll be grateful later.

So for example, type

% if [[true = false]]; then<ESC><RET>
print Fuzzy logic rules<ESC><RET>

fi

where I indented that second line just with spaces, because I usually do inside an ‘if ’. There
are no continuation prompts here, just the original $PS1; that’s not a misprint. Now, before
hitting return, move up two lines, and edit false to true. You can see how this can be
useful. Entering functions at the command line is probably a more typical example.

Suppose you’ve already gone through a few continuation lines in the normal way with
$PS2’s? You can’t scroll back then, even though the block hasn’t yet been edited. There’s

168 CHAPTER 4. THE Z-SHELL LINE EDITOR

a magic way of turning all those continuation lines into a single block: the editor command
push-line-or-edit. If you’re not on a continuation line, it acts like the normal push-line
command, which we’ll meet below, but for present purpose you use it when you are on a
continuation line. You are presented with a seamless block of text from the (redrawn) prompt
to the end which you can edit as one. It’s quite reasonable to bind push-line-or-edit
instead of push-line, to either ^q or \eq (in Emacs mode, which I will assume, as usual).
Be careful with ^q, though — if the option flowcontrol is set it will probably be swallowed
up by the terminal driver and not get through to the shell, the same problem I mentioned
above for ^s.

4.6.2 The builtin vared and the function zed

I mentioned the vared command in chapter 3; it uses the normal line editor to editor a
variable, typically a long one you don’t want to have to type in completely like $path,
although you need to remember not to put the ‘$’ in front or the shell will substitute it before
vared is run. However, since it’s just a piece of text like any other input, this, too, can have
multiple lines, which you enter in the same way — and since a shell parameter can contain
anything at all, you have a pretty general purpose editor. The shell function ‘zed’ is supplied
with the shell and allows you to edit a file using all the now-familiar commands. Since when
editing files you don’t expect a carriage return to dump you out of the editor, just to insert a
new line, zed rebinds carriage return to self-insert-unmeta (the ‘-unmeta’ here is just to
get the swapping behaviour of turning the carriage return into a newline). To save and exit,
you can type ^j, or, if your terminal does something odd with that, you can also use ^x^w,
which is designed to look like Emacs’ way of writing a file.

If you look at zed, you will see it has a few bells and whistles — for example, ‘zed -f’ allows
you to edit a function — but the code to read a file into a parameter, edit the parameter,
and write the parameter back to the file is extremely simple; all the hard editing code is
already handled within vared. Indeed, zed is essentially a completely general purpose
editor, though it quickly becomes inefficient with long files, particularly if they are larger
than a single screen; as you would expect, zle was written to cope efficiently with short
chunks of text.

It would probably be nice if you could make key bindings that only applied within vared by
using a special keymap. That may happen one day.

By the way, note that you can edit arrays with vared and it will handle the different elements
sensibly. As usual, whitespace separates elements; when it presents you with an array
which contains whitespace within elements, vared will precede it with a backslash to show
it isn’t a separator. You can insert quoted spaces with backslashes yourself. Only whitespace
characters need this quoting, and only backslashes work.

For example,

array=(’one word’ ’two or more words’)
vared array

presents you with ‘one\ word two\ or\ more\ words’. If you add ‘ and\ some\
more.’, hit return, and type ‘print -l $array’ to show one element per line you will see

one word
two or more words
and some more.

4.6. ADVANCED EDITING 169

Some older versions of the shell were less careful about spaces within elements.

4.6.3 The buffer stack

The mysterious other use for push-line-or-edit will now be explained. Let’s stick to
push-line, in fact, since I’ve already dealt with the -or-edit bit.

Type

print I was just in the directory

(no newline). Oh dear, which directory were you just in? You don’t want to interrupt the flow
of text to find out. Hit ‘\eq’; the line you’ve been typing disappears — but don’t worry, it
hasn’t gone. Now type

dirs

Two things happen: that last line is executed, of course, showing the list of directories on
the directory stack (your use of pushd and popd), but also the line you got rid of before has
reappeared, so you can continue to edit it.

You may not realise straight away quite how useful this is, but I used it several times just
while I was writing the previous paragraph. For example, I was alternating directories
between the zle source code and the directory where I keep this guide, and I started typing
a ‘grep’ command before realising I was in the wrong directory. All I need to do is type \eq,
then pushd, to put me where I want to be, and finish off the grep.

The ‘buffer stack’, which is the jargon for this mechanism, can go as deep as you like. It’s a
last-in-first-out (LIFO) stack, so the line pushed onto it by the most recently typed \eq will
reappear first, followed by the back numbers in reverse order. You can even prime the buffer
stack from a function — not necessarily a zle function, though that works too — with ‘print
-z command-line’.

You can pull something explicitly off the stack, if you want, by typing \eg, but that has the
same effect as clearing the current line and hitting return. You can of course push the same
line multiple times: if you need to do a whole series of things before executing it, just hit \eq
again each time the line pops back up.

I lied a little bit, to avoid confusion. The cleverness of push-line-or-edit about multi-line
buffers extends to the this case, too. If you do a normal push-line on a multi-line buffer,
only the current single line is pushed; the command to push the whole lot, which is probably
what you want, is push-input. But if you have push-line-or-edit bound, you can forget
the distinction, since it will do that for you. If you’ve been paying attention you can work out
the following sequence (assuming \eq has been rebound to push-line-or-edit):

% if [[no = yes]]; then
then> print<ESC>q<ESC>q

The first \eq turns the two lines into a single buffer, then the second pushes the whole lot
onto the buffer stack. This saves a lot of thinking about bindings. Hence I would recommend
users of Emacs mode add

170 CHAPTER 4. THE Z-SHELL LINE EDITOR

bindkey ’\eq’ push-line-or-edit

to their .zshrc and forget the distinctions.

4.7 Extending zle

We now come to the newest and most flexible part of zle, the ability to create new editing
commands, as complicated as you like, using shell functions. This was originally introduced
by Andrew Main (‘Zefram’) in zsh 3.1 and so is standard in all versions of zsh 4, although
work goes on.

4.7.1 Widgets

If you don’t speak English as you first language, first of all, congratulations for getting this
far. Secondly, you may think of ‘widget’ only as a technical word applied to the object which
realises some computational idea, like the thing that implements text editing in a window
system, for example. However, to most English speakers, ‘widget’ is a humorous word for an
object, a bit like ‘whatyoumacallit’ or ‘thingummybob’, as in ‘where’s that clever widget that
undoes the foil and takes out the cork in one go’. Zsh’s use has always seemed to me closer
to the second, non-technical version, but I may be biased by the fact that the internal object
introduced by Zefram to represent a widget, and never seen by the user, is called a ‘thingy’,
which I won’t refer to again since you don’t need to know.

Anyway, a ‘widget’ is essentially what I’ve been calling an editor command up to now,
something you can bind to a key sequence. The reason the more precise terminology is useful
is that as soon as you have shell functions flying around, the word ‘command’ is hopelessly
non-specific, since functions are full of commands which may or may not be widgets. So I
make no apology for using the word.

So now we are introducing a second type of widget: one which, instead of something handled
by code built into the shell, is handled by a function written by the user. They are completely
equivalent; bindkey and company don’t care which it is. All you need to do to create a widget
is

zle -N widget-name function-name

then widget-name can be used in bindkey, or execute-named-cmd, and the function
function-name will be run. If the widget-name and function-name are the same, which is
often the simplest thing to do, you just need one of them.

You can list the existing widgets by using ‘zle -l’, although often ‘zle -lL’ is a better
choice since the output format is then the same as the form you would use to define the
widget. If you see lots of ‘zle -C’ widgets when you do that, ignore them for now; they are
completion widgets, handled a bit differently and described in chapter 6.

Now you need to know what should go into the function.

4.7. EXTENDING ZLE 171

4.7.2 Executing other widgets

The simplest thing you can do inside a function implementing a widget is call an existing
function. So,

my-widget() {
zle backward-word

}
zle -N my-widget

creates a widget called my-widget which behaves in every respect (except speed) like the
builtin widget backward-word. You can even give it a prefix argument, which is passed
down; \e3 then whatever you bound the widget to (or \exmy-widget) will go backward
three words.

Suppose you wanted to pass your own prefix argument to backward-word, instead of what
the user typed? Or suppose you want to take account of the prefix argument, but do
something different with it? Both are possible.

Let’s take the first of those. You can supply a prefix argument for this command alone by
putting -n argument after the widget name (note this is not where most options go).

my-widget() {
zle backward-word -n 2

}

This always goes backwards two words, overriding any numeric argument given by the user.
(You can redefine the function without telling zle about it, by the way; zle just calls whatever
function happens to be defined when the widget is run.) If you put just -N after the name
instead, it will cancel out any prefix given by the user, without introducing a new one.

The other part of prefix handling — intercepting the one the user specified and maybe
modifying it — introduces one of the most important parts of user-defined widgets. Zle
provides various parameters which can be read and often written to alter the behaviour of
the editor or even the text being edited. In this case, the parameter is $PREFIX. For example,

my-widget() {
zle backward-word -n $((${NUMERIC:-1} * 2))

}

This uses an arithmetic substitution to provide an argument to backward-word which is
twice what the user gave. Note that ${NUMERIC:-1} notation, which is important: most
of the time, you don’t give a numeric argument to a command at all, and in that case zle
naturally enough treats $NUMERIC as if it wasn’t set. This would mess up the arithmetic
substitution.

By the way, if you do make an error in a shell function, you won’t see it; you’ll just get a
beep, unless you’ve turned that off with setopt nobeep. The output from such functions
is junked, since it would mess up the display. So you should do any basic debugging before
turning the function into a widget, for example, stick a print in front and run it directly —
you can’t execute widgets from outside the editor.

The following also works:

172 CHAPTER 4. THE Z-SHELL LINE EDITOR

my-widget() {
((NUMERIC = ${NUMERIC:-1} * 2))
zle backward-word

}

because you can alter $NUMERIC directly, and unless overridden by the -n argument it is
used by any widgets called from the function. If you called more widgets inside the function
— and you can call as many as you like — the same argument would apply to all the ones
that didn’t have an explicit -n or -N.

Some widgets allow you to specify non-numeric arguments. At the moment these are
mainly search functions, which you can give an explicit search string. Usually, however,
you want to specify a new search string each time. The most useful way of using this
I can see is to provide an initial argument for incremental search commands. Later, I’ll
show you how you can read in characters in a similar fashion to Emacs mode’s ^r binding,
history-incremental-search-backwards.

4.7.3 Some special builtin widgets and their uses

There are some things you might want to do with the editor in a zle function which wouldn’t
be useful executed directly from zle. One is to cause an error in the same way as a normal
widget does. You can do that with ‘zle beep’. However, this doesn’t automatically stop your
function at that point; it’s up to you to return from it.

It’s possible to redefine a builtin widget just by declaring it with ‘zle -N’ and defining the
corresponding function. From now on, all existing bindings which refer to that widget will
cause yours to be run instead of the builtin one. This happens because zle doesn’t actually
care what a widget does until it is run. You can see this by using bindkey to define a key
sequence to call an undefined widget such as any-old-string. The shell doesn’t complain
until you actually hit the key sequence.

Sometimes, however, you want to be sure to call the builtin widget, even if the behaviour
has been redefined. You can do this by putting a ‘.’ in front of the name of the
widget; ‘zle .up-line-or-history’ always calls the builtin widget usually referred to
as up-line-or-history, even if the latter has been redefined. One use for this is to rebind
‘accept-line’ to do something whenever zle is about to pass a line up to the shell, but to
accept the line anyway: you write your own widget accept-line, make sure it calls ‘zle
.accept-line just before it finishes, and then use ‘zle -N accept-line. Here’s a trivial
but not entirely stupid example:

accept-line() {
print -n "\e]2;Executing $BUFFER\a"
zle .accept-line

}
zle -N accept-line

Now every time you hit return to execute a command, that print command will be executed
first. As written, it puts ‘Executing’ and then the contents of the command line (see
below) into the title of your xterm window, assuming it understands the usual xterm escape
sequences. In fact, this particular example is usually handled with the special shell function
(not zle function) ‘preexec’ which is passed a command line about to be executed as an
argument instead of in $BUFFER. There seems to be a side effect of rebinding accept-line
that the return key stops working in the minibuffer under some circumstances.

4.7. EXTENDING ZLE 173

Note that to undo the fact that return executes your new widget, you need to alias
accept-line back to .accept-line:

zle -A .accept-line accept-line

If you have trouble remembering the order, as with most alias or rename commands in zsh
and UNIX generally, including ln and bindkey -A, the existing command, the one whose
properties you want to keep, comes first, while the new name for it comes second. Also,
as with those commands, it doesn’t matter if the second name on the line currently means
something else; that will be replaced by the new meaning. Afterwards, you don’t need to
worry about your own accept-line widget; zle handles the details of removing widgets
when they’re no longer referred to. The function’s still there, however, since as far as the rest
of the shell is concerned it’s just an ordinary shell function which you need to ‘unfunction’
to remove.

Do remember, however, not to delete a widget which redefines a basic internal widget by the
obvious command

Noooo!
zle -D accept-line

which stops the return key having any effect other than complaining there’s no such widget.
If you get into real trouble, ‘\ex.accept-line’ should work, as you can use the ‘.’-widgets
anywhere you can use any other except where they would redefine or delete a ‘.’ widget. Use
the ‘zle -A’ command above with the extended-command form of ‘.accept-line’ to return
to normality. If you try to redefine or delete a ‘.’ widget, zle will tell you it’s protected. You
can remove any other widget in this way, however, even if it is still bound to a key sequence;
you will then see an error if you type that sequence.

One point to note about accept-line is that the line isn’t passed up to zsh instantly, only
when your own function exits. This is pretty obvious when you think about it; zle is called
from the main shell, and if your own zle widget hasn’t finished executing, the main shell
hasn’t got control back yet. But it does mean, for example, that if you modify the command
line after a call to accept-line or .accept-line, those changes are reflected in the line
passed up to the shell:

Noooo! to this one too.
accept-line() {

zle .accept-line
BUFFER=’Ha ha!’

}

This always returns the string ‘Ha ha!’ to the main shell. This is not particularly useful
unless you are constructing a Samuel Beckett shell for display at an installation in a Parisian
art gallery.

4.7.4 Special parameters: normal text

The shell makes various parameters available for easy manipulation of the command line.
You’ve already seen $NUMERIC. You may wonder what happens if you have your own
parmeter called $NUMERIC; after all, it’s a fairly simple string to use as a name. The good

174 CHAPTER 4. THE Z-SHELL LINE EDITOR

news is you don’t need to worry; when the shell runs a zle function, it simply hides any
existing occurrences of a parameter and makes its special parameters available. Then when
it exits, the original parameter is reenabled. So all you have to worry about is making sure
you don’t use these special parameters for anything else while you are inside a zle widget.

There are four particularly common zle parameters.

First, there are three ways of referring to the text on the command line: $BUFFER is the
entire line as a string, $LBUFFER is the line left of the cursor position, and $RBUFFER is the
line after it including the character under the cursor, so that the division is always at the
point where the next inserted character would go. Any or all of these may be empty, and
$BUFFER is always the string $LBUFFER$RBUFFER.

The necessary counterpart to these is $CURSOR, which is the cursor position with 1 being the
first character. If you know how the shell handles substrings in parameter substitutions,
you will be able to see that $LBUFFER is $BUFFER[1,$CURSOR-1], while $RBUFFER is
$BUFFER[$CURSOR,-1] (unless you are using the option KSH_ARRAYS for compatibility of
indexes with ksh — this isn’t recommended for implementing zle or completion widgets as it
causes confusion with the ones supplied with the shell).

The really useful thing about these is that they are modifiable. If you modify $LBUFFER
or $RBUFFER, then $BUFFER and $CURSOR will be modified appropriately; lengthening or
shortening $LBUFFER increases or decreases $CURSOR. If you modify $BUFFER, you may
need to set $CURSOR yourself as the shell can’t tell for sure where the cursor should be. If you
alter $CURSOR, characters will be moved between $LBUFFER and $RBUFFER, but $BUFFER
will remain the same.

This makes tasks along the lines of basic movement and deletion commands extremely
simple, often just a matter of pattern matching. However, it definitely pays to know about
zsh’s more sophisticated pattern matching and parameter substitution features, described in
the next chapter. For example, if you start a widget function with

emulate -L zsh
setopt extendedglob
LBUFFER=${LBUFFER%%[^[:blank:]]##}

then $LBUFFER contains the line left of the cursor stripped of all the non-blank characters
(usually anything except space or tab) immediately to the left of the cursor.

This function uses the parameter substitution feature ‘${param%%pattern}’ which removes
the longest match of pattern from the end of $param. The ‘emulate -L zsh’ ensures the
shell options are set appropriately for the function and makes all option settings local, and
‘setopt extendedglob’ which turns on the extended pattern matching features; it is this
that makes the sequence ‘##’ appearing in the pattern mean ‘at least one repetition of
the previous pattern element’. The previous pattern element is ‘anything except a blank
character’. Hence, all occurrences of non-blank characters are removed from the end of
$LBUFFER.

If you want to move the cursor over those characters, you can tweak the function slightly:

emulate -L zsh
setopt extendedglob
chars=${(M)LBUFFER%%[^[:blank:]]##}
((CURSOR -= ${#chars}))

4.7. EXTENDING ZLE 175

The string ‘(M)’ has appeared at the start of the parameter substitution. This is part
of zsh’s unique system of parameter flags; this one means ‘insert the matched portion of
the substitution’. In other words, instead of returning $LBUFFER stripped of non-blank
characters at the end, the substitution returns those very characters which it would have
stripped. To skip over them is now a simple matter of decreasing $CURSOR by the length of
that string.

You’ll find if you try these examples that they probably don’t do quite what you want. In
particular, they don’t handle any blank characters found next to the non-blank ones which
normal word-orientated functions do. However, you now have enough information to add
tests for that yourself.

If you get more sophisticated, you can then add handling for $NUMERIC. Remember this isn’t
set unless the user gave it explicitly, so it’s up to you to treat it as 1 in that case.

4.7.5 Other special parameters

A large fraction of what you are likely to want to do can be done with the parameters we’ve
already met. Here are some hints as to how you might want to use some of the other
parameters available. As always, for a complete list with rather less in the way of hints
see the manual.

$KEYS tells you the keys which were used to call the widget; it’s a string of those raw
characters, not turned into the bindkey format. In other words, if it was a single key
(including possibly a control key or a meta key), $KEYS will just contain a single character.
So you can change the widget’s behaviour for different keys. Here’s a very (very) simple
function like self-insert:

LBUFFER=$LBUFFER$KEYS

Note this doesn’t work very well with \ex extended command handling; you just get the ^m
from the end of the line. You need to make sure any widgets which use $KEYS are sensibly
bound. This also doesn’t handle numeric arguments to repeat characters; it’s a fairly simple
exercise (particularly given zsh’s ‘repeat’ loop) to add that.

$WIDGET and $LASTWIDGET tell you the name of the current widget being executed and the
one before that. These don’t sound all that useful at first hearing. However, you can use
$WIDGET together with the fact that a widget doesn’t need to have the same name as the
function that defines it. You can define

zle -N this-widget function
zle -N that-widget function

and test $WIDGET inside function to see if it contains this-widget or that-widget. If
these have a lot of shared code, that is a considerable simplification without having to write
extra functions.

$LASTWIDGET tends to be used for a slightly different purpose: checking whether the last
command to be executed was the same as the current one, or maybe was just friendly with
it. Here are edited highlights of the function up-line-or-beginning-search, a sort of
cross between up-line-or-search and history-beginning-search-backward which
has been added to the shell distribution for 4.1. If there are previous lines in the buffer, it
moves up through them; else if it’s the first in a sequence of calls to this function it remembers

176 CHAPTER 4. THE Z-SHELL LINE EDITOR

the cursor position and looks backwards for a line with the same text from the start up to
that point, and puts the cursor at the end of the line; else if the same widget has just been
executed, it uses the old cursor position to search for another match further back in the
history.

if [[$LBUFFER == *$’\n’*]]; then
zle .up-line-or-history
__searching=’’

else
if [[$LASTWIDGET = $__searching]]; then

CURSOR=$__savecursor
else

__savecursor=$CURSOR
fi
__searching=$WIDGET
zle .history-beginning-search-backward
zle .end-of-line

fi

We test $__searching instead of $WIDGET directly to be able to tell the case when we
are moving lines instead of searching. $__savecursor gives the position for the backward
search, after which we put the cursor at the end of the line. The parameters beginning ‘__’
aren’t local to the function, because we need to test them from the previous execution, so
they have been given underscores in front to try to distinguish them from other parameters
which might be around.

You’ll see that the actual function supplied in the distribution is a little more complicated
than this; for one thing, it uses styles set by the user to decide it’s behaviour. Styles are
described for use with completion widgets in chapter 6, but you can use them exactly the
same way in zle functions.

The full version of up-line-or-beginning-search uses another parameter, $PREBUFFER.
This contains any text already absorbed by zle which you can no longer edit — in other
words, text read in before the shell prompted with $PS2 for the remainder. Testing ‘[[-n
$PREBUFFER]]’ therefore effectively tests whether you are at the $PS2. You can use this to
implement behaviour after the fashion of push-line-or-edit.

4.7.6 Reading keys and using the minibuffer

Every now and then you want the editor to do a sequence of operations with user input in
the middle. This is usually done by a combination of two commands.

First, you may need to prompt the user in the minibuffer, just like \ex does. You can do this
with ‘zle -R’. Its basic function is to redisplay the command line, flushing all the changes
you have made in your function so far, but you can give it a string argument which appears in
the minibuffer, just below the command line. You can give it a list of other strings after that,
which appear in a similar way to lists of possible completions, but have no special significance
to zle in this case.

To get input back from the user, you can use ‘read -k’ which reads a single key (not a
sequence; no lookup takes place). This command is always available in the shell, but in
this case it is handled by zle itself. The key is returned as a raw byte. Two facilities of
arithmetic evaluation are useful for handling this key: ‘#key’ returns the ASCII code for the

4.7. EXTENDING ZLE 177

first character of $key, while ‘##key’ returns the ASCII code for key, which is in the form
that bindkey would understand. For example,

read -k key
if ((#key == ##\C-g)); then

...

makes the use of arithmetic evaluation. The form on the left turns the first character in $key
into a number, the second turns the literal bindkey-style string \C-g into a number (ASCII 7,
since 1 to 26 are just \C-a to \C-z). Don’t confuse either of these forms with ‘$#key’, which
is the length of the string in the parameter, in this case almost certainly 1 for a single byte;
this form works both inside and outside arithmetic substitution, the other forms only inside.
The ‘((...))’ form is recommended for arithmetic substitutions whenever possibly; you
can do it with the basic ‘[[...]]’ form, since ‘-eq’ and similar tests treat both sides as
arithmetic, though you may need extra quoting; however, the only good reason I know for
doing that is to avoid using two types of condition syntax in the same complex test.

These tricks are only really useful for quite complicated functions. For an example, look at
the function incremental-complete-word supplied with the zsh source distribution. This
function doesn’t add to clarity by using the form ‘#\\C-g’ instead of ‘##\C-g’; it does the
same thing but the double backslash is very confusing, which is why the other form was
introduced.

4.7.7 Examples

transpose-words-about-point

This function is a variant on transpose-words. It has various twists. First, the words
in question are always space-delimited, neither shell words nor words in the $WORDCHARS
sense. This makes it fairly predictable.

Second, it will transpose words about the current point (hence its name) even if the character
under the cursor is not a whitespace character. I find this useful because I am eternally
typing compound words a bit like ‘function_name’ only to find that what I should have
typed was ‘name_function’. Now I just position the cursor over the underscore and execute
this widget.

emulate -L zsh
setopt extendedglob

local match mbegin mend pat1 pat2 word1 word2 ws1 ws2

pat1=${LBUFFER%%(#b)([^[:blank:]]##)([[:blank:]]#)}
word1=$match[1]
ws1=$match[2]

match=()
pat2=${RBUFFER##(#b)(?[[:blank:]]#)([^[:blank:]]##)}
ws2=$match[1]
word2=$match[2]

if [[-n $word1 && -n $word2]]; then

178 CHAPTER 4. THE Z-SHELL LINE EDITOR

LBUFFER="$pat1$word2$ws1"
RBUFFER="$ws2$word1$pat2"

else
zle beep

fi

The only clever stuff here is the pattern matching. It makes a great deal of use of
‘backreferences’ an extended globbing feature which is used in all forms of pattern matching
including, as in this case, parameter substitution. It will be described fully in the next
chapter. The key things to look for are the ‘(#b)’, which activates backreferences if the
option EXTENDED_GLOB is turned on, the parentheses following that, which mark out the
bits you want to refer to, and the references to elements of the array $match, which store
those bits. The shell also sets $mbegin and $mend to give the positions of the start and end
of those matches, which is why those parameters are made local; we want to preserve them
from being seen outside the function even though we don’t actually use them.

You might also need to know about the ‘#’ characters: one after a pattern means ‘zero or more
repetitions’, and two mean ‘one or more repetitions’. Finally, ‘[:blank:]’ in a character
class refers to any blank character; when negated, as in the character class ‘[^[:blank:]]’,
it means any non-blank character. With the ‘#’s we match a series blank or non-blank
characters. Given that, you can work out the rest of what’s going on.

Here’s a more sophisticated version of that. If you found the previous one heavy going. you
probably don’t want to look too closely at this.

emulate -L zsh
setopt extendedglob

local wordstyle blankpat wordpat1 wordpat2
local match mbegin mend pat1 pat2 word1 word2 ws1 ws2

zstyle -s ’:zle:transpose-words-about-point’ word-style wordstyle

case $wordstyle in
(shell) local bufwords

This splits the line into words as the shell understands them.
bufwords=(${(z)LBUFFER})
wordpat1="${(q)bufwords[-1]}"
Take substring of RBUFFER to skip over first character,
which is the one under the cursor.
bufwords=(${(z)RBUFFER[2,-1]})
wordpat2="${(q)bufwords[1]}"
blankpat=’[[:blank:]]#’
;;

(space) blankpat=’[[:blank:]]#’
wordpat1=’[^[:blank:]]##’
wordpat2=$wordpat1
;;

(*) local wc=$WORDCHARS
if [[$wc = (#b)(?*)-(*)]]; then

We need to bring any ‘-’ to the front to avoid confusing
character classes... we get away with ‘]’ since in zsh
this isn’t a pattern character if it’s quoted.
wc=-$match[1]$match[2]

4.7. EXTENDING ZLE 179

fi
A blank is anything not in the character class consisting
of alphanumerics and the characters in $wc.
Quote $wc where necessary, because we don’t want those
characters to be considered as pattern characters later on.
blankpat="[^${(q)wc}a-zA-Z0-9]#"
and a word character is anything else.
wordpat1="[${(q)wc}a-zA-Z0-9]##"
wordpat2=$wordpat1
;;

esac

The eval makes any special characters in the parameters active.
In particular, we need the surrounding ‘[’ s to be ‘real’.
This is why we quoted the wordpats in the ‘shell’ option, where
they have to be treated as literal strings at this point.
eval pat1=’${LBUFFER%%(#b)(’${wordpat1}’)(’${blankpat}’)}’
word1=$match[1]
ws1=$match[2]

match=()
eval pat2=’${RBUFFER##(#b)(?’${blankpat}’)(’${wordpat2}’)}’
ws2=$match[1]
word2=$match[2]

if [[-n $word1 && -n $word2]]; then
LBUFFER="$pat1$word2$ws1"
RBUFFER="$ws2$word1$pat2"

else
zle beep

fi

What has been added is the ability to use a style to define how the shell finds a ‘word’. By
default, words are the same as what the shell usually thinks of as a word; this is handled
by the branch of the case statement which uses ‘$WORDCHARS’ and a little extra trickery to
get a pattern which matches the set of characters considered parts of a word. We used the
eval’s because it allowed us to have some bits of $wordpat1 and friends active as pattern
characters while others were quoted.

This introduces two types of parameter expansion flags: ${(q)param} adds backslashes
to quote special characters in $param, so that when the parameter appears after eval the
result is just the original string. ${(z)param} splits the parameter just as if it were a shell
command line being split into a command and words, so the result is an array; ‘z’ stands for
zsh-splitting or just zplitting as you fancy.

If you set

zstyle ’:zle:*’ word-style space

you get back to the behaviour of the original function.

Finally, if you replace ‘space’ with ‘shell’ in that zstyle command, you will get words as
they are split for normal use within the shell; for example try

180 CHAPTER 4. THE Z-SHELL LINE EDITOR

echo execute the widget ’between these’ ’two quoted expressions’

and the entire quoted expressions will be transposed. You may find that if you do this in the
middle of a quoted expression, you don’t get a sensible result; that’s because the (z)-splitting
doesn’t know what to do with the improperly completed quotes to its left and right. Some
versions of the shell have a bug (fixed in 4.0.5) that the expressions which couldn’t be split
properly, because the quotes weren’t complete, have an extra space character at the end.

insert-numeric

Here’s a widget which allows you to insert an ASCII character which you know by number. I
can’t for the life of me remember where it came from, but it’s been lying around apparently
for two and a half years (please do email me if you think you wrote it, otherwise I’ll assume
I did). You can give it a numeric prefix (that’s the easy part of the function), else it will
prompt you for a number. If you type ‘x’ or ‘o’ the number is treated as hexadecimal or octal,
respectively, else as decimal.

Set up standard options.
Important for portability.
emulate -L zsh

x must display in hexadecimal
typeset -i 16 x

if ((${+NUMERIC})); then
Numeric prefix given; just use that.
x=$NUMERIC

else
We need to read the ASCII code.
local msg modes key mode=dec code char
Prompt for and read a base.
integer base=10
zle -R "ASCII code (o -> oct, x -> hex) [$mode]: "
read -k key
case $key in

(o) base=8 mode=oct
zle -R "ASCII code [$mode]: "
read -k key
;;

(x) base=16 mode=hex
zle -R "ASCII code [$mode]: "
read -k key

;;
esac
Now we are looking for numbers in that base.
Loop until newline or return.
while [[’#key’ -ne ’##\n’ && ’#key’ -ne ’##\r’]]; do

if [[’#key’ -eq ’##^?’ || ’#key’ -eq ’##^h’]]; then
Delete a character
[[-n $code]] && code=${code[1,-2]}

elif [[($mode == hex && $key != [0-9a-fA-f]) ||
($mode == dec && $key != [0-9]) ||

4.7. EXTENDING ZLE 181

($mode == oct && $key != [0-7])]]; then
Character not in range, beep
zle beep

elif [[’#key’ -eq ’##\C-g’]]; then
Abort: returning 1 signals to zle that this
is an abnormal termination.
return 1

else
code="${code}${key}"

fi
char=
if [[-n $code]]; then

Work out the character using the
numbers typed so far.
((x = ${base}#${code}))
if ((x > 255)); then

zle beep
code=${code[1,-2]}
[[-n $code]] && ((x = ${base}#${code}))

fi
[[-n $code]] && eval char=\$\’\\x${x##???}\’

fi

Prompt for any more digits, showing
the character as it would be inserted.
zle -R "ASCII code [$mode]: $code${char:+ = $char}"
read -k key || return 1

done
If aborted with no code, return
[[-z $code]] && return 0
Now we have the ASCII code.
((x = ${base}#${code}))

fi

Finally, if we have a single-byte character,
insert it to the left of the cursor
if ((x < 0 || x > 255)); then

return 1
else

eval LBUFFER=\$LBUFFER\$\’\\x${x##???}\’
fi

This shows how to do interactive input. The ‘zle -R’s prompt the user, while the ‘read
-k’s accept a character at a time. As an extra feature, while you are typing the number, the
character that would be inserted if you hit return is shown. The widget also handles deletion
with backspace or the (UNIX-style, not PC-style) delete key.

One blight on this is the way of turning the number in x into a character, which is done
by all those evals and backslashes. It uses the feature that e.g. $’\x41’ is the character
0x41 (an ASCII ‘A’). To use this, we must make sure the character (stored in x) appears as
hexadecimal, and following ksh zsh outputs hexadecimal numbers as ‘16#41’ or similar. (The
new option C_BASES shows hexadecimal numbers as 0x41 and similar, but here we need the
plain number in any case.) Hence we strip the ‘16#’ and construct our $’\x41’. Now we
need to persuade the shell to interpret this as a quoted string by passing it to eval with the

182 CHAPTER 4. THE Z-SHELL LINE EDITOR

special characters ($, \, ’) quoted with a backslash so that they aren’t interpreted too early.

By the way, note that zsh only handles ordinary 8-bit characters at the moment. It doesn’t
matter if some do-gooder on your system has set things up to use UTF-8 (a UNIX-friendly
version of the international standard for multi-byte characters, Unicode) to appeal to the
international market, I’m afraid zsh is stuck with ISO 8859 and similar character sets for
now.

Chapter 5

Substitutions

This chapter will appeal above all to people who are excited by the fact that

print ${array[(r)${(l.${#${(O@)array//?/X}[1]}..?.)}]}

prints out the longest element of the array $array. For the overwhelming majority that
forms the rest of the population, however, there should be plenty that is useful before we
reach that stage. Anyway, it should be immediately apparent why there is no obfuscated zsh
code competition.

For those who don’t do a lot of function writing and spend most of the time at the shell
prompt, the most useful section of this chapter is probably that on filename generation (i.e.
globbing) at the end of the chapter. This will teach you how to avoid wasting your time with
find and the like when you want to select files for a command.

5.1 Quoting

I’ve been using quotes of some sort throughout this guide, but I’ve never gone into the detail.
It’s about time I did, since using quotes is an important part of controlling the effects of the
shell’s various substitutions. Here are the basic quoting types.

5.1.1 Backslashes

The main point to make about backslashes is that they are really trivial. You can quote
any character whatsoever from the shell with a backslash, even if it didn’t mean anything
unquoted; so if the worst comes to the worst, you can take any old string at all, whatever it
has in it — random collections of quotes, backslashes, unprintable characters — quote every
single character with a backslash, and the shell will treat it as a plain string:

print \T\h\i\s\ \i\s\ *\p\o\i\n\t\l\e\s\s*\ \
\-\ \b\u\t\ \v\a\l\i\d\!

Remember, too that, this means you need an extra layer of quotation to pass a ‘\n’, or
whatever, down to print.

183

184 CHAPTER 5. SUBSTITUTIONS

However, zsh has an easier way of making sure everything is quoted with a backslash when
that’s needed. It’s a special form of parameter substitution, just one of many tricks you can
do by supplying flags in parentheses:

% read string
This is a *string* with various ‘special’ characters
% print -r -- ${(q)string}
This\ is\ a\ *string*\ with\ various\ \‘special\’\ characters

The read builtin didn’t do anything to what you typed, so $string contains just those
characters. The -r flag to print told it to print out what came after it in raw fashion,
and here’s the special part: ${(q)string} tells the shell to output the parameter with
backslashes where needed to prevent special characters being interpreted. All parameter
flags are specific to zsh; no other shell has them.

The flag is not very useful there, because zsh usually (remember the GLOB_SUBST option?)
doesn’t do anything special to characters from substitutions anyway. Where it is extremely
useful is if you are going to re-evaluate the text in the substitution but still want it treated
as a plain string. So after the above,

% eval print -r -- ${(q)string}
This is a *string* with various ‘special’ characters

and you get back what you started with, because at the eval of the command line the
backslashes put in by the (q) flag meant that the value was treated as a plain string.

You can strip off quotes in parameters, too; the flag (Q) does this. It doesn’t care whether
backslashes or single or double quotes are used, it treats them all the way the shell’s parser
would. You only need this when the parameter has somehow acquired quotes in its value.
One way this can happen is if you try reading a file containing shell commands, and for this
there’s another trick: the (z) flag splits a line into an array in the same way as if the line
had been read in and was, say, being assigned to an array. Here’s an example:

% cat file
print ’a quoted string’ and\ another\ argument
% read -r line <file
% for word in ${(z)line}; do
for> print -r "quoted: $word"
for> print -r "unquoted: ${(Q)word}"
for> done
quoted: print
unquoted: print
quoted: ’a quoted string’
unquoted: a quoted string
quoted: and\ another\ argument
unquoted: and another argument

You will notice that the (z) doesn’t remove any of the quotes from the words read in, but the
(Q) flag does. Note the -r flags to both read and print: the first prevents the backslashes
being absorbed by read, and the second prevents them being absorbed by print. I’m afraid
backslashes can be a bit of a pain in the neck.

5.1. QUOTING 185

5.1.2 Single quotes

The only thing you can’t quote with single quotes is another single quote. However, there’s an
option RC_QUOTES, where two single quotes inside a single-quoted string are turned into one.
Apparently ‘RC’ refers to the shell rc which appeared in plan9; it seems to be one of those
programmes that some people get fanatically worked up about while the rest of us can’t quite
work out why. Zsh users may sympathise. (This was corrected by Oliver Kiddle and Bart
Schaefer after I guessed incorrectly that RC stood for recursive, although you’re welcome to
think of it that way anyway. It doesn’t really work for RC_EXPAND_PARAM, however, which is
definitely from the rc shell, and if you look at the source code you will find a variable called
‘plan9’ which is tested to see if that option is in effect.)

You might remember something like this from BASIC, although in that case with double
quotes — in zsh, it works only with single quotes, for some reason. So,

print -r ’A ’’quoted’’ string’

would usually give you the output ‘A quoted string’, but with the option set it prints ‘A
’quoted’ string’. The -r option to print doesn’t do anything here, it’s just to show I’m
not hiding anything. This is usually a useful and harmless option to have set, since there’s
no other good reason for having two quotes together within quotes.

The standard way of quoting single quotes is to end the quote, insert a backslashed single
quote, and restart quotes again:

print -r ’A ’\’’quoted’\’’ string’

which is unaffected by the option setting, since the quotes immediately after the backslashes
are always treated as an ordinary printable character. What you can’t ever do is use
backslashes as a way of quoting characters inside single quotes; they are just treated as
ordinary characters there.

You can make parameter flags produce strings quoted with single quotes instead of
backslashes by doubling the ‘q’: ‘${(qq)param}’ instead of ‘${(q)param}’. The main use for
this is that the result is shorter if you know there are a lot of special characters in the string,
and it’s also a bit more easy to read for humans rather than machines, but usually it gains
nothing over the other form. It can tell whether you have RC_QUOTES set and uses that to
make the string even shorter, so be careful if you might use the resulting string somewhere
where the option isn’t set.

5.1.3 POSIX quotes

There’s a relative of single quotes which uses the syntax $’ to introduce a quoted string and
’ to end it; I refer to them as ‘POSIX quotes’ because they appear in the POSIX standard and
I don’t know what else to call them; ‘string quotes’ is one possibility, but sounds a bit vague
(what else would you quote?) The difference from single quotes is that they understand the
same backslash sequences as the print builtin. Hence you can have the convenience of using
‘\n’ for newline, ‘\e’ for escape, ‘\xFF’ for an arbitrary character in hexadecimal, and so on,
for any command:

% cat <<<$’Line\tone\nLine\ttwo’

186 CHAPTER 5. SUBSTITUTIONS

Line one
Line two

Remember the ‘here string’ notation ‘«<’, which supplies standard input for the command.
Hence the output shows exactly how the quoted string is being interpreted. It is the same as

% print ’Line\tone\n\Line\ttwo’
Line one
Line two

but there the interpretation is done inside print, which isn’t always convenient. POSIX
quotes are currently rather underused.

This is as good a point as any to mention that the shell is completely ‘eight-bit clean’, which
means you can have any of the 256 possible characters anywhere in your string. For example,
$’foo\000bar’ has an embedded ASCII NUL in it (that’s not a misprint — officially, ASCII
non-printing characters have two- or three-letter abbreviations). Usually this terminates a
string, but the shell works around this when you are using it internally; when you try and
pass it as an argument to an external programme, however, all bets are off. Almost certainly
the first NUL in that case will cause the programme to think the string is finished, because
no information about the length of arguments is passed down and there’s nothing the shell
can do about it. Hence, for example:

% echo $’foo\000bar’
foobar
% /bin/echo $’foo\000bar’
foo

The shell’s echo knows about the shell’s 8-bit conventions, and prints out the NUL, which
the terminal doesn’t show, then the remainder of the string. The external version of echo
didn’t know any better than to stop when it reached the NUL.

There are actually uses for embedded NULs: some versions of find and xargs, for example,
will put or accept NULs instead of newlines between their bits of input and output (as
distinct from command line arguments), which is much safer if there’s a chance the input or
output can contain a live newline. Using $’\000’ allows the shell to fit in very comfortably
with these. If you want to try this, the corresponding options are -print0 for find (print
with a NUL terminator instead of newline) and -0 for xargs (read input assuming a NUL
terminator).

In older versions of the shell, characters with the top bit set, such as those from non-English
character sets found in ISO 8859 fonts, could cause problems, since the shell also uses
such characters internally to represent its own special characters, but recent versions of the
shell (from about 3.0) side-step this problem in the same way as for NULs. Any remaining
problems — it’s quite tricky to handle this completely consistently — are bugs and should be
reported.

You can force parameters to be quoted with POSIX quotes by the somewhat absurd expedient
of making the q in the quote flag appear a total of four times. I can’t think why you would
ever want to do that, except that it will turn newlines into ‘\n’ and hence the result will fit
on a single (maybe rather long) line. Plus you get the replacement of funny characters with
escape sequences.

5.1. QUOTING 187

5.1.4 Double quotes

Double quotes allow some, but not all, forms of substitution inside. More specifically, they
allow parameter expansion, command substitution and arithmetic substitution, but not any
of the others: process substitution doesn’t happen, braces and initial tildes and equals signs
are not expanded and patterns are not special. Here’s a table; each expression on the left is
some command line argument, and the results show what is substituted if it appears outside
quotes, or in double quotes.

Expression Outside quotes In double quotes
--
=(echo hi mum) /tmp/zshTiqpL =(echo hi mum)
$ZSH_VERSION 4.0.1 4.0.1
$(echo hi mum) hi mum hi mum
$((6**2 + 6)) 42 42
{a,b}cd acd bcd {a,b}cd
~/foo /home/pws/foo ~/foo
.zl* .zlogin .zlogout .zl*

That ‘/tmp/zshTiqpL’ could be any temporary filename, and indeed several of the other
substitutions will be different in your case.

You might already have guessed that ‘${(qqq)string}’ forces $string to use double
quotes to quote its special characters. As with the other forms, this is all properly handled
— the shell knows just which characters need quoting inside double quotes, and which don’t.

Word-splitting in double quotes

Where the substitutions are allowed, the (almost) invariable side effect of double quotes
is that word-splitting is suppressed. You can see this using ‘print -l’, which prints one
argument per line:

% array=(one two)
% print -l $(echo foo bar) $array
foo
bar
one
two
% print -l "$(echo foo bar) $array"
foo bar one two

The reason this is ‘almost’ invariable is that parameter substitution allows you to specify
that normal word-splitting will occur. There are two ways of doing this; both use the symbol
‘@’. You probably remember this from the parameter ‘$@’ which has just that effect when it
appears in double quotes: the arguments to the script or function are split into words like a
normal array, except that empty arguments are not removed. I covered this at some length
in chapter 3.

This is extended for other parameters in the following way:

% array=(one two three)

188 CHAPTER 5. SUBSTITUTIONS

% print -l "${array[@]}"
one
two
three

and more generally for all forms of substitution using another flag, (@):

% print -l "${(@)array}"
one
two
three

Digression on subscripts

The version with flags is perhaps less clear than the other, but it can appear in lots of
different places. For example, here is how you pick a slice of an array in zsh:

% print -l ${array[2,-1]}
two
three

where negative numbers count from the end of the array. The numbers in square brackets
are referred to as subscripts. This can get the (@) treatment, too:

% print -l "${(@)array[2,-1]}"
two
three

Although it’s probably not obvious, you can use the other notation in this case:

% print -l "${array[@][2,-1]}"
two
three

The shell will actually handle arbitrary numbers of subscripts in parameter substitutions,
not just one; each applies to the result of the previous one:

% print -l "${array[@][2,-1][1]}"
two

What you have to watch out for is that that last subscript selected a single word. You can
continue to apply subscripts, but they will apply only on the characters in that word, not on
array elements:

% print -l "${array[@][2,1][1][2,-1]}"
wo

We’ve now strayed severely off topic: the subscripts will of course work quite independently
from whether the word is being split or appears in double quotes. Despite the joining of

5.1. QUOTING 189

words that occurs in double quotes, subscripts of arrays still select array elements. This is a
consequence of the order in which the rules of parameter expansion apply. There is a long,
involved section on this in the zshexpn manual entry (look for the heading ‘Rules’ there or
in the ‘Parameter Expansion’ node of the corresponding Info or HTML file).

Word-splitting of quoted command substitutions

Zsh has the useful feature that you can force the shell to apply the rules of parameter
expansion to the result of a command substitution. To see where that might be useful,
consider the case of the special ‘command substitution’ (although it’s handled entirely in
the shell, not by running an external command) which puts the contents of a file on the
command line:

% args() { print $#; } # report number of arguments
% cat file
Words on line one
Words on line two
% args $(<file)
8
% args "$(<file)"
1

The unquoted substitution split the file into individual words; the quoted substitution didn’t
split it at all. These are the standard shell rules.

It’s very common, however, that you want one line per argument, not splitting on spaces
within the line. This is where parameter expansion can come in. There is a flag (f) which
says ‘split the result of the expansion, one word per line’. Here’s how to use it in this case:

% args "${(f)$(<file)}"
2

Where you would usually put the name of a parameter, you put the command substitution
instead, and the shell operates on the result of that (note that it does not treat the result
as the name of a parameter, but as a value — this is discussed in more detail below). The
double quotes were necessary because otherwise the file would already have been split into
individual words by the time the parameter substitution came to look at the result. You can
easily verify that the two arguments are the individual lines of the file. I don’t remember
what the ‘f’ stands for, but we were already using up flag codes quite fast when it came along;
Bart Schaefer believes it stands for ‘fold’, which might at least help you remember it.

5.1.5 Backquotes

The main thing to say about backquotes is that you should use the other form of command
substitution instead. There are two good reasons.

First, the other form can be nested:

% print $(print $(print a word))
a word

190 CHAPTER 5. SUBSTITUTIONS

Obviously that’s a silly example, but the main point is that the only time parentheses should
occur unquoted in the shell is in pairs (the patterns in case statements are an exception, but
pairs of parentheses around patterns are valid, too, and I have used that form in this guide).
Thus you can be confident that any piece of well-formatted shell code can appear inside the
command substitution.

This is clearly not true with ‘...‘, even though the basic effect is the same. Any unquoted
‘ which happens to appear in a chunk of code within the backquotes will be treated as the
end of the quotes.

The second reason, which is closely related, is that it can be quite difficult to decide how
many levels of quotes are required inside a backquoted expression. Consider:

% print "‘echo \"hello\"‘"
hello
% print "$(echo \"hello\")"
"hello"

It’s hard to explain quite what the difference here is without waving my hands, which
prevents me from typing, but the essential point is really the same one about nesting: you
can’t do it with backquotes, because the start and end symbols are the same, but you can do it
with parentheses. So in the second case there is no doubt that the embedded command line,
‘echo \"hello\"’, is to be treated exactly as if that had appeared outside the command
substitution; whereas in the first place, the quotes within quotes had to be, um, quoted.

As a consequence, in

% print "$(echo "hello")"
hello

you need to be careful: at first glance, the pairs of double quotes surround ‘$(echo ’ and ‘)’,
but they don’t, they are nested by virtue of the substitution. You see the same thing with
parameter substitution:

% unset foo
% print "${foo:-"a string"}"
a string

A third, less good, reason for using the form with parentheses is that your more sophisticated
friends will laugh at you otherwise. Peer pressure is so important in this complex world.

That’s all I have to say about command substitution, since I already said a lot about it when
I discussed the basic syntax in chapter 3.

5.2 Modifiers and what they modify

Modifiers were introduced in chapter 2 when I talked about ‘bang history’, since that’s where
they came from. In zsh, however, they can be used in a couple of other places. They have the
same form in each case: a colon, followed by a letter which is the code for what the modifier
does, possibly (in the case of substitutions) followed by some other string. So, to jog your
memory, unless you have NO_BANG_HIST set:

5.2. MODIFIERS AND WHAT THEY MODIFY 191

% print ~/file
/home/pws/file
% print !-1:t
file

where ‘:t’ takes the tail (non-directory part) of the filename.

The second use is in parameters. This follows on very naturally. Note that neither this nor
any of the later uses of modifiers rely on the NO_BANG_HIST option; that’s purely for history.

% param=~/file
% print ${param:t}
file

Normally you can miss out the braces in the parameter substitution, but I tend to use them
with modifiers for the sake of clarity. The fact that the same parts of the shell are used for
modifiers wherever they come from has certain consequences:

% print foo
foo
% ^foo^bar
bar
% param=’this sentence contains a foo.’
% print ${param:&}
this sentence contains a bar.

The ampersand repeats the last substitution, which is the same for parameter modifiers
as for history modifiers. I find parameter modifiers even more useful than history ones;
extracting the head or tail of a path is a very common operation on parameters.

Modifiers are also smart enough to handle arrays in a useful fashion. Note this is not true
of sets of arguments in history expansions; ‘:t’ will only extract one tail in that case, which
may not be quite what you’re expecting:

% print a sentence with a /real/live/bogus/path in it.
% print !!:t
path in it.

However, arrays are handled the way you might hope:

% array=(~/.zshenv ~/.zshrc ~/.zlogout)
% print ${array:t}
.zshenv .zshrc .zlogout

The same logic is applied with substitutions. This means that the first match in every
element of the array is replaced:

% array=(’a bar of chocolate’ ’a bar of barflies’
array> ’a barrier of barns’)
% print ${array:s/bar/car/}
a car of chocolate a car of barflies a carrier of barns

192 CHAPTER 5. SUBSTITUTIONS

unless, of course, you do a global replacement:

% print ${array:gs/bar/car/}
a car of chocolate a car of carflies a carrier of carns

Note, however, that parameter substitution has its own much more powerful equivalent,
which does pattern matching, partial replacement of modified parts of the original string,
and so on. We’ll come to this all in good time.

The final use of modifiers is in filename generation, i.e. globbing. Since this usually works
by having special characters on the command line, and modifiers just consist of ordinary
characters, the syntax is a little different:

% print *.c
parser.c lexer.c input.c output.c
% print *.c(:r)
parser lexer input output

so you need parentheses around them. This is a special case of ‘glob qualifiers’ which you’ll
meet below; you can mix them, but the modifiers must appear at the end. For example,

% print -l ~/stuff/*
/home/pws/stuff/onefile.c
/home/pws/stuff/twofile.c
/home/pws/stuff/subdir
% print ~/stuff/*(.:r:t)
onefile twofile

The globbing qualifier ‘.’ specifies that files must be regular, i.e. not directories nor some
form of special file. The ‘:r’ removes the suffix from the result, and the ‘:t’ takes away
the directory part. Consequently, filename modifiers will be turned off if you set the option
NO_BARE_GLOB_QUAL.

Two final points to note about modifiers with filenames. First, it is the only form of globbing
where the result is no longer a filename; it is always performed right at the end, after
all normal filename generation. Presumably, in the examples above, the word which was
inserted into the command line doesn’t actually correspond to a real file any more.

Second, although it does work if the word on the command line isn’t a pattern but an ordinary
word with a modifier tacked on, it doesn’t work if that pattern, before modification, doesn’t
correspond to a real file. So ‘foo.c(:r)’ will only strip off the suffix if foo.c is there in
the current directory. This is perfectly logical given that the attempt to match a file kicks
the globbing system, including modifiers, into action. If this is a problem for you, there are
ways round; for example, insert the right value by hand in a simple case like this, or more
realistically store the value in a parameter and apply the modifier to that.

5.3 Process Substitution

I don’t have much new to say on process substitution, but I do have an example of where I
find it useful. If you use the pager ‘less’ you may know it has the facility to preprocess the
files you look at, for example uncompressing files temporarily via the environment variable

5.3. PROCESS SUBSTITUTION 193

$LESSOPEN (and maybe $LESSCLOSE). Zsh can very easily and, to my thoroughly unbiased
way of looking, more conveniently do the same thing. Here’s a subset of my zsh function
front-end to less — or indeed any pager, which is given here by the standard environment
variable $PAGER with the default less. You can hard-wire any file-displaying command at
that point if you prefer.

integer i=1
local args arg
args=($*)

for arg in $*; do
case $arg in

(*.bz2) args[$i]="=(bunzip2 -c ${(q)arg})"
;;

this assumes your zcat is the one installed with gzip:
(*.(gz|Z)) args[$i]="=(zcat ${(q)arg})"

;;
(*) args=${(q)arg}

;;
esac
((i++))

done

eval command ${PAGER:-less} $args

The main pieces of interest is how elements of the array $args were replaced. The reason
each argument was given an extra layer of quotes via (q) is the eval at the end; $args is
turned into an array of literal characters first, which hence need quoting to protect special
characters. Without that, filenames with spaces or asterisks or whatever wouldn’t be shown
properly.

The reason the eval is there is so that the process substitutions are evaluated on the
command line when the pager is run, and not before. They are assigned back to elements of
$args in quotes, so don’t get evaluated at that point. The effect will be to turn:

less file.gz file.txt

into

less =(zcat file.gz) file.txt

The ‘command’ at the end of the function is there just in case the function has the same name
as the pager (i.e. ‘less’ in this example); it forces the external command to be called rather
than the function. The process substitution is ideal in this context; it provides less with the
name of a file to which the decompressed contents of file.gz have been sent, and it deletes
the file after the command exits. Furthermore, the substitution happens in such a way that
you can still specify multiple files on the command line as you usually can with less. The
only problem is that the filename that appears in the ‘less’ prompt is meaningless.

In case you haven’t come across it, bzip2 is a programme very similar to gzip, and it is used
almost identically, but it provides better compression.

There’s an infelicity in output process substitutions, just as there is with multios.

194 CHAPTER 5. SUBSTITUTIONS

echo hello > >(sed s/hello/goodbye)

The shell spawns the sed process to handle the output from the command line — and then
forgets about it. It does not wait for it (at least, not until after it exits, when it will use the
wait system call to tidy up). So it is dangerous to rely on the result of the process being
available in the next command. If you try it interactively, in fact, you may well find that
the next prompt is printed before the output from sed shows up on the terminal. This can
probably be considered a bug, but it is quite difficult to fix.

5.4 Parameter substitution

You can probably see from the above that parameter substitutions are at the heart of much
of the power available to transform zsh command lines. What’s more, we haven’t covered
even a significant fraction of what’s on offer.

5.4.1 Using arrays

The array syntax in zsh is quite powerful (surprised?); just don’t expect it to be as efficient
as, say, perl. Like other features of zsh, it exists to make users’ lives easier, not to make your
computer run blindingly fast.

I’ve covered, somewhat sporadically, how to set arrays, and how to extract bits of them — the
following illustrates this:

% array=(one two three four)
% print ${array}
one two three four
% print ${array[3]}
three
% print ${array[2,-1]}
two three four

Remember you need ‘typeset’ or equivalent if you want the array to be local to a function.
The neat way is ‘typeset -a’, which creates an empty array, but as long as you assign to
the array before trying to use it any old typeset will do.

You can use the array index and array slice notations for assigning to arrays, in other words
on the left-hand side of an ‘=’:

% array=(what kind of fool am i)
% array[2]=species
% print $array
what species of fool am i
% array[2]=(a piece)
% print $array
what a piece of fool am i
% array[-3,-1]=(work is a man)
% print $array
what a piece of work is a man

5.4. PARAMETER SUBSTITUTION 195

So you can replace a single element of an array by a single element, or by an array slice;
likewise you can replace a slice in one go by a slice of a different length — only the bits you
explicitly tell it to replace are changed, the rest is left intact and maybe shifted along to make
way. This is similar to perl’s ‘splice’ command, only for once maybe a bit more memorable.
Note that you shouldn’t supply any braces on the left hand side. The appearance of the
expression in an assignment is enough to trigger the special behaviour of subscripts, even
if KSH_ARRAYS is in effect — though you need to subtract one from your subscripts in that
case.

You can remove bits in the middle, too, but note you should use an empty array:

% array=(one two three four)
% print $#array
4
% array[2]=
% print $#array
4
% array[2]=()
% print $#array
3

The first assignment set element 2 to the empty string, it didn’t remove it. The second
replaced the array element with an array of length zero, which did remove it.

Just as parameter substitutions have flags for special purposes, so do subscripts. You can
force them to search through arrays, matching on the values. You can return the value
matched ((r)everse subscripting):

% array=(se vuol ballare signor contino)
% print ${array[(r)s*]}
se
% print ${array[(R)s*]}
signor

The (r) flag takes a pattern and substitutes the first element of the array matched, while
the (R) flag does the same but starting from the end of the array. If nothing matched, you
get the empty string; as usual with parameters, this will be omitted if it’s the only thing in an
unquoted argument. Using our args function to count the arguments passed to a command
again:

% array=(some words)
% args() { print $#; }
% args ${array[(r)s*]}
1
% args ${array[(r)X*]}
0
% args "${array[(r)X*]}"
1

where in the last case the empty string was quoted, and passed down as a single, empty
argument.

You can also return the index matched; (i) to start matching from the beginning, and (I)
to start from the end.

196 CHAPTER 5. SUBSTITUTIONS

% array=(se vuol venire nella mia scuola)
% print ${array[(i)v*]}
2
% print ${array[(I)v*]}
3

matching ‘vuol’ the first time and ‘venire’ the second. What happens if they don’t match may
be a little unexpected, but is reasonably logical: you get the next index along. In other words,
failing to match at the end gives you the length of the array plus one, and failing to match at
the beginning gives you zero, so:

array=(three egregious words)
for pat in ’*e*e*’ ’*a*a*’; do

if [[${array[(i)$pat]} -le ${#array}]]; then
print "Pattern $pat matched in array: ${array[(r)$pat]}."

else
print "Pattern $pat failed to match in array"

fi
done

prints:

Pattern *e*e* matched in array: three.
Pattern *a*a* failed to match in array

If you adapt that chunk of code, you’ll see you get the indices 1 and 4 returned. Note that
the characters in $pat were treated as a pattern even though putting $pat on the command
line would normally just produce the characters themselves. Subscripts are special in that
way; trying to keep the syntax under control at this point is a little hairy. There is a more
detailed description of this in the manual in the section ‘Subscript Parsing’ of the zshparam
manual page or the ‘Array Parameters’ info node; to quote the characters in pat, you would
actually have to supply the command line strings ’*e*e*’ and ’*a*a*’. Just go
round mumbling ‘extra layer of pattern expansion’ and everyone will think you know what
you’re talking about (it works for me, fitfully).

There is currently no way of extracting a complete set of matches from an ordinary array
with subscript flags. We’ll see other ways of doing that below, however.

5.4.2 Using associative arrays

Look back at chapter 3 if you’ve forgotten about associative arrays. These take subscripts,
like ordinary arrays do, but here the subscripts are arbitrary strings (or keys) associated
with the value stored in the element of the array. Remember, you need to use ‘typeset
-A’ to create one, or one of typeset’s relatives with the same option. This means that if you
created it inside a function it will be limited to the local scope, so if you want to create a global
associative array you will need to give the -g flag as well. This is particularly common with
associative arrays, which are often used to store global information such as configuration
details.

Retrieving information from associative arrays can get you into some of the problems already
hinted at in the use of subscript flags with arrays. However, since normal subscripting

5.4. PARAMETER SUBSTITUTION 197

doesn’t make patterns active, there is a way round here: make the subscript into another
parameter:

% typeset -A assoc
% assoc=(key value Shlüssel Wert clavis valor)
% subscript=’key’
% print ${assoc[$subscript]}
value

I used fairly boring keys here, but they can be any string of characters:

% assoc=(’]’ right\ square\ bracket ’*’ asterisk ’@’ at\ sign)
% subscript=’]’
% print ${assoc[$subscript]}
right square bracket

and that is harder to get the other way. Nonetheless, if you define your own keys you will
often use simple words, and in that case they can happily appear directly in the square
brackets.

I introduced two parameter flags, (k) and (v) in chapter 3:

% print ${(k)assoc}

*] @

prints out keys, while

% print ${(kv)assoc}

* asterisk] right square bracket @ at sign

and the remaining two possibilities do the same thing:

% print ${(v)assoc}
asterisk right square bracket at sign
% print ${assoc}
asterisk right square bracket at sign

You now know these are part of a much larger family of tricks to apply to substitutions.
There’s nothing to stop you combining flags:

% print -r ${(qkv)assoc}
* asterisk \] right\ square\ bracket @ at\ sign

which helps see the wordbreaks. Don’t forget the ‘print -l’ trick for separating out
different words, and hence elements of arrays and associative arrays:

% print -l ${(kv)assoc}

*
asterisk
]

198 CHAPTER 5. SUBSTITUTIONS

right square bracket
@
at sign

which is quite a lot clearer. As always, this will fail if you engage in un-zsh activities with
SH_WORD_SPLIT, but judicious use of @, whether as a flag or a subscript, and double quotes,
will always work:

% print -l "${(@kv)assoc}"

*
asterisk
]
right square bracket
@
at sign

regardless of the option setting.

Apart from the subscripts, the second major difference between associative and ordinary
arrays is that the former don’t have any order defined. This will be entirely familiar if you
have used Perl; the principle here is identical. However, zsh has no notion at all, even as
a convenience, of slices of associative arrays. You can assign individual elements or whole
associative arrays — remembering that in the second case the right hand side must consist
of key/value pairs — but you can’t assign subgroups. Any attempt to use the slice notation
with commas will be met by a stern error message.

What zsh does have, however, is extra subscript flags for you to match and retrieve one or
more elements. If instead of an ordinary subscript you use a subscript preceded by the flag
(i), the shell will search for a matching key (not value) with the pattern given and return
that. This is deliberately the same as searching an ordinary array to get its key (which in
that case is just a number, the index), but note this time it doesn’t match on the value, it
really does match, as well as return, the key:

% typeset -A assoc
% assoc=(fred third\ man finnbar slip roger gully trevor long\ off)
% print ${assoc[(i)f*]}
fred

You can still use the parameter flags (k) and (v) to tell the shell which part of the key
and/or value to return:

% print ${(kv)assoc[(i)f*]}
fred third man

Note the division of labour. The subscript flag tells the shell what to match against, while
the parameter flags tell it which bit of the matched element(s) you actually want to see.

Because of the essentially random ordering of associative arrays, you couldn’t tell here
whether fred or finnbar would be chosen. However, you can use the capital form (I) to
tell the shell to retrieve all matches. This time, let’s see the values of the elements for which
the keys were matched:

% print -l ${(v)assoc[(I)f*]}

5.4. PARAMETER SUBSTITUTION 199

third man
slip

and here we also got the position occupied by finnbar. The same rules about patterns apply
as with (r) in ordinary arrays — a subscript is treated as a pattern even if it came from a
parameter substitution itself.

You probably aren’t surprised to hear that the subscript flags (r) and (R) try to match the
values of the associative array rather than its keys. These, too, print out the actual part
matched, here the value, unless you use the parameter flags.

% print ${assoc[(r)*i*]}
third man
% print ${(k)assoc[(R)*i*]}
fred finnbar

There’s one more pair of subscript flags of particular relevance to associative arrays, (k) and
(K). These work a bit like a case statement: the subscripts are treated as strings, and the
keys of the associative arrays as patterns, instead of the other way around. With (k), the
value of the first key which matches the subscript is substituted; with (K), the values of all
matching keys are substituted

% typeset -A assoc
% assoc=(’[0-9]’ digit ’[a-zA-Z]’ letter ’[^0-9a-zA-Z]’ neither)
% print ${assoc[(k)0]}
digit
% print ${assoc[(k)_]}
neither

In case you’re still confused, the ‘0’ in the first subscript was taken as a string and all the
keys in $assoc were treated as patterns in turn, a little like

case 0 in
([0-9]) print digit

;;
([a-zA-Z]) print letter

;;
([^0-9a-zA-Z]) print neither

;;
esac

One important way in which this is not like the selection in a case statement is that you
can’t rely on the order of the comparison, so you can’t rely on more general patterns being
matched after more specific ones. You just have to use keys which are sufficiently explicit to
match just the strings you want to match and no others. That’s why we picked the pattern
‘[^0-9a-zA-Z]’ instead of just ‘*’ as we would probably have used in the case statement.

I said storing information about configuration was a common use of associative arrays, but
the shell has a more powerful way of doing that: styles, which will figure prominently in the
discussion of programmable completion in the next chapter. The major advantage of styles
over associative arrays is that they can be made context-sensitive; you can easily make the
same style return the same value globally, or make it have a default but with a different

200 CHAPTER 5. SUBSTITUTIONS

value in one particular context, or give it a whole load of different values in different places.
Each shell application can decide what is meant by a ‘context’; you are not tied to the same
scheme as the completion system uses, or anything like it. Use of hierarchical contexts in
the manner of the completion system does mean that it is easy to create sets of styles for
different modules which don’t clash.

Here, finally, is a comparison of some of the uses of associative arrays in perl and zsh.

perl zsh

%hash = qw(key value); typeset -A hash; hash=(key value)
$hash{key} ${hash[key]}
keys %hash ${(k)hash}
values %hash ${(v)hash}
%hash2 = %hash; typeset -A hash2; hash2=("${(@kv)hash}")
unset %hash; unset hash
if (exists $hash{key}) { if ((${+hash[key]})); then

... ...
} fi

One final reminder: if you are creating associative arrays inside a function which need to
last beyond the end of the function, you should create them with ‘typeset -gA’ which puts
them into the surrounding scope. The ‘-g’ flag is of course useful with all types of parameter,
but the associative array is the only type that doesn’t automatically spring into existence
when you assign to it in the right context; hence the flag is particularly worthy of note here.

5.4.3 Substituted substitutions, top- and tailing, etc.

There are many transformations which you can do on the result of a parameter substitution.
The most powerful involve the use of patterns. For this, the more you know about patterns,
the better, so I will reserve explanation of some of the whackiest until after I have gone into
more detail on patterns. In particular, it’s useful if you know how to tell the shell to mark
subexpressions which it has matched for future extraction. However, you can do some very
useful things with just the basic patterns common to all shells.

Standard forms: lengths

I’ll separate out zsh-specific forms, and start off with some which appear in all shells derived
from the Bourne shell. A more compact (read: terse) list is given in the manual, as always.

A few simple forms don’t use patterns. First, the substitution ${#param} outputs the length
of $param. In zsh, you don’t need the braces here, though in most other shells with this
feature you do. Note that ${#} on its own is the number of parameters in the command line
argument array, which is why explicit use of braces is clearer.

$# works differently on scalar values and array values; in the former case, it gives the length
in characters, and in the latter case the length in elements. Note that I said ‘values’, not
‘parameters’ — you have to work out whether the substitution is giving you a scalar or an
array:

% print ${#path}

5.4. PARAMETER SUBSTITUTION 201

8
% print ${#path[1]}
13

The first result shows I have 8 directories in my path, the latter that the first directory
(actually ‘/home/pws/bin’) has 13 characters. You should bear this in mind with nested
substitutions, as discussed below, which can also return either an array or a scalar.

Earlier versions of zsh always returned a character count if the expression was in double
quotes, or anywhere the shell evalauted the expression as a single word, but that doesn’t
happen any more; it depends only on the type of the value. However, you can force the shell
to count characters by using the (c) flag, and to count words (even in scalars, which it will
split if necessary) by using (w):

% print ${#PATH}
84
% print ${(c)#path}
84
% foo="three scalar words"
% print ${(w)#foo}
3

Comparing the first two, you will see that character count with arrays includes the space
used for separating (equal to the number of colons separating the elements in $PATH). There’s
a relative of (w) called (W), which treats multiple word separators as having zero-length
words in between:

% foo="three well-spaced word"
% print ${(w)#foo}
3
% print ${(W)#foo}
5

giving two extra words over (w), which treats the groups of spaces in the same way as one.
Being parameter flags, these modifications of the syntax are specific to zsh.

Note that if you use lengths in an arithmetic context (inside ((...)) or $((...))),
you must include the leading ‘$’, which you don’t need for substituting the parameters
themselves. That’s because ‘#foo’ means something different here — the number in the
ASCII character set (or whatever extension of it you are using if it is an extended character
set) of the first character in $foo.

Standard forms: conditional substitutions

The next group of substitutions is a whole series where the parameter is followed by an
option colon and then ‘-’, ‘=’, ‘+’ or ‘?’. The colon has the same effect in each case: without
a colon, the shell tests whether the parameter is set before performing the operation, while
with the colon it tests whether the parameter has non-zero length.

The simplest is ‘${param:-value}’. If $param has non-zero length (without the colon, if it
is set at all), use its value, else use the value supplied. Suppose $foo wasn’t set at the start
of the following (however unlikely that may seem):

202 CHAPTER 5. SUBSTITUTIONS

% print ${foo-bar}
bar
% foo=’’
% print ${foo-bar}

% print ${foo:-bar}
bar
% foo=’please no anything but bar’
% print ${foo:-bar}
please no anything but bar

It’s more usual to use the form with the colon. One reason for that is that in functions you
will often create the parameter with a typeset before using it, in which case it always exists,
initially with zero length, so that the other form would never use the default value. I’ll use
the colon for describing the other three types.

‘${param:=value}’ is similar to the previous type. but in this case the shell will not only
substitute value into the line, it will assign it to param if (and only if) it does so. This leads
to the following common idiom in scripts and functions:

: ${MYPARAM:=default} ${OTHERPARAM:=otherdefault}

If the user has already set $MYPARAM, nothing happens, otherwise it will be set to ‘default’,
and similarly for ${OTHERPARAM}. The ‘:’ command does nothing but return true after the
command line has been processed.

‘${param:+value}’ is the opposite of ‘:-’, logically enough: the value is substituted if the
parameter doesn’t have zero length. In this case, value will often be another parameter
substitution:

print ${value:+"the value of value is $value"}

prints the string only if $#value is greater than zero. Note that what can appear after the
‘+’ is pretty much any single word the shell can parse; all the usual single-word substitutions
(so globbing is excluded) will be applied to it, and quotes will work just the same as usual.
This applies to the values after ‘:-’ and ‘:=’, too. One other commonly seen trick might be
worth mentioning:

print ${1+"$@"}

substitutes all the positional parameters as they were passed if the first one was set (here
you don’t want the colon). This was necessary in some old shells because "$@" on its own
gave you a single empty argument instead of no arguments when no arguments were passed.
This workaround isn’t necessary in zsh, nor in most modern Bourne-derived shells. There’s
a bug in zsh’s handling, however; see the section on function parameters in chapter 3.

The final type isn’t that often used (meaning I never have): ${param?message} tests if
param is set (no colon), and if it isn’t, prints the message and exits the shell. An interactive
shell won’t exit, but it will return you immediately to the prompt, skipping anything else
stored up for execution. It’s a rudimentary safety feature, a little bit like ‘assert’ in C
programmes; most shell programmers seem to cover the case of missing parameter settings
by more verbose tests. It’s quite neat in short shell functions for interactive use:

mless() { mtype ${@:?missing filename} | $PAGER }

5.4. PARAMETER SUBSTITUTION 203

Standard forms: pattern removal

Most of the more sophisticated Bourne-like shells define two pairs of pattern operators, which
I shall call ‘top and tail’ operators. One pair (using ‘#’ and ‘##’) removes a given pattern from
the head of the string, returning the rest, while the other pair (using ‘%’ and ‘%%’) removes
a pattern from the tail of the string. In each case, the form with one symbol removes the
shortest matching pattern, while the one with two symbols removes the longest matching
pattern. Two typical uses are:

% print $HOME
/home/pws
% print ${HOME##*/}
pws
% print ${HOME%/*}
/home

which here have the same effect of ${HOME:t} and and ${HOME:h}, and in zsh you would
be more likely to use the latter. However, as you can see the pattern forms are much more
general. Note the difference from:

% print ${HOME#*/}
home/pws
% print ${HOME%%/*}

where the shortest match of ‘*/’ at the head was just the first slash, since ‘*’ can match an
empty string, while the longest match of ‘/*’ at the tail was the entire string, right back
to the first slash. Although these are standard forms, remember that the full power of zsh
patterns is available.

How do you remember which operator does what? The fact that the longer form does the
longer match is probably easy. Remembering that ‘#’ removes at the head and ‘%’ at the tail
is harder. Try to think of ‘hash’ and ‘head’ (if you call it a ‘pound sign’, when it’s nothing of the
sort since a pound since looks like ‘£’, you will get no sympathy from me), and ‘percent’ and
‘posterior’. It never worked for me, but maybe I just don’t have the mental discipline. Oliver
Kiddle points out that ‘#’ is further to the left (head) on a standard US keyboard. On my UK
keyboard, ‘#’ is right next to the return key, unfortunately, although here the confusion with
‘pound sign’ will jog your memory.

The most important thing to remember is: this notation is not our fault. Sorry, anyway. By
the way, notice there’s no funny business with colons in the case of the pattern operators.
(Well — except for the zsh variant noted below.)

Zsh-specific parameter substitutions

Now for some enhancements that zsh has for using the forms of parameter substitution I’ve
just given as well as some similar but different ones.

One simple enhancement is that in addition to ‘${param=value}’ and ‘${param:=value}’,
zsh has ‘${param::=value}’ which performs an unconditional assignment as well as sticking
the value on the command line. It’s not really any different from using a normal assignment,
then a normal parameter substitution, except that zsh users like densely packed code.

204 CHAPTER 5. SUBSTITUTIONS

All the assignment types are affected by the parameter flags ‘A’ and ‘AA’ which tell the shell
to perform array and associative array assignment (in the second case, you need pairs of
key/value elements as usual). You need to be a little bit careful with array elements and
word splitting, however:

% print -l ${(A)foo::=one two three four}
one two three four
% print ${#foo}
1

That made $foo an array all right, but treated the argument as a scalar value and assigned
it to the first element. There’s a way round this:

% print -l ${(A)=foo::=one two three four}
one
two
three
four
% print ${#foo}
4

Here, the ‘=’ before the parameter name has a completely different effect from the others: it
turns on word-splitting, just as if the option SH_WORD_SPLIT is in effect. You may remember
I went into this in appalling detail in the section ‘Function parameters’ in chapter 3.

You should be careful, however, as more sophisticated attempts at putting arrays inside
parameter values can easily lead you astray. It’s usually much easier to use the ‘array=(...)’
or ‘set -A ...’ notations.

One extremely useful zsh enhancement is the notation ‘${+foo}’ which returns 1 if $foo is
set and 0 if it isn’t. You can use this in arithmetic expressions. This is a much more flexible
way of dealing with possibly unset parameters than the more standard ‘${foo?goodbye}’
notation, and consequently is better used by zsh programmers. The notation ‘plus foo’ for ‘foo
is set’ should be fairly memorable, too. A more standard way of doing this (noted by David
Korn) is ‘0${foo+1}’, giving 0 if $foo is not set and 01 if it is.

Parameter flags and pattern substitutions

Zsh increases the usefulness of the ‘top and tail’ operators with some of its parameter flags.
Usually these show you what’s left after the removal of some matched portion. However,
with the flag (M) the shell will instead show you the matched portion itself. The flag (R) is
the opposite and shows the rest: that’s not all that useful in the normal case, since you get
that by default. It only starts being useful when you combine it with other flags.

Next, zsh allows you to match on substrings, not just on the head or tail. You can do this by
giving the flag (S) with either of the ‘#’ or ‘%’ pattern-matching forms. The difference here
is whether the shell starts searching for a matching substring at the start or end of the full
string. Let’s take

foo=’where I was huge lizards walked here and there’

and see what we get matching on ‘h*e’:

5.4. PARAMETER SUBSTITUTION 205

% print -l ${(S)foo#h*e} ${(S)foo##h*e} ${(S)foo%h*e} ${(S)foo%%h*e}
wre I was huge lizards walked here and there
w
where I was huge lizards walked here and tre
where I was huge lizards walked here and t

There are some odd discrepancies at first sight, but here’s what happens. In the first case, ‘#’
the shell looks forward until it finds a match for ‘h*e’, and takes the shortest, which is the
‘he’ in the first word. With ‘##’, the match succeeds at the same point, but the longest match
extends to the ‘e’ right at the end of the string. With the other two forms, the shell starts
scanning backwards from the end, and stops as soon as it reaches a starting point which has
a match. For both ‘%’ and ‘%%’ this is the last ‘h’, but the former matches ‘he’ and the latter
matches ‘here’.

You can extend this by using the (I) flag to specify a numeric index. The index needs to
be delimited, conventionally, although not necessarily, by colons. The shell will then scan
forward or backward, depending on the form used, until it has found the (I)’th match. Note
that it only ever counts a single match from each position, either the longest or the shortest,
so the (I)’th match starts from the (I)’th position which has any match. Here’s what
happens when we remove all the matches for ‘#’ using the example above.

% for ((i = 1; i <= 5; i++)); do
for> print ${(SI:$i:)foo#h*e}
for> done
wre I was huge lizards walked here and there
where I was lizards walked here and there
where I was huge lizards walked re and there
where I was huge lizards walked here and tre
where I was huge lizards walked here and there

Each time we match and remove one of the possible ‘h*e’ sets where there is no ‘e’ in the
middle, moving from left to right. The last time there was nothing left to match and the
complete string was returned. Note that the index we used was itself a parameter.

It’s obvious what happens with ‘##’: it will find matches at all the same points, but they will
all extend to the ‘e’ at the end of the string. It’s probably less obvious what happens with ‘%%’
and ‘%’, but if you try it you will find they produce just the same set of matches as ‘##’ and
‘#’, respectively, but with the indices in the reverse order (4 for 1, 3 for 2, etc.).

You can use the ‘M’ flag to leave the matched portion rather than the rest of the string, if
you like. There are three other flags which let you get the indices associated with the match
instead of the string: (B) for the beginning, using the usual zsh convention where the first
character is 1, (E) for the character after the end, and (N) for the length, simply B-E. You
can even have more than one of these; the value substituted is a string with the given values
with spaces between, always in the order beginning, end, length.

There is a sort of opposite to the ‘(S)’ flag, which instead of matching substrings will only
match the whole string; to do this, put a colon before the ‘#’. Hence:

% print ${foo:#w*g}
where I was huge lizards walked here and there
% print ${foo:#w*e}

%

206 CHAPTER 5. SUBSTITUTIONS

The first one didn’t match, because the ‘g’ is not at the end; the second one did, because there
is an ‘e’ at the end.

Pattern replacement

The most powerful of the parameter pattern-matching forms has been borrowed from bash
and ksh93; it doesn’t occur in traditional Bourne shells. Here, you use a pair of ‘/’s to indicate
a pattern to be replaced, and its replacement. Lets use the lizards again:

% print ${foo/h*e/urgh}
wurgh

A bit incomprehensible: that’s because like most pattern matchers it takes the longest match
unless told otherwise. In this case the (S) flag has been pressed into service to mean not a
substring (that’s automatic) but the shortest match:

% print ${(S)foo/h*e/urgh}
wurghre I was huge lizards walked here and there

That only replace the first match. This is where ‘//’ comes in; it replaces every match:

% print ${(S)foo//h*e/urgh}
wurghre I was urgh lizards walked urghre and turghre

(No doubt you’re starting to feel like a typical anachronistic Hollywood cave-dweller already.)
Note the syntax: it’s a little bit like substitution in sed or perl, but there’s no slash at the
end, and with ‘//’ only the first slash is doubled. It’s a bit confusing that with the other
pattern expressions the single and double forms mean the shortest and longest match, while
here it’s the flag (S) that makes the difference.

The index flag (I) is useful here, too. In the case of ‘/’, it tells the shell which single match
to substitute, and in the case of ‘//’ it tells the shell at which match to start: all matches
starting from that are replaced.

Overlapping matches are never replaced by ‘//’; once it has put the new text in for a match,
that section is not considered further and the text just to its right is examined for matches.
This is probably familiar from other substitution schemes.

You may well be thinking ‘wouldn’t it be good to be able to use the matched text, or some
part of it, in the replacment text?’ This is what you can do in sed with ‘\1’ or ‘\&’ and in perl
with ‘$1’ and ‘$&’. It turns out this is possible with zsh, due to part of the more sophisticated
pattern matching features. I’ll talk about this when we come on to patterns, since it’s not
really part of parameter substitution, although it’s designed to work well with that.

5.4.4 Flags for options: splitting and joining

There are three types of flag that don’t look like flags, for historical reasons; you’ve already
seen them in chapter 3. The first is the one that turns on the SH_WORD_SPLIT option,
${=foo}. Note that you can mix this with flags that do look like flags, in parentheses,
in which case the ‘=’ must come after the closing parenthesis. You can force the option to

5.4. PARAMETER SUBSTITUTION 207

be turned off for a single substitution by doubling the symbol: ‘${==foo}’. However, you
wouldn’t do that unless the option was already set, in which case you are probably trying to
be compatible with some other shell, and wouldn’t want to use that form.

More control over splitting and joining is possible with three of the more standard type of
flags, (s), (j) and (z). These do splitting on a given string, joining with a given string, and
splitting just the way the shell does it, respectively. In the first two cases, you need to specify
the string in the same way as you specified the index for the (I) flag. So, for example, here’s
how to turn $PATH into an ordinary array without using $path:

% print -l ${(s.:.)PATH}
/home/pws/bin
/usr/local/bin
/usr/sbin
/sbin
/bin
/usr/bin
/usr/X11R6/bin
/usr/games

Any character can follow the (s) or (j); the string argument lasts until the matching
character, here ‘.’. If the character is one of the bracket-like characters including ‘<’,
the ‘matching’ character is the corresponding right bracket, e.g. ‘${(s<:>)PATH}’ and
‘${(s(:))PATH}’ are both valid. This applies to all flags that need arguments, including
(I).

Although the split or join string isn’t a pattern, it doesn’t have to be a single character:

% foo=(array of words)
% print ${(j.**.)foo}
array**of**words

The (z) flag doesn’t take an argument. As it handles splitting on the full shell definition of
a word, it goes naturally with quoted expressions, and I discussed above its use with the (Q)
flag for extracting words from a line with the quotes removed.

It’s possible for the same parameter expression to have both splitting and joining applied to
it. This always occurs in the same order, regardless of how you specify the flags: joining first,
then splitting. This is described in the (rather hairy) complete set of rules in the manual
entry for parameter substitution. There are one or two occasions where this can be a bit
surprising. One is when you have SH_WORD_SPLIT set and try to join a string:

% setopt shwordsplit
% foo=(’another array’ of ’words with spaces’)
% print -l ${(j.:.)foo}
another
array:of:words
with
spaces

You might not have noticed if you didn’t use the ‘-l option to print, but the spaces still
caused word-spliting even though you asked for the array to be joined with colons. To avoid
this, either don’t use SH_WORD_SPLIT (my personal preference), or use quotes:

208 CHAPTER 5. SUBSTITUTIONS

% print -l "${(j.:.)foo}"
another array:of:words with spaces

The elements of an array would normally be joined by spaces in this case, but the character
specified by the (j) flag takes precedence. In just the same way, if SH_WORD_SPLIT is in
effect, any splitting string given by (s) is used instead of the normal set of characters, which
are any characters that occur in the string $IFS, by default space, tab, newline and NUL.

Specifying a split for a particular parameter substitution not only sets the string to split on,
but also ensures the split will take place even if the expression is quoted:

% array=(’element one’ ’element two’ ’element three’)
% print -l "${=array}"
element
one
element
two
element
three

To be clear about what’s happening here: the quotes force the elements to be joined with
spaces, giving a single string, which is then split on the original spaces as well as the one
used to join the elements of the array.

I will talk shortly about nested parameter substitution; you should also note that splitting
and joining will if necessary take place at all levels of a nested substitution, not just the
outermost one:

% foo="three blind words"
% print ${#${(z)foo}}
3

This prints the length of the innermost expression; because of the zplit, that has produced a
three-element array.

5.4.5 Flags for options: GLOB_SUBST and RC_EXPAND_PARAM

The other two flags that don’t use parentheses affect options for single substitutions, too.
The second is the ‘~’ flag that turns on GLOB_SUBST, making the result of a parameter
substitution eligible for pattern matching. As the notation is supposed to indicate, it also
makes filename expansion possible, so

% foo=’~’
% print ${~foo}
/home/pws

It’s that first ‘~’ which is giving the home directory; the one in the parameter expansion
simply allows that to happen. If you have GLOB_SUBST set, you can use ‘${~~foo}’ to turn
it off for one substitution.

There’s one other of these option flags: ‘^’ forces on RC_EXPAND_PARAM for the current
substitution, and ‘^^’ forces it off. In chapter 3, I showed how parameters expanded with
this option on fitted in with brace expansions.

5.4. PARAMETER SUBSTITUTION 209

5.4.6 Yet more parameter flags

Here are a few other parameter flags; I’m repeating some of these. A very useful one is ‘t’ to
tell you the type of a parameter. This came up in chapter 3 as well. It’s most common use is
to test the basic type of the parameter before trying to use it:

if [[${(t)myparam} != *assoc*]]; then
$myparam is not an associative array. Do something about it.

fi

Another very useful type is for left or right padding of a string, to a specified length, and
optionally with a specified fill string to use instead of space; you can even specify a one-off
string to go right next to the string in question.

foo=’abcdefghij’
for ((i = 1; i <= 10; i++)); do
goo=${foo[1,$i]}
print ${(l:10::X::Y:)goo} ${(r:10::X::Y:)goo}

done

prints out the rather pretty:

XXXXXXXXYa aYXXXXXXXX
XXXXXXXYab abYXXXXXXX
XXXXXXYabc abcYXXXXXX
XXXXXYabcd abcdYXXXXX
XXXXYabcde abcdeYXXXX
XXXYabcdef abcdefYXXX
XXYabcdefg abcdefgYXX
XYabcdefgh abcdefghYX
Yabcdefghi abcdefghiY
abcdefghij abcdefghij

Note that those colons (which can be other characters, as I explained for the (s) and (j)
flags) always occur in pairs before and after the argument, so that with three arguments, the
colons in between are doubled. You can miss out the ‘:Y:’ part and the ‘:X:’ part and see
what happens. The fill strings don’t need to be single characters; if they don’t fit an exact
number of times into the filler space, the last repetition will be truncated on the end furthest
from the parameter argument being inserted.

Two parameters tell the shell that you want something special done with the value of the
parameter substitution. The (P) flag forces the value to be treated as a parameter name, so
that you get the effect of a double substitution:

% final=string
% intermediate=final
% print ${(P)intermediate}
string

This is a bit as if $intermediate were what in ksh is called a ‘nameref ’, a parameter that
is marked as a reference to another parameter. Zsh may eventually have those, too; there
are places where they are a good deal more convenient than the ‘(P)’ flag.

210 CHAPTER 5. SUBSTITUTIONS

A more powerful flag is (e), which forces the value to be rescanned for all forms of single-
word substitution. For example,

% foo=’$(print $ZSH_VERSION)’
% print ${(e)foo}
4.0.2

made the value of $foo be re-examined, at which point the command substitution was found
and executed.

The remaining flags are a few simple special formatting tricks: order array elements in
normal lexical (character) order with (o), order in reverse order with (O), do the same case-
independently with (oi) or (Oi) respectively, expand prompt ‘%’-escapes with (%) (easy to
remember), expand backslash escapes as print does with p, force all characters to uppercase
with (U) or lowercase with (L), capitalise the first character of the string or each array
element with (C), show up special characters as escape sequences with (V). That should be
enough to be getting on with.

5.4.7 A couple of parameter substitution tricks

I can’t resist describing a couple of extras.

Zsh can do so much on parameter expressions that sometimes it’s useful even without a
parameter! For example, here’s how to get the length of a fixed string without needing to put
it into a parameter:

% print ${#:-abcdefghijklm}
13

If the parameter whose name you haven’t given has a zero length (it does, because there
isn’t one), use the string after the ‘:-’ instead, and take it’s length. Note you need the colon,
else you are asking the shell to test whether a parameter is set, and it becomes rather upset
when it realises there isn’t one to test. Other shells are unlikely to tolerate any such syntactic
outrages at all; the # in that case is likely to be treated as $#, the number of shell arguments.
But zsh knows that’s not going to have zero length, and assumes you know what you’re doing
with the extra part; this is useful, but technically a violation of the rules.

Sometimes you don’t need anything more than the flags. The most useful case is making
the ‘fill’ flags generate repeated words, with the effect of perl’s ‘x’ operator (for those not
familiar with perl, the expression ‘"string" x 3’ produces the string ‘stringstringstring’.
Here, you need to remember that the fill width you specify is the total width, not the number
of repetitions, so you need to multiply it by the length of the string:

% print ${(l.18..string.)}
stringstringstring

5.4.8 Nested parameter substitutions

Zsh has a system for multiple nested parameter substitutions. Whereas in most shells or
other scripting languages you would do something like:

5.4. PARAMETER SUBSTITUTION 211

% p=/directory/file.ext
% p2=${p##*/} # remove longest match of */ from head
% print $p2
file.ext
% print ${p%.*} # remove shortest match of .* from tail
file

in zsh you can do this in one substitution:

% p=/directory/file.ext
% print ${${p##*/}%.*}
file

saving the temporary parameter in the middle. (Again, you are more likely to use ${p:t:r}
in this particular case.) Where this becomes a major advantage is with arrays: if $p is an
array, all the substitutions are applied to every element of the array:

% p=(/dir1/file1.ext1 /dir2/file2.ext2)
% print ${${p##*/}%.*}
file1 file2

This can result in some considerable reductions in the code for processing arrays. It’s a way of
getting round the fact that an ordinary command line interface like zsh, designed originally
for direct interaction with the user, doesn’t have all the sophistication of a non-interactive
language like perl, whose ‘map’ function would probably be the neatest way of doing the same
thing:

Perl code.
@p = qw(/dir1/file1.ext1 /dir2/file2.ext2);
@q = map { m%^(?:.*/)(.*?)(?:\.[^.]*|)$%; } @p;
print "@q\n";’

or numerous possible variants. In a shell, there’s no way of putting functions like that into
the command line without complicating the basic ‘command, arguments’ syntax; so we resort
to trickery with substitutions. Note, however, that this degree of brevity makes for a certain
lack of readability even in Perl. Furthermore, zsh is so optimised for common cases that

print ${p:t:r}

will work for both arrays and scalars: the :t takes only the tail of the filename, stripping
the directories, and the :r removes the suffix. These two operators could have slightly
unexpected effects in versions of zsh before 4.0.1, removing ‘suffixes’ which contained
directory paths, for example (though this is what the pattern forms taken separately do,
too).

Note one feature of the nested substitution: you might have expected the ‘${...}’ inside the
other one to do a full parameter substitution, so that the outer one would act on the value
of that — that’s what you’d get if the substitution was on its own, after all. However, that’s
not what happens: the ‘${...}’ inside is simply a syntactic trick to say ‘here come more
operations on the parameter’. This means that

212 CHAPTER 5. SUBSTITUTIONS

bar=’this doesn’\’’t get substituted’
foo=’bar’
print ${${foo}}

simply prints ‘bar’, not the value of $bar. This is the same case we had before but without
any of the extra ‘##’ and ‘%’ bits. The reason is historical: when the extremely useful
nested substitution feature was added, it was much simpler to have the leading ‘$’ indicate
to the shell that it should call the substitution function again than find another syntax.
You can make the value be re-interpreted as another parameter substitution, using the
(P) substitution flag described above. Just remember that ${${foo}} and ${(P)foo} are
different.

5.5 That substitution again

Finally, here is a brief explanation of how to read the expression at the top of the chapter.
This is for advanced students only (nutcases, if you ask me). You can find all the bits in the
manual, if you try hard enough, even the ones I didn’t get around to explaining above. As an
example, let’s suppose the array contains

array=(long longer longest short brief)

and see what

print ${array[(r)${(l.${#${(O@)array//?/X}[1]}..?.)}]}

gives.

1. Always start from the inside. The innermost expression here is

${(O@)array//?/X}

Not much clearer? Start from the inside again: there’s the parameter we’re operating
on, whose name is array. Before that there are two flags in parenthesis: (O) says
sort the result in descending alphabetic order, (@) treat the result as an array, which
is necessary because this inner substitution occurs where a scalar value (actually, an
arithmetic expression) would usually occur, and we need to take an array element.
After the array name, ‘//?/X’ is a global substitution: take the pattern ‘?’ (any
character) wherever it occurs, and replace it with the string ‘X’. The result of this is
an array like $array, but with all the elements turned into strings consisting of ‘X’s in
place of the original characters, and with the longest first, because that’s how reverse
alphabetic order works for strings with the same character. So

long longer longest short brief

would have become

XXXXXXX XXXXXX XXXXX XXXXX XXXX

5.5. THAT SUBSTITUTION AGAIN 213

2. Next, we have ‘${#result[1]}’ wrapped around that. That means that we take the first
element of the array we arrived at above (the ‘[1]’: that’s why we had to make sure
it was treated as an array), and then take the length of that (the ‘#’). We will end up
in this case with 7, the length of the first (and longest element). We’re finally getting
somewhere.

3. The next step is the ‘${(l.result..?.)}’. Our previous result appears as an argument
to the ‘(l)’ flag of the substitution. That’s a rather special case of nested substitution:
at this point, the shell expects an arithmetical expression, giving the minimum length
of a string to be filled on the left. The previous substitution was evaluated because
arithmetic expressions undergo parameter substitution. So it is the result of that, 7,
which appears here, giving the more manageable

${(l.7..?.)}

The expression for the ‘(l)’ flag in full says ‘fill the result of this parameter substitution
to a minimum width of 7 using the fill character ‘?’. What is the substitution we are
filling? It’s empty: zsh is smart enough to assume you know what you’re doing when
you don’t give a parameter name, and just puts in an empty string instead. So the
empty string is filled out to length 7 with question marks, giving ‘???????’.

4. Now we have ‘${array[(r)???????]}’. It may not be obvious (congratulations if
the rest is), but the question marks are active as a pattern. Subscripts are treated
specially in this respect. The subscript flag ‘(r)’ means ‘reverse match’, not reverse as
in backwards, but as in the opposite way round: search the array itself for a matching
value, rather than taking this as an index. The only thing that will match this is a
string of length 7. Bingo! that must be the element ‘longest’ in this case. If there
were other elements of the same length, you would only get the first of that length;
I haven’t thought of a way of getting all the elements of that length substituted by a
single expression without turning $array into an associative array, so if you have, you
should feel smug.

After I wrote this, Sven Wischnowsky (who is responsible for a large fraction of the similar
hieroglyphics in the completion functions) pointed out that a similar way of achieving this is:

print ${(M)array:#${~${(O@)array//?/?}[1]}}

which does indeed show all the elements of the maximum length. A brief summary of how
this works is that the innermost expression produces an array of ‘?’ corresponding to the
elements, longest first in the way we did above, turning the ‘?’ into pattern match characters.
The next expansion picks the longest. Finally, the outermost expansion goes through $array
to find elements which match the complete string of ‘?’ and selects out those that do match.

If you are wondering about how to do that in perl in a single expression, probably sorting on
length is the easiest:

Perl code
@array = qw(long longer longest short brief);
@array = sort { length $b <=> length $a } @array;

and taking out the first element or first few elements of @array. However, in a highly-
optimized scripting language you would almost certainly do it some other way: for example,
avoid sorting and just remember the longest element:

214 CHAPTER 5. SUBSTITUTIONS

Perl code
$elt = ’’;
$l = 0;
foreach (@array) {

$newl = length $_;
$elt = $_, $l = $newl if $l > $newl;

}
print $elt, "\n";

You can do just the same thing in zsh easily enough in this case;

local val elt
integer l newl
for val in $array; do

newl=${#val}
if ((newl > l)); then

elt=$val
((l = newl))

fi
done
print $elt

so this probably isn’t a particularly good use for nested substitution, even though it
illustrates its power.

If you enjoyed that expression, there are many more like it in the completion function suite
for you to goggle at.

5.6 Arithmetic Expansion

Performing mathematics within the shell was first described in chapter 3 where I showed
how to create numeric parameters with variants of ‘typeset’, and said a little about
arithmetic substitution.

In addition to the math library, loadable with ‘zmodload zsh/mathfunc’, zsh has
essentially all the operators you expect from C and other languages derived from it. In
other words, things like

((foo = bar ? 3 : 1, ++brr))

are accepted. The comma operator works just as in C; all the arguments are evaluated, in
this case ‘foo = bar ? 3 : 1’ assigns 3 or 1 to $foo depending whether or not bar is
non-zero, and then $brr is incremented by 1. The return status is determined by the final
expression, so if $brr is zero after increment the return status is one, else it is zero (integers
may be negative).

One extra operator has been borrowed from FORTRAN, or maybe Perl, the exponentiation
operator, ‘**’. This can take either integers or floating point numbers, though a negative
exponent will cause a floating point number to be returned, so ‘$((2 ** -1))’ gives you
0.5, not rounded down to zero. This is why the standard library function pow is missing
from zsh/mathfunc — it’s already there in that other form. Pure integer exponentiation,

5.6. ARITHMETIC EXPANSION 215

however, is done by repeated multiplication — up to arbitrary sizes, so instead of ‘2 ** 100’,
you should use ‘1 « 100’, and for powers of any other integer where you don’t need an exact
result, you should use floating point numbers. For this purpose, the zsh/mathfunc library
makes ‘casts’ available; ‘float(num)’ forces the expression num to interpreted as a floating
point number, whatever it would otherwise have given, although the trick of adding ‘0.0’ to
a number works as well. Note that, although this works like a cast in C, the syntax is that
of an ordinary function call. Likewise, ‘int(num)’ causes the number to be interpreted as an
integer — rounding towards zero; you can use floor and ceil to round down or up, and
rint to round to the nearest integer, although these three actually produce floating point
numbers. They are standard C library functions.

For completeness, the assignment form of exponentiation ‘**=’ also works. I can’t remember
ever using it.

The range of integers depends on how zsh was configured on your machine. The primary goal
is to make sure integers are large enough to represent indexes into files; on some systems
where the hardware usually deals with 32-bit integers, file sizes may be given by 64-bit
integers, and zsh will try to use 64-bit integers as well. However, zsh will test for large
integers even if no large file support is available; usually it just requires that your compiler
has some easy to recognise way of defining 64-bit integers, such as ‘long long’ which may
be handled by gcc even if it isn’t by the native compiler. You can easily test; if your zsh
supports 64-bit integers, the largest available integer is:

% print $((0x7FFFFFFFFFFFFFFF))
9223372036854775807

and if you try adding something positive to that, you will get a negative result due to two’s
complement arithmetic. This should be large enough to count most things.

The range of floating point numbers is always that of a C ‘double’, which is usually also
64 bits, and internally the number is highly likely to be in the IEEE standard form, which
also affects the precision and range you can get, though that’s system specific, too. On most
systems, the math library functions handle doubles rather than single precision floats,
so this is the natural choice. The cast function is called ‘float’ because, unlike C, the
representation of a floating point number is chosen for you, so the generic name is used.

5.6.1 Entering and outputting bases

I’ll say a word or two about bases. I already said you could enter a number with any small
base in a form like ‘2#101010’ or ‘16#ffff’, and that the latter could also be ‘0xffff’ as
in C. You can’t, however, enter octal numbers just by using a leading ‘0’, which you might
expect from C. Here’s an example of why not. Let’s set:

% foo=${(%):-%D}
% print $foo
01-08-06

The first line is another of those bogus parameter substitutions where we gave it a literal
string and a blank parameter. We also gave it the flag ‘(%)’, which forces prompt escapes to
be expanded, and in prompts ‘(%D)’ is the date as yy-mm-dd. Let’s write a short program
to find out what the date after $foo is. We have the luxury of 99 years to worry about the
century wrapping, so we’ll ignore it (and the Gregorian calendar).

216 CHAPTER 5. SUBSTITUTIONS

mlens=(31 28 31 30 31 30 31 31 30 31 30 31)
date=(${(s.-.)foo}) # splits to array (01 08 23)
typeset -Z 2 incr
if ((${date[3]} < ${mlens[${date[2]}]})); then

just increment day
((incr = ${date[3]} + 1))
date[3]=$incr

else
go to first of next month
date[3]=01
if ((${date[2]} < 12)); then

((incr = ${date[2]} + 1))
date[2]=$incr

else
happy new year
date[2]=01
((incr = ${date[3]} + 1))
date[3]=$incr

fi
fi
print ${date[1]}-${date[2]}-${date[3]}

This will print ‘01-08-07’. Before I get to the point, various other explanations. We forced
$foo to be split on any ‘-’ in it, giving a three-part array. The next trick was ‘typeset -Z
2 incr’, which tells the shell that $incr is to be at least two characters, filled with leading
zeroes. That’s how we got the ‘07’ at the end, instead of just ‘7’. There’s another way of doing
this: replace

typeset -Z 2 incr
((incr = ${date[2]} + 1))
date[2]=$incr

with:

date[2]=${(l.2..0.)$((${date[2]} + 1))}

This uses the (l) parameter flag to fill up to two characters with a zero (the default is a
space, so we need to specify the ‘0’ this time), using the fact that parameter operations can
have a nested $-substution. This second form is less standard, however.

Now, finally, the point. In that ‘$((${date[2]} + 1))’, the ‘${date[2]}’ is simply the scalar ‘08’
— the result of splitting an arbitrary string into an array. Suppose we used leading zeroes to
signify octal numbers. We would get something like:

% print $((${date[2]} + 1))
zsh: bad math expression: operator expected at ‘8 + 1 ’

because the expression in the substitution becomes ‘08 + 1’ and an 8 can’t appear in an
octal number. So we would have to strip off any otherwise harmless leading zeroes. Parsing
dates, or indeed strings with leading zeroes as padding, is a fairly common thing for a shell
to do, and octal arithmetic isn’t. So by default leading zeroes don’t have that effect.

5.6. ARITHMETIC EXPANSION 217

However, there is an option you can set, OCTAL_ZEROES; this is required for compatibility
with the POSIX standard. That’s how I got the error message in the previous paragraph, in
fact.

Floating point numbers are never octal, always decimal:

% setopt octalzeroes
% print $((077))
63
% print $((077.43))
77.430000000000007

The other option to do with bases is C_BASES, which makes hexadecimal (and, if you have
OCTAL_ZEROES set, octal) numbers appear in the form that you would use as input to a C
(or, once again, Perl) program.

How do you persuade the shell to print out numbers in a particular base anyway? There are
two ways. The first is to associate a base with a parameter, which you do with an argument
after the ‘-i’ option to typeset:

% typeset -i 16 hexnum=32
% print $hexnum
16#20

This is the standard way. By the way, there’s a slight catch with bases, taken over from ksh:
if you don’t specify a base, the first assignment will do the job for you.

% integer anynum
% ((anynum = 16#20))
% print $anynum
16#20

Only constants with explicit bases in an expression produce this effect; the first time ‘anynum’
comes into contact with a ‘base#num’, or a hexadecimal or (where applicable) octal expression
in the standard C form, it will acquire a default output base. So you need to use ‘typeset
-i 10’ if you don’t like that.

Often, however, you just want to print out an expression in, say, hexadecimal. Zsh has a
shorthand for this, which is only in recent versions (and not in other shells). Preceding an
expression by ‘[#base]’ causes the default output base to be set to base with the the usual
prefix showing the base, and ‘[##base]’ will do the same but without the prefix, i.e. ‘$((
[##16]255))’ is simply ‘FF’. This has no effect on assignments to a parameter, not even on
the parameter’s default output base, but it will affect the result of a direct substitution using
$((...)).

5.6.2 Parameter typing

Just as creating a parameter with an ordinary assignment makes it a scalar, so creating it in
an arithmetic substitution makes it either an integer or a floating point parameter, according
to the value assigned. This is likely to be a floating point number if there was a floating point
number in the expression on the right hand side, and an integer otherwise. However, there

218 CHAPTER 5. SUBSTITUTIONS

are reasons why a floating point number on the right may not have this effect — use of int,
for example, since it produces an integer.

However, relying on implicit typing in this fashion is bad. One of the reasons is explained in
the manual entry, and I can’t do better than use that example (since I wrote it):

for ((f = 0; f < 1; f += 0.1)); do
print $f

done

If you try this, and $f does not already exist, you will see an endless stream of zeroes. What’s
happening is that the original assignment creates $f as an integer to store the integer 0 in.
After printing this, $f is incremented by adding 0.1 to it. But once created, $f remains an
integer, so the resulting 0.1 is cast back to an integer, and the resulting zero is stored back
in $f. The result is that $f is never incremented.

You could turn the first 0 into 0.0, but a better way is to declare ‘float f’ before the loop.
In a function, this also ensures $f is local to the function.

If you use a scalar to store an integer or floating point, everything will work. You don’t
have the problem just described, since although $f contains what looks like an integer to
start with, it has no numeric type associated with it, and when you store 0.1 into $f, it will
happily overwrite the string ‘0’. It’s a bit more inefficient to use scalars, but actually not that
much. You can’t specify an output base or precision, and in versions of zsh up to 4.0.x, there
is a problem when the parameter already has a string in it which doesn’t make sense as a
numeric expression:

% foo=’/file/name’
% ((foo = 3))
zsh: bad math expression: operand expected at ‘/file/name’

The unexpected error comes because ‘/file/name/’ is evaluated even though the shell is
about to overwrite the contents of $foo. Versions of the shell from 4.1.1 have a fix for this,
and the integer assignment works as expected.

You need to be careful with scalars that might contain an empty string. If you declare
‘integer i’, it will immediately contain the value 0, but if you declare ‘typeset s’, the
scalar $s will just contain the empty string. You get away with this if you use the parameter
without a ‘$’ in front:

% typeset s
% print $((3 * s))
0

because the math code tries to retrieve $s, and when it fails puts a 0 there. However, if you
explicitly use $s, the math code gets confused:

% print $((3 * $s))
zsh: bad math expression: operand expected at ‘’

because ‘$s’ evaluates to an empty string before the arithmetic evaluation proper, which
spoils the syntax. There’s one common case where you need to do that, and that’s with
positional parameters:

5.6. ARITHMETIC EXPANSION 219

% fn() { print "Twice $1 is $((2 * $1))"; }
% fn 3
Twice 3 is 6
% fn
fn: bad math expression: operand expected at ‘’

Obviously turning the ‘$1’ into ‘1’ means something completely different. You can guard
against this with default values:

% fn() { print "Twice ${1:=0} is $((2 * $1))"; }
% fn
Twice 0 is 0

This assigns a default value for $0 if one was not set. Since parameter expansion is
performed in one go from left to right, the second reference to $1 will pick up that value.

Note that you need to do this even if it doesn’t look like the number will be needed:

% fn() { print $((${1:-0} ? $1 : 3)); }
% fn
fn: bad math expression: operand expected at ‘: 3 ’

The expression before the ‘?’ evaluates to zero if $1 is not present, and you expect the
expression after the colon to be used in that case. But actually it’s too late by then; the
arithmetic expression parser has received ‘0 ? : 3’, which doesn’t make sense to it, hence
the error. So you need to put in ‘${1:-0}’ for the second $1, too — or ${1:-32}, or any other
number, since it won’t be evaluated if $1 is empty, it just needs to be parsed.

You should note that just as you can put numbers into scalar parameters without needing any
special handling, you can also do all the usual string-related tricks on numeric parameters,
since there is automatic conversion in the other direction, too:

% float foo
% zmodload -i zsh/mathfunc
% ((foo = 4 * atan(1.0)))
% print $foo
3.141592654e+00
% print ${foo%%.*}${foo##*.[0-9]##}
3e+00

The argument -i to zmodload tells it not to complain if the math library is already loaded.
This gives us access to atan. Remember, ‘float’ declares a parameter whose output includes
an exponent — you can actually convert it to a fixed point format on the fly using ‘typeset
-F foo’, which retains the value but alters the output type. The substitution uses some
EXTENDED_GLOB chicanery: the final ‘[0-9]##’ matches one or more occurrences of any
decimal digit. So the head of the string value of $foo up to the last digit after the decimal
point is removed, and the remainder appended to whatever appears before the decimal point.

Starting from 4.1.1, a calculator function called zcalc is bundled with the shell. You type
a standard arithmetic expression and the shell evaluates the formula and prints it out.
Lines already entered are prefixed by a number, and you can use the positional parameter
corresponding to that number to retrieve that result for use in a new formula. The function
uses vared to read the formulae, so the full shell editing mechanism is available. It will also
read in zsh/mathfunc if that is present.

220 CHAPTER 5. SUBSTITUTIONS

5.7 Brace Expansion and Arrays

Brace expansion, which you met in chapter 3, appears in all csh derivatives, in some versions
of ksh, and in bash, so is fairly standard. However, there are some features and aspects of it
which are only found in zsh, which I’ll describe here.

A complication occurs when arrays are involved. Normally, unquoted arrays are put into a
command line as if there is a break between arguments when there is a new element, so

% array=(three separate words)
% print -l before${array}after
beforethree
separate
wordsafter

unless the RC_EXPAND_PARAM option is set, which combines the before and after parts with
each element, so you get:

% print -l before${^array}after
beforethreeafter
beforeseparateafter
beforewordsafter

— the ‘^’ character turns on the option just for that expansion, as ‘=’ does with
SH_WORD_SPLIT. If you think of the character as a correction to a proof, meaning ‘insert
a new word between the others here’, it might help you remember (this was suggested by
Bart Schaefer).

These two ways of expanding arrays interact differently with braces; the more useful version
here is when the RC_EXPAND_PARAM option is on. Here the array acts as sort of additional
nesting:

% array=(two three)
% print X{one,${^array}}Y
XoneY XtwoY XoneY XthreeY

with the XoneY tacked on each time, but because of the braces it appears as a separate word,
so there are four altogether.

If RC_EXPAND_PARAM is not set, you get something at first sight slightly odd:

% array=(two three)
% print X{one,$array}Y
X{one,two three}Y

What has happened here is that the $array has produced two words; the first has ‘X{one,’
tacked in front of the array’s ‘two’, while the second likewise has ‘}Y’ on the end of the
array’s ‘three’. So by the time the shell comes to think about brace expansion, the braces
are in different words and don’t do anything useful.

There’s no obvious simple way of forcing the $array to be embedded in the braces at the
same level, instead of like an additional set of braces. There are more complicated ways, of
course.

5.7. BRACE EXPANSION AND ARRAYS 221

% array=(two three)
% print X${^=:-one $array}Y
XoneY XtwoY XthreeY

Yuk. We gave parameter substitution a string of words, the array with one stuck in front,
and told it to split them on spaces (this will split on any extra spaces in elements of $array,
unfortunately), while setting RC_EXPAND_PARAM. The parameter flags are ‘^=’; the ‘:-’ is the
usual ‘insert the following if the substitution has zero length’ operator. It’s probably better
just to create your own temporary array and apply RX_EXPAND_PARAM to that. By the way,
if you had RC_EXPAND_PARAM set already, the last result would have been different becuase
the embedded $array would have been expanded together with the ‘one ’ in front of it.

Braces allow numeric expressions; this works a little like in Perl:

% print {1..10}a
1a 2a 3a 4a 5a 6a 7a 8a 9a 10a

and you can ask the numbers to be padded with zeroes:

% print {01..10}b
01b 02b 03b 04b 05b 06b 07b 08b 09b 10b

or have them in descending order:

% print {10..1}c
10c 9c 8c 7c 6c 5c 4c 3c 2c 1c

Nesting this within other braces works in the expected way, but you can’t have any extra
braces inside: the syntax is fixed to number, two dots, number, and the numbers must be
positive.

There’s also an option BRACE_CCL which, if the braces aren’t in either of the above forms,
expands single letters and ranges of letters:

% setopt braceccl
% print 1{abw-z}2
1a2 1b2 1w2 1x2 1y2 1z2

An important point to be made about braces is that they are not part of filename generation;
they have nothing to do with pattern matching at all. The shell blindly generates all the
arguments you specify. If you want to generate only some arguments, depending on what
files are matched, you should use the alternative-match syntax. Compare:

% ls
file1
% print file(1|2)
file1
% print file{1,2}
file1 file2

The first matches any of ‘file1’ or ‘file2’ it happens to find in the directory (regardless
of other files). The second doesn’t look at files in the directory at all; it simply expands the
braces according to the rules given above.

222 CHAPTER 5. SUBSTITUTIONS

This point is particularly worthy of note if you have come from a C-shell world, or use the
CSH_NULL_GLOB option:

csh% echo file{1,2}
file1 file2
csh% echo f*{1,2}
file1

(‘csh%’ is the prompt, to remind you if you’re skipping through without reading the text),
where the difference occurs because in the first case there was no pattern, so brace expansion
was done on ordinary words, while in the second case the ‘*’ made pattern expansion happen.
In zsh, the sequence would be: ‘f*{1,2}’ becomes ‘f*1 f*2’; the first becomes file1 and
the second fails to match. With CSH_NULL_GLOB set, the failed match is simply removed;
there is no error because one pattern has succeeded in matching. This is presumably the
logic usually followed by the C shell. If you stick with ‘file(1|2)’ and ‘f*(1|2)’ — in this
case you can simplify them to ‘file[12]’ and ‘f*[12]’, but that’s not true if you have more
than one character in either branch — you are protected from this difference.

5.8 Filename Expansion

Filename expansions consists of just ‘~/...’, ‘~user/...’, ‘~namedir/...’ and ‘=prog’,
where the ‘~’ and ‘=’ must be the first character of a word, and the option EQUALS must be
set (it is by default) for the ‘=’ to be special. I told you about all this in chapter 3.

There’s really only one thing to add, and that’s the behaviour of the MAGIC_EQUAL_SUBST
option. Assignments after typeset and similar statements are handled as follows

% typeset foo=~pws
% print $foo
/home/pws
% typeset PATH=$PATH:~pws/bin
% print ${path[-1]}
/home/pws/bin

It may not be obvious why this is not obvious. The point is that ‘typeset’ is an ordinary
command which happens to be a shell builtin; the arguments of ordinary commands are not
assignments. However, a special case is made here for typeset and its friends so that this
works, even though, as I’ve said repeatedly, array assignments can’t be done after typeset.
The parameter $PATH isn’t handled differently from any other — any colon in an assignment
to any variable is special in the way shown.

It’s often useful to have this feature with commands of your own. There is an option,
MAGIC_EQUAL_SUBST, which spots the forms ‘...=~...’ and ‘...=...:~...’ for any
command at all and expands ~-expressions. Commands where this is particularly useful
include make and the GNU configure command used for setting up the compilation of a
software package from scratch.

A related new option appeared in version 4.0.2 when it became clear there was an annoying
difference between zsh and other shells such as ksh and bash. Consider:

export FOO=‘echo hello there‘

5.9. FILENAME GENERATION AND PATTERN MATCHING 223

In ksh and bash, this exports $foo with the value ‘hello there’. In zsh, however, an
unquoted backquote expression forces wordsplitting, so the line becomes

export FOO=hello there

and exports $FOO with the value ‘hello’, and $there with any value it happens to have
already or none if it didn’t exist. This is actually perfectly logical according to the rules, but
you can set the option KSH_TYPESET to have the other interpretation.

Normally, KSH_TYPESET applies only after parameter declaration builtins, and then only
in the values of an assignment. However, in combination with MAGIC_EQUAL_SUBST, you
will get the same behaviour with any command argument that looks like an assignment —
actually, anything following an ‘=’ which wasn’t at the start of the word, so ‘"hello mother,
=> I’m home "$(echo right now)’ qualifies.

It seems that bash behaves as if both KSH_TYPESET and MAGIC_EQUAL_SUBST are always
in effect.

5.9 Filename Generation and Pattern Matching

The final topic is perhaps the biggest, even richer than parameter expansion. I’m finally
going to explain the wonderful world of zsh pattern matching. In addition to patterns as such,
you will learn such things as how to find all files in all subdirectories, searching recursively,
which have a given name, case insensitive, are at least 50 KB large, no more than a week old
and owned by the root user, and allowing up to a single error in the spelling of the name. In
fact, the required expression looks like this:

**/(#ia1)name(LK+50mw-1u0)

which might appear, at first sight, a mite impenetrable. We’ll work up to it gradually.

To repeat: filename generation is just the same as globbing, only longer. I use the terms
interchangeably.

5.9.1 Comparing patterns and regular expressions

It can be confusing that there are two rather different sorts of pattern around, those used for
matching files on a command line as in zsh and other shells, and those used for matching text
inside files as in grep, sed, emacs, perl and many other utilities, each of which, typically,
has a slightly different form for patterns (called in this case ‘regular expressions’, because
UNIX was designed by computer scientists). There are even some utilities like TCL which
provide both forms.

Zsh deals exclusively with the shell form, which I’ve been calling by its colloquial name,
‘globbing’, and consequently I won’t talk about regular expressions in any detail. Here are the
two classic differences to note. First, in a shell, ‘*’ on its own matches any set of characters,
while in a regular expression it always refers to the previous pattern, and says that that
can be repeated any number of times. Second, in a shell ‘.’ is an ordinary (and much used)
character, while in a regular expression it means ‘any character’, which is specified by ‘?’ in
the shell. Put this together, and what a shell calls ‘*’ is given by ‘.*’ in a regular expression.

224 CHAPTER 5. SUBSTITUTIONS

‘*’ in the latter case is called a ‘Kleene closure’: it’s those computer scientists again. In zsh,
art rather than science tends to be in evidence.

In fact, zsh does have many of the features available in regular expressions, as well as some
which aren’t. Remember that anywhere in zsh where you need a pattern, it’s of the same
form, whether it’s matching files on the command line or a string in a case statement. There
are a few features which only fit well into one or another use of patterns; for example the
feature that selects files by examining their type, owner, age, etc. (the final parenthesis in
the expression I showed above) are no use in matching against a string.

5.9.2 Standard features

There is one thing to note about the simple pattern matching features ‘*’ and ‘?’, which is
that when matching file names (not in other places patterns are used, however) they never
match a leading ‘.’. This is a convention in UNIX-like systems to hide certain files which
are not interesting to most users. You may have got the impression that files begining with
‘.’ are somehow special, but that’s not so; only the files ‘.’ (the current directory) and ‘..’
(the parent directory, or the current directory in /) are special to the system. Other files
beginning with ‘.’ only appear special because of a conspiracy between the shell (the rule
I’ve just given) and the command ls, which, when it lists a directory, doesn’t show files
beginning ‘.’ unless you give the ‘-a’ option. Otherwise ‘.’-files are perfectly normal files.

You can suppress the special rule for an initial ‘.’ by setting the option GLOB_DOTS, in which
case ‘*’ will match every single file and directory except for ‘.’ and ‘..’.

In addition to ‘*’ and ‘?’, which are so basic that even DOS had them (though I never quite
worked out exactly what it was doing with them a lot of the time), the pattern consisting
of a set of characters in square brackets appears in all shells. This feature happens to be
pretty much the same as in regular expressions. ‘[abc]’ matches any one of those three
characters; ‘[a-z]’ matches any character between a and z, inclusive; ‘[^a-z]’ matches any
single character except those 26 — but notice it still matches a single character.

A recent common enhancement to character ranges features in zsh, which is to specify types
of characters instead of listing them; I’m just repeating the manual entry here, which you
should consult for more detail. The special syntax is like ‘[:spec:]’, where the square
brackets there are in addition to the ones specifying the range. If you are familiar with
the ‘ctype’ macros use in C programmes, you will probably recognise the things that spec
can be: alnum, alpha, blank, cntrl, digit, graph, lower, print, punct, space, upper,
xdigit. The similarity to C macros isn’t just for show: the shell really does call the macro (or
function) ‘isalpha’ to test for [:alpha:]ness, and so on. On most modern systems which
support internationalization this means the shell can tell you whether a character is, say,
an alphabetic letter in the character set in use on your machine. By the way, zsh doesn’t
use international character set support for sorting matches — this turned out to produce too
many unexpected effects.

So ‘[^[:digit:]]’ matches any single character other than a decimal digit. Standards say
you should use ‘!’ instead of ‘^’ to signify negation, but most people I know don’t; also, this
can clash with history substitution. However, it is accepted by zsh anywhere where history
substitution doesn’t get its hands on the ‘!’ first (which includes all scripts and autoloaded
functions).

5.9. FILENAME GENERATION AND PATTERN MATCHING 225

5.9.3 Extensions usually available

Now we reach the bits specific to zsh. I’ve divided these into two parts, since some require
the option ‘EXTENDED_GLOB’ to be set — those which are most likely to clash with other uses
of the characters in question.

Numeric ranges

One possibility that is always available is the syntax for numeric ranges in the form
‘<num1-num2>’. You can omit either num1, which defaults to zero, or num2, which defaults
to infinity, or both, in which case any set of digits will be matched. Note that this really does
mean infinity, despite the finite range of integers; missing out num2 is treated as a special
case and the shell will simply advance over any number of digits. (In very old versions of zsh
you had to use ‘<>’ to get that effect, but that has been removed and ‘<>’ is now a redirection
operator, as in other shells; ‘<->’ is what you need for any set of digits.)

I repeat another warning from the manual: this test

[[342 = <1-30>*]]

succeeds, even though the number isn’t in the range 1 to 30. That’s because ‘<1-30>’ matches
‘3’ and ‘*’ matches 42. There’s no use moaning, it’s a consequence of the usual rule for
patterns of all types in shells or utilities: pattern operators are tried independently, and
each ‘uses up’ the longest piece of the string it is matching without causing the rest of the
match to fail. We would have to break this simple and well-tried rule to stop numeric ranges
matching if there is another digit left. You can test for that yourself, of course:

[[342 = <1-30>(|[^[:digit:]]*)]]

fails. I wrote it so that it would match any number between 1 and 30, either not followed by
anything, or followed by something which doesn’t start with a digit; I will explain what the
parentheses and the vertical bar are doing in the next section. By the way, leading zeroes are
correctly handled (and never force octal interpretation); so ‘00000003NaN’ would successfully
match the pattern.

The numbers in the range are always positive integers; you need extra pattern trickery to
match floating point. Here’s one attempt, which uses EXTENDED_GLOB operators, so come
back and look when you’ve read the rest of this section if it doesn’t make sense now:

isfloat() {
setopt localoptions extendedglob
if [[$1 = ([-+]|)([0-9]##.[0-9]#|[0-9]#.[0-9]##)\

([eE]([-+]|)[0-9]##|)]]; then
print -r -- "$1 is a floating point number"

else
print -r -- "$1 is not a floating point number"

fi
}

I’ve split it over two lines to fit. The first parenthesis matches an optional minus or plus sign
— careful with ‘-’ in square brackets, since if it occurs in the middle it’s taken as a range,

226 CHAPTER 5. SUBSTITUTIONS

and if you want it to match itself, it has to be at the start or end. The second parenthesis
contains an alternative because ‘.’ isn’t a floating point number (at least, not in my book, and
not in zsh’s, either), but both ‘0.’ and ‘.0’ are properly formed numbers. So we need at least
one digit, either before or after the decimal point; the ‘##’ means ‘at least one occurrence
of the previous expression’, while the ‘#’ means ‘zero or more occurrences of the previous
expression’. The expresion on the next line matches an exponent; here you need at least
one digit, too. So ‘3.14159E+00’ is successfully matched, and indeed you’ll find that zsh’s
arithmetic operations handle it properly.

The range operator is the only special zsh operator that you can’t turn off with an option.
This is usually not a problem, but in principle a string like ‘<3-10>’ is ambiguous, since in
another shell it would be read as ‘<3-10 >’, meaning ‘take input from file 3-10, and send
output to the file formed by whatever comes after the expression’. It’s very unlikely you will
run across this in practice, however, since shell code writers nearly alwys put a space after
the end of a file name for redirection if something else follows on the command line, and
that’s enough to differentiate it from a range operator.

Parentheses

Parentheses are quite natural in zsh if you’ve used extended regular expressions. They
are usually available, and only turned off if you set the ‘SH_GLOB’ option to ensure
compatibility with shells that don’t have it. The key part of the expression is the
vertical bar, which specifies an alternative. It can occur as many times as necessary;
‘(a|b|c|d|e|f|g|h|i|j|k|l|m)’ is a rather idiosyncratic way of writing ‘[a-m]’. If you
don’t include the vertical bar (we’ll see reasons for not doing so later), and you are generating
filenames, you should be careful that the expression doesn’t occur at the end of the pattern,
else it would be taken as a ‘glob qualifier’, as described below. The rather unsightly hack of
putting ‘(|)’ (match the empty string or the empty string — guess what this matches?) right
at the end will get around that problem.

The vertical bar usually needs to be inside parentheses so that the shell doesn’t take it as a
pipe, but in some contexts where this won’t happen, such as a case statement label, you can
omit any parentheses that would completely surround the pattern. So in

case $foo in
(bar|rod|pipe) print "foo represents a piece of metal"

;;
(*) print "Are you trying to be different?"

;;
esac

the surrounding parentheses are the required syntax for case, rather than pattern
parentheses — the same syntax works in other shells. Then ‘bar|rod’ is an ordinary zsh
expression matching either bar or rod, in a context where the ‘|’ can’t be mistaken for a
pipe. In fact, this whole example works with ksh — but there the use of ‘|’ is a special case,
while in zsh it fits in with the standard pattern rules.

Indeed, ksh has slightly different ways of specifying patterns: to make the use of parentheses
less ambiguous, it requires a character before the left parenthesis. The corresponding
form for a simple alternative is ‘@(this|that)’. The ‘@’ can also be a ‘?’, for zero or one
occurrences of what’s in the parentheses; ‘*’ for any number of repetitions, for example
‘thisthisthatthis’; or ‘!’ for anything except what’s in the parentheses. Zsh allows this
syntax if you set the option KSH_GLOB. Note that this is independent of the option SH_GLOB;

5.9. FILENAME GENERATION AND PATTERN MATCHING 227

if you set KSH_GLOB but not SH_GLOB, you can actually use both forms for pattern matching,
with the ksh form taking precedence in the case of ambiguities. This is probably to be
avoided. In ksh emulation, both options are set; this is the only sensible reason I know
of for using these options at all. I’ll show some comparisons in the next section.

An important thing to note is that when you are matching files, you can’t put directory
separators inside parentheses:

Doesn’t work!
print (foo/bar|bar/foo)/file.c

doesn’t work. The reason is that it’s simply too difficult to write; pattern matching would
be bound in a highly intricate way with searching the directory hierarchy, with the end of
a group sending you back up to try another bit of the pattern on a directory you’d already
visited. It’s probably not impossible, but the pattern code maintainer (me) isn’t all that
enthusiastic about it.

5.9.4 Extensions requiring EXTENDED_GLOB

Setting EXTENDED_GLOB makes three new types of operator available: those which excluded
a particular pattern from matching; those which specify that a pattern may occur a repeated
number of times; and a set of ‘globbing flags’, a little bit like parameter flags which I’ll
describe in a later section since they are really the icing on the cake.

Negative matches or exclusions

The simpler of the two exclusions uses ‘^’ to introduce a pattern which must not be matched.
So a trivial example (I will assume for much of the rest of the chapter that the option
EXTENDED_GLOB is set) is:

[[foo = ^foo]]
[[bar = ^foo]]

The first test fails, the second succeeds. It’s important to realise that that the pattern
demands nothing else whatever about the relevant part of the test string other than it doesn’t
match the pattern that follows: it doesn’t say what length the matched string should have,
for example. So

[[foo = *^foo]]

actually does match: * swallows up the whole string, and the remaining empty string
successfully fails to be ‘foo’. Remember the mantra: each part of the pattern matches the
longest possible substring that causes the remainder of the pattern not to fail (unless, of
course, failure is unavoidable).

Note that the ^ applies to the whole pattern to its right, either to the end of the string, or to
the end of the nearest enclosing parenthesis. Here’s a couple more examples:

[[foo = ^foo*]]

228 CHAPTER 5. SUBSTITUTIONS

Overall, this fails to match: the pattern ‘foo*’ always matches the string on the left, so
negating means it always fails.

[[foo = (^foo)*]]

This is similar to the last example but one. The expression in the parenthesis first matches
against foo; this causes the overall match to fail because of the ^, so it backs up one character
and tries again. Now ‘fo’ is successfully matched by ^foo and the remaining ‘o’ is matched
by the *, so the overall match succeeds. When you know about backreferences, you will be
able to confirm that, indeed, the expression in parentheses matches ‘fo’. This is a quite
subtle point: it’s easy to imagine that ‘^foo’ says ‘match any three letter string except the
one I’ve given you’, but actually there is no requirement that it match three letters, or indeed
any.

In filename generation, the ^ has a lower precedence than a slash:

% print /*/tmp
/data/tmp /home/tmp /usr/tmp /var/tmp
% print /^usr/tmp
/data/tmp /home/tmp /var/tmp

successfully caused the first level of directories to match anything but ‘usr’. A typical use of
this with files is ‘^*.o’ to match everything in a directory except files which end with ‘.o’.

Note one point mentioned in the FAQ — probably indicating the reason that ‘^’ is only
available with EXTENDED_GLOB switched on. Some commands use an initial ‘^’ to indicate a
control character; in fact, zsh’s bindkey builtin does this:

bindkey ’^z’ backward-delete-word

which attaches the given function to the keystroke Ctrl-z. You must remember to quote
that keystroke expression, otherwise it would expand to a list of all files in the current
directory not called ‘z’, very likely all of them.

There’s another reason this isn’t available by default: in some versions of the Bourne shell,
‘^’ was used for pipes since ‘|’ was missing on some keyboards.

The other exclusion operator is closely related. ‘pat1~pat2’ means ‘anything that matches
pat1 as long as it doesn’t also match pat2’. If pat1 is *, you have the same effect as ‘^’ — in
fact, that’s pretty much how ‘^’ is currently implemented.

There’s one significant difference between ‘*~pat’ and ‘^pat’: the ~ has a lower precedence
than ‘/’ when matching against filenames. What’s more, the pattern on the right of the ~ is
not treated as a filename at all; it’s simply matched against any filename found on the left,
to see if it should be rejected. This sounds like black magic, but it’s actually quite useful,
particularly in combination with the recursive globbing syntax:

print **/*~*/CVS(/)

matches any subdirectory of the current directory to any depth, except for directories called
CVS — the ‘*’ on the right of the ‘~’ will match any character including ‘/’. The final ‘(/)’
is a glob qualifier indicating that only directories are to be allowed to match — note that

5.9. FILENAME GENERATION AND PATTERN MATCHING 229

it’s a positive assertion, despite being after the ‘~’. Glob qualifiers do not feel the effect of
preceding exclusion operators.

Note that in that example, any subdirectory of a directory called CVS would have matched
successfully; you can see from the pattern that the expression after the ‘~’ wouldn’t weed
it out. Slightly less obviously, the ‘**/*’ matches files in the current directory, while the
‘*/CVS’ never matches a ‘CVS’ in the current directory, so that could appear. If you want to,
you can fix that up like this:

print **/*~(*/|)CVS(/*|)(/)

again relying on the fact that ‘/’s are not special after the ‘~’. This will ruthlessly weed out
any path with a directory component called CVS. An easier, but less instructive, way is

print ./**/*~*/CVS(/)

You can restrict the range of the tilde operator by putting it in parentheses, so
‘/(*~usr)/tmp’ is equivalent to ‘/^usr/tmp’.

A ‘~’ at the beginning is never treated as excluding what follows; as you already know, it has
other uses. Also, a ‘~’ at the end of a pattern isn’t special either; this is lucky, because Emacs
produces backup files by adding a ‘~’ to the end of the file name. You may have problems if
you use Emacs’s facility for numbered backup files, however, since then there is a ‘~’ in the
middle of the file name, which will need to be quoted when used in the shell.

Closures or repeated matches

The extended globbing symbols ‘#’ and ‘##’, when they occur in a pattern, are equivalent
to ‘*’ and ‘+’ in extended regular expressions: ‘#’ allows the previous pattern to match any
number of times, including zero, while with ‘##’ it must match at least once. Note that this
pattern does not extend beyond two hashes — there is no special symbol ‘###’, which is not
recognised as a pattern at all.

The ‘previous pattern’ is the smallest possible item which could be considered a complete
pattern. Very often it is something in parentheses, but it could be a group in square or angle
brackets, or a single ordinary character. Note particularly that in

fails
[[foofoo = foo#]]

the test fails, because the ‘#’ only refers to the final ‘o’, not the entire string. What you need
is

succeeds
[[foofoo = (foo)#]]

It might worry you that ‘#’ also introduces comments. Since a well-formatted pattern never
has ‘#’ at the start, however, this isn’t a problem unless you expect comments to start in
the middle of a word. It turns out that doesn’t even happen in other shells — ‘#’ must
be at the start of a line, or be unquoted and have space in front of it, to be recognised as
introducing a comment. So in fact there is no clash at all here. There is, of course, a clash

230 CHAPTER 5. SUBSTITUTIONS

if you expect ‘.#foo.c.1.131’ (probably a file produced by the version control system CVS
while attempting to resolve a conflict) to be a plain string, hence the dependence on the
EXTENDED_GLOB option.

That’s probably all you need to know; the ‘#’ operators are generally much easier to
understand than the exclusion operators. Just in case you are confused, I might as well
point out that repeating a pattern is not the same as repeating a string, so

[[onetwothreetwoone = (one|two|three)##]]

successfully matches; the string is different for each repetition of the pattern, but that doesn’t
matter.

We now have enough information to construct a list of correspondences between zsh’s normal
pattern operators and the ksh ones, available with KSH_GLOB. Be careful with ‘!(...)’; it seems
to have a slightly different behaviour to the zsh near-equivalent. The following table is lifted
directly from the zsh FAQ.

--
ksh zsh Meaning

------ ------ ---------
!(foo) ^foo Anything but foo.

or foo1~foo2 Anything matching foo1 but foo2.
@(foo1|foo2|...) (foo1|foo2|...) One of foo1 or foo2 or ...

?(foo) (foo|) Zero or one occurrences of foo.

*(foo) (foo)# Zero or more occurrences of foo.
+(foo) (foo)## One or more occurrences of foo.

--

In both languages, the vertical bar for alternatives can appear inside any set of parentheses.
Beware of the precedences of ^foo and ‘foo1~foo2’; surround them with parentheses, too,
if necessary.

5.9.5 Recursive globbing

One of the most used special features of zsh, and one I’ve already used a couple of times in
this section, is recursive globbing, the ability to match any directory in an arbitrarily deep
(or, as we say in English, tall) tree of directories. There are two forms: ‘**/’ matches a set of
directories to any depth, including the top directory, what you get by replacing ‘**/’ by ‘./,
i.e. **/foo can match foo in the current directory, but also bar/foo, bar/bar/bar/foo,
bar/bar/bar/poor/little/lambs/foo nad so on. ‘***/’ does the same, but follows
symbolic links; this can land you in infinite loops if the link points higher up in the same
directory hierarchy — an odd thing to do, but it can happen.

The ‘**/’ or ‘***/’ can’t appear in parentheses; there’s no way of specifying them as
alternatives. As already noticed, however, the precedence of the exclusion operator ‘~’
provides a useful way of removing matches you don’t want. Remember, too, the recursion
operators don’t need to be at the start of the pattern:

print ~/**/*.txt

prints the name of all the files under your home directory ending with ‘.txt’. Don’t expect
it to be particularly fast; it’s not as well optimised as the standard UNIX command find,

5.9. FILENAME GENERATION AND PATTERN MATCHING 231

although it is a whole lot more convenient. The traditional way of searching a file which may
be anywhere in a directory tree is along the lines of:

find ~/src -name ’*.c’ -print | xargs grep pattern

which is horrendously cumbersome. What’s happening is that find outputs a newline-
separated list of all the files it finds, and xargs assembles these as additional arguments
to the command ‘grep pattern’. It simplifies in zsh to the much more natural

grep pattern ~/src/**/*.c

In fact, strictly speaking you probably ought to use

find ~/src -name ’*.c’ -print0 | xargs -0 grep pattern

for the other form — this passes null-terminated strings around, which is safer since any
character other than a NUL or a slash can occur in a filename. But of course you don’t need
that now.

Do remember that this includes the current directory in the search, so in that last example
‘foo.c’ in the directory where you typed the command would be searched. This isn’t
completely obvious because of the ‘/’ in the pattern, which erroneously seems to suggest
at least one directory.

It’s a little known fact that this is a special case of a more general syntax, ‘(pat/)#’. This
syntax isn’t perfect, either; it’s the only time where a ‘/’ can usefully occur in parentheses.
The pattern pat is matched against each directory; if it succeeds, pat is matched against each
of the subdirectories, and so on, again to arbitrary depth. As this uses the character ‘#’, it
requires the EXTENDED_GLOB option, which the more common syntax doesn’t, since no-one
would write two *’s in a row for any other reason.

You should consider the ‘/)’ to be in effect a single pattern token; for example in

% print (F*|B*/)#*.txt
FOO/BAR/thingy.txt

both ‘F*’ and ‘B*’ are possible directory names, not just the ‘B*’ next to the slash. The
difference between ‘#’ and ‘##’ is respected here — with the former, zero occurrences of
the pattern may be matched (i.e. ‘*.txt’), while with the latter, at least one level of
subdirectories is required. Thus ‘(*/)##*.txt’ is equivalent to ‘*/**/*.txt’, except that
the first ‘*’ in the second pattern will match a symbolic link to a directory; there’s no way of
forcing the other syntax to follow symbolic links.

Fairly obviously, this syntax is only useful with files. Other uses of patterns treat slashes as
ordinary characters and ‘**’ or ‘***’ the same as a single ‘*’. It’s not an error to use multiple
‘*’s, though, just pointless.

5.9.6 Glob qualifiers

Another very widely used zsh enhancement is the ability to select types of file by using ‘glob
qualifiers’, a group of (rather terse) flags in parentheses at the end of the pattern. Like

232 CHAPTER 5. SUBSTITUTIONS

recursive globbing, this feature only applies for filename generation in the command line
(including an array assignment), not for other uses of patterns.

This feature requires the BARE_GLOB_QUAL option to be turned on, which it usually is; the
name implies that one day there may be another, perhaps more ksh-like, way of doing the
same thing with a more indicative syntax than just a pair of parentheses.

File types

The simplest glob qualifiers are similar to what the completion system appends at the end
of file names when the LIST_TYPES option is on; these are in turn similar to the indications
used by ‘ls -F’. So

% print *(.)
file1 file2 cmd1 cmd2
% print *(/)
dir1 dir2
% print *(*)
cmd1 cmd2
% print *(@)
symlink1 symlink2

where I’ve invented unlikely filenames with obvious types. file1 and file2 were supposed
to be just any old file; (.) picks up those but also executable files. Sockets (=), named pipes
(p), and device files (%) including block (%b) and character (%c) special files are the other
types of file you can detect.

Associated with type, you can also specify the number of hard links to a file: (l2) specifies
exactly 2 links, (l+3) more than 3 links, (l-5) fewer than 5.

File permissions

Actually, the (*) qualifier really applies to the file’s permissions, not it’s type, although it
does require the file to be an executable non-special file, not a directory nor anything wackier.
More basic qualifiers which apply just to the permissions of the files are (r), (w) and (x) for
files readable, writeable and executable by the owner; (R), (W) and (X) correspond to those
for world permissions, while (A), (I) and (E) do the job for group permissions — sorry,
the Latin alphabet doesn’t have middle case. You can speciy permissions more exactly with
‘(f)’ for file permissions: the expression after this can take various forms, but the easiest is
probably a delimited string, where the delimiters work just like the arguments for parameter
flags and the arguments, separated by commas, work just like symbolic arguments to chmod;
the example from the manual,

print *(f:gu+w,o-rx:)

picks out files (of any type) which are writeable by the owner (‘user’) and group, and neither
readable nor executable by anyone else (‘other’).

5.9. FILENAME GENERATION AND PATTERN MATCHING 233

File ownership

You can match on the other three mode bits, setuid ((s)), setgid ((S)) and sticky ((t)), but I’m
not going to go into what those are if you don’t know; your system’s manual page for chmod
may (or may not) explain.

Next, you can pick out files by owner; (U) and (G) say that you or your group, respectively,
owns the file — really the effective user or group ID, which is usually who you are logged
in as, but this may be altered by tricks such as a programme running setuid or setgid (the
things I’m not going to explain). More generally, u0 says that the file is owned by root and
(u501) says it is owned by user ID 501; you can use names if you delimiit them, so (u:pws:)
says that the owner must be user pws; similarly for groups with (g).

File times

You can also pick files by modification ((m)) or access ((a)) time, either before ((-)), at, or after
((+)) a specific time, which may be measured in days (the default), months ((M)), weeks ((w)),
hours ((h)), minutes ((m)) or seconds ((s)). These must appear in the order m or a, optional
unit, optional plus or minus, number. Hence:

print *(m1)

Files that were modified one day ago — i.e. less than 48 but more than 24 hours ago.

print *(aw-1)

Files accessed within the last week, i.e. less than 7 days ago.

In addition to (m) and ((a)), there is also (c), which is sometimes said to refer to file creation,
but it is actually something a bit less useful, namely inode change. The inode is the structure
on disk where UNIX-like filing systems record the information about the location and nature
of the file. Information here can change when some aspect of the file information, such as
permissions, changes.

File size

The qualifier (L) refers to the file size (‘L’ is actually for length), by default in bytes, but
it can be in kilobytes (k), megabytes (m), or 512-byte blocks (p, unfortunately). Plus
and minus can be used in the same way as for times, so

print *(Lk3)

gives files 3k large, i.e. larger than 2k but smaller than 4k, while

print *(Lm+1)

gives files larger than a megabyte.

Note that file size applies to directories, too, although it’s not very useful. The size of
directories is related to the number of slots for files currently available inside the directory

234 CHAPTER 5. SUBSTITUTIONS

(at the highest level, i.e. not counting children of children and deeper). This changes
automatically if necessary to make more space available.

File matching properties

There are a few qualifiers which affect option settings just for the match in question: (N)
turns on NULL_GLOB, so that the pattern simply disappears from the command line if it fails
to match; (D) turns on GLOB_DOTS, to match even files beginning with a ‘.’, as described
above; (M) or (T) turn on MARK_DIRS or LIST_TYPES, so that the result has an extra
character showing the type of a directory only (in the first case) or of any special file (in
the second); and (n) turns on NUMERIC_GLOB_SORT, so that numbers in the filename are
sorted arithmetically — so 10 comes after 1A, because the 1 and 10 are compared before the
next character is looked at.

Other than being local to the pattern qualified, there is no difference in effect from setting
the option itself.

Combining qualifiers

One of the reasons that some qualifiers have slightly obscure syntax is that you can chain
any number of them together, which requires that the file has all of the given properties. In
other words ‘*(UWLk-10)’ are files owned by you, world writeable and less than 10k in size.

You can negate a set of qualifiers by putting ‘^’ in front of those, so ‘*(ULk-10^W)’ would
specify the corresponding files which were not world writeable. The ‘^’ applies until the end
of the flags, but you can put in another one to toggle back to assertion instead of negation.

Also, you can specify alternatives; ‘*(ULk-10,W)’ are files which either are owned by you
and are less than 10k, or are world writeable — note that the ‘and’ has higher precedence
than the ‘or’.

You can also toggle whether the assertions or negations made by qualifiers apply to symbolic
links, or the files found by following symbolic links. The default is the former — otherwise
the (@) qualifier wouldn’t work on its own. By preceding qualifiers with -, they will follow
symbolic links. So *(-/) matches all directories, including those reached by a symbolic link
(or more than one symbolic link, up to the limit allowed by your system). As with ‘^’, you
can toggle this off again with another one ‘-’. To repeat what I said in chapter 3, you can’t
distinguish between the other sort of links, hard links, and a real file entry, because a hard
link just supplies an alternative but equivalent name for a file.

There’s a nice trick to find broken symlinks: the pattern ‘**/*(-@)’. This is supposed to
follow symlinks; but that ‘@’ tells it to match only on symlinks! There is only one case where
this can succeed, namely where the symlink is broken. (This was pointed out to me by Oliver
Kiddle.)

Sorting and indexing qualifiers

Normally the result of filename generation is sorted by alphabetic order of filename. The
globbing flags (o) and (O) allow you to sort in normal or reverse order of other things: n is
for names, so (on) gives the default behaviour while (On) is reverse order; L, l, m, a and c
refer to the same thing as the normal flags with those letters, i.e. file size, number of links,

5.9. FILENAME GENERATION AND PATTERN MATCHING 235

and modification, access and inode change times. Finally, d refers to subdirectory depth; this
is useful with recursive globbing to show a file tree ordered depth-first (subdirectory contents
appear before files in any given directory) or depth-last.

Note that time ordering produces the most recent first as the standard ordering ((om), etc.),
and oldest first as the reverse ordering (OM), etc.). With size, smallest first is the normal
ordering.

You can combine ordering criteria, with the most important coming first; each criterion must
be preceded by o or O to distinguish it from an ordinary globbing flag. Obviously, n serves as
a complete discriminator, since no two different files can have the same name, so this must
appear on its own or last. But it’s a good idea, when doing depth-first ordering, to use odon,
so that files at a particular depth appear in alphabetical order of names. Try

print **/*(odon)

to see the effect, preferably somewhere above a fairly shallow directory tree or it will take a
long time.

There’s an extra trick you can play with ordered files, which is to extract a subset of them by
indexing. This works just like arrays, with individual elements and slices.

print *([1])

This selects a single file, the first in alphabetic order since we haven’t changed the default
ordering.

print *(om[1,5])

This selects the five most recently modified files (or all files, if there are five or fewer).
Negative indices are understood, too:

print *(om[1,-2])

selects all files but the oldest, assuming there are at least two.

Finally, a reminder that you can stick modifiers after qualifiers, or indeed in parentheses
without any qualifiers:

print **/*(On:t)

sorts files in subdirectories into reverse order of name, but then strips off the directory part
of that name. Modifiers are applied right at the end, after all file selection tasks.

Evaluating code as a test

The most complicated effect is produced by the (e) qualifer. which is followed by a string
delimited in the now-familiar way by either matching brackets of any of the four sorts or a
pair of any other characters. The string is evaluated as shell code; another layer of quotes is
stripped off, to make it easier to quote the code from immediate expansion. The expression

236 CHAPTER 5. SUBSTITUTIONS

is evaulated separately for each match found by the other parts of the pattern, with the
parameter $REPLY set to the filename found.

There are two ways to use (e). First, you can simply rely on the return code. So:

print *(e:’[[-d $REPLY]]’:)
print *(/)

are equivalent. Note that quotes around the expression, which are necessary in addition to
the delimiters (here ‘:’) for expressions with special characters or whitespace. In particular,
$REPLY would have been evaluated too early — before file generation took place — if it hadn’t
been quoted.

Secondly, the function can alter the value of $REPLY to alter the name of the file. What’s
more, the expression can set $reply (which overrides the use of $REPLY) to an array of files
to be inserted into the command line; it may be any size from zero items upward.

Here’s the example in the manual:

print *(e:’reply=(${REPLY}{1,2})’:)

Note the string is delimited by colons and quoted. This takes each file in the current
directory, and for each returns a match which has two entires, the filename with ‘1’ appended
and the filename with ‘2’ appended.

For anything more complicated than this, you should write a shell function to use $REPLY
and set that or $reply. Then you can replace the whole expression in quotes with that name.

5.9.7 Globbing flags: alter the behaviour of matches

Another EXTENDED_GLOB features is ‘globbing flags’. These are a bit like the flags that can
appear in perl regular expressions; instead of making an assertion about the type of the
resulting match, like glob qualifiers do, they affect the way the match is performed. Thus
they are available for all uses of pattern matching — though some flags are not particularly
useful with filename generation.

The syntax is borrowed from perl, although it’s not the same: it looks like ‘(#X)’, where X is
a letter, possibily followed by an argument (currently only a number and only if the letter is
‘a’). Perl actually uses ‘?’ instead of ‘#’; what these have in common is that they can’t appear
as a valid pattern characters just after an open parenthesis, since they apply to the pattern
before. Zsh doesn’t have the rather technical flags that perl does (lookahead assertions and
so on); not surprisingly, its features are based around the shortcuts often required by shell
users.

Mixed-case matches

The simplest sort of globbing flag will serve as an example. You can make a pattern, or a
portion of a pattern, match case-insensitively with the flag (#i):

[[FOO = foo]]
[[FOO = (#i)foo]]

5.9. FILENAME GENERATION AND PATTERN MATCHING 237

Assuming you have EXTENDED_GLOB set so that the ‘#’ is an active pattern character, the
first match fails while the second succeeds. I mentioned portions of a pattern. You can put
the flags at any point in the pattern, and they last to the end either of the pattern or any
enclosing set of parentheses, so in

[[FOO = f(#i)oo]]
[[FOO = F(#i)oo]]

once more the first match fails and the second succeeds. Alternatively, you can put them in
parentheses to limit their scope:

[[FOO = ((#i)fo)o]]
[[FOO = ((#i)fo)O]]

gives a failure then a success again. Note that you need extra parentheses; the ones around
the flag just delimit that, and have no grouping effect. This is different from Perl.

There are two flags which work in exactly the same way: (#l) says that only lowercase
letters in the pattern match case-insensitively; uppercase letters in the pattern only match
uppercase letters in the test string. This is a little like Emacs’ behaviour when searching
case insensitvely with the case-fold-search option variable set; if you type an uppercase
character, it will look only for an uppercase character. However, Emacs has the additional
feature that from that point on the whole string becomes case-sensitive; zsh doesn’t do that,
the flag applies strictly character by character.

The third flag is (#I), which turns case-insensitive matching off from that point on. You
won’t often need this, and you can get the same effect with grouping — unless you are
applying the case-insensitive flag to multiple directories, since groups can’t span more than
one directory. So

print (#i)/a*/b*/(#I)c*

is equivalent to

print /[aA]*/[bB]*/c*

Note that case-insensitive searching only applies to characters not in a special pattern of
some sort. In particular, ranges are not automatically made case-insensitive; instead of
‘(#i)[ab]*’, you must use ‘[abAB]*’. This may be unexpected, but it’s consistent with how
other flags, notably approximation, work.

You should be careful with matching multiple directories case-insensitively. First,

print (#i)~/.Z*

doesn’t work. This is due to the order of expansions: filename expansion of the tilde happens
before pattern matching is ever attempted, and the ‘~’ isn’t at the start where filename
expansion needs to find it. It’s interpreted as an empty string which doesn’t match ‘/.Z*’,
case-insensitively — in other words, it will match any empty string.

Hence you should put ‘(#i)’ and any other globbing flags after the first slash — unless,
for some reason, you really want the expression to match ‘/Home/PWS/’ etc. as well as
‘/home/pws’.

238 CHAPTER 5. SUBSTITUTIONS

Second,

print (#i)$HOME/.Z*

does work — prints all files beginning ‘.Z’ or ‘.z’ in your home directory — but is inefficient.
Assume $HOME expands to my home directory, /home/pws. Then you are telling the shell
it can match in the directories ‘/Home/PWS/’, ‘/HOME/pWs’ and so on. There’s no quick way
of doing this — the shell has to look at every single entry first in ‘/’ and then in ‘/home’
(assuming that’s the only match at that level) to check for matches. In summary, it’s a good
idea to use the fact that the flag doesn’t have to be at the beginning, and write this as:

print ~/(#i).Z*

Of course,

print ~/.[zZ]*

would be easier and more standard in this oversimplified example.

On Cygwin, a UNIX-like layer running on top of, uh, a well known graphical user
interface claiming to be an operating system, filenames are usually case insensitive anyway.
Unfortunately, while Cygwin itself is wise to this fact, zsh isn’t, so it will do all that extra
searching when you give it the (#i) flag with an otherwise explicit string.

A piece of good news, however, is that matching of uppercase and lowercase characters
will handle non-ASCII character sets, provided your system handles locales, (or to use the
standard hieroglyphics, ‘i18n’ — count the letters between ‘i’ and ‘n’ in ‘internationalization’,
which may not even be a word anyway, and wince). In that case you or your system
administrator or the shell environment supplied by your operating system vendor needs to
set $LC_ALL or $LC_CTYPE to the appropriate locale – C for the default, en for English, uk
for Ukrainian (which I remember because it’s confusing in the United Kingdom), and so on.

‘Backreferences’

The feature labelled as ‘backreferences’ in the manual isn’t really that at all, which is my
fault. Many regular expression matchers allow you to refer back to bits already matched.
For example, in Perl the regular expression ‘([A-Z]{3})$1’ says ‘match three uppercase
characters followed by the same three characters again. The ‘$1’ is a backreference.

Zsh has a similar feature, but in fact you can’t use it while matching a single pattern; it just
makes the characters matched by parentheses available after a successful complete match.
In this, it’s a bit more like Emacs’s match-beginning and match-end functions.

You have to turn it on for each pattern with the globbing flag ‘(#b)’. The reason for this
is that it makes matches involving parentheses a bit slower, and most of the time you use
parentheses just for ordinary filename generation where this feature isn’t useful. Like most
of the other globbing flags, it can have a local effect: only parentheses after the flag produce
backreferences, and the effect is local to enclosing parentheses (which don’t feel the effect
themselves). You can also turn it off with ‘(#B)’.

What happens when a pattern with active parentheses matches is that the elements of the
array $match, $mbegin and $mend are set to reflect each active parenthesis in turn —

5.9. FILENAME GENERATION AND PATTERN MATCHING 239

names inspired by the corresponding Emacs feature. The string matching the first pair of
parentheses is stored in the first element of $match, its start position in the string is stored
in the first element of $mbegin, and its end position in the string $mend. The same happens
for later matched parentheses. The parentheses around any globbing flags do not count.

$mbegin and $mend use the indexing convention currently in effect, i.e. zero offset if
KSH_ARRAYS is set, unit offset otherwise. This means that if the string matched against
is stored in the parameter $teststring, then it will always be true that ${match[1]}
is the same string as ${teststring[${mbegin[1]},${mend[1]}]}. and so on. (I’m
assuming, as usual, that KSH_ARRAYS isn’t set.) Unfortunately, this is different from the way
the E parameter flag works — that substitutes the character after the end of the matched
substring. Sorry! It’s my fault for not following that older convention; I thought the string
subscripting convention was more relevant.

An obvious use for this is to match directory and non-directory parts of a filename:

local match mbegin mend
if [[/a/file/name = (#b)(*)/([^/]##)]]; then

print -l ${match[1]} ${match[2]}
fi

prints ‘/a/file’ and ‘name’. The second parenthesis matches a slash followed by any number
of characters, but at least one, which are not slashes, while the first matches anything —
remember slashes aren’t special in a pattern match of this form. Note that if this appears in
a function, it is a good idea to make the three parameters local. You don’t have to clear them,
or even make them arrays. If the match fails, they won’t be touched.

There’s a slightly simpler way of getting information about the match: the flag (#m) puts the
matched string, the start index, and the index for the whole match into the scalars $MATCH,
$MBEGIN and $MEND. It may not be all that obvious why this is useful. Surely the whole
pattern always matches the whole string? Actually, you’ve already seen cases where this
isn’t true for parameter substitutions:

local MATCH MBEGIN MEND string
string=aLOha
: ${(S)string##(#m)([A-Z]##)}

You’ll find this sets $MATCH to LO, $MBEGIN to 2 and $MEND to 3. In the parameter expansion,
the (S) is for matching substrings, so that the ‘##’ match isn’t anchored to the start of
$string. The pattern is (#m)([A-Z]##), which means: turn on full-match backreferencing
and match any number of capital letters, but at least one. This matches LO. Then the match
parameters let you see where in the test parameter the match occurred.

There’s nothing to stop you using both these types of backreferences at once, and you
can specify multiple globbing flags in the short form ‘(#bm)’. This will work with any
combination of flags, except that some such as ‘(#bB)’ are obviously silly.

Because ordinary globbing produces a list of files, rather than just one, this feature isn’t very
useful and is turned off. However, it is possible to use backreferences in global substitutions
and substitutions on arrays; here are both at once:

% array=(mananan then in gone June)
% print ${array//(#m)?n/${(C)MATCH[1]}n}
mAnAnAn thEn In gOne JUne

240 CHAPTER 5. SUBSTITUTIONS

The substitution occurs separately on each element of the array, and at each match in each
element $MATCH gets set to what was matched. We use this to capitalize every character that
is followed by a lowercase ‘n’. This will work with the (#b) form, too. The perl equivalent of
this is:

% perl -pe ’s/.n/\u$&/g’ <<<$array
mAnAnAn thEn In gOne JUne

(People sometimes say Perl has a difficult syntax to understand; I hope I’m convincing you
how naive that view is when you have zsh.)

Now I can convince you of one point I made about excluded matches above:

% [[foo = (#b)(^foo)*]] && print $match
fo

As claimed, the process of making the longest possible match, then backtracking from the
end until the whole thing is successful, leads to the ‘(^foo)’ matching ‘fo’.

Approximate matching

To my knowledge, zsh is the first command line interpreter to make use of approximate
matching. This is very useful because it provides the shell with an easy way of correcting
what you’ve typed. First, some basics about what I mean by ‘approximate matching’.

There are four ways you can make a mistake in typing. You can leave out a letter which
should be there; you can insert a letter which shouldn’t; you can type one letter instead of
another; and you can transpose two letters. The last one involves two different characters,
so some systems for making approximate matches count it as two different errors; but it’s a
particularly common one when typing, and quite useful to be able to handle as a single error.
I know people who even have ‘mkae’ aliased to ‘make’.

You can tell zsh how many errors you are willing to allow in a pattern match by using,
for example (#a1), which says only a single error allowed. The rules for the flag are
almost identical to those for case-insensitive matching, in particular for scoping and the way
approximate matching is handled for a filename expansion with more than one directory. The
number of errors is global; if the shell manages to match a directory in a path with an error,
one fewer error is allowed for the rest of the path. You can specify as many errors as you like;
the practical limit is that with too many allowed errors the pattern will match far too many
strings. The shell doesn’t have a particularly nifty way of handling approximate matching
(unlike, for example, the program agrep), but you are unlikely to encounter problems if the
number of matches stays in a useful range.

The fact that the error count applies to the whole of a filename path is a bit of a headache,
actually, because we have to make sure the shell matches each directory with the minimum
number of errors. With a single pattern, the shell doesn’t care as long as it doesn’t use up all
the errors it has, while with multiple directories if it uses up the errors early on, it may fail to
match something it should match. But you don’t have to worry about that; this explanation
is just to elicit sympathy.

So the pattern (#a1)README will match README, READ.ME, READ_ME, LEADME, REDME,
READEM, and so on. It will not match _README_, ReadMe, READ or AAREADME. However, you
can combine it with case-insensitivity, for which the short form (#ia1)README is allowed,

5.9. FILENAME GENERATION AND PATTERN MATCHING 241

and then it will match ReadMe, Read.Me, read_me, and so on. You can consider filenames
with multiple directories as single strings for this purpose — with one exception, that
‘foo/bar’ and ‘fo/obar’ are two errors apart, not one. Because the errors are counted
separately in each directory, you can’t transpose the ‘/’ with another character. This
restriction doesn’t apply in other forms of pattern matching where / is not a special character.

Another common feature with case-insensitive matching is that only the literal parts of the
string are handled. So if you have ‘[0-9]’ in a pattern, that character must match a decimal
digit even if approximation is active. This is often useful to impose a particular form at key
points. The main difficulty, as with the ‘/’ in a directory, is that transposing with another
character is not allowed, either. In other words, ‘(#a1)ab[0-9]’ will fail to match ‘a1b’; it
will match with two errors, by removing the ‘b’ before the digit and inserting it after.

As an example of what you can do with this feature, here is a simple function to correct
misspelled filenames.

emulate -LR zsh
setopt extendedglob

local file trylist
integer approx max_approx=6

file=$1

if [[-e $file]]; then
no correction necessary
print $file
return

fi

for ((approx = 1; approx <= max_approx; approx++)); do
trylist=((#a$approx)"$file"(N))
(($#trylist)) && break

done
(($#trylist)) || return 1

print $trylist

The function tries to match a file with the minimum possible number of errors, but in any
case no more than 6. As soon as it finds a match, it will print it out and exit. It’s still possible
there is more than one match with that many errors, however, and in this case the complete
list is printed. The function doesn’t handle ‘~’ in the filename.

It does illustrate the fact that you can specify the number of approximations as a parameter.
This is purely a consequence of the fact that filename generation happens right at the end
of the expansion sequence, after the parameters have already been substituted away. The
numbers and the letter in the globbing flag aren’t special characters, unlike the parentheses
and the ‘#’; if you wanted those to be special when substituted from a parameter, you would
need to set the KSH_GLOB flag, possibly by using the ‘~’ parameter flag.

A more complicated version of that function is included with the shell distribution in the file
Completion/Base/Widget/_correct_filename. This is designed to be used either on
its own, or as part of the completion system.

Indeed, the completion system described in the next chapter is where you are most likely

242 CHAPTER 5. SUBSTITUTIONS

to come across approximate matching, buried inside approximate completion and correction
— in the first case, you tell the shell to complete what you have typed, trying to correct
mistakes, and in the second case, you tell the shell that you have finished typing but possibly
made some mistakes which it should correct. If you already have the new completion system
loaded, you can use ^Xc to correct a word on the command line; this is context-sensitive, so
more sophisticated than the function I showed.

Anchors

The last two globbing flags are probably the least used. They are there really for
completeness. They are (#s), to match only at the start of a string, and (#e), to match
only at the end. Unlike the other flags they are purely local, just making a statement about
the point where they occur in the pattern.

They correspond to the much more commonly used ‘^’ and ‘$’ in regular expressions. The
difference is that shell patterns nearly always match a complete string, so telling the pattern
that a certain point is the start or end isn’t usually very useful. There are two occasions
when it is. The first is when the start or end is to be matched as an alternative to something
else. For example,

[[$file = *((#s)|/)dirpart((#e)|/)*]]

succeeds if dirpart is a complete path segment of $file — with a slash or nothing at all
before and after it. Remember, once again, that slashes aren’t special in pattern matches
unless they’re performing filename generation. The effect of these two flags isn’t altered at
all by their being inside another set of parentheses.

The second time these are useful is in parameter matches where the pattern is not
guaranteed to match a complete string. If you use (#s) or (#e), it will force that point
to be the start or end despite the operator in use. So ${param##pattern(#e)} will remove
pattern from $param only if it matches the entire string: the ## must match at the head,
while the (#e) must match at the end.

You can get the effect with ${param:#pattern}, and further more this is rather faster. The
:# operator has some global knowledge about how to match; it knows that since pattern will
match as far as it can along the test string, it only needs to try the match once. However,
since ‘##’ just needs to match at the head of the string, it will backtrack along the pattern,
trying to match pattern(#e), entirely heedless of the fact that the pattern itself specifically
won’t match if it doesn’t extend to the end. So it’s more efficient to use the special parameter
operators whenever they’re available.

5.9.8 The function zmv

The shell is supplied with a function zmv, which may have been installed into the default
$fpath, or can be found in the source tree in the directory Functions/Misc. This provides
a way of renaming, copying and linking files based on patterns. The idea is that you give
two arguments, a pattern to match, and a string which uses that pattern. The pattern to
match has backreferences turned on; these are stored in the positional parameters to make
them easy to refer to. The function tries to be safe: any file whose name is not changed is
simply ignored, and usually overwriting an existing file is an error, too. However, it doesn’t
make sure that there is a one to one mapping from source to target files; it doesn’t know if
the target file is supposed to be a directory (though it could be smarter about that).

5.9. FILENAME GENERATION AND PATTERN MATCHING 243

In the examples, I will use the option -n, which forces zmv to print out what it will do without
actually doing it. This is a good thing to try first if you are unsure.

Here’s a simple example.

% ls
foo
% zmv -n ’(*)’ ’${(U)1}’
mv -- foo FOO

The pattern matches anything in the current directory, excluding files beginning with a ‘.’
(the function starts with an ‘emulate’, so GLOB_DOTS is forced to be off). The complete string
is stored as the first backreference, which is in turn put into $1. Then the second argument
is used and $1 in uppercase is substituted.

Essentials of the function

The basic code in zmv is very simple. It boils down to more or less the following.

setopt nobareglobqual extendedglob
local files pattern result f1 f2 match mbegin mend

pattern=$1
result=$2

for f1 in ${~pattern}; do
[[$f1 = (#b)${~pattern}]] || continue
set -- $match
f2=${(e)result}
mv -- $f1 $f2

done

Here’s what’s going on. We store the arguments as $pattern and $result. We then
expand the pattern to a list of files — remember that ${~pattern} makes the characters
in $pattern active for the purposes of globbing. For each file we find, we match against
the pattern again, but this time with backreferences turned on, so that parentheses are
expanded into the array $match. If, for some reason, the pattern match failed this time, we
just skip the file. Then we store $match in the positional parameters; the ‘--’ for set and
for mv is in case $match[1] begins with a ‘-’.

Then we evaluate the result, assuming that it will refer to the positional parameters. In our
example, $result contains argument ‘${(U)1}’ and if we matched ‘foo’, then $1 contains
foo. The effect of ‘${(e)result}’ is to perform an extra substitution on the ${(U)1}, so
$f2 will be set to FOO. Finally, we use the mv command to do the actual renaming. The effect
of the -n option isn’t shown, but it’s essentially to put a ‘print’ in front of the mv command
line.

Notice I set nobareglobqual, turning off the use of glob qualifiers. That’s necessary because
of all those parentheses; otherwise, ‘(*)’ would have been interpreted as a qualifier. There
is an option, -Q, which will turn qualifiers back on, if you need them. That’s still not quite
ideal, since the second pattern match, the one where we actually use the backreferences, isn’t
filename generation, just a test against a string, so doesn’t handle glob qualifers. So in that

244 CHAPTER 5. SUBSTITUTIONS

case the code needs to strip qualifiers off. It does this by a fairly simple pattern match which
will work in simple cases, though you can confuse it if you try hard enough, particularly if
you have extra parentheses in the glob qualifier.

Note also the use of ‘${(e)result}’ to force substitution of parameters when $result is
evaluated. This way of doing it safely ignores other metacharacters which may be around:
all $-expansions, plus backquote expansion, are performed, but otherwise $result is left
alone.

More complicated examples

zmv has some special handling for recursive globbing, but only with the patterns **/ and
***/. If you put either of these in parentheses in the pattern, they will be spotted and used
in the normal way. Hence,

% ls test
lonely
% zmv -n ’(**/)lonely’ ’$1solitary’
mv -- test/lonely test/solitary

Note that, as with other uses of ‘**/’, the slash is part of the recursive match, so you don’t
need another one. You don’t need to separate $1 from solitary either, since positional
parameters are a special case, but you could use ‘${1}solitary’ for the look of it. Like
glob qualifiers, recursive matches are handled by some magic in the function; in ordinary
globbing you can’t put these two forms inside parentheses.

For the lazy, the option -w (which means ‘with wildcards’) will tell zmv to decide for itself
where all the patterns are and automatically add parentheses. The two examples so far
become

zmv -nw ’*’ ’${(U)1}’
zmv -nw ’***/lonely’ ’$1solitary’

with exactly the same effects.

Another way of getting useful effects is to use the ‘${1//foo/bar}’ substitution in the
second argument. This gives you a general way of substitution bits in filenames. Often,
you can then get away with having ‘(*)’ as the first argument:

zmv ’(*)’ ’${1//(#m)[aeiou]/${(U)MATCH}}’

capitalises all the vowels in all filenames in the current directory. You may be familiar with
a perl script called rename which does tricks like this (though there’s another, less powerful,
programme of the same name which simply replaces strings).

The effect of zmv

In addition to renaming, zmv can be made to copy or link files. If you call it zcp or zln
instead of zmv, it will have those effects, and in the case of zln you can use the option -s to
create symbolic links, just as with ln. Beware the slightly confusing behaviour of symbolic
links containing relative directories, however.

5.9. FILENAME GENERATION AND PATTERN MATCHING 245

Alternatively, you can force the behavour of zmv, zcp and zln just by giving the options
-M, -C or -L to the function, whatever it is called. Or you can use ‘-p prog’ to execute
prog instead of mv, cp or ln; prog should be able to be run as ‘prog -- oldname newname’,
whatever it does.

The option -i works a bit like the same option to the basic programmes which zmv usually
calls, prompting you before any action — in this case, not just overwriting, but any action
at all. Likewise, -f tells zmv to force overwriting of files, which it will usually refuse to do
because of the potential dangers. Although many versions of mv etc. take this option, some
don’t, so it’s not passed down; instead there’s a generic way of passing down options to the
programmes executed, using -o followed by a string. For example,

% ls
foo
% zmv -np frud -o’-a -b’ ’(*)’ ’${(U)1}’
frud -a -b -- foo FOO

246 CHAPTER 5. SUBSTITUTIONS

Chapter 6

Completion, old and new

Completion of command arguments is something zsh is particularly good at. The simplest
case is that you hit <TAB>, and the shell guesses what has to go there and fills it in for you:

% ls
myfile theirfile yourfile
% cat t<TAB>

expands the command line to

% cat theirfile

and you only had to type the initial letter, then TAB.

In the early days when this feature appeared in the C shell, only filenames could be
completed; there were no clever tricks to help you if the name was ambiguous, it simply
printed the unambiguous part and beeped so that you had to decide what to do next. You
could also list possible completions; for some reason this became attached to the ^D key in
csh, which in later shells with Emacs-like bindings also deletes the next character, so that
history has endowed zsh, like other shells, with the slightly odd combined behaviour:

% cat yx

Now move the cursor back one character onto the x and hit ^D twice and you see: yourfile.
That doesn’t work if you use vi-like bindings, or, obviously, if you’ve rebound ^D.

Next, it became possible to complete other items such as names of users, commands or hosts.
Then zsh weighed in with menu completion, so you could keep on blindly hitting <TAB> until
the right answer appeared, and never had to type an extra character yourself.

The next development was tcsh’s, and then zsh’s, programmable completion system; you
could give instructions to the shell that in certain contexts, only certain items should be
completed; for example, after cd, you would only want directories. In tcsh, there was a
command called complete; each ‘complete ...’ statement defined the completion for the
arguments of a particular command, such as cd; the equivalent in zsh is compctl, which
was inspired by complete but is different in virtually every significant detail. There is a
perl script lete2ctl in the Misc directory of the shell distribution to help you convert from

247

248 CHAPTER 6. COMPLETION, OLD AND NEW

the tcsh to the zsh formats. You put a whole series of compctl commands into .zshrc, and
everything else is done by the shell.

Zsh’s system has become more and more sophisticated, and in version 3.1.6 a new completion
system appeared which is supposed to do everything for you: you simply call a function,
compinit, from an initialization file, after which zsh knows, for example, that gunzip
should be followed by files ending in .gz. The new system is based on shell functions, an
added bonus since they are extremely flexible and you already know the syntax. However,
given the complexity it’s quite difficult to get started writing your own completions now, and
hard enough to know what to do to change the settings the way you like. The rest of the
chapter should help.

I shall concentrate on the new completion system, which seems destined to take over
completely from the old one eventually, now that the 3.1 release series has become the
4.0 production release. The old compctl command is still available, and old completion
definitions will remain working in future versions of zsh — in fact, on most operating systems
which support dynamically linked libraries the old completion system is in a different file,
which the shell loads when necessary, so there’s very little overhead for this.

The big difference in the new system is that, instead of everything being set up once and
for all when the shell starts, various bits of shell code are called after you hit <TAB>, to
generate the completions there and then. There’s enough new in the shell that all those
unmemorable options to compctl (‘-f’ for files ‘-v’ for variables and so on) can be replaced
by commands that produce the list of completions directly; the key command in this case is
called ‘compadd’, which is passed this list and decides what to use to complete the word on
the command line. So the simplest possible form of new completion looks roughly like this:

tell the shell that the function mycompletion can do completion
when called by the widget name my-completion-widget, and that
it behaves like the existing widget complete-word
zle -C my-completion-widget .complete-word mycompletion

define a key that calls the completion widget
bindkey ’^x^i’ my-completion-widget

define the function that will be called
mycompletion() {

add a list of completions
compadd alpha bravo charlie delta

}

That’s very roughly what the completion system is doing, except that the function is called
_main_complete and calls a lot of other functions to do its dirty work based on the context
where completion was called (all the things that compctl used to do), and the widgets are
just the old completion widgets (‘expand-or-complete’ etc.) redefined and still bound to
all the original keys. But, in case you hadn’t guessed, there’s more to it than that.

Here’s a plan for the sections of this chapter.

1. A broad description of completion and expansion, applying equally to old and new
completion.

2. How to configure completion using shell options. Most of this section applies to old
completion, too, although I won’t explicitly flag up any differences. After this, I shall
leave the compctl world behind.

6.1. COMPLETION AND EXPANSION 249

3. How to start up new completion.

4. The basics of how the new completion system works.

5. How to configure it using the new ‘zstyle’ builtin.

6. Separate commands which do something other than the usual completion system, as
well as some other editing widgets that have to do with completion.

7. Matching control, a powerful way of deciding such things as whether to complete case-
insensitively, to allow insertion of extra parts of words before punctuation characters,
or to ignore certain characters in the word on the command line.

8. How to write your own completion functions; you won’t need to have too solid an
understanding of all the foregoing just to do simple completions, but I will gradually
introduce the full baroque splendour of how to make tags and styles work in your own
functions, and how to make completion do the work of handling command arguments
and options.

9. Ends the chapter gracefully, on the old ‘beginning, middle, end’ principle.

6.1 Completion and expansion

More things than just completion happen when you hit tab. The first thing that zsh tries
to do is expand the line. Expansion was covered in a previous chapter: basically all the
things described there are possible candidates for expanding in-line by the editor. In other
words, history substitutions with bangs, the various expansions using ‘$’ or backquote, and
filename generation (globbing) can all take place, with the result replacing what was there
on the command line:

% echo $PWD<TAB>
-> echo /home/pws/zsh/projects/zshguide

% echo ‘print $ZSH_VERSION‘<TAB>
-> echo 3.1.7

% echo !!<TAB>
-> echo echo 3.1.7

% echo ~/.z*<TAB>
-> echo /home/pws/.zcompdump /home/pws/.zlogout

/home/pws/.zshenv /home/pws/.zshrc

Note that the ‘~’ also gets expanded in this case.

This is often a good time to remember the ‘undo’ key, ‘^_’ or ‘^Xu’; typing this will restore
what was there before the expansion if you don’t like the result. Many keyboards have a
quirk that what’s described as ‘^_’ should be typed as control with slash, which you’d write
‘^/’ except unfortunately that does something else; this is not zsh’s fault. There’s another
half-exception, namely filename generation: paths like ‘~/file’ don’t get expanded, because
you usually know what they refer to and it’s usually convenient to leave them for use in
completion. However, the ‘=cmdname’ form does get expanded, unless you have NO_EQUALS
set.

In fact, deciding whether expansion or completion takes place can sometimes be tricky,
since things that would be expanded if they were complete, may need to be completed
first; for example $PAT should probably be completed to $PATH, but it’s quite possible

250 CHAPTER 6. COMPLETION, OLD AND NEW

there is a parameter $PAT too. You can decide which, if you prefer. First, the commands
expand-word, bound to ‘^X*’, and the corresponding command for listing what would be
expanded, list-expand, bound to ‘^Xg’, do expansion only — all possible forms except alias
expansion, including turning ‘~/file’ into a full path.

From the other point of view, you can use commands other than expand-or-complete, the
one bound by default to <TAB>, to perform only completion. The basic command for this is
complete-word, which is not bound by default. It is quite sensible to bind this to ‘^I’ (i.e.
<TAB>) if you are happy to use the separate commands for expansion, i.e.

Now tab does only completion, not expansion
bindkey ’^i’ complete-word

Furthermore, if you do this and use the new completion system, then as we shall see there
is a way of making the completion system perform expansion — see the description of the
_expand completer below. In this case you have much more control over what forms of
expansion are tried, and at what point, but you have to make sure you use complete-word,
not expand-or-complete, else the standard expansion system will take over.

There’s a close relative of expand-or-complete, expand-or-complete-prefix, not
bound by default. The only difference is that it will ignore everything under and to the
right of the cursor when completing. It’s as if there was a space where the cursor was, with
everything to be ignored shifted to the right (guess how it’s implemented). Use this if you
habitually type new words in the line before other words, and expect them to complete or
expand on their own even before you’ve typed the space after them. Some other shells work
this way all the time. To be more explicit:

% ls
filename1
% ls filex

Move the cursor to the x and hit tab. With expand-or-complete nothing happens; it’s
trying to complete a file called ‘filex’ — or, with the option COMPLETE_IN_WORD set, it’s
trying to find a file whose name starts with ‘file’ and ends with ‘x’. If you do

bindkey ’^i’ expand-or-complete-prefix

and try the same experiment, you will find the whole thing is completed to ‘filename1x’, so
that the ‘x’ was ignored, but not removed.

One possible trap is that the listing commands, both delete-char-or-list, bound by
default to ‘^D’ in emacs mode, and list-options, bound by default to ‘^D’ in vi insert
mode and the basic command for listing completions as it doesn’t have the delete-character
behaviour, do not show possible expansions, so with the default bindings you can use ‘^D’ to
list, then hit <TAB> and find that the line has been completely rewritten by some expansion.
Using complete-word instead of expand-or-complete will of course fix this. If you
know how to write new editor widgets (chapter 4), you can make up a function which tries
list-expand, and if that fails tries list-options.

There are four completion commands I haven’t mentioned yet: three are menu-complete,
menu-expand-or-complete and reverse-menu-complete, which perform menu
completion, where you can cycle through all possible completions by hitting the same key.
The first two correspond to complete-word and expand-or-complete respectively, while

6.2. CONFIGURING COMPLETION USING SHELL OPTIONS 251

the third has no real equivalent as it takes you backwards through a completion list. The
effect of the third can’t be reached just by setting options for menu completion, so it’s a useful
one to bind separately. I have it bound to ‘\M-\C-i’, i.e. tab with the Meta key pressed down,
but it’s not bound by default.

The fourth is menu-select, which performs an enhanced form of menu completion called
‘menu selection’ which I’ll describe below when I talk about options. You have to make sure
the zsh/complist module is loaded to use this zle command. If you use the style, zsh should
be able to load this automatically when needed, as long as you have dynamic loading, which
you probably do these days.

6.2 Configuring completion using shell options

There are two main ways of altering the behaviour of completion without writing or rewriting
shell functions: shell options, as introduced in chapter 2, and styles, as introduced above. I
shall first discuss the shell options, although as you will see some of these refer to the styles
mechanism. Setting shell options affects every single completion, unless special care has
been taken (using a corresponding style for the context, or setting an option locally) to avoid
that.

In addition to the options which directly affect the completion system, completion is
sensitive to various other options which describe shell behaviour. For example, if the option
MAGIC_EQUAL_SUBST is set, so that arguments of all commands looking like ‘foo=~/file’
have the ‘~’ expanded as if it was at the start of an argument, then the default completion
for arguments of commands not specially handled will try to complete filenames after the ‘=’.

Needless to say, if you write completion functions you will need to worry about a lot of other
options which can affect shell syntax. The main starting point for completion chosen by
context (everything except the commands for particular completions bound separately to
keystrokes) is the function _main_complete, which includes the effect of the following lines
to make sure that at least the basic options are set up within completion functions:

setopt glob bareglobqual nullglob rcexpandparam extendedglob unset
unsetopt markdirs globsubst shwordsplit shglob ksharrays cshnullglob
unsetopt allexport aliases errexit octalzeroes

but that by no means exhausts the possibilities. Actually, it doesn’t include those lines: the
options to set are stored in the array $_comp_options, with NO_ in front if they are to be
turned off. You can modify this if you find you need to (and maybe tell the maintainers, too).

By the way, if you are wondering whether you can re-use the function _main_complete,
by binding it to a different key with slightly different completion definitions, look instead
at the description of the _generic command widget below. It’s just a front-end to
_main_complete which allows you to have a different set of styles in effect.

6.2.1 Ambiguous completions

The largest group of options deals with what happens when a completion is ambiguous, in
other words there is more than one possible completion. The seven relevant options are as
follows, as copied from the FAQ; many different combinations are possible:

252 CHAPTER 6. COMPLETION, OLD AND NEW

• with NO_BEEP set, that annoying beep goes away,

• with NO_LIST_BEEP, beeping is only turned off for ambiguous completions,

• with AUTO_LIST set, when the completion is ambiguous you get a list without having
to type ^D,

• with BASH_AUTO_LIST set, the list only happens the second time you hit tab on an
ambiguous completion,

• with LIST_AMBIGUOUS, this is modified so that nothing is listed if there is
an unambiguous prefix or suffix to be inserted — this can be combined with
BASH_AUTO_LIST, so that where both are applicable you need to hit tab three times
for a listing,

• with REC_EXACT, if the string on the command line exactly matches one of the possible
completions, it is accepted, even if there is another completion (i.e. that string with
something else added) that also matches,

• with MENU_COMPLETE set, one completion is always inserted completely, then when you
hit TAB it changes to the next, and so on until you get back to where you started,

• with AUTO_MENU, you only get the menu behaviour when you hit TAB again on the
ambiguous completion.

6.2.2 ALWAYS_LAST_PROMPT

The option ALWAYS_LAST_PROMPT is set by default, and has been since an earlier 3.1 release
of zsh; after listing a completion, the cursor is taken back to the line it was on before, instead
of reprinting it underneath. The downside of this is that the listing will be obscured when
you execute the command or produce a different listing, so you may want to unset the option.
ALWAYS_LAST_PROMPT behaviour is required for menu selection to work, which is why I
mention it now instead of in the ragbag below.

When you’re writing your own editor functions which invoke completion, you can actually
cancel the effect of this with the widget end-of-list, which you would call as zle
end-of-list (it’s a normal editing function, not a completion function). You can also bind
it to a key to use to preserve the existing completion list. On the other hand, if you want to
control the behaviour within a completion function, i.e. to decide whether completion will try
to return to the prompt above the list, you can manipulate it with the last_prompt element
of the $compstate associative array, so for example:

compstate[last_prompt]=’’

will turn off the behaviour for the completion in progress. $compstate is the place to turn
if you find yourself wanting to control completion behaviour in this much detail; see the
zshcompwid manual page.

6.2.3 Menu completion and menu selection

The most significant matter decided by the options above is whether or not you are using
menu completion. If you are not, you will need to type the next character explicitly when
completion is ambiguous; if you are, you just need to keep hitting tab until the completion

6.2. CONFIGURING COMPLETION USING SHELL OPTIONS 253

you want appears. In the second case, of course, this works best if there are not too many
possibilities. Use of AUTO_MENU or binding the menu-complete widget to a separate key-
stroke gives you something of both worlds.

A new variant of menu completion appeared in 3.1.6; in fact, it deserves the name menu
completion rather more than the original form, but since that name was taken it is called
‘menu selection’. This allows you to move the cursor around the list of completions to
select one. It is implemented by a separate module, zsh/complist; you can make sure
this is loaded by putting ‘zmodload -i zsh/complist’ in .zshrc, although it should be
loaded automatically when the style menu is set as below. For it to be useful, you need two
other things. The first is ALWAYS_LAST_PROMPT behaviour; this is suppressed if the whole
completion list won’t appear on the screen, since there’s no line on the screen to go back
to. However, menu selection does still work, by allowing you to scroll the list up and down.
The second thing is that you need to start menu completion in any of the usual ways; menu
selection is an addition to menu completion, not a replacement.

Now you should set the following style:

zstyle ’:completion:*’ menu select=<NUM>

If an ambiguous completion produces at least <NUM> possibilities, menu selection is started.
You can understand this best by trying it. One of the completions in the list, initially the
top-leftmost, is highlighted and inserted into the line. By moving the cursor in the obvious
directions (with wraparound at the edges), you change both the value highlighted and the
value inserted into the line. When you have the value you want, hit return, which removes
the list and leaves the inserted value. Hitting ^G (the editor function send-break) aborts
menu selection, removes the list and restores the command line.

Internally, zsh actually uses the parameter $MENUSELECT to supply the number and hence
start menu selection. However, this is always initialised from the style as defined above, so
you shouldn’t set $MENUSELECT directly (unless you are using compctl, which will happily
use menu selection). As with other styles, you can specify different values for different
contexts; the default tag is checked if the current context does not produce a value for the
style with whatever the current tag is. Note that the menu style also allows you to control
whether menu completion is started at all, with or without selection; in other words, it is a
style corresponding to the MENU_COMPLETE option.

There is one other additional feature when using menu selection. The zle command
accept-and-infer-next-history has a different meaning here; it accepts a completion,
and then tries to complete again using menu selection. This is very useful with directory
hierarchies, and in combination with undo gives you a simple file browser. You need to bind
it in the special keymap menuselect; for example, I use

bindkey -M menuselect ’^o’ accept-and-infer-next-history

because the behaviour reminds me of what is usually bound to ^O in emacs modes, namely
accept-line-and-down-history. Binding it like this has no effect on ^O in the normal
keymaps. Try it out by entering menu selection on a set of files including directories, and
typing ^O on one of the directories. You should immediately have the contents of that
directory presented for the next selection, while undo is smart enough not only to remove
that selection but return to completion on the parent directory.

You can choose the manner in which the currently selected value in the completion list is
highlighted using exactly the same mechanism as for specifying colours for particular types
of matches; see the description of the list-colors style below.

254 CHAPTER 6. COMPLETION, OLD AND NEW

6.2.4 Other ways of changing completion behaviour

COMPLETE_ALIASES

If you set an alias such as

alias pu=pushd

then the alias ‘pu’ will be expanded when the completion system is looking for the name of the
command, so that it will instead find the command name ‘pushd’. This is quite useful to avoid
having to define extra completions for all your aliases. However, it’s possible you may want to
define something different for the alias than for the command it expands to. In that case, you
will need to set COMPLETE_ALIASES, and to make arrangements for completing after every
alias which does not already match the name of a command. Hence ‘alias zcat="myzcat
-dc"’ will work with the option set, even if you haven’t told the system about ‘myzcat’, while
‘alias myzcat="gzip -dc"’ will not work unless you do define a completion for myzcat:
here ‘compdef _gzip myzcat’ would probably be good enough. Without the option set, it
would be the other way around: the first alias would not work without the extra compdef,
but the second would.

AUTO_REMOVE_SLASH

This option is turned on by default. If you complete a directory name and a slash is added
— which it usually is, both to tell you that you have completed a directory and to allow you
to complete files inside it without adding a ‘/’ by hand — and the next thing you type is not
something which would insert or complete part of a file in that directory, then the slash is
removed. Hence:

% rmdir my<TAB>
-> rmdir mydir/

% rmdir mydir/<RETURN>
-> ‘rmdir mydir’ executed

This example shows why this behaviour was added: some versions of ‘rmdir’ baulk at having
the slash after the directory name. On the other hand, if you continued typing after the slash,
or hit tab again to complete inside mydir, then the slash would remain.

This is at worst harmless under most circumstances. However, you can unset the option
AUTO_REMOVE_SLASH if you don’t like that behaviour. One thing that may cause slight
confusion, although it is the same as with other suffixes (i.e. bits which get added
automatically but aren’t part of the value being completed), is that the slash is added straight
away if the value is being inserted by menu completion. This might cause you to think
wrongly that the completion is finished, and hence is unique when in fact it isn’t.

Note that some forms of completion have this type of behaviour built in, not necessarily with
a slash, when completing lists of arguments. For example, enter ‘typeset ZSH_V<TAB>’ and
you will see ‘ZSH_VERSION=’ appear, in case you want to assign something to the parameter;
hitting space, which is not a possible value, makes the ‘=’ disappear. This is not controlled by
the AUTO_REMOVE_SLASH option, which applies only to directories inserted by the standard
filename completion system.

6.2. CONFIGURING COMPLETION USING SHELL OPTIONS 255

AUTO_PARAM_SLASH, AUTO_PARAM_KEYS

These options come into effect when completing expressions with parameter substitutions.
If AUTO_PARAM_SLASH is set, then any parameter expression whose value is the name of a
directory will have a slash appended when completed, just as if the value itself had been
inserted by the completion system.

The behaviour for AUTO_PARAM_KEYS is a bit more complicated. Try this:

print ${ZSH_V<TAB>

You will find that you get the complete word ‘${ZSH_VERSION}’, with the closing brace and
(assuming there are no other matching parameters) a space afterwards. However, often after
you have completed a parameter in this fashion you want to type something immediately
after it, such as a subscript. With AUTO_PARAM_KEYS, if you type something at this point
which seems likely to have to go after the parameter name, it will immediately be put there
without you having to delete the intervening characters — try it with ‘[’, for example. Note
that this only happens if the parameter name and any extra bits were added by completion;
if you type everything by hand, typing ‘[’ will not have this magic effect.

COMPLETE_IN_WORD

If this is set, completion always takes place at the cursor position in the word. For example if
you typed ‘Mafile’, went back over the ‘f’, and hit tab, the shell would complete ‘Makefile’,
instead of its usual behaviour of going to the end of the word and trying to find a completion
there, i.e. something matching ‘Mafile*’. Some sorts of new completion (such as filename
completion) seem to implement this behaviour regardless of the option setting; some other
features (such as the ‘_prefix’ completer described below) require it, so it’s a good thing to
set and get used to, unless you really need to complete only at the end of the word.

ALWAYS_TO_END

If this is set, the cursor is always moved to the end of the word after it is completed, even if
completion took place in the middle. This also happens with menu completion.

6.2.5 Changing the way completions are displayed

LIST_TYPES

This is like the -F option to ls; files which appear in the completion listing have a trailing
‘/’ for a directory, ‘*’ for a regular file executable by the current process, ‘@’ for a link, ‘|’ for a
named pipe, ‘%’ for a character device and ‘#’ for a block device. This option is on by default.

Note that the identifiers only appear if the completion system knows that the item is
supposed to be a file. This is automatic if the usual filename completion commands are
used. There is also an option -f to the builtin compadd if you write your own completion
function and want to tell the shell that the values may be existing files to apply LIST_TYPES
to (though no harm is caused if no such files exist).

256 CHAPTER 6. COMPLETION, OLD AND NEW

LIST_PACKED, LIST_ROWS_FIRST

These affect the arrangement of the completion listing. With LIST_PACKED, completion lists
are made as compact as possible by varying the widths of the columns, instead of formatting
them into a completely regular grid. With LIST_ROWS_FIRST, the listing order is changed so
that adjacent items appear along rows instead of down columns, rather like ls’s -x option.

It is possible to alter both these for particular contexts using the styles list-packed and
list-rows-first. The styles in such cases always override the option; the option setting
is used if no corresponding style is found.

Note also the discussion of completion groups later on: it is possible to have different types
of completion appear in separate lists, which may then be formatted differently using these
tag-sensitive styles.

6.3 Getting started with new completion

Before I go into any detail about new completion, here’s how to set it up so that you can try
it out. As I said above, the basic objects that do completions are shell functions. These are
all autoloaded, so the shell needs to know where to find them via the $fpath array. If the
shell was installed properly, and nothing in the initialization files has removed the required
bits from $fpath, this should happen automatically. It’s even possible your system sets up
completion for you (Mandrake Linux 6.1 is the first system known to do this out of the box),
in which case type ‘which compdef’ and you should see a complete shell function — actually
the one which allows you to define additional completion functions. Then you can skip the
next paragraph.

If you want to load completion, try this at the command line:

autoload -U compinit
compinit

which should work silently. If not, you need to ask your system administrator what has
happened to the completion functions or find them yourself, and then add all the required
directories to your $fpath. Either they will all be in one big directory, or in a set of
subdirectories with the names AIX, BSD, Base, Debian, Redhat, Unix, X and Zsh; in the
second case, all the directories need to be in $fpath. When this works, you can add the
same lines, including any modification of $fpath you needed, to your .zshrc.

You can now see if it’s actually working. Type ‘cd ’, then ^D, and you should be presented
with a list of directories only, no regular files. If you have $cdpath set, you may see
directories that don’t appear with ls. As this suggests, the completion system is supplied
with completions for many common (and some quite abstruse) commands. Indeed, the idea
is that for most users completion just works without intervention most of the time. If you
think it should when it doesn’t, it may be a bug or an oversight, and you should report it.

Another example on the theme of ‘it just works’:

tar xzf archive.tar.gz ^D

will look inside the gzipped tar archive — assuming the GNU version of tar, for which the
‘z’ in the first set of arguments reports that the archive has been compressed with gzip —

6.3. GETTING STARTED WITH NEW COMPLETION 257

and give you a list of files or directories you can extract. This is done in a very similar way
to normal file completion; although there are differences, you can do completion down to any
directory depth within the archive. (At this point, you’re supposed to be impressed.)

The completion system knows about more than just commands and their arguments, it
also understands some of the shell syntax. For example, there’s an associative array
called $_comps which stores the names of commands as keys and the names of completion
functions as the corresponding values. Try typing:

print ${_comps[

and then ^D. You’ll probably get a message asking if you really want to see all the possible
completions, i.e. the keys for $_comps; if you say ‘y’ you’ll see a list. If you insert any of
those keys, then close the braces so you have e.g. ‘${_comps[mozilla]}’ and hit return,
you’ll see the completion function which handles that command; in this case (at the time
of writing) it’s _webbrowser. This is one way of finding out what function is handling a
particular command. If there is no entry — i.e. the ‘print ${_comps[mycmd]}’ gives you
a blank line — then the command is not handled specially and will simply use whatever
function is defined for the ‘-default-’ context, usually _default. Usually this will just try
to complete file names. You can customize _default, if you like.

Apart from -default-, some other of those keys for _comps also look like -this-: they are
special contexts, places other than the arguments of a command. We were using the context
called -subscript-; you’ll find that the function in this case is called _subscript. Many
completion functions have names which are simply an underscore followed by the command
or context name, minus any hyphens. If you want a taster of how a completion function looks,
try ‘which _subscript’; you may well find there are a lot of other commands in there that
you don’t know yet.

It’s important to remember that the function found in this way is at the root of how a
completion is performed. No amount of fiddling with options or styles — the stuff I’m going
to be talking about for the next few sections — will change that; if you want to change the
basic completion, you will just have to write your own function.

By the way, you may have old-style completions you want to mix-in — or maybe you
specifically don’t want to mix them in so that you can make sure everything is working
with the new format. By default, the new completion system will first try to find a specific
new-style completion, and if it can’t it will try to find a compctl-defined completion for the
command in question. If all that fails, it will try the usual new-style default completion,
probably just filename completion. Note that specific new-style completions take precedence,
which is fair enough, since if you’ve added them you almost certainly don’t want to go back
and use the old form. However, if you don’t ever want to try old-style completion, you can put
the following incantation in your .zshrc:

zstyle ’:completion:*’ use-compctl false

For now, that’s just black magic, but later I will explain the ‘style’ mechanism in more detail
and you will see that this fits in with the normal way of turning things off in new-style
completion.

258 CHAPTER 6. COMPLETION, OLD AND NEW

6.4 How the shell finds the right completions

6.4.1 Contexts

The examples above show that the completion system is highly context-sensitive, so it’s
important to know how these contexts are described. This system evolved gradually, but
everything I say applies to all versions of zsh with the major version 4.

state we are at in completion, and is given as a sort of colon-separated path, starting with
the least specific part. There’s an easy way of finding out what context you are in: at the
point where you want to complete something, instead type ‘^Xh’, and it will tell you. In the
case of the $_comps example, you will find,

:completion::complete:-subscript-::

plus a list of so-called ‘tags’ and completion functions, which I’ll talk about later. The full
form is:

:completion:<func>:<completer>:<command>:<argument>:<tag>

where the elements may be missing if they are not set, but the colons will always be
there to make pattern matching easier. Here’s what the bits of the context mean after the
:completion: part, which is common to the whole completion system.

<func> is the name of a function from which completion is called — this is blank if it was
started from the standard completion system, and only appears in a few special cases,
listed in section six of this chapter.

<completer> is called ‘complete’ in this case: this refers to the fact that the completion
system can do more than just simple completion; for example, it can do a more
controlled form of expansion (as I mentioned), spelling correction, and completing words
with spelling mistakes. I’ll introduce the other completers later; ‘complete’ is the
simplest one, which just does basic completion.

<command> is the name of a command or other similar context as described above, here
‘-subscript-’.

<argument> is most useful when <command> is the name of a real command; it describes
where in the arguments to that command we are. You’ll see how it works in a moment.
Many of the simpler completions don’t use this; only the ones with complicated option
and argument combinations. You just have to find out with ^Xh if you need to know.

<tag> describes the type of a completion, essentially a way of discriminating between the
different things which can be completed at the same point on the command line.

Now look at the context for a more normal command-argument completion, e.g. after cd; here
you’ll see the context ‘:completion::complete:cd::’. Here the command-name part of
the context is a real command.

For something more complicated, try after ‘cvs add’ (it doesn’t matter for this if you don’t
have the cvs command). You’ll see a long and repetitive list of tags, for two possible contexts,

:completion::complete:cvs:argument-rest:
:completion::complete:cvs-add:argument-rest:

6.4. HOW THE SHELL FINDS THE RIGHT COMPLETIONS 259

The reason you have both is that the ‘add’ is not only an argument to cvs, as the first context
would suggest, it’s also a subcommand in its own right, with its own arguments, and that’s
what the second context is for. The first context implies there might be more subcommands
after ‘add’ and its arguments which are completely separate from them — though in fact
CVS doesn’t work that way, so that form won’t give you any completions here.

In both, ‘argument-rest’ shows that completion is looking for another argument, the ‘rest’
indicating that it is the list of arguments at the end of the line; if position were important
(see ‘cvs import’ for an example), the context would contain ‘argument-1’, or whatever.
The ‘cvs-add’ shows how subcommands are handled, by separating with a hyphen instead
of a colon, so as not to confuse the different bits of the context.

Apart from arguments to commands and subcommands, arguments to options are another
frequent possibility; for an example of this, try typing ^Xh after ‘dvips -o’ and you
will see the context ‘:completion::complete:dvips:option-o-1:’; this shows you are
completing the first argument to dvips’s -o option, (it only takes one argument) which
happens to be the name of a file for output.

6.4.2 Tags

Now on to the other matter to do with contexts, tags. Let’s go back and look at the output
from the ^Xh help test after the cd command in full:

tags in context :completion::complete:cd::
local-directories path-directories (_alternative _cd)

Unlike the contexts considered so far, which tell you how completion arrived at the point
it did, the tags describe the things it can complete here. In this case, there are three:
directory-stack refers to entries such as ‘+1’; the directory stack is the set of directories
defined by using the pushd command, which you can see by using the dirs command.
Next, local-directories refers to subdirectories of the current working directory, while
path-directories refers to any directories found by searching the $cdpath array. Each
of the possible completions which the system offers belongs to one of those classes.

In parentheses, you see the names of the functions which were called to generate the
completions; these are what you need to change or replace if you want to alter the basic
completion behaviour. Calling functions appear on the right and called functions on the left,
so that in this case the function ‘_cd’ was the function first called to handle arguments for the
cd command, fitting the usual convention. Some standard completion functions have been
filtered out of this list — it wouldn’t help you to know it had been through _main_complete
and _complete, for example.

Maybe it’s already obvious that having the system treat different types of completion in
different ways is useful, but here’s an example, which gives you a preview of the ‘styles’
mechanism, discussed later. Styles are a sort of glorified shell parameter; they are defined
with the zstyle command, using a style name and possible values which may be an array;
you can always define a style as an array, but some styles may simply use it as a string,
joining together the arguments you gave it with spaces. You can also use the zstyle
command, with different arguments, to retrieve their value, which is what the completion
system itself does; there’s no actual overlap with parameters and their values, so they don’t
get in the way of normal shell programming.

Where styles differ from parameters is that they can take different values in different
contexts. The first argument to the zstyle command gives a context; when you define a

260 CHAPTER 6. COMPLETION, OLD AND NEW

style, this argument is actually a pattern which will be matched against the current context
to see if the style applies. The rule for finding out what applies is: exact string matches are
preferred before patterns, and longer patterns are preferred before shorter patterns. Here’s
that example:

zstyle ’:completion:*:cd:*’ tag-order local-directories \
path-directories

From the discussion of contexts above, the pattern will match any time an argument to the
cd command is being completed. The style being set is called tag-order, and the values are
the two tags valid for directories in cd.

The tag-order style determines the order in which tags are tried. The value given above
means that first local-directories will be completed; only if none can be completed will
path-directories be tried. You can enter the command and try this; if you don’t have
$cdpath set up you can assign ‘cdpath=(~)’, which will allow ‘cd foo’ to change to a
directory ‘~/foo’ and allow completion of directories accordingly. Go to a directory other than
~; completion for cd will only show subdirectories of where you are, not those of ~, unless
you type a string which is the prefix of a directory under ~ but not your current directory.
For example,

% cdpath=(~)
% ls -F ~
foo/ bar/
% ls -F
rod/ stick/
Without that tag-order zstyle command, you would get...
% cd ^D
bar/ foo/ rod/ stick/
% zstyle ’:completion:*:cd:*’ tag-order local-directories \

path-directories
now you just get the local directories, if there are any...
% cd ^D
rod/ stick/

There’s more you can do with the tag-order style: if you put the tags into the same word
by quoting, for example "local-directories path-directories", then they would be
tried at the same time, which in this case gives you the effect of the default. In fact, since
it’s too much work to know what tags are going to be available for every single possible
completion, the default when there is no appropriate tag-order is simply to try all the
tags available in the context at once; this was of course what was originally happening for
completion after cd.

Even if there is a tag-order specification, any tags not specified will usually be tried all
together at the end, so you could actually have missed out path-directories from the end
of the original example and the effect would have been the same. If you don’t want that to
happen, you can specify a ‘-’ somewhere in the list of tags, which is not used as a tag but tells
completion that only the tags in the list should be tried, not any others that may be available.
Also, if you don’t want a particular tag to be shown you can include ‘!tagname’ in the values,
and all the others but this will be included. For example, you may have noticed that when
completing in command position you are offered parameters to set as well as commands etc.:

Completing external command

6.4. HOW THE SHELL FINDS THE RIGHT COMPLETIONS 261

tex texhash texi2pdf text2sf
texconfig texi2dvi texindex textmode
texdoc texi2dvi4a2ps texlinks texutil
texexec texi2html texshow texview
Completing parameter
TEXINPUTS texinputs

(I haven’t told you how to produce those descriptions, or how to make the completions
for different tags appear separately, but I will — see the descriptions of the ‘format’ and
‘group-name’ styles below.) If you set

zstyle ’:completion:*:-command-:*’ tag-order ’!parameters’

then the last two lines will disappear from the completion. Of course, your completion list
probably looks completely different from mine anyway. By the way, one good thing about
styles is that it doesn’t matter whether they’re defined before or after completion is loaded,
since styles are stored and retrieved by another part of the shell.

To exclude more than one tag name, you need to include the names in the same
word. For example, to exclude both parameters and reserved words the value would
be ’!parameters reserved-words’, and not ’!parameters’ ’!reserved-words’,
which would try completion once with parameters excluded, then again with reserved words
excluded. Furthermore, tags can actually be patterns, or more precisely any word in one of
the arguments to tag-order may contain a pattern, which will then be tried against all the
valid tags to see if it matches. It’s sometimes even useful to use ‘*’ to match all tags, if you
are specifying a special form of one of the tags — maybe using a label, as described next — in
the same word. See the manual for all the tag names understood by the supplied functions.

The tag-order style allows you to give tags ‘labels’, which are a sort of alias, instructing the
completion system to use a tag under a different name. You arrange this by giving the tag
followed by a colon, followed by the label. The label can also have a hyphen in front, which
means that the original tag name should be put in front when the label is looked up; this
is really just a way of making the names look neater. The upshot is that by using contexts
with the label name in, rather than the tag name, you can arrange for special behaviour.
Furthermore, you can give an alternative description for the labelled tag; these show up
with the format style which I’ll describe below (and which I personally find very useful).
You put the description after another colon, with any spaces quoted. It would look like this:

zstyle ’:completion:*:aliens:*’ tag-order \
’frooble:-funny:funny\ frooble’ frooble

which is used when you’re completing for the command aliens, which presumably has
completions tagged as ‘frooble’ (if not, you’re very weird). Then completion will first look
up styles for that tag under the name frooble-funny, and if it finds completions using
those styles it will list them with a description (if you are using format) of ‘funny frooble’.
Otherwise, it will look up the styles for the tag under its usual name and try completion
again. It’s presumably obvious that if you don’t have different styles for the two labels of the
tag, you get the same completions each time.

Rather than overload you with information on tags by giving examples of how to use tag
labels now, I’ll reserve this for the description of the ignored-patterns style below, which
is one neat use for labels. In fact, it’s the one for which it was invented; there are probably
lots of other ones we haven’t thought of yet.

262 CHAPTER 6. COMPLETION, OLD AND NEW

One important note about tag-order which I may not have made as explicit as I should
have: it doesn’t change which tags are actually valid in that completion. Just putting a tag
name into the list doesn’t mean that tag name will be used; that’s determined entirely by the
completion functions for a particular context. The tag-order style simply alters the order
in which the tags which are valid are examined. Come back and read this paragraph again
when you can’t work out why tag-order isn’t doing what you want.

Note that the rule for testing patterns means that you can always specify a catch-all
worst case by ‘zstyle "*" style ...’, which will always be tried last — not just in
completion, in fact, since other parts of the shell use the styles mechanism, and without
the ‘:completion:’ at the start of the context this style definition will be picked up there,
too.

Styles like tag-order are the most important case where tags are used on their own. In
other cases, they can be added to the end of the context; this is useful for styles which can give
different results for different sets of completions, in particular styles that determine how the
list of completions is displayed, or how a completion is to be inserted into the command line.
The tag is the final element, so is not followed by a colon. A full context then looks something
like ‘:completion::complete:cd::path-directories’. Later, you’ll see some styles
which can usefully be different for different tag contexts. Remember, however, that the tags
part of the context, like other parts, may be empty if the completion system hasn’t figured
out what it should be yet.

6.5 Configuring completion using styles

You now know how to define a style for a particular context, using

zstyle <context> <style> <value...>

and some of the cases where it’s useful. Before introducing other styles, here’s some more
detailed information. I already said that styles could take an array value, i.e. a set of values
at the end of the zstyle command corresponding to the array elements, and you’ve already
seen one case (tag-order) where that is useful. Many styles only use one value, however.
There is a particularly common case, where you simply want to turn a value on or off, i.e. a
boolean value. In this case, you can use any of ‘true’, ‘yes’, ‘on’ or ‘1’ for on and ‘false’, ‘no’,
‘off’ or ‘0’ for off. You define all styles the same way; only when they’re used is it decided
whether they should be a scalar, an array, or a boolean, nor is the name of a style checked to
see if it is valid, since the shell doesn’t know what styles might later be looked up. The same
obviously goes for contexts.

You can list existing styles (not individually, only as a complete list) using either ‘zstyle’
or ‘zstyle -L’. In the second case, they are output as the set of zstyle commands which
would regenerate the styles currently defined. This is also useful with grep, since you can
easily check all possible contexts for a particular style.

The most powerful way of using zstyle is with the option -e. This says that the words you
supply are to be evaluated as if as arguments to eval. This should set the array $reply to
the words to be used. So

zstyle ’*’ days ’Monday Tuesday’

and

6.5. CONFIGURING COMPLETION USING STYLES 263

zstyle -e ’*’ days ’reply=(Monday Tuesday)’

are equivalent — but the intention, of course, is that in the second case the argument can
return a different value each time so that the style can vary. It will usually be evaluated in
the heat of completion, hence picking up all the editing parameters; so for example

zstyle -e ’:completion:*’ mystyles ’reply=(${NUMERIC:-0})’

will make the style return a non-zero integer (possibly indicating true) if you entered a non-
zero prefix argument to the command, as described in chapter 4. However, the argument
can contain any zsh code whatsoever, not just a simple assignment. Remember to quote it to
prevent it from being turned into something else when the zstyle command line is run.

Finally, you can delete a context for a style or a list of styles by

zstyle -d [<context-pattern> [<style>]] ...

— note that although the first argument is a pattern, in this case it is treated exactly, so
if you give the pattern ‘:completion:*:cd:*’, only values given with exactly that pattern
will be deleted, not other values whose context begins with ‘:completion:’ and contains
‘:cd:’. The pattern and the style are optional when deleting; if omitted, all styles for the
context, or all styles of any sort, are deleted. The completion system has its own defaults,
but these are builtin, so anything you specify takes precedence.

By the way, I did mention in passing in chapter 4 that you could use styles in just the same
way in ordinary zle widgets (the ones created with ‘zle -N’), but you probably forgot about
that straight away. All the instructions about defining styles and using them in your own
functions from this chapter apply to zle functions. The only difference is that in that case
the convention for contexts is that the context is set to ‘:zle:widget-name’ for executing the
widget widget-name.

The rest of this section describes some useful styles. It’s up to you to experiment with
contexts if you want the style’s values to be different in different places, or just use ‘*’ if
you don’t care.

6.5.1 Specifying completers and their options

‘Completers’ are the behind-the-scenes functions that decide what sort of completion is being
done. You set what completers to use with the ‘completer’ style, which takes an array of
completers to try in order. For example,

zstyle ’:completion:*’ completer _complete _correct _approximate

specifies that first normal completion will be tried (‘_complete’), then spelling correction
(‘_correct’), and finally approximate completion (‘_approximate’), which is essentially the
combined effect of the previous two, i.e. complete the word typed but allow for spelling
mistakes. All completers set the context, so inside _complete you will usually find
‘:completion::complete:...’, inside correction ‘:completion::correct:..’, and so
on.

There’s a labelling feature for completers, rather like the one for tags described, but not
illustrated in detail, above. You can put a completer in a list like this:

264 CHAPTER 6. COMPLETION, OLD AND NEW

zstyle ’:completion:*’ completer ... _complete:comp-label ...

which calls the completer _complete, but pretends its name is comp-label when looking
things up in styles, so you can try completers more than once with different features
enabled. As with tags, you can write it like ‘_complete:-label’, and the normal name
will be prepended to get the name ‘complete-label’ — just a shortcut, it doesn’t introduce
anything new. I’ll defer an example until you know what the completers do.

Here is a more detailed description of the existing completers; they are all functions, so you
can simply copy and modify one to make your own completer.

_complete

This is the basic completion behaviour, which we’ve been assuming up to now. Its major
use is simply to check the context — here meaning whether we are completing a normal
command argument or one of the special ‘-context-’ places — and call the appropriate
completion function. It’s possible to trick it by setting the parameter ‘compcontext’ which
will be used instead of the one generated automatically; this can be useful if you write your
own completion commands for special cases. If you do this, you should make the parameter
local to your function.

_approximate

This does approximate completion: it’s actually written as a wrapper for the _complete
completer, so it does all the things that does, but it also sets up the system to allow
completions with misspellings. Typically, you would want to try to complete without
misspellings first, so this completer usually appears after _complete in the completers
style.

The main means of control is via the max-errors style. You can set this to the maximum
number of errors to allow. An error is defined as described in the manual for approximate
pattern matching: a character missing such as ‘rhythm’ / ‘rhytm’, an extra character such
as ‘rhythm’ / ‘rhythms’, an incorrect character such as ‘rhythm’ / ‘rhxthm’, or a pair of
characters transposed such as ‘rhythm’ ‘rhyhtm’ each count as one error. Approximation
will first try to find a match or matches with one error, then two errors, and so on, up to and
including the value of max-errors; the set of matches with the lowest number of errors is
chosen, so that even if you set max-errors large, matches with a lower number of errors
will always be preferred. The real problems with setting a large max-errors are that it will
be slower, and is more likely to generate matches completely unlike what you want — with
typing errors, two or three are probably the most you need. Otherwise, there’s always Mavis
Beacon. Hence:

% zstyle ’:completion:*’ max-errors 2
just for the sake of example...
% zstyle ’:completion:*’ completer _approximate
% ls
ashes sackcloth
% echo siccl<TAB>

-> echo sackcloth
% echo zicc<TAB>

<Beep.>

6.5. CONFIGURING COMPLETION USING STYLES 265

because ‘s[i/a]c[k]cloth’ is only two errors, while ‘[z/s][i/a]c[k]cloth’ would be
three, so doesn’t complete.

There’s another way to give a maximum number of errors, using the numeric prefix specified
with ESC-<digit> in Emacs mode, directly with number keys in vi command mode, or with
universal-argument. To enable this, you have to include the string numeric as one of the
values for max-errors — hence this can actually be an array, e.g.

zstyle ’:completion:*:approximate:*’ max-errors 2 numeric

allows up to two errors automatically, but you can specify a higher maximum by giving a
prefix to the completion command. So to continue the example above, enter the new zstyle
and:

% echo zicc<ESC-3><TAB>
-> echo sackcloth

because we’ve allowed three errors. You can start to see the problems with allowing too many
errors: if you had the file ‘zucchini’, that would be only one error away, and would be found
and inserted before ‘sackcloth’ was even considered.

Note that the context is examined straightaway in the completer, so at this stage it is simply
‘:completion::approximate:::’; no more detailed contextual information is available, so
it is not possible to specify different max-errors for different commands or tags.

The final possibility as a value for the style is ‘not-numeric’: that means if any numeric
prefix is given, approximation will not be done at all. In the last example, completion would
have to find a file beginning ‘zicc’.

Other minor styles also control approximation. The style original, if true means the
original value is always treated as a possible completion, even if it doesn’t match anything
and even if nothing else matched. Completing the original and the corrections use different
tags, unimaginatively called original and corrections, so you can organise this with the
tag-order style.

Because the completions in this case usually don’t match what’s already on the command
line, and may well not match each other, menu completion is entered straight away for you
to pick a completion. You can arrange that this doesn’t happen if there is an unambiguous
piece at the start to insert first by setting the boolean style insert-unambiguous.

Those last two styles (original and insert-unambiguous) are looked up quite early on,
when the context for generating corrections is being set up, so that only the context up to
the completer name is available. The completer name will be followed by a hyphen and the
number of errors currently being accepted. So for trying approximation with one error the
context is ‘:completion::approximate-1:::’; if that fails and the system needs to look
for completion with two errors, the context will be ‘:completion::approximate-2:::’,
and so on; the same happens with correction and ‘correct-1’, etc., for the completer
described next.

_correct

This is very similar to _approximate, except that
the context is ‘:completion::correct:*’ (or ‘:completion::correct-<num>:*’ when

266 CHAPTER 6. COMPLETION, OLD AND NEW

generating corrections, as described immediately above) and it won’t perform completion,
just spelling correction, so extra characters which the completer has to add at the end of the
word on the line now count as extra errors instead of completing in the ordinary way: zicc
is woefully far from sackcloth, seven errors, but ziccloth only counts three again. The
_correct completer is controlled in just the same way as _approximate.

There is a separate command which only does correction and nothing else, usually bound
to ‘^Xc’, so if you are happy using that you don’t need to include _correct in the list of
completers. If you do include it, and you also have _approximate, _correct should come
earlier; _approximate is bound to generate all the matches _correct does, and probably
more. Like other separate completion commands, it has its own context, here beginning
‘:completion:correct-word:’, so it’s easy to make this command behave differently from
the normal completers.

Old-timers will remember that there is another form of spelling correction built into the
shell, called with ‘ESC-$’ or ‘ESC-s’. This only corrects filenames and doesn’t understand
anything about the new completion mechanism; the only reason for using it is that it may
well be faster. However, if you use the CORRECT or CORRECT_ALL shell options, you will be
using the old filename correction mechanism; it’s not yet possible to alter this.

_expand

This actually performs expansion, not completion; the difference was explained at the
start of the chapter. If you use it, you should bind tab to complete-word, not
expand-or-complete, since otherwise expansion will be performed before the completion
mechanism is started up. As expansion should still usually be attempted before completion,
this completer should appear before _complete and its relatives in the list of values for the
completers style.

The reason for using this completer instead of normal expansion is that you can control which
expansions are performed using styles in the ‘:completion:*:expand:*’ context. Here are
the relevant styles:

glob expands glob expressions, in other words does filename generation using wildcards.

substitute expands expressions including and active ‘$’ or backquotes.

But remember that you need

bindkey ’^i’ complete-word

when using this completer as otherwise the built-in expansion mechanism which is run by
the normal binding expand-or-complete will take over.

You can also control how expansions are inserted. The tags for adding expansions are
original (presumably self-explanatory), all-expansions, which refers to adding a single
string containing all the possible expansions (the default, just like the editor function
expand-word), and expansions, which refers to the results added one by one. By changing
the order in which the tags are tried, as described for the tag-order style above, you can
decide how this happens. For example,

zstyle ’:completion:*’ completer _expand _complete
zstyle ’:completion::expand:*’ tag-order expansions

6.5. CONFIGURING COMPLETION USING STYLES 267

sets up for performing glob expansion via completion, with the expansions being presented
one by one (usually via menu completion, since there is no common prefix). Altering
expansions to all-expansions would insert the list, as done by the normal expansion
mechanism, while altering it to ‘expansions original’ would keep the one-at-a-time entry
but also present the original string as a possibility. You can even have all three, i.e. the entire
list as a single string becomes just one of the set of possibilities.

There is also a sort style, which determines whether the expansions generated will be sorted
in the way completions usually are, or left just as the shell produced them from the expansion
(for example, expansion of an array parameter would produce the elements in order). If it is
true, they will always be sorted, if false or unset never, and if it is menu they will be sorted
for the expansions tag, but not for the all-expansions tag which will be a single string
of the values in the original order.

There is a slight problem when you try just to generate glob expansions, without
substitute. In fact, it doesn’t take much thought to see that an expression like ‘$PWD/*.c’
doesn’t mean anything if substitute is inactive; it must be active to make sense of such
expressions. However, this is annoying if there are no matches: you end up being offered a
completion with the expanded $PWD, but ‘*.c’ still tacked on the end, which isn’t what you
want. If you use _expand mainly for globbing, you might therefore want to set the style
subst-globs-only to true: if a completion just expands the parameters, and globbing does
nothing, then the expansion is rejected and the line left untouched.

The _expand completer will also use the styles

accept-exact applies to words beginning with a ‘$’ or ‘~’. Suppose there is a parameter
‘$foo’ and a parameter ‘$foobar’ and you have ‘$foo’ on the line. Normally the
completion system will perform completion at this point. However, with accept-exact
set, ‘$foo’ will be expanded since it matches a parameter.

add-space means add a space after the expansion, as with a successful completion —
although directories are given a ‘/’ instead. For finer control, it can be set to the word
file, which means the space is only added if the expanded word matches a file that
already exists (the idea being that, if it doesn’t, you may want to complete further).
Both true and file may be combined with subst, which prevents the adding of a
space after expanding a substitution of the form ‘${...}’ or ‘$(...)’.

keep_prefix also addresses the question of whether a ‘~’ or ‘$’ should be expanded. If
set, the prefix will be retained, so expanding ‘~/f*’ to ‘~/foo’ doesn’t turn the ‘~’ into
‘/home/pws’. The default is the value ‘changed’, which is a half-way house been false
and true: it means that if there was no other change in the word, i.e. no other possible
expansion was found, the ‘~’ or ‘$’ will be expanded. If the effect of this style is that
the expansion is the same as the unexpanded word, the next completer in the list after
_expand will be tried.

suffix is similar to keep_prefix. The ‘suffix’ referred to is something after an expression
beginning ‘~’ or ‘$’ that wouldn’t be part of that expansion. If this style is set, and
such a suffix exists, the expansion is not performed. So, for example, ‘~pw<TAB>’
can be expanded to ‘~pws’, but ‘~pw/’ is not eligible for expansion; likewise ‘$fo’ and
‘$fo/’. This style defaults to true — so if you want _expand always to expand such
expressions, you will need to set it to false yourself.

An easier way of getting the sort of control over expansion which the _expand completer
provides is with the _expand_word function, usually bound to \C-xe, which does all the
things described above without getting mixed up with the other completers. In this case the

268 CHAPTER 6. COMPLETION, OLD AND NEW

context string starts ‘:completion:expand-word’, so you can have different styles for this
than for the _expand completer.

Setting different priorities for expansion is one good use for completer labels, for example

zstyle ’:completion:*’ completer _expand:-glob _expand:-subst
zstyle ’:completion:*:expand-glob:*’ glob yes
zstyle ’:completion:*:expand-subst:*’ substitute yes

is the basic set up to make _expand try glob completions and failing that do substitutions,
presenting the results as an expansion. You would almost certainly want to add details to
help this along.

_history

This completes words from the shell’s history, in other words everything you typed or had
completed or expanded on previous lines. There are three styles that affect it, sort and
remove-all-dups; they are described for the command widget _history_complete_word
below. That widget essentially performs the work of this completer as a special keystroke.

_prefix

Strictly, this completer doesn’t do completion itself, and should hence be in the group below
starting with _match. However, it seems to do completion... Let me explain.

Many shells including zsh have the facility to complete only the word before the cursor,
which zsh completion jargon refers to as the ‘prefix’. I explained this above when I talked
about expand-or-complete-prefix; when you use that instead of the normal completion
functions, the word as it’s finally completed looks like ‘<prefix><completion><suffix>’
where the completion has changed ‘<prefix>’ to ‘<prefix><completion>’, ignoring
<suffix> throughout.

The _prefix completer lets you do this as part of normal completion. What happens is that
the completers are evaluated as normal, from left to right, until a completion is found. If
_prefix is reached, completion is then attempted just on the prefix. So if your completers
are ‘_complete _prefix’, the shell will first try completion on the whole word, prefix and
suffix, then just on the prefix. Only the first ‘real’ completer (_complete, _approximate,
_correct, _expand, _history) is used.

You can try prefix completion more than once simply by including _prefix more than once
in the list of completers; the second time, it will try the second ‘real’ completer in the list; so if
they are ‘_complete _prefix _correct _prefix’, you will get first ordinary completion,
then the same for the prefix only, then ordinary correction, then the same for the prefix only.
You can move either of the _prefix completers to the point in the sequence where you want
the prefix-only version to be tried.

The _prefix completer will re-look up the completer style. This means that you can use a
non-default set of completers for use just with _prefix. Here, as described in the manual,
is how to force _prefix only to be used as a last resort, and only with normal completion:

zstyle ’:completion:::::’ completer _complete \
<other-completers> _prefix

6.5. CONFIGURING COMPLETION USING STYLES 269

zstyle ’:completion::prefix:::’ completer _complete

The full contexts are shown, just to emphasise the form; as always, you can use wildcards
if you don’t care. In a case like this, you can use only _prefix as the completer, and
completion including the suffix would never be tried; you then have to make sure you have
the completer style for the prefix context, however, or no completion at all will be done.

The completer labelling trick is again useful here: you can call _prefix more than once,
wherever you choose in your list of completers, and force it to look up in a different context
each time.

zstyle ’:completion:*’ completer _complete _prefix:-complete \
_approximate _prefix:-approximate

zstyle ’:completion:*:prefix-complete:*’ completer _complete
zstyle ’:completion:*:prefix-approximate:*’ completer _approximate

This tries ordinary completion, then the same for the prefix only, then approximation,
then the same for the prefix only. As mentioned in the previous paragraph, it is perfectly
legitimate to leave out the raw _complete and _approximate completers and just use the
forms with the _prefix prefix.

One gotcha with the _prefix completer: you have to make sure the option
COMPLETE_IN_WORD is set. That may sound counter-intuitive: after all, _prefix forces
completion not to complete inside a word. The point is that without that option, completion
is only ever tried at the end of the word, so when you type <TAB> in the middle of
<prefix><suffix>, the cursor is moved to after the end of the suffix before the completion
system has a chance to see what’s there, and hence the whole thing is regarded as a prefix,
with no suffix.

There’s one more style used with _prefix: ‘add-space’. This makes _prefix add a real,
live space when it completes the prefix, instead of just pretending there was one there, hence
separating the completed word from the original suffix; otherwise it would simply leave the
resulting word all joined together, as expand-or-complete-prefix usually does.

_ignored

Like _prefix this is a bit of a hybrid, mopping up after completions which have already
been generated. It allows you to have completions which have already been rejected by the
style ‘ignored-patterns’. I’ll describe that below, but it’s effect is very simple: for the
context given, the list of patterns you specify are matched against possible completions, and
any that match are removed from the list. The _ignored completer allows you to retrieve
those removed completions later in your completer list, in case nothing else matched.

This is used by the $fignore mechanism — a list of suffixes of files not normally to be
completed — which is actually built on top of ignored-patterns, so if you use that in
the way familiar to current zsh users, where the ignored matches are shown if there are no
unignored matches, you need the _ignored completer in your completer list.

One slightly annoying feature with _ignored is if there is only a single possible completion,
since it will then be unconditionally inserted. Hardly a surprise, but it can be annoying if you
really don’t want that choice. There is a style single-ignored which you can set to show
— just show the single ignored match, don’t insert it — or to menu — go to menu completion
so that TAB cycles you between the completion which _ignored produced and what you

270 CHAPTER 6. COMPLETION, OLD AND NEW

originally typed. The latter gives a very natural way of handling ignored files; it’s sort of
saying ‘well, I found this but you might not like it, so hit tab again if you want to go back to
what you had before’.

I said this was like _prefix, and indeed you can specify which completers are called
for the _ignored completer in just the same way, by giving the completer style in
the context ‘:completion:*:ignored:*’. That means my description has been a little
over-simplified: _ignored doesn’t really use the completions which were ignored before;
rather, when it’s called it generates a list of possibilities where the choices matched by
ignore-patterns — or internally using $fignore — are not ignored. So it should really
be called ‘_not_ignored’, but it isn’t.

_match

This and the remaining completers are utilities, which affect the main completers given
above when put into the completion list rather than doing completion themselves.

The _match completer should appear after _complete; it is a more flexible form of the
GLOB_COMPLETE option. In other words, if _complete didn’t succeed, it will try to match
the word on the line as a pattern, not just a fixed string, against the possible completions.
To make it work like normal completion, it usually acts as if a ‘*’ was inserted at the cursor
position, even if the word already contains wildcards.

You can control the addition of ‘*’ with the ‘match-original’ style; the normal behaviour
occurs if this is unset. If it is set to ‘only’, the ‘*’ is not inserted, and if it is ‘true’, or
actually any other string, it will try first without the ‘*’, then with. For example, consider
typing ‘setopt c*ect<TAB>’ with the _match completer in use. Normally this will produce
two possibilities, ‘correct’ and ‘correctall’. After setting the style,

zstyle ’:completion::match:*’ original only

no ‘*’ would be inserted at the place where you hit ‘TAB’, so that ‘correct’ is the only possible
match.

The _match completer uses the style insert-unambiguous in just the same way as does
_approximate.

_all_matches

This has a similar effect to performing expansion instead of completion: all the possible
completions are inserted onto the command line. However, it uses the results of ordinary
contextual completion to achieve this. The normal way that the completion system achieves
this is by influencing the behaviour of any subsequent completers which are called — hence
you will need to put _all_matches in the list of completers before any which you would like
to have this behaviour.

You’re unlikely to want to do this with every type of completion, so there are two ways of
limiting its effect. First, there is the avoid-completer style: you can set this to a list of
completers which should not insert all matches, and they will be handled normally.

Then there is the style old-matches. This forces _all_matches to use an existing list of
matches, if it exists, rather than what would be generated this time round. You can set the

6.5. CONFIGURING COMPLETION USING STYLES 271

style to only instead of true; in this case _all_matches will never apply to the completions
which would be generated this time round, it will only use whatever list of completions
already exists.

This can be a nuisance if applied to normal completion generation — the usual list would
never be generated, since _all_matches would just insert the non-existent list from last
time — so the manual recommends two other ways of using the completer with this style.
First, you can add a condition to the use of the style:

zstyle -e ’:completion:*’ old-matches ’reply=(${NUMERIC:-false})’

This returns false unless there is a non-zero numeric argument; if you type <ESC>1 in emacs
mode, or just 1 in vi mode, before completion, it will insert all the values generated by the
immediately preceding completion.

Otherwise, you can bind _all_matches separately. This is probably the more useful;
copying the manual entry:

zle -C all-matches complete-word _generic
bindkey ’^Xa’ all-matches
zstyle ’:completion:all-matches:*’ completer _all_matches
zstyle ’:completion:all-matches:*’ old-matches only

Here we generate ourselves a new completion based on the complete-word widget, called
all-matches — this name is arbitrary but convenient. We bind that to the keystroke ^Xa,
and give it two special styles which normal completion won’t see. For the completer we set
just _all_matches, and for old-matches we set only; the effect is that ^Xa will only ever
have the effect of inserting all the completions which were generated by the last completion,
whatever that was — it does not have to be an ordinary contextual completion, it may be the
result of any completion widget.

_list

If you have this in the list of completers (at the beginning is as good as anything), then the
first time you try completion, you only get a list; nothing changes, not even a common prefix
is inserted. The second time, completion continues as normal. This is like typing ^D, then
tab, but using just the one key. This differs from the usual AUTO_LIST behaviour in that is
entirely irrespective of whether the completion is ambiguous; you always get the list the first
time, and it always does completion in the usual way the second time.

The _list completer also uses the condition style, which works a bit like the styles for
the _expand completer: it must be set to one of the values corresponding to ‘true’ for the
_list delaying behaviour to take effect. You can test for a particular value of $NUMERIC or
any other condition by using the -e option of zstyle when defining the style.

Finally, the boolean style word is also relevant. If false or unset, _list examines the whole
line when deciding if it has changed, and hence completion should be delayed until the next
keypress. If true, it just examines the current word. Note that _list has no knowledge
of what happens between those completion calls; looking at the command line is its only
resource.

272 CHAPTER 6. COMPLETION, OLD AND NEW

_menu

This just implements menu completion in shell code; it should come before the ‘real’
completion generators in the completers style. It ignores the MENU_COMPLETION option
and other related options and the normal menu-completion widgets don’t work well with it.
However, you can copy it and write your own completers.

_oldlist

This completer is most useful when you are in the habit of using special completion functions,
i.e. commands other than the standard completion system. It is able to hang onto an old
completion list which would otherwise be replaced with a newly generated one. There are
two aspects to this.

First, listing. Suppose you try to complete something from the shell history, using the
command bound to ‘ESC-/’. For example, I typed ‘echo ma<ESC-/>’ and got ‘max-errors’.
At this point you might want to list the possible completions. Unfortunately, if you type ^D,
it will simply list all the usual contextual completions — for the echo command, which is
not handled specially, these are simply files. So it doesn’t work. By putting the _oldlist
completer into the completers style before _complete, it does work, because the old list of
matches is kept for ^D to use.

In this case, you can force old-listing on or off by setting the old-list style to always or
never; usually it shows the listing for the current set of completions if that isn’t already
displayed, and otherwise generates the standard listing. You can even set the value of
old-list to a list of completers which will always have their list kept in this way.

The other place where _oldlist is useful is in menu completion, where exactly the same
problem occurs: if you generate a menu from a special command, then try to cycle through
by hitting tab, completion will look for normal contextual matches instead. There’s a way
round this time — use the special command key repeatedly instead of tab. This is rather
tedious with multiple key sequences. Again, _oldlist cures this, and again you can control
the behaviour with a style, old-menu, which takes a boolean value (it is on by default). As
Orwell put it, oldlisters unbellyfeel menucomp.

Ordering completers

I’ve given various suggestions about the order in which completers should come in, which
might be confusing. Here, therefore, is a suggested order; just miss out any completers you
don’t want to use:

_all_matches _list _oldlist _menu _expand _complete _match
_ignored _correct _approximate _prefix

Other orders are certainly possible and maybe even useful: for example, the _all_matches
completer applies to all the completers following not listed in the avoid-completer style,
so you might have good reason to shift it further down the list.

Here’s my example of labels for completers, which I mentioned just above the list of different
completers, whereby completers can be looked up under different names.

zstyle ’:completion:*’ completer _complete _approximate:-one \

6.5. CONFIGURING COMPLETION USING STYLES 273

_complete:-extended _approximate:-four
zstyle ’:completion:*:approximate-one:*’ max-errors 1
zstyle ’:completion:*:complete-extended:*’ \

matcher ’r:|[.,_-]=* r:|=*’
zstyle ’:completion:*:approximate-four:*’ max-errors 4

This tries the following in order.

1. Ordinary, no-frills completion.

2. Approximation with one error, as given by the second style.

3. Ordinary completion with extended completion turned on, as given by the third style.
Sorry, this will be a black box until I talk about the matcher style later on; for now,
you’ll just have to take my word for it that this style allows the characters in the square
brackets to have a wildcard in front, so ‘a-b’ can complete to ‘able-baker’, and so on.

4. Approximation with up to four errors, as given by the final style.

Here’s a rather bogus example. You have a directory containing:

foobar fortified-badger frightfully-barbaric

Actually, it’s not bogus at all, since I just created one. First try ‘echo foo<TAB>’; no
surprise, you get ‘foobar’. Now try completing with ‘fo-b<TAB>’ after the ‘echo’: basic
completion fails, it gets to ‘_approximate:-one’ and finds that it’s allowed one error, so
accepts the completion ‘foobar’ again. Now try ‘fort-ba<TAB>’. This time nothing kicks
in until the third completion, which effectively allows it to match ‘fort*-ba*<TAB>’, so
you see ‘fortified-badger’ (no, I’ve never seen one myself, but they’re nocturnal, you
know). Finally, try ‘fortfully-ba<TAB>’; the last entry, which allows up to four errors,
thoughtfully corrects ‘or’ to ‘righ’, and you get ‘frightfully-barbaric’. All right, the
example is somewhat unhinged, but I think you can see the features are useful. If it makes
you feel better, it took me four or five attempts to get the styles right for this.

6.5.2 Changing the format of listings: groups etc.

format

You can use this style if you want to find out where the completions in a completion listing
come from. The most basic use is to set it for the descriptions tag in any completion
context. It takes a string value in which ‘%d’ should appear; this will be replaced by a
description of whatever is being completed. For example, I use:

zstyle ’:completion:*:descriptions’ format ’Completing %d’

and if I type cd^D, I see a listing like this (until I define the group-name style, that is):

Completing external command
Completing builtin command
Completing shell function

274 CHAPTER 6. COMPLETION, OLD AND NEW

cd cddbsubmit cdp cdrecord
cdctrl cdecl cdparanoia cdswap
cdda2wav cdmatch cdparanoia-yaf
cddaslave cdmatch.newer cdplay
cddbslave cdot cdplayer_applet

The descriptions at the top are related to the tag names — usually there’s a unique
correspondence — but are in a more readable form; to get the tag names, you need to use ^Xh.
You will no doubt see something different, but the point is that the completions listed are a
mixture of external commands (e.g. cdplay), builtin commands (cd) and shell functions
(cdmatch, which happens to be a leftover from old-style completion, showing you how often
I clean out my function directory), and it’s often quite handy to know what you have.

You can use some prompt escapes in the description, specifically those that turn on or off
standout mode (‘%S’, ‘%s’), bold text (‘%B’, ‘%b’), and underlined text (‘%U’, ‘%u’), to make the
descriptions stand out from the completion lists.

You can set this for some other tag than descriptions and the format thus defined will be
used only for completions of that tag.

group-name, group-order

In the format example just above, you may have wondered if it is possible to make the
different types of completion appear separately, together with the description. You can do
this using groups. They are also related to tags, although as you can define group names via
the group-name style it is possible to give different names for completion in any context.
However, to start off with it is easiest to give the value of the style an empty string, which
means that group names are just the names of the tags. In other words,

zstyle ’:completion:*’ group-name ’’

assigns a different group name for each tag. Later, you can fine-tune this with more specific
patterns, if you decide you want various tags to have the same group name. If no group name
is defined, the group used is called ‘-default-’, so this is what was happening before you
issued the zstyle command above; all matches were in that group.

The reason for groups is this: matches in the same group are shown together, matches in
different groups are shown separately. So the completion list from the previous example,
with both the format and group-name styles set, becomes:

Completing external command
cdctrl cddbsubmit cdparanoia cdrecord
cdda2wav cdecl cdparanoia-yaf
cddaslave cdot cdplay
cddbslave cdp cdplayer_applet
Completing builtin command
cd
Completing shell function
cdmatch cdmatch.newer cdswap

which you may find more helpful, or you may find messier, depending on deep psychological
factors outside my control.

6.5. CONFIGURING COMPLETION USING STYLES 275

If (and only if) you are using group-name, you can also use group-order. As its name
suggests, it determines the order in which the different completion groups are displayed. It’s
a little like tag-order, which I described when tags were first introduced: the value is just
a set of names of groups, in the order you want to see them. The example from the manual
is relevant to the listing I just showed:

zstyle ’:completion:*:-command-’ group-order \
builtins functions commands

— remember that the ‘-command-’ context is used when the names of commands, rather
than their arguments, are being completed. Not surprisingly, that listing now becomes:

Completing builtin command
cd
Completing shell function
cdmatch cdmatch.newer cdswap
Completing external command
cdctrl cddbsubmit cdparanoia cdrecord
cdda2wav cdecl cdparanoia-yaf
cddaslave cdot cdplay
cddbslave cdp cdplayer_applet

and if you investigate the tags available by using ^Xh, you’ll see that there are others such
as aliases whose order we haven’t defined. These appear after the ones for which you have
defined the order and in some order decided by the function which generated the matches.

tag-order

As I already said, I’ve already described this, but it’s here again for completeness.

verbose, auto-description

These are relatives of format as they add helpful messages to the listing. If verbose
is true, the function generating the matches may, at its discretion, decide to show more
information about them. The most common case is when describing options; the standard
function _describe that handles descriptions for a whole lot of options tests the verbose
style and will print information about the options it is completing.

You can also set the string style auto-description; it too is useful for options, in the case
that they don’t have a special description, but they do have a single following argument,
which completion already knows about. Then the description of the argument for verbose
printing will be available as ‘%d’ in auto-describe, so that something like the manual
recommendation ‘specify: %d’ will document the option itself. So if a command takes
‘-o <output-file>’ and the argument has the description ‘output file’, the ‘-o’, when
it appears as a possible completion, will have the description ‘specify: output file’
if it does not have its own description. In fact, most options recognized by the standard
completion functions already have their own descriptions supplied, and this is more subtlety
than most people will probably need.

276 CHAPTER 6. COMPLETION, OLD AND NEW

list-colors

This is used to display lists of matches for files in different colours depending on the file type.
It is based on the syntax of the $LS_COLORS environment variable, used by the GNU version
of ls. You will need a terminal which is capable of displaying colour such as a colour xterm,
and should make sure the zsh/complist library is loaded, (it should be automatically if
you are using menu selection set up with the menu style, or if you use this style). But you
can make sure explicitly:

zmodload -i zsh/complist

The -i keeps it quiet if the module was already loaded. To install a standard set of default
colours, you can use:

zstyle ’:completion:*’ list-colors ’’

— note the use of the ‘default’ tag — since a null string sets the value to the default.

If that’s not good enough for you, here are some more detailed instructions. The parameter
$ZLS_COLORS is the lowest-level part of the system used by zsh/complist. There is a
simple builtin default, while having the style set to the empty string is equivalent to:

ZLS_COLORS="no=00:fi=00:di=01;34:ln=01;36:\
pi=40;33:so=01;35:bd=40;33;01:cd=40;33;01:\
ex=01;32:lc=\e[:rm=m:tc=00:sp=00:ma=07:hi=00:du=00

It has essentially the same format as $LS_COLORS, and indeed you can get a more useful set
of values by using the dircolors command which comes with ls:

ZLS_COLORS="no=00:fi=00:di=01;34:ln=01;36:\
pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:\
or=40;31;01:ex=01;32:*.tar=01;31:*.tgz=01;31:\

.arj=01;31:.taz=01;31:*.lzh=01;31:*.zip=01;31:\

.z=01;31:.Z=01;31:*.gz=01;31:*.deb=01;31:\

.jpg=01;35:.gif=01;35:*.bmp=01;35:*.ppm=01;35:\

.tga=01;35:.xbm=01;35:*.xpm=01;35:*.tif=01;35:\

.mpg=01;37:.avi=01;37:*.gl=01;37:*.dl=01;37:"

You should see the manual for the zsh/complist module for details, but note in particular
the addition of the type ‘ma’, which specifies how the current match in menu selection is
displayed. The default for that is to use standout mode — the same effect as the sequence %S
in a prompt, which you can display with ‘print -P %Sfoo’.

However, you need to define the style directly, since the completion always uses that to set
$ZLS_COLORS; otherwise it doesn’t know whether the value it has found has come from the
user or is a previous value taken from some style. That takes this format:

zstyle ’:completion:*’ list-colors "no=00" "fi=00" ...

You can use an already defined $LS_COLORS:

6.5. CONFIGURING COMPLETION USING STYLES 277

zstyle ’:completion:*’ list-colors ${(s.:.)LS_COLORS}

(which splits the parameter to an array on colons) as $LS_COLORS is still useful for ls,
even though it’s not worth setting $ZLS_COLORS directly. This should mean GNU ls and zsh
produce similar-looking lists.

There are some special effects allowed. You can use patterns to tell how filenames are
matched: that’s part of the default behaviour, in fact, for example ’*.tar=01;31’ forces tar
files to be coloured red. In that case, you are limited to ‘*’ followed by a string. However,
there’s a way of specifying colouring for any match, not just files, and for any pattern: use
=<pat>=<col>. Here are two ways of getting jobs coloured red in process listings for the
‘kill’ command.

zstyle ’:completion:*:*:kill:*’ list-colors ’=%*=01;31’

This uses the method just described; jobs begin with ‘%’.

zstyle ’:completion:*:*:kill:*:jobs’ list-colors ’no=01;31’

This uses the tag, rather than the pattern, to match the jobs lines. It has various advantages.
Because you are using the tag, it’s much easier to alter this for all commands using jobs, not
just kill — just miss out ‘kill’ from the string. That wasn’t practical with the other method
because it would have matched too many other things you didn’t want. You’re not dependent
on using a particular pattern, either. And finally, if you try it with a ‘format’ description
you’ll see that that gets the colour, too, since it matched the correct tag. Note the use of the
‘no’ to specify that this is to apply for a normal match; the other two-letter codes for file types
aren’t useful here.

However, there is one even more special effect you can use with the general pattern form.
By turning on ‘backreferences’ with ‘(#b)’ inside the pattern, parentheses are active and
the bits they match can be coloured separately. You do this by extending the list of colours,
each code preceded by an ‘=’ sign, and the extra elements will be used to colour what the
parenthesis matched. Here’s another example for ‘kill’, which turns the process number
red, but leaves the rest alone.

zstyle ’:completion:*:*:kill:*:processes’ list-colors \
’=(#b) #([0-9]#)*=0=01;31’

The hieroglyphics are extended globbing patterns. You should note that the EXTENDED_GLOB
option is always on inside styles — it’s required for the ‘#b’ to take effect. In particular,
‘#’ means ‘zero or more repetitions of the previous bit of the pattern’ with extended glob
patterns; see the globbing manual page for full details.

ignored-patterns

Many shells, including zsh, have a parameter $fignore, which gives a list of suffixes;
filenames ending in any of these are not to be used in completion. A typical value is:

fignore=(.o \~ .dvi)

278 CHAPTER 6. COMPLETION, OLD AND NEW

so that normal file completion will not produce object files, EMACS backup files, or TeX DVI
files.

The ignored-patterns style is an extension of this. It takes an array value, like fignore,
but with various differences. Firstly, these values are patterns which should match the whole
value to be completed, including prefixes (such as the directory part of a filename) as well
as suffixes. Secondly, they apply to all completions, not just files, since you can use the style
mechanism to tune it to apply wherever you want, down to particular tags.

Hence you can replace the use of $fignore above with the following:

zstyle ’:completion:*:files’ ignored-patterns ’*?.o’ ’*?~’ ’*?.dvi’

for completion contexts where the tag ‘files’ is in use. The extra ‘?’s are because $fignore
was careful only to apply to real suffixes, i.e. strings which had something in front of them,
and the ‘?’ forces there to be at least one character present.

Actually, this isn’t quite the same as $fignore, since there are other file tags than files;
apart from those for directories, which you’ve already met, there are globbed-files and
all-files. The former is for cases where a pattern is specified by the completion function,
for example ‘*.dvi’ for files following the command name dvips. These don’t use this
style, because the pattern was already sufficiently specified. This follows the behaviour for
$fignore in the old completion system. Another slight difference, as I said above when
discussing the _ignored completer, is that you get to choose whether you want to see those
ignored files if the normal completions fail, by having _ignored in the completer list or not.

The other tag, all-files, applies when a globbed-files tag failed, and says any old file
is good enough in that case; you can arrange how this happens with the tag-order style. In
this example,

zstyle ’:completion:*:*:dvips:argument*’ \
tag-order globbed-files all-files

is enough to say that you want to see all files if no files were produced from the pattern,
i.e. if there were no ‘*.dvi’ files in the directory. Finally the point of this ramble: as the
all-files tag is separate from the files tag, in this case you really would see all files
(except for those beginning with a ‘.’, as usual). You might find this useful, but you can
easily make the all-files tag behave the same way as files:

zstyle ’:completion:*:(all-|)files’ ignored-patterns ...

Here’s the example of using tag labels I promised earlier; it’s simply taken from the manual.
To refresh your memory: tag labels are a way of saying that tags should be looked up under
a different name. Here we’ll do:

zstyle ’:completion:*:*:-command-:*’ tag-order ’functions:-non-comp’

This applies in command position, from the special ‘-command-’ context, the place where
functions occur most often, along with other types of command which have their own tags.
This says that when functions are first looked up, they are to be looked up with the name
‘functions-non-comp’ — remember that with a hyphen as the first character of the label
part, the bit after the colon, the functions tag name itself, the bit before the colon, is to be
stuck in front to give the full label name ‘functions-non-comp’. We can use it as follows:

6.5. CONFIGURING COMPLETION USING STYLES 279

zstyle ’:completion:*:functions-non-comp’ ignored-patterns ’_*’

In the context of this tag label, we have told completion to ignore any patterns — i.e.
any function names — beginning with an underscore. What happens is this: when we
try completion in command position, tag-order is looked up and finds we want to try
functions first, but under the name functions-non-comp; this completes functions apart
from ones beginning with an underscore (presumably completion functions you don’t want to
run interactively). Since tag-order normally tries all the other tags, unless it was told not
to, in this case all the normal command completions will appear, including functions under
their normal tag name, so this just acts as a sort of filter for the first attempt at completion.
This is typically what tag labels are intended for — though maybe you can think up a lot of
other uses, since the idea is quite powerful, being backed up by the style mechanism.

You way wonder why you would want to ignore such functions at this point. After all, you’re
only likely to be doing completion when you’ve already typed the first character, which either
is ‘_’ or it isn’t. It becomes useful with correction and approximation — particularly since
many completion functions are similar to the names of the commands for which they handle
completion. You don’t want to be offered ‘_zmodload’ as a completion if you really want
‘zmodload’. The combination of labels and ignored patterns does this for you.

You can generalise this using another feature: tags can actually be patterns, which I
mentioned but didn’t demonstrate. Here’s a more sophisticated version of the previous
example, adapted from the manual:

zstyle ’:completion:*:*:-command-:*’ tag-order \
’functions:-non-comp:non-completion\ functions *’ functions

It’s enhanced so that completion tries all other possible tags at the same time as the labelled
functions. However, it only ever tries a tag once at each step, so the ‘*’ doesn’t put back
functions as you might expect — that’s still tried under the label ‘functions-non-comp’,
and the ignored-patterns style we set will still work. In the final word, we try all possible
functions, so that those beginning with an underscore will be restored.

Use of the ‘_ignored’ completer can allow you to play tricks without having to label your
tags:

zstyle ’:completion:*’ completer _complete _ignored
zstyle ’:completion:*:functions’ ignored-patterns ’_*’

Now anywhere the functions tag is valid, functions matching ‘_*’ aren’t shown until
completion reaches the ‘_ignored’ in the completer list. Of course, you should manipulate
the completer list the way you want; this just shows the bare bones.

prefix-hidden, prefix-needed

You will know that when the shell lists matches for files, the directory part is removed.
The boolean style prefix-hidden extends this idea to various other types of matches. The
prefixes referred to are not just any old common prefix to matches, but only some places
defined in the completion system: the - prefix to options, the ‘%’ prefix to jobs, the - or +
prefix to directory stack entries are the most commonly used.

The prefix-needed applies not to listings, but instead to what the user types on the

280 CHAPTER 6. COMPLETION, OLD AND NEW

command line. It says that matches will only be generated if the user has typed the prefix
common to them. It applies on broadly the same occasions as prefix-hidden.

list-packed, list-rows-first, accept-exact, last-prompt, menu

The first two of these have already been introduced, and correspond to the LIST_PACKED
and LIST_ROWS_FIRST options. The accept-exact and last-prompt styles correspond
essentially to the REC_EXACT and ALWAYS_LAST_PROMPT options in the same way.

The style menu roughly corresponds to the MENU_COMPLETE option, but there is also the
business of deciding whether to use menu selection, as described above. These two uses don’t
interfere with each other — except that, as I explained, menu completion must be started to
use menu selection — so a value like ‘true select=6’ is valid; it turns on menu completion
for the context, and also activates menu selection if there are at least 6 choices.

There are some other, slightly more obscure, choices for menu:

yes=num turn on menu completion only if there are at least num matches;

no=num turn off menu completion if there are as many as num matches;

yes=long turn on menu completion if the list does not fit on the screen, and completion was
attempted;

yes=long-list the same, but do it even if listing, not completion, was attempted;

select=long like yes=long, but this time turn on menu selection, too;

select=long-list like yes=long-list, but turn on menu selection, too.

In case your eyes glazed over before the end, here’s a full description of the last one,
select=long-list, which is quite useful: if you are attempting completion or even just
listing completions, and the list of matches would be too long to fit on the screen, then menu
selection is turned on, so that you can use the cursor keys (and other selection keys) to move
up and down the list. Generally, the above possibilities can be combined, unless the combined
effect wouldn’t work.

As always, yes and true are equivalent, as are no and false. It just hurts the eyes of
programmers to read something which appears to assign a value to true.

hidden

This is a little obscure for most users. Its context should be restricted to specific tags; any
corresponding matches will not be shown in completion listings, but will be available for
inserting into the command line. If its value is ‘true’, then the description for the tag may
still appear; if the value is ‘all’, even that is suppressed. If you don’t want the completions
even to be available for insertion, use the tag-order style.

6.5.3 Styles affecting particular completions

The styles listed here are for use only with certain completions as noted. I have not included
the styles used by particular completers, which are described with the completer in question

6.5. CONFIGURING COMPLETION USING STYLES 281

in the subsection ‘Specifying completers and their options’. I have also not described
styles used only in separate widgets that do completion; the relevant information is all
together in the next section.

Filenames (1): patterns: file-patterns

It was explained above for the tag-order style that when a function uses pattern matching
to generate file completions, such as all *.ps files or all *.gz files, the three tags
globbed-files, directories and all-files are tried, in that order.

The file-patterns style allows you to specify a pattern to override whatever would be
completed, even in what would otherwise be a simple file completion with no pattern. Since
this can easily get out of hand, the best way of using this style is to make sure that you
specify it for a narrowly enough defined context. In particular, you probably want to restrict
it to completions for a single command and for a particular one of the tags usually applying
to files. As always, you can use ^Xh to find out what the context is. It has a labelling
mechanism — you can specify a tag with a pattern for use in looking up other styles. Hence
‘*.o:object-files’ gives a pattern ‘*.o’ and a tag name ‘object-files’ by which to refer
to these.

The patterns you specify are tried in order; you don’t need to use tag-order. In fact
file-patterns replicates its behaviour in that you can put patterns in the same word to
say they should be tried together, before going on to the pattern(s) in the next word. Also, you
can give a description after a second colon in the same way. Indeed, since file-patterns
gets its hands on the tags first, any ordering defined there can’t be overridden by tag-order.

So, for example, after

zstyle ’:completion:*:*:foo:*:*’ file-patterns \
’*.yo:yodl-files:yodl\ files *(-/):directories’

the command named ‘foo’ will complete files ending in ‘.yo’, as well as directories.
For once, you don’t have to change the completer to alter what’s completed: ‘foo’ isn’t
specially handled, so it causes default completion, and that means completing files, so that
file-patterns is active anyway.

Here’s a slightly enhanced example; it shows how file-patterns can be used instead of
tag-order to offer the tags in the order you want.

zstyle ’:completion:*:*:foo:*:*’ file-patterns \
’*.yo:yodl-files:yodl\ files’ ’*(-/):directories:directories’ \
’^*.yo(-^/):other-files:other\ files’

Completion will first try to show you only ‘.yo’ files, if there are any; otherwise it will show
you directories, if there are any; otherwise it will show you any other files: ‘^*.yo(-^/)’ is
an extended glob to match any file which doesn’t end in ‘.yo’ and which isn’t a directory and
doesn’t link to a directory. As always, you can cycle through the sets of possibilities using the
‘_next_tag’ completion command.

Note that file-patterns is an exception to the general rule that styles don’t determine
which tags are called only where they’re called, or what their behaviour is: this time, you
actually get to specify the set of tags which will be used. This means it doesn’t use the the

282 CHAPTER 6. COMPLETION, OLD AND NEW

standard file tags (unless you use those names yourself, of course), just ‘files’ if you don’t
specify one. Hence it’s good style to add the tags, following colons, although it’ll work without.

Another thing to watch out for is that if there is already a completion which handles a
file type — for example, if we had tried to alter the effect of file completion for the ‘yodl’
command instead of the fictitious ‘foo’ — the results may well not be quite what you want.

Another feature is that ‘%p’ in the pattern inserts the pattern which would usually be used.
That means that the following is essentially the same as what file completion normally does:

zstyle ’:completion:*’ file-patterns ’%p:globbed-files’ \
’*(-/):directories’ ’*:all-files’

You can turn completion for a command that usually doesn’t use a pattern into one that does.
Another example taken from the manual:

zstyle ’:completion:*:*:rm:*:globbed-files’ file-patterns \
’*.o:object-files’ ’%p:all-files’

So if there are any *.o files around, completion for rm will just complete those, even if
arguments to rm are otherwise found by default file completion (which they usually are).
The %p will use whatever file completion normally would have; probably any file at all. You
can change this, if you like; there may be files you don’t ever want automatically completed
after rm.

Remember that using explicit patterns overrides the effect of $fignore; this is obviously
useful with rm, since the files you want to delete are often those you usually don’t want to
complete.

Filenames (2): paths: ambiguous, expand, file-sort, special-dirs,
ignore-parents, list-suffixes, squeeze-slashes

Filename completion is powerful enough to complete all parts of a path at once, for example
‘/h/p/z’ will complete to ‘/home/pws/zsh’. This can cause problems when the match is
ambiguous; since several components of the path may well be ambiguous, how much should
the completion system complete, and where should it leave the cursor? This facility is
associated with all these styles affecting filenames.

With ordinary completion, the usual answer is that the completion is halted as soon as a
path component matches more than one possibility, and the cursor is moved to that point,
with the remainder of the string left unaltered. With menu completion, you can simply cycle
through the possibilities with the cursor moved to the end as usual. If you set the style
ambiguous, then the system will leave the cursor at the point of the first ambiguity even if
menu completion is in use. Note that this is always used with the ‘paths’ tag, i.e. the context
ends in ‘...:paths’.

The style expand is similar and is also applied with the ‘paths’ tag. It can include either
or both of the strings prefix and suffix. Be careful when setting both — they have to be
separate words, for example

zstyle ’:completion:*’ expand prefix suffix

Don’t put quotes around ‘prefix suffix’ as it won’t work.

6.5. CONFIGURING COMPLETION USING STYLES 283

With prefix, expand tells the completion system always to expand unambiguous prefixes
in a path (such as ‘/u/i’ to ‘/usr/in’, which matches both /usr/include and /usr/info)
— even if the remainder of the string on the command line doesn’t match any file. So this
expansion will now happen even if you try this on ‘/u/i/ALoadOfOldCodswallop’, which
it otherwise wouldn’t.

Including suffix in the value of expand extends path completion in another way: it allows
extra unambiguous parts to be added even after the first ambiguous one. So if ‘/home/p/.pr’
would match ‘/home/pws/.procmailrc’ or ‘/home/patricia/.procmailrc’, and
nothing else, the last word would be expanded. Set up like this, you will always get the
longest unambiguous match for all parts of the path.

In older versions of the completion system, suffix wasn’t used if you had menu completion
active by default, although it was if menu completion was only started by the AUTO_MENU
option. However, in recent versions, the setting is always respected. This means that setting
the expand style to include the value suffix allows menu completion to cycle through all
possible completions, as if there were a ‘*’ after each part of the path, so ‘/u/i/k’ will offer
all matches for ‘/u*/i*/k*’.

The file-sort style allows files to be sorted in a way other than by alphabetical order:
sorting applies both to the list of files, and to the order in which menu completion presents
them. The value should include one of the following: ‘size’, ‘links’, ‘modification’ (same
as ‘time’, ‘date’), ‘access’, ‘inode’ (same as ‘change’). These pick the obvious properties
for sorting: file size, number of hard links, modification time, access time, inode change time.
You can also add the string ‘reverse’ to the value, which reverses the order. In this case the
tag is always ‘files’.

The special-dirs style controls completion of the special directories ‘.’ and ‘..’. Given
that you usually need to type an initial dot to complete anything at all beginning with one,
the idea of ‘completing’ ‘.’ is a little odd; it simply means that the directory is accepted when
the completion is started on it. You can set the style to true to allow completion to both of
the two, or to ‘..’ to complete ‘..’ but not ‘.’. Like ambiguous, this is used with the tag set
to ‘paths’.

The style ignore-parents is used with the files tag, since it applies to paths, but not
necessarily completion of multiple path names at once; it can be used when completing just
the last element. There are two main uses, which can be combined. The first case is to include
the string ‘parent’ in the style. This means that when you complete after (say) foo/../,
the string foo won’t appear as a choice, since it already appeared in the string. Secondly,
you can include ‘pwd’ in the value; this means don’t complete the current working directory
after ‘../’ — you can see the sense in that: if you wanted to complete there, you wouldn’t
have typed the ‘..’ to get out if it.

Actually, the function performs both those tests on the directories in question even if the
string ‘..’ itself hasn’t been typed. That might be more confusing, and you can make sure
that the tests for parent and pwd are only made when you typed the ‘..’ by including a
‘..’ in the style’s value. Finally, you can include the string ‘directory’ in the values: that
means the tests will only be performed when directories are being completed, while if some
other sort of file, or any file, can be completed, the special behaviour doesn’t occur. You may
have to read that through a couple of times before deciding if you need it or not.

Next, there is list-suffixes. It applies when expanding out earlier parts of the filename
path, not just the last part. In this case, it is possible that early parts of the path were
ambiguous. Normally completion stops at the point where it finds the ambiguity, and leaves
the rest of the path alone. When list-suffixes is set, it will list all the possible values of
all ambiguous components from the point of ambiguity onward.

284 CHAPTER 6. COMPLETION, OLD AND NEW

Lastly, there is the style squeeze-slashes. This is rather simpler. You probably already
know that in a UNIX filename multiple slashes are treated just like a single slash (with
a few minor exceptions on some systems). However, path completion usually assumes
that multiple slashes mean multiple directories to be completed: ‘//termc’ completes to
‘/etc/termcap’ because of this rule. If you want to stick with the ordinary UNIX rule you
can set squeeze-slashes to true. Then in this example only files in the root directory will
be completed.

Processes: command, insert-ids

Some functions, such as kill, take process IDs (i.e. numbers) as arguments. These can be
completed by using the ps command to generate the process numbers. The command style
allows you to specify which arguments are to be passed to ps to generate the numbers; it is
simply eval’d to generate the command line. For example, if you are root and want to have
all processes as possible completions, you might use ‘-e’, for many modern systems, or ‘ax’,
for older BSD-like systems. The completion system tries to find a column which is headed
‘PID’ or ‘pid’ (or even ‘Pid’, in fact) to use for the process IDs; if it doesn’t find one, it just
uses the first column.

The default is not to use any arguments; most variants of ps will then just show you
interactive processes from your current session. To show all your own processes on a modern
system, you can probably use the value ‘ps -u$USER’ for the style — remembering to put
this in single quotes. Clearly, you need to make sure the context is narrow enough to avoid
unexpectedly calling odd commands.

You can make the value begin with a hyphen, then the usual command line will put afterward
and the hyphen removed. The suggested use for this is adding ‘command’ or ‘builtin’ to
make sure the right version of a command is called.

The completion system allows you to type the name of a command, for example ‘emacs’,
which will be converted to a PID. Note that this is different from a job name beginning with
‘%’; in this case, any command listed by ps, given the setting of the command style, can be
used. Obviously, command names can be ambiguous, unlike the process IDs themselves, so
the names are usually converted immediately to PIDs; if the name could refer to more than
one process, you get a menu of possible PIDs.

The style insert-ids allows the completion system to keep using the names rather than
the PIDs. If it is set to single, the name will be retained until you type enough to identify a
particular process. If it is set to true (or anything else but menu, actually), menu completion
is delayed until you have typed a string longer than the common prefix of the PIDs. This
is intended to be similar to completion’s usual logic — don’t do anything which gets rid of
information supplied by the user — so is probably more useful in practice than it sounds.

Job control: numbers

Builtin functions that take process IDs usually also take job specifications, strings beginning
with ‘%’ and followed either by a small number or a string. The style numbers determines
how these are completed. By default, the completion system will try to complete an
unambiguous string from the name of the job. If you set numbers to true, it will instead
complete the job number — though the listing will still show the full information — and if
you set it to a number, it will only use that many words of the job name, and switch to using
numbers if those are not unique. In other words, if you set it to ‘1’ and you have two jobs ‘vi

6.5. CONFIGURING COMPLETION USING STYLES 285

foo’ and ‘vi bar’, then they will complete as ‘%1’ and ‘%2’ (or maybe other numbers) since
the first words are the same.

Note also that prefix-needed applies here; if it is set, you need to type the ‘%’ to complete
jobs rather than processes.

System information: users, groups, hosts etc.

There are many occasions where you complete the names of users on the system, groups on
the system (not to be confused with completion groups), names of other hosts you connect to
via the network, and ports, which are essentially the names of internet services available on
another host such as nntp or smtp.

By default, the completion system will query the usual system files to find the names of users,
groups, hosts and ports, though in the final case it will only look in the file ‘/etc/hosts’,
which often includes only a very small number of not necessarily very useful hosts. It is
possible to tell the completion system always to use a specified set by setting the appropriate
style — users, groups, hosts, ports — to the set of possibilities you want. This is nearly
always useful with hosts, and on some systems you may find it takes an inordinate amount
of time for the system to query the database for groups and users, so you may want to specify
a subset containing just those you use most often.

There are also three sets of combinations: hosts-ports, hosts-ports-users and
users-hosts. These are used for commands which can take both or all three arguments.
Currently, the command socket uses hosts-ports, telnet uses hosts-ports-users, while
the style users-hosts is used by remote login commands such as rsh and ssh, and
anywhere the form ‘user@host’ is valid.

The last is probably the most useful, so I’ll illustrate that. By setting:

zstyle ’:completion:*’ users-hosts \
pws:foo.bar.uk peters@frond.grub.uk

you tell rsh and friends the possible user/host combinations. Note that for the separator you
can use either ‘:’, as usual inside the completion system, or ‘@’, which is more natural in this
particular case. If you type ‘rsh -l ’, a username is expected and either pws or peters will
be completed. Suppose you picked pws; then for the next argument, which should be a host,
the system now knows that it must be foo.bar.uk, since the username for the other host
doesn’t match.

If you don’t need that much control, completion for all these commands will survive on just
the basic ‘hosts’, ‘users’, etc. styles; it simply won’t be as clever in recognising particular
combinations. In fact, even if you set the combined styles, anything that doesn’t match will
be looked up in the corresponding basic style, so you can’t lose, in principle.

The other combined styles work in exactly the same way; just set the values separated by
colons or ‘@’, it doesn’t matter which.

URLs for web browsers

Completion for URLs is done by setting a parallel path somewhere on your local machine.
The urls style specifies the top directory for this. For example, to complete the URL

286 CHAPTER 6. COMPLETION, OLD AND NEW

http://zsh.sunsite.dk/, you need to make a set of subdirectories of the path directory
http/zsh.sunsite.ac.dk/. You can extend this for however many levels of directory you
need; as you would expect, if the last object is a file rather than a directory you should
create it with ‘touch’ rather than ‘mkdir’. The style will always use the tag ‘urls’ for this
purpose, i.e. the context always matches ‘:completion:*:urls’. This is a neat way of
using the ordinary filing system for doing the dirty work of turning URLs into components.
Arguably the system should be able to scan your browser’s bookmarks file, but currently it
won’t; there is, however, a tool provided with the shell distribution in Misc/make-zsh-urls
which should be able to help — ask your system administrators about this if it isn’t installed,
I’m sure they’ll be delighted to help.

If you only have a few URLs you want to complete, you can use one of two simpler forms for
the urls style. First, if the value of the style contains more than one word, the values are
used directly as the URLs to be completed, e.g.:

zstyle ’:completion:*:urls’ urls \
http://www.foo.org/ ftp://ftp.bar.net

Alternatively, you can set the urls style to the name of a normal file, which contains the
URLs to complete separated by white space or newlines.

Note that many modern browsers allow you to miss out an initial ‘http://’, and that lots of
pseudo-URLs appear in newspapers and advertisements without it. The completion system
needs it, however.

There is a better way when the web pages actually happen to be hosted on a system
whose directories you can access directly. Set the local style to an array of three strings:
a hostname to be considered local (you can only give one per context), the directory
corresponding to the root of the files, and the directory where a user places their own web
pages, relative to their home directory. For example, if your home page is usually retrieved as
http://www.footling.com/, and that looks for the index file (often called index.html)
in the directory /usr/local/www/files, and your own web pages live under ‘~/www’, then
you would set

zstyle ’:completion:*:urls’ local \
www.footling.com /usr/local/www/files www

and when you type ‘lynx http://www.footling.com/’, all the rest will be completed
automatically.

The X files

There is another use for the path style with the tag ‘colors’: it gives the path to a file which
contains a list of colour names understood by the X-windows system, usually in file named
‘rgb.txt’. This is used in such contexts as ‘xsetroot -solid ’, which completes the name
of a colour to set your root window (wallpaper) to. It may be that the default value works on
your system without your needing to set this.

6.6. COMMAND WIDGETS 287

6.6 Command widgets

6.6.1 _complete_help

You’ve already met this, usually bound to ‘^Xh’ unless you already had that bound when
completion started up (in which case you should pick your own binding and use ‘bindkey’),
but don’t forget it, since it’s by far the easiest way of finding out what context to use for
setting particular styles.

6.6.2 _correct_word, _correct_filename, _expand_word

The first and last of these have been mentioned in describing the related completers:
_correct_word, usually bound to ^Xc, calls the _correct completer directly to perform
spelling correction on the current word, and _expand_word, usually bound to ^Xe, does
the same with the _expand completer. The contexts being ‘:completion:complete-word’
and ‘:completion:expand-word’ respectively, so that they can be distinguished in
styles from the ordinary use of the completer. If you want the same styles to be
used in both contexts, but not others, you should define them for patterns beginning
‘:completion:complete(|-word)...’.

The middle one simply corrects filenames, regardless of the completion context. Unlike the
others, it can also be called as an ordinary function: pass it an argument, and it will print
out the possible corrections. It does this because it bypasses most of the usual completion
system. Probably you won’t often need it, but it is usually bound to ‘^XC’ (note the capital
‘C’).

6.6.3 _history_complete_word

This is usually bound to ‘<ESC-/>’ for completing back in the history, and ‘<ESC-,>’ for
completing forward — this will automatically turn on menu completion, temporarily if you
don’t normally have that set, to cycle through the matches. It will complete words from the
history list, starting with the most recent. Hence

touch supercalifragilisticexpialidocious
cat sup<ESC-/>

will save you quite a bit of typing — although in this particular case, you can use ‘<ESC-.>’
to insert the last word of the previous command.

Various styles are available. You can set the ‘stop’ style which makes it stop once before
cycling past the end (or beginning) of the history list, telling you that the end was reached.

You can also set the ‘list’ style to force matches to be listed, the ‘sort’ style to sort matches
in alphabetical order instead of by their age in the history list, and the ‘remove-all-dups’
style, which ensures that each match only occurs once in the completion list — normally
consecutive identical matches are removed, but the code does not bother searching for
identical matches elsewhere in the list of possibilities. Finally, the range style is supported
via the _history completer, which does the work. This style restricts the number of history
words to be searched for matches and is most useful if your history list is large. Setting it
to a number n specifies that only the last n history words should be searched for possible

288 CHAPTER 6. COMPLETION, OLD AND NEW

matches. Alternatively, it can be a value of the form ‘max:slice’, in which case it will search
through the last slice history words for matches, and only if it doesn’t find any, the slice words
before that; max gives an overall limit on the maximum number of words to search through.

6.6.4 _most_recent_file

This function is normally bound to ‘^Xm’. It simply completes the most recently modified file
that matches what’s on the line already. Any pattern characters in the existing string are
active, so this is a cross between expansion and completion. You can also give it a numeric
prefix to show the Nth most recently modified file that matches the pattern.

By the way, you can actually do the same by setting appropiate styles, without any new
functions. The trick is to persuade the system to use the normal _files completer with the
file-sort style. By restricting the use of the styles to the context of the widget — which is
simply the _generic completer described above:

zstyle ’:completion:(match-word|most-recent-file):*’ \
match-original both

zstyle ’:completion:most-recent-file::::’ completer \
_menu _files _match

zstyle ’:completion:most-recent-file:*’ file-sort modification
zstyle ’:completion:most-recent-file:*’ file-patterns \

’*(.):normal\ files’
zstyle ’:completion:most-recent-file:*’ hidden true
zstyle ’:completion:most-recent-file:*:descriptions’ format ’’
bindkey ’^Xm’ most-recent-file
zle -C most-recent-file menu-complete _generic

It may not be obvious how this works, so here’s a blow by blow account if you are interested.
(It works even if you aren’t interested, however.)

• The ‘zle -C’ defines a widget which does menu completion, and behaves like ordinary
completion (that’s what _generic is for) except that the context uses the name of the
widget we define.

• When we invoke the widget, the system uses the completer style to decide what
completions to perform. This instructs it: use menu completion, complete files, use
pattern matching if the completion so far didn’t work.

• First, _menu comes along; it actually does nothing more than tell the system to use
menu completion.

• Then _files generats a list of files. This uses the file-sort and file-patterns
styles defined for the most-recent-file context. They produce a set of files in
modification time order, and include only regular files (so not directories, symlinks,
device files and so on).

• If that failed, the _match style allows the word on the command line to be treated
as a pattern; for example, *.c to complete the most recent C source file. This uses
the match-original style; the setting tells it that it should try first without adding
an extra ‘*’ for matching (this is what we want for the case where we already have a
complete pattern like *.c), and if that fails, add a * at the end and try again.

6.6. COMMAND WIDGETS 289

• The hidden style means that the matches aren’t listed; all that happens is the first is
inserted on the line. The setting for the format tag similarly simplifies the display in
this case by removing verbose descriptions.

• The net result is the first step of a menu completion: insert the first matched file (the
most recently modified) onto the line. This is exactly what you want. Note, however,
that as we are in menu completion you can keep on hitting ^xm and the shell will cycle
through the matches, which here gives you files that are progressively less recently
modified.

Omit the file-patterns line if you don’t want the match restricted to regular files (I
sometimes need the most recently modified directory, but often it’s irrelevant). The whole
version using styles comes from Oliver Kiddle, who recommends using _generic in this way
any time you want to generate a widge from a specific completion such as _files. There is
a brief section on _generic below.

6.6.5 _next_tags

This is a very neat way of getting round the order of tags just with a key sequence. An
example is the best way of showing it; it’s bound by default to the key sequence ‘^Xn’.

% tex ^D
Completing TeX or LaTeX file
bar.tex foo.tex guff.tex

Our file is not in that directory, but by default we don’t get to see the directory if there was
a file that matched the pattern — here ‘*.tex’. (This will actually change in 4.1, since most
people don’t know about _next_tags but do know about directories, but you can still cycle
through the different sets of tags.) You can set the tag-order style to alter whether they
appear at the same time, but _next_tags lets you do this very simply. Just hit ^Xn. You’re
now looking at

Completing TeX or LaTeX file
dir1/ dir2/ dir3/

and if you carry on hitting ^Xn you will get to all files, and then you will be taken back to the
.tex files again. (Where our file actually is, is left as an exercise for the reader.)

Of course this works with any set of tags whatsover; it simply has the effect of cycling you
around the tag order.

6.6.6 _bash_completions

This function provides compatibility with a set of completion bindings in bash, in which
escape followed by one of the following characters causes a certain type of (non-contextual)
completion: ‘!’, command names; ‘$’, environment variables; ‘@’, host names; ‘/’, filenames,
and ‘~’ user names. ‘^X’ followed by the same characters causes the possible completion to be
listed. This function decides by examining its own binding which of those it should be doing,
then calls the appropriate completion function. If you want to use it for all those possible
bindings, you need to issue the right statements in your .zshrc, since only the bindings
with ‘~’ are set up by default to avoid clashes. This will do it:

290 CHAPTER 6. COMPLETION, OLD AND NEW

for key in ’!’ ’$’ ’@’ ’/’; do
bindkey "\e$key" _bash_complete-word
bindkey "^X$key" _bash_list-choices

done

Unlike most widgets, which are tied to functions of the same name to minimize confusion,
the function _bash_completions is actually called under the names of the two different
widgets shown in that code so as to be able to implement both completion and listing
behaviour.

6.6.7 _read_comp

This function, usually bound to ‘^X^R’, does on-the-fly completion. When you call it, it
prompts for you to enter a type of completion; usually this will be the name of a completion
function with the required arguments. Thus it’s not much use unless you already have some
fairly in-depth knowledge of how the system is set up. For example, try it, then enter ‘_files
-/’, which generates directories. There is a rudimentary completion for the function names
built into it.

The next time you start it up, it will produce the same type of completion. You need to give
it a numeric prefix to tell it to prompt for a different sort.

6.6.8 _generic

Rather than being directly bound, like the others, this widget gives you a way of creating your
own special completions. You define it as a widget and bind it as if it were any completion
function:

zle -C foo complete-word _generic
bindkey ’<keys>’ foo

Now the keys bound will perform ordinary contextual completion, but any styles will be
looked up with the command context ‘foo’. So you can give it its own set of completers:

zstyle ’:completion:foo:*’ completer _expand

and, indeed, give it special values for any style you like. To put it another way, you’ve now
got a complete, separate copy of the completion system where the only difference is the extra
word in the context.

Good example of the use of this function were given above in the descriptions of
_all_matches and _most_recent_file.

6.6.9 predict-on, incremental-complete-word

These are not really complete commands at all in the strict sense, they are normal editing
commands which happen to have the effect of completion. This means that they are not
part of the completion system, and though they are installed with other shell functions

6.6. COMMAND WIDGETS 291

they will not automatically be loaded. You will therefore need an explicit ‘autoload -U
predict-on’, etc. — remember that the ‘-U’ prevents the functions from expanding any
of your own aliases when they are read in — as well as an explicit ‘bindkey’ command to
bind each function, and a ‘zle -N’ statement to tell the line editor that the function is to
be regarded as an editing widget. The predict-on file, when loaded, actually defines two
functions, predict-on and predict-off, both of which need to be defined and bound for
them to work. So to use all of these,

autoload -U incremental-complete-word predict-on
zle -N incremental-complete-word
zle -N predict-on
zle -N predict-off
bindkey ’^Xi’ incremental-complete-word
bindkey ’^Xp’ predict-on
bindkey ’^X^P’ predict-off

‘Prediction’ is a sort of dynamic history completion. With predict-on in effect, the line
editor will try to retrieve a line back in the history which matches what you type. If it does,
it will show the line, extending past the current cursor position. You can then edit the line;
characters which do not insert anything mostly behave as normal. If you continue to type,
and what you type does not match the line which was found, the line editor will look further
back for another line; if no line matches, editing is essentially as normal. Often this is flexible
enough that you can leave predict-on in effect, but you can return to basic editing with
predict-off.

Note that, with prediction turned on, deleting characters reverses the direction of the
history search, so that you go back to previous lines, like an ordinary incremental search;
unfortunately the previous line found could be one you’ve already half-edited, because they
don’t disappear from the list until you finally hit ‘return’ on an edited line to accept it.
There’s another problem with moving around the line and inserting characters somewhere
else: history searching will resume as soon as you try to insert the new characters, which
means everything on the right of the cursor is liable to disappear again. So in that case
you need to turn prediction off explicitly. A final problem: prediction is bad with multi-line
buffers.

If prediction fails with predict-on active, completion is automatically tried. The context
for this looks like ‘:completion:predict::::’. Various styles are useful at this point:
‘list’ could be set to always, which will show a possible completion even if there is only
one, for example. The style ‘cursor’ may have the values ‘complete’ to move to the end of
the word completed, ‘key’ to move past the rightmost occurrence of the character just typed,
allowing you just to keep typing, or anything else not to move the cursor which is the default
behaviour.

The incremental-complete-word function allows you to see a list of possible completions
as you type them character by character after the first. The function is quite basic; it is really
just an example of using various line editor facilities, and needs some work to make a useful
system. It will understand DEL to delete the previous character, return to accept, ^G to abort,
TAB to complete the word as normal and ^D to list possibilities; otherwise, keys which do not
insert are unlikely to have a useful effect. The completion is done behind the scenes by the
standard function complete-word.

292 CHAPTER 6. COMPLETION, OLD AND NEW

6.7 Matching control and controlling where things are
inserted

The final matter before I delve into the system for writing new completion functions is
matching control; the name refers in this case to how the matching between characters
already typed on the command line and characters in a trial completion is performed.
This can be done in two ways: by setting the matcher-list style, which applies to all
completions, or by using an argument (-M) to the low-level completion functions. Mostly we
will be concerned with the first. All this is best illustrated by examples, which are taken from
the section ‘Matching Control’ in the zshcompwid manual page; in the printed manual and
the ‘info’ pages this occurs within the section ‘Completion Widgets’.

The matcher-list style takes an array value. The values will be tried in order from left to
right. For example,

zstyle ’:completion:*’ matcher-list ’m:{a-z-}={A-Z_}’ \
’r:|[-_./]=* r:|=*’

tries the first specification, which is for case-insensitive completion, and if no matches are
generated tries the second, which does partial word completion; I’ll explain both these
specifications in detail as we go along. You can make it do both forms the second time
round simply by combining the values with a space, i.e. the last word on the command
line becomes ’m:{a-z-}={A-Z_} r:|[-_./]=* r:|=*’. It is also perfectly valid to have
a first matcher empty, i.e. ’’; this means that completion is tried with no matching rule the
first time, and will only go on to subsequent matchers in the list if that fails. This is quite a
good practice as it avoids surprises.

6.7.1 Case-insensitive matching

To perform case-insensitive matching for all completions, you can set:

zstyle ’:completion:*’ matcher-list ’m:{a-z}={A-Z}’

The ‘m:’ specifies standard matching, with the ‘{a-z}’ describing what’s on the command
line, and the ‘{A-Z}’ what’s in the trial completion. The braces indicate ‘correspondence
classes’, which are not lessons taken by email (that’s a joke), but a relative of the more usual
character classes like ‘[a-z]’, which, as you no doubt know, would match any of the letters
between a and z. In this context, with the braces, the letters are forced to match on the left
and right hand side of the ‘=’, so an ‘a’ on the command line must match an ‘A’ in the trial
completion, a ‘b’ must match a ‘B’, and so on. Since an a in the command line will always
match an ‘a’ in the trial completion, matcher or no matcher, this means that if you type an ‘a’
it will match either ‘a’ or ‘A’ — in other words, case-insensitively. The same goes for any other
lowercase letter you type. The difference from ‘m:[a-z]=[A-Z]’ is that, because ordinary
character classes are unordered, any lowercase letter would have matched any uppercase
letter, which isn’t what you want. The rest of the shell doesn’t know about correspondence
classes at all.

Finally, the use of a lowercase ‘m’ at the start means that the characters actually inserted
onto the line are those from the trial completion — if you type ‘make<TAB>’, the completion
process generates file names, and matcher-list allows what you type to match the file

6.7. MATCHING CONTROL AND CONTROLLING WHERE THINGS ARE INSERTED293

‘Makefile’, then you need the latter to be inserted on the command line. Use of ‘M:’ at the
start of the matcher would keep whatever was on the line to begin with there.

If you want completely case-insensitive matching, so that typing ‘MAKE<TAB>’ would also
potentially complete to ‘Makefile’ or ‘makefile’ (and so on), the extension is fairly obvious:

zstyle ’:completion:*’ matcher-list ’m:{a-zA-Z}={A-Za-z}’

because now as well as ‘a’ matching ‘A’, ‘A’ will match ‘a’ — and, of course, ‘a’ and ‘A’ each still
match themselves.

More detail on the patterns: they do not, in fact, allow all the possible patterns you can use
elsewhere in the shell, since that would be too complicated to implement with little extra
use. Apart from character classes and correspondence classes, you can use ‘?’ which has its
usual meaning of matching one character, or literal characters, which match themselves; or
the pattern for the trial completion only can be a single ‘*’. which matches anything. That’s
it, however; you can’t do other things with the ‘*’ since it’s too difficult for the system to guess
what characters should be covered by it.

For the same reason, the ‘*’ must be in an anchored pattern, the idea behind which is shown
in the next example.

6.7.2 Matching option names

I explained back in chapter 1 that zsh didn’t care too much how you specified options:
‘noglob’ and ‘NOGLOB’ and ‘No_Glob’ and ‘__NO_GLOB_’ are all treated the same way. Also,
this is the negation of the option ‘glob’. Having learnt how to match case-insensitively, we
have two further challenges: how to ignore a ‘_’ anywhere in the word, and how to ignore the
NO at the beginning so that we can complete an unnegated option name after it.

Well, here’s how. Since you don’t want this for all completions, just for option names, I
shall show it as an argument for the ‘compadd’ command, which gives the system the list
of possible completions. The option names should then appear as the remaining arguments
to the command, and the easiest way of doing that is to have the zsh/parameter module
loaded, which it always is for new completion, and use the keys of the special associative
array $options:

compadd -M ’B:|[nN][oO]= M:_= M:{A-Z}={a-z}’ - ${(k)options}

Here, we’re interested in the thing in quotes — it means exactly the same here as it would as
an element of the matcher list, except that it only applies to the trial completions given after
the ‘-’. It’s in three bits, separated by spaces; as they’re in the same word, all are applied one
after the other regardless of any previous ones having matched.

Starting from the right, you can see that the last part matches letters case-insensitively;
the capital ‘M’ means that, this time, the letters on the command line, not those in the
trial completion are kept; this is safe because of the way options are parsed, and reduces
unexpected changes.

Moving left, you can now guess ‘M:_=’: it means that the ‘_’ matches nothing at all in the
trial completion — in other words, it is simply ignored. The rule for matching across the ‘=’
is that you move from left to right, pairing off characters or elements of character classes as I
already described, and when you run out, you treat any missing characters as, well, missing.

294 CHAPTER 6. COMPLETION, OLD AND NEW

The first part has an ‘anchor’, indicated by what lies between the ‘:’ and the ‘|’. The B
specifies that the case insensitive match of ‘no’ must occur at the start of the word on the
command line (with ‘b’ it would be the word in the list of matches), but here it is lax enough
to allow this to happen after the ‘M:_=’ has stripped any initial underscores away. Hence it
matches no, NO, No or nO at the start of the string, and, just like the ‘M:_=’ part, it ignores
it, since there’s nothing on the right. Again, the capital ‘B’ at the start means keep what’s on
the command line: that’s important in this case, since if you lost the ‘no’, the meaning would
change completely.

So consider the combined effect when trying to complete NO_GL. The first specification allows
it to match against _GL; the second allows it to match against GL; the third, against gl; and
finally the usual effect of completion means that any option beginning gl may be completed.
Try ‘setopt NO_GL^D’ and you should see something like:

NO_GLob NO_GLobassign NO_GLobdots
NO_GLobalrcs NO_GLobcomplete NO_GLobsubst

— after the bit you’ve typed, the form of the words reverts to whatever’s in the trial
completion, i.e. lowercase letters with no ‘_’s.

6.7.3 Partial word completion

This example shows the other sort of anchoring, on the right, and also how to use a ‘*’ in the
right hand part of a pattern. Consider:

zstyle ’:completion:*’ matcher-list ’r:|.=* r:|=*’

The ‘r:’ specifies a right-anchored match, using the characters from the trial completion
rather than what’s already on the command line. As the anchor is on the right this time,
the pattern (between ‘:’ and ‘|’) is empty, and its anchor (between ‘|’ and ‘=’) is ‘.’. So this
specifies that nothing — a zero length string, or a gap between characters if you want to
think of it like that — when followed by a ‘.’, matches anything at all in the trial completion.

Consequently, the second part says that nothing anchored on the right by nothing — in other
words, the right hand end of the command line string — matches anything. This is what
completion normally does, add anything at all at the end of the string; we’ve added this part
to the matcher in case the cursor is in the middle of the word. It means that the right hand
end will always be completed, too.

Let’s see that in action. Here are the actual contents of my actual tmp directory, never mind
why:

regframe.rpm t.c testpage.dvi testpage.log testpage.ps

Now I set the matcher-list style as above and type:

echo t.p<TAB>

and get

echo testpage.ps

6.7. MATCHING CONTROL AND CONTROLLING WHERE THINGS ARE INSERTED295

So, apart from the normal completion at the end (p to ps), the empty string followed by a .
was allowed to match anything, too, and I got the effect of completing both bits of the word.

You might wonder what happens when there’s a file testpage.old.ps around, i.e. the
anchor appears twice in that. With the matcher set as given above, that won’t be completed;
the anchor needs to be matched explicitly, not by a wildcard. If you don’t like that, you can
change the ‘*’ after the ‘=’ in the specification to ‘**’; this form allows the anchor to occur in
the string being matched. You can think of ‘*’ and ‘**’ as taking the shortest and the longest
possible matches respectively. If you use a lot of ‘**’ specifications in your matches, things
can get very confusing, however.

Other shells have a facility for completing inside words like this, where it goes by such names
as ‘enhanced’ completion, although it is usually not so flexible. In the case of tcsh, not just ‘.’
but also ‘-’ and ‘_’ have this effect. You can force this with

zstyle ’:completion:*’ matcher-list ’r:|[._-]=* r:|=*’

6.7.4 Substring completion

I’ve mentioned ‘r’ and ‘B’, but corresponding to ‘r’ there is ‘l’, which anchors on the left
instead of the right, and corresponding to ‘B’ there is ‘E’ which matches at the end instead
of the beginning; and, of course, all exist in both upper- and lowercase forms, meaning ‘keep
what the user typed’ and ‘keep what is in the list of possible matches’, respectively.

Here is an example of using ‘l:|=*’ to match anything at the start of the word: this is the
effect of having an empty anchor, as you saw with ‘r’ above, but note with ‘l’, the anchor
appears, logically enough, on the left of the ‘|’, in the order they would appear on the
command line. By combining this with the ‘r’ form, you can make the completion system
work when what is on the command line matches only a substring of a trial completion —
i.e., has anything else on the left and on the right. Since this can potentially generate a lot of
matches, it might by an idea to try it after any other matcher specifications you have. So the
following tries case-insensitive completion, then partial-word completion (case-sensitively),
then substring completion:

zstyle ’:completion:*’ matcher-list ’m:{a-z}={A-Z}’ \
’r:|[._-]=* r:|=*’ ’l:|=* r:|=*’

6.7.5 Partial words with capitals

This section illustrates another feature: if you use ‘||’ when specifying anchors for ‘L’ or ‘R’
or their lowercase variants, the pattern part for what appears on the command line, which
would usually be translated into some other pattern, is treated instead as another anchor on
the other side of the pattern — which isn’t matched against the pattern in the word, it just
has to appear. In other words, this part matches without being ‘swallowed up’ in the process.
An example (again adapted from the manual) will make this clearer.

compadd -M ’r:[^A-Z0-9]||[A-Z0-9]=** r:|=*’ \
LikeTHIS LooHoo foo123 bar234

The four possible completions are on the second line. The second of the two matcher
specifications just allows anything to match on the right, so if we are inside the word, the

296 CHAPTER 6. COMPLETION, OLD AND NEW

remainder may be completed. The first word is where the action is; it says ‘A part of the
completion which has on the left something other than an upper case letter or a digit, and on
the right an upper case letter or a digit, may match anything, including the anchor’. So in
particular, this would allow ‘LH’ to complete to ‘LooHoo’ — and only that, since ‘LikeTHIS’
has an uppercase letter to the left of the ‘H’, which is not allowed. In other words, the chunks
of word beginning with uppercase letters and digits act like the start of substrings. (If you
like, remember that last sentence and the specification, and forget the rest.)

6.7.6 Final notes

To put everything together, the possible specifications are ‘m:...=...’, ‘l:...|...=...’,
‘r:...|...=...’, ‘b:...|...=...’ and ‘e:...|...=...’, which cause the command line
to be altered to the match found, and their counterparts with an uppercase letter, which
cause what’s already on the command line to be left alone and the remaining characters to be
inserted directly from the completion found. The ‘...’ are patterns, which all use the same
format. They can include literal characters, a ‘?’, and character or correspondence classes,
while the rightmost pattern in each type may also consist of a ‘*’ on its own. Characters are
matched from left to right; a missing character matches an empty string, ‘*’ matches any
number of characters. Specifications may be joined in a single string, in which case all parts
will be applied together.

When using the matcher-list style, a list of different specifications can be given; in this
case, they will be tried in turn until one of them generates matches, and the rest will not be
used.

There’s another style apart from matcher-list, called matcher. This can be set for a
particular context, possibly with specific tags, and will add the given matcher specifications
using exactly the same syntax as matcher-list for that context, except that here all
specifications are used at once, even if they are given as different elements of an array. This
is possibly useful because matcher-list is only aware of the completer, not of any more
specific part of the context.

Although I won’t talk about matching control after this section, there may be cases where
you want to include ‘compadd -M ...’ in a completion function of your own to help the
user. Many of the existing completion functions provide partial word completion where
it seems useful; for example, completion of zle functions allows i-c-w to be completed to
incremental-complete-word in this way.

Actually, you can configure this to a considerable extent without altering a function, using
styles and labelled tags. From the manual:

zstyle ’:completion:*:*:foo:*’ tag-order ’*’ ’*:-case’
zstyle ’:completion:*-case’ matcher ’m:{a-z}={A-Z}’

In command foo, whatever the tags are, they are to be tried normally first (the ‘*’ argument
to tag-order), then under the same name with ‘-case’ appended. The second style defines
a matcher for any tag ending in the suffix ‘-case’, which allows lowercase characters to
match uppercase ones. The upshot is that completion of anything at all for the command
foo will be tried first case-sensitively, then case-insensitively.

6.8. TUTORIAL 297

6.8 Tutorial

Before bamboozling you with everything there is to know about writing your own completion
function, I’ll give you an example of something I wrote myself recently. If you were doing this
yourself, you would then just stick this function somewhere in your function search path,
and next time you started the shell it would start doing its work. However, the file already
exists: it’s called _perforce and you should find it in the function search for versions 4.1.1
and above of zsh. I apologize if it’s not the ideal function to start with, but it is fresh in my
mind, so what I’m saying has some chance of being correct.

This section is subtitled, ‘How I struggled to write a set of completions for Perforce’. Perforce
is a commercial configuration management tool (as they now call revision control systems);
consult http://www.perforce.com/ for details. It’s concepts aren’t a million miles from
CVS, the archetypal system of this kind, but it was sufficiently different that the completion
functions needed rewriting from the ground up. You won’t need to know anything about
CVS or Perforce, because at each stage I’ll explain what I’m trying to complete and why.
This should give you plenty of meat for writing completions of your own. After the tutorial,
the chapter goes into the individual details, which will expand on some of the things that
appeared briefly in the tutorial.

What I tend to find the most complicated part of this is making sure the completion system
knows the correct types of completions and their tags to be completed at once. This probably
won’t be your first priority when trying to write completions of your own, but if you do it
right, all the stuff about selecting types and arranging them in groups that I showed above
will just work. In this tutorial we arrange to use enough of the higher level functions that
it will work without too much (apparent) effort. Of course, working out from scratch which
those functions are isn’t always that easy; hence the tutorial.

Needless to say, I will simplify grossly at a lot of points. You can see the finished product in
the zsh 4.1 distribution. It even has a few comments in.

Basic structure

Like the cvs command and a few other of the more complicated commands you might use,
Perforce is run by a single command, p4, followed by an argument giving the particular
Perforce command, followed by an options and arguments to that command.

This dictates the basic tasks the completion functions must do:

• If we are in the first argument, complete the name of the subcommand.

• If we are in a subsequent argument, look up the name of the subcommand and call the
function which handles its arguments.

This is more complicated than most commands you will write completions for. However, one
useful feature of the completion system is you can do completions in a recursive fashion. So
once you get to the point where you are handling arguments for a particular subcommand,
you can completely forget about the first step — as if the subcommand was the command on
the line.

In addition to the subcommands, there are lots of other types of object Perforce knows about:
files, obviously, plus revisions of files, set of changes (‘changelists’) applied at once, numbers
of fixes applied to files (essentially a way of tying changlists to a particular change request

298 CHAPTER 6. COMPLETION, OLD AND NEW

for bugtracking purposes), types of file — text, binary, etc., and several others. We will break
down each of these completions into its own function. That means that any time we need
to complete a particular type of object, wherever it appears (and many of these objects can
appear in lots of different places), we just call the same function.

Hence there are a large number of different functions:

• The main dispatcher for the command, called _perforce for clarity — the main
command it handles is ‘p4’, but the name Perforce is more familiar.

• One function for each subcommand.

• One function for each type of object Perforce knows about and we complete (we don’t
bother completing dates, for example).

• In some cases, in particular files, multiple functions since there are different types of
file — regular files and directories completed in the normal way, files completed by
asking Perforce where it has stored them, files opened for some form of change to be
made to them, and so on. Each of these is completed by a different function.

This makes it impractical to put all the functions in separate files since editing them would
be a nightmare. What’s more, since we will always go through the dispatcher _perforce,
we don’t need to tell the shell to autoload all the other functions; it can just hook them in
from the main file. The file _perforce therefore has the structure:

#compdef p4
Main dispatcher
_perforce() {

...
}

Helper functions for the various types of object

_perforce_files() {
...

}

...

Dispatchers for the individual subcommands.

_perforce_cmd_help() {
...

}

Code to make sure _perforce is run when we load it
_perforce "$@"

That last line is probably the least obvious. It’s because of the fact that zsh (unlike other
shells) usually treats the file of an autoloaded function as being the body of the function.
Since everything else here just defines a function, without the last line nothing would happen
the first time it was run; it would define _perforce and all the other functions, but that was
it. The last line makes sure _perforce gets run with all the arguments passed down. The
shell is smart enough to know that the _perforce function we defined in the file is the one

6.8. TUTORIAL 299

to keep for future use, not the entire file, so from then on things are easy; we just have a
complete set of ready-defined files.

In fact the various helper functions didn’t even need to use the ‘_’ convention for completion
functions, since the completion system didn’t see them directly. However, I’ve kept it for
consistency.

There’s one extra trick: apart from _perforce itself, the function definitions look like this:

(($+functions[_perforce_cmd_diff])) ||
_perforce_cmd_diff() {

body of function
}

This is to allow the user to override each function separately. The test uses the $functions
special associative array from the zsh/parameter module, which the completion system
loads. If the function is already defined, because the corresponding element in the
$functions parameter is set, then we skip the definition of the function here, because the
user has already defined it. So if you were to write your own _perforce_cmd_diff and put
it into the function path, it would be used, as you no doubt intended.

6.8.1 The dispatcher

This top level is only necessary for complex commands with multiple subcommands. There
are interesting titbits here, but if you just want to know how to complete a command with
ordinary UNIX-style argument parsiing, skip to the next section.

The main _perforce function has the two purposes described at the top of the previous
subsection. We need to decide whether we are in the first word after the p4 command itself.
A simple way of doing that is:

if ((CURRENT > 2)); then
Remember the subcommand name
local cmd=${words[2]}
Set the context for the subcommand.
curcontext="${curcontext%:*:*}:p4-$cmd"
Narrow the range of words we are looking at to exclude ‘p4’
((CURRENT--))
shift words
Run the completion for the subcommand
_perforce_cmd_$cmd

else
local hline
local -a cmdlist
_call_program help-commands p4 help commands | while read -A hline; do

((${#hline} < 2)) && continue
[[$hline[1] = (#i)perforce]] && continue
cmdlist=($cmdlist "${hline[1]}:${hline[2,-1]}")

done
_describe -t p4-commands ’Perforce command’ cmdlist

fi

This already looks a bit horrific, but it breaks down quite easily. We test the $CURRENT

300 CHAPTER 6. COMPLETION, OLD AND NEW

parameter, which is a special parameter in the completion system giving the word on the
command line we are on. This is the syntactic word — the completion system has already
done the hard job (and that’s not an overstatement, I can tell you) of deciding what makes up
a word on the command line, taking into account quoting and special characters. The array
of words is stored, unsurprisingly, in the array $words. So word 1 will be ‘p4’ and word 2 the
subcommand.

Hence if we are past word 2, we look at ${words[2]} to get the subcommand, and
use that to decide what to do next. The change to $curcontext is a bit of cleverness
to make it easy for the user to defined styles for particular subcommands; refresh your
mind by looking at the discussion of styles and contexts above if you need to. For
example, if you are completing after ‘p4 diff’, the context will look something like
‘:completion::complete:p4-diff:argument-1:opened-files’ where the remainder
says you are on the first argument and are complete the tag ‘opened-files’, We’ll see
down below how we tell the system to use that tag; the ‘argument-1’ is handled by the
_arguments utility function, which takes away a lot of the load of handling options and
arguments in a standard UNIX format.

Next, we pretend that the ‘p4’ at the start wasn’t there by removing the front of $words and
decrementing $CURRENT so as to reflect its new position in $words. The reason for doing this
is that we are going to use _arguments for handling the subcommand. As is only sensible,
this function looks at the first element of $words to find the command word, and treats the
rest as options or arguments to the command.

We then dispatch the right function for the command simply by constructing the name
of the function on the fly. Of course it’s a little neater to check the function exists first;
$+functions[_perforce_cmd_$cmd] would come to our aid again.

However, if we’re still on the second (original) word, we have to generate a list of functions
to complete. We will do this by asking Perforce’s help system to list them, and store the
results in the array $cmdlist. The loop has a couple of checks to remove blank lines and
the title line at the start. The remaining lines have a command and a description. We take
the command, but also tack the description on after a colon — we can then show the user the
description, too, as a bit of extra help.

Actually, the Perforce command that generates the list of subcommands is simply ‘p4 help
command’. (That’s really all you need to know; skip the rest of the paragraph if you just
want the basics.) The ‘_call_program help-commands’ was stuck in front for the name
of configurability. Before executing the command, the system checks in the current context
with the given tag help-commands for the style command. If it finds a value for that style, it
will use that as the command to execute in the place of the remaining arguments. If the style
it read began with -, then the command it was going to execute — i.e. ‘p4 help commands’
is appended to the end of the command read from the style, so that the user’s command can
process the original command if it needs to. This is really extreme sophistication; you will
rarely actually need the command style, but if you are writing a completion for others to use
it’s polite to give them a chance to intercept calls in this way.

The _describe command then does the work for us. The ‘-t p4-commands’ gives the tag
we are going to use; the convention is that tag names are plural, though there’s nothing to
enforce this. Then we give an overall description — this is what appears after ‘Completing
’ in the examples of the format style above; if you don’t have that set, you won’t see it.
Finally, we give the array name — note it is the name, not the substituted value. This is
more efficient because the shell doesn’t need to extract the values until the last minute; until
then it can pass around just the single word. The _description function knows about the
‘completion:description’ syntax; reread what I said about the verbose style for what

6.8. TUTORIAL 301

the system does with the descriptions for the completion.

The _describe function is one level above the completion system’s basic builtin command,
compadd; it just knows about a single tag, with a little icing sugar to display verbose
descriptions. Later, we’ll see ways of building up alternatives where different types of
completion can be completed at the same point. There are lots of ways of doing this; some of
the more complicated are relegated to the detailed descriptions that follow the tutorial.

6.8.2 Subcommand completion: _arguments

Suppose we are now completing after ‘p4 diff’. We have altered the command line so that
the function now sees the ‘diff’ as the first word, as if this were the command. This makes
the next step easier; the _arguments function won’t see irrelevant words on the command
line, since it is designed to handle the arguments to a simple command in the standard form
‘command [options] arguments ...’. Here’s the simple version.

_perforce_cmd_diff() {
_arguments -s : \

’-f[diff every file]’ \
’-t[include non-text files]’ \
’(-sd -se -sr)-sa[opened files, different or missing]’ \
’(-sa -se -sr)-sd[unopened files, missing]’ \
’(-sa -sd -sr)-se[unopened files, different]’ \
’(-sa -sd -se)-sr[opened files, same as depot]’ \
’-d-[select diff option]:diff option:’\

’((b\:ignore\ blanks c\:context n\:RCS s\:summary’\
’u\:unified w\:ignore\ all\ whitespace))’ \

"*::file:_perforce_files"
}

I’ve split the argument beginning -d into three lines to fit, but it’s just a single
argument. Also, for clarity I’ve missed out the line with the ‘$+functions’ test to see if
_perforce_cmd_diff was already defined; I’ll forget about that for now.

The function _arguments has been described as having ‘the syntax from hell’, but with the
arguments already laid out in front of you it doesn’t look so bad. The are three types of
argument: options to _arguments itself, arguments saying how to handle options to the
command (i.e. ‘p4 diff’), and arguments saying how to handle normal arguments to the
command.

The first two are for _arguments itself; ‘-s’ tells it that single-letter options are allowed,
i.e. they can be combined as in ‘-ft’. Luckily for our purposes, that doesn’t stop us having
multiple word options, too. The colon on its own then says everything else is an argument
relating to the command line being handled.

We then start off with some simple options; as you can probably guess straight away, the
first two say that ‘p4 diff -f’ passes a flag to say any file can be diff ’ed (not just ones open
for editing), and that ‘p4 diff -t’ passes a flag to say that binary files can be diff ’ed (not
just text files). Note the use of square brackets for giving a description; this is handled by
the verbose style as I mentioned for _describe. In fact, the list of possible options and
arguments, suitably rearranged, will end up passing through _describe. The descriptions
in square brackets are optional, as the use of square brackets might suggest; you could just
have ‘-f’ and ‘-t’ (making it fairly obvious why the ‘:’ to separate off _arguments’s own

302 CHAPTER 6. COMPLETION, OLD AND NEW

options is a good idea).

The next step in complexity is that set of functions with the list in parentheses in front. These
give mutually exclusive options. In other words, if there’s already a -sa on the command line,
don’t complete any of -sd, -se or -sr, and so on. (Remember that by default you need to
type the first ‘-’ of an option, or the system will go straight to normal arguments, which we’ll
come to in a moment.)

Next comes the specification for the option -d. All those colons indicate that this option has
an argument, and the - following straight after the -d indicates that it has to be in the same
word, i.e. follow the -d without a space. After the first colon comes a description for the
argument. This is what you see when you try to complete the after -d; compare this with the
expression in square brackets before, which is what you see when you try to complete the -d
itself. Then after the second colon is an expression saying how to complete that argument.

This final part of the specification for an option with an argument can take various forms.
The simplest is just a single space; this means there’s nothing to complete, but the system is
aware the user needs to type something for that word and can prompt with the description.
The next simplest is a set of words in parentheses: here, we could have had ‘(b c n s
u w)’. Instead, we’ve had a variant on that which gives yet another set of descriptions,
namely those for the individual completions that appear after -d. Note various things:
the parentheses are doubled and the colons and spaces within the completion options are
backslashed. All of these are simply there to make it easy for _arguments to parse the
string. The upshot of this is that in the following context:

p4 diff -d

a verbose completion using the format style as described above looks like:

Completing diff option
b # ignore blanks
c # context
n # RCS
s # summary
u # unified
w # ignore all whitespace

or similar — I have the list-separator style set to ‘#’, because it looks like a comment
normal shell syntax, but in your case you may get ‘--’ as the separator.

(In case you were wondering why the colons needed to be quoted when it seemed you’d
already got to the last argument: it’s possible for options to have multiple arguments, and
you can continue having sets of :description:action pairs. This means the system needs
some way of distinguishing these colons from ones indside arguments. While I’m digressing,
you may also have noticed that I could have written the -sX as an option with arguments,
in which case you can have a bonus point.)

The final argument starts with a ‘*’, which means it applies to all remaining arguments to
‘p4 diff’ after the options have been processed. Most of the rest is similar to the form for
options, except for the doubled colon, which indicates that $CURRENT and $words should
be altered to reflect only the arguments being handled by this argument specifier — exactly
what we did before calling _perforce_cmd_diff in the first place, in fact. As we mentioned
before, this makes the next step of processing easier if happens to call _arguments again.
(Actually it doesn’t in this case.) The ‘file’ then describes the arguments and the final part,
_perforce_files, tells the system to call that function to complete a file name.

6.8. TUTORIAL 303

There are numerous (it sometimes seems, endless) subtleties to _arguments. I won’t try
to go into them in the tutorial; see the description of _arguments below for something
more detailed to refer to, and if you are feeling really brave look at the description in the
zshcompsys manual page. Even better, dig into one of the existing completion functions
— something handling completion for a UNIX command is probably good, since these make
heavy use of _arguments — and see how those work. Despite the complexities, I would
definitely suggest using _arguments wherever possible to take away any need on your part
to do processing of command line arguments.

6.8.3 Completing particular argument types

Now we’ll look inside the _perforce_files function as an example of the nitty gritty
of completing one particular type of argument, which might have some quite complicated
internal structure. This is true in Perforce as the filename can have extra information tacked
on the end: ‘file#revision’ indicates the revision of a file, ‘file@change’ indicates a change
status, and in some cases you can get ‘file@change1,change2’ to indicate a range of changes
(likewise revisions). Furthermore, file can be specified in different ways, and the file to
be completed may be limited by some kind of context information. We’ll start from simple
filenames and gradually add these possibilities in.

Different types of file, part 1

There are so many possibilities for files that I’m going to split up _perforce_files
into individual functions handling different aspects. For example, even if we are just
handling ordinary files in the way the completion system normally does, Perforce commands
understand a special file name ‘...’ which means ‘every subdirectory to any depth’.
(Interestingly, zsh used to have this to mean the same thing, instead of ‘**’; it was changed
in zsh because as the ‘.’s are regular characters there’s no easy way of quoting them. You
didn’t need to know this.)

I’m going to say we can complete both like this:

_alternative \
"files:file:_path_files" \
"subdirs:subdirectory search:_perforce_subdir_search"

The function _alternative is a little bit like _arguments, but thankfully much simpler.
It’s name gives away its purpose; every argument specifies one of a set of possible
alternatives, all of which are valid at that point — so the user is offered anything which
matches out of the choices, unlike _arguments, which has to decide between the various
possibilities. It’s a sort of glorified loop around ‘_describe’, with _arguments’s conventions
on the action for generating completions (up to a point — _alternative doesn’t have all
the whackier ones, though it does have the ones I’ve been talking about so far).

Each set of possibilities consists of the name of a tag, a description, and an argument. The
tag isn’t present in _arguments. If you use ^xh to tell you about valid tags, you’ll see
_arguments has its own generic tag, argument-rest; this isn’t usually all that useful, so
we are going to supply more specific ones.

In the first possiblity, it’s the standard one for files, ‘files. The function is the basic low-level
one for completing files, too; it’s described below, but you already know a lot about the effect

304 CHAPTER 6. COMPLETION, OLD AND NEW

since it’s the completion system’s workhorse which you use it all the time without realising.
Actually, it will supply its own tags, but that doesn’t matter since they will silently override
what we say.

The second possibility is the new one we’re adding. I’ve therefore invented a suitable tag
‘subdirs’, a description, ‘subdirectory search’, and the name of the function I’m going
to supply to do the completion. This is quite simple:

_perforce_subdir_search() {
compset -P ’*/’
compadd "$@" ’...’

}

The first line tells the completion system to ignore anything up to the last ‘/’. That’s so we
can append a ‘...’ to any directory which already exists on the command line. The builtin
compset does various low-level transformations of this time. Note that the -P is ‘greedy’ —
it looks for the longest possible pattern match, which is the usual default in zsh and other
UNIX pattern matchers.

The second line actually adds the ‘...’ as a completion; compadd is the key builtin for
the whole completion system. I’ve actually passed some on the arguments which we got to
‘_perforce_subdir_search’ via ‘"$@"’. In fact, looking back it seems as if there weren’t
any! However, _alternative actually passed some behind my back — and it’s a good
thing, too, since it’s exactly those arguments that give the tag ‘subdirs’ and the description
‘subdirectory search’. So that extra ‘"$@"’ is actually quite important. The buck stops
here; there’s nothing below compadd. A function of this simplest only works well when the
handling of tags and contexts has already been done; but we just saw that _alternative
did that, so as long as we always call _perforce_subdir_search suitably, we’re in the
clear.

Different types of file, part 2

Furthermore, a Perforce file specification can look like a normal UNIX file path, or it can look
like:

//depot/dirs/moredirs/file

(don’t get confused with paths to network resources, which also use the doubled slash or
backslash on some systems, notably Cygwin). We could use _alternative to handle this,
too, and if I was writing _perforce again I probably would for simplicity. However, I decided
to do it just by testing for the ‘//’ in _perforce_files. This means that the structure of
p4_files so far looks like:

if [[$PREFIX = //*]]; then
ask Perforce for files that match
local -a altfiles
altfiles=(

’depot-files:file in depot:_perforce_depot_files’
depot-dirs:directory in depot:_perforce_depot_dirs’

)
add other alternatives, such as the ‘...’ thing
altfiles=($altfiles

6.8. TUTORIAL 305

"subdirs:subdirectory search:_perforce_subdir_search"
)
_alternative $altfiles

else
_alternative \

"files:file:_path_files" \
"subdirs:subdirectory search:_perforce_subdir_search"

fi

where we are still to write the functions for the first two alternatives in the first branch;
the ‘...’ is still valid for that branch, so I’ve added that as the third alternative. I’ve used
the array $altfiles because, actually, the structure is more complicated than I’ve shown;
doing it this way makes it easier to add different sets of alternatives.

The choice of which branch is made by examining the $PREFIX special variable, which
contains everything (well, everything interesting) that comes before the cursor position in
the word being completed. There is a counterpart $SUFFIX which we will see in a moment.
The ‘almost everything’ comes because sometimes we definitely don’t want to see the whole
$PREFIX. Completing the three dots was such as case — we didn’t want to see anything up to
the last /. What that ‘compset -P ’*/’’ actually did was move the matched pattern from
the front of $PREFIX to the end of $IPREFIX, another special parameter which contains
parts of the completion we aren’t currently interested in, but which are still there. This
allows us to concentrate on a particular part of the completion. However you do that —
whether by compset or directly manipulating $PREFIX and friends — the completion system
usually restores the parameters when you exit the function where you altered them. This
fits in nicely with what we’re doing here with _alternative — if we handle adding ‘...’ by
ignoring everything up to the last slash, for example, we don’t want the next completion we
try to continue to ignore that; other file completions will want to look at the directory path.

‘Depot’ is Perforce’s name for what CVS calls a repository — the central location where
all versions of all files are stored, and from where they are retrieved when you ask to
look at one. I’ve separated out ‘depot-dirs’ and ‘depot-files’ for various reasons.
First, the commands to examine files and directories are different, so the completion
function is different. Second, we can offer different tags for files and directories — this
is what _path_files does for normal UNIX files. Third, it will later allow us more
control — some commands only operate on directories. Here’s _perforce_depot_files;
_perforce_depot_dirs is extremely similar:

_perforce_depot_files() {
Normal completion of files in depots
local pfx=${(Q)PREFIX} expl
local -a files

compset -P ’*/’
files=(${${${(f)"$(\

_call_program files p4 files \
\"\$pfx*\$\{\(Q\)SUFFIX\}\" 2>/dev/null)"}%\#*}##*/})

[[$#files -eq 1 && $files[1] = ’’]] && files=()
compadd "$@" -a files

}

A little messy (and still not quite the full horror). I’ve split the key line in the middle
which fetches the list from Perforce to make it fit. If you ploughed through chapter 5, you’ll
recognised what’s going on here — we’re reading a list of files, one per line, from the command

306 CHAPTER 6. COMPLETION, OLD AND NEW

‘p4 files’, and we’re stripping off the directory at the front, and everything from a ‘#’ on at
the end. The latter is a revision number; we’re not handling those at this point, though we
will later.

Notice the way I remembered $PREFIX before I told the system to ignore it for the word
we’re now completing. I remembered it as ‘${(Q)PREFIX}’ in order to remove any quotes
from the name. For example, if the name on the line so far had a space, $PREFIX (which
comes from what is on the command line without any quotes being stripped) would have
the space quoted somehow, e.g. ‘name\ with\ space’. We arrange for $pfx to contain
‘name with space’, which is how Perforce knows the file, using the (Q) parameter flag. We
then pass the argument "$pfx*${(Q)SUFFIX}" to ‘p4 files’; this generates matching
files internally. The extra layer of backslash-quoting is for the benefit of _call_program,
which re-evaluates its arguments; this ensures the argument is expanded at the point it gets
passed to p4 files. All this goes to show just how difficult getting the quoting right can be.

Once we’ve got the list of bare filenames, we check to see if the list is just one element with
no length. That’s an artefact of the the "$(cmd)" syntax; if the output is empty, because its
quoted you still get one zero-length string output, which we don’t want.

Finally, we pass the result to compadd as before. Again, tags and the description havealready
been handled and we just need to make sure the appropriate options get passed in with "$@".
This time we use the ‘-a’ option which tells compadd that any arguments are array name,
not a list of completions. This is more efficient; compadd only needs to expand the array
internally instead of the shell passing a potentially huge list to the builtin.

Handling extra bits on a completion

‘Extra bits’ on a completion could be anything; common examples include an extra value for a
comma-separated list (the _values functions is for this), or some kind of modifier applied to
the completion you have already. We’ve already seen an example, in fact, since the principle
of handling the directory and basename parts of a file is very similar. The phrase ‘extra
bits’ may already alert you to the fact that we are heading towards the deeper recesses of
completion.

Anyway, here’s how we tack a revision or change number onto the end of a file.

I’ll stick with revisions: ‘filename#revision’, where revision is a number. For the full
sophistication, there are three steps to this. First, make it easy for the user to add ‘#’ to
an existing filename; second, recognise that a ‘#’ is already there so that revisions need to
be completed; third, find out the actual revisions which can be completed. As a revision
is just a number, you might think completing it was a bit pointless. However, given the
sophistication of zsh’s completion system there’s actually one very good reason — we can
supply a description with the revisions, so that the user is given information about the
revisions and can pick the right one without running some external command to find out.
There was the same sort of rationale behind the ‘-d’ option to p4 diff; there was just one
letter to type, but zsh was able to generate extra information to describe the possibilities, so
it wasn’t just laziness.

First part: make it easy for the user to add the ‘#’. This actually depends on a new feature
in version 4.1 of zsh; in 4.0 you couldn’t play the trick we need or grabbing the keyboard
input after a completion was finished unless you specified a particular suffix to add to the
completion (such as the ‘/’ after a directory — this is historically where this feature came
from).

6.8. TUTORIAL 307

The method is to add an extra argument everywhere we complete a file name. For example,
change the compadd in _perforce_depot_files to:

compadd "$@" -R _perforce_file_suffix -a files

where the option argument specifies a function:

_perforce_file_suffix() {
[[$1 = 1]] || return

if [[$LBUFFER[-1] = ’ ’]]; then
if [[$KEYS = ’#’]]; then

Suffix removal with an added backslash
LBUFFER="$LBUFFER[1,-2]\\"

elif [[$KEYS = (*[^[:print:]]*|[[:blank:]\;\&\|@])]]; then
Normal suffix removal
LBUFFER="$LBUFFER[1,-2]"

fi
fi

}

This has been simplified, too; I’ve ignored revision ranges in the form file#rev1,rev2.
However, I’ve handled changes (‘@’ following a filename) as well as revisions. You’ll see this
function looks much more like a zle widget rather than a completion widget — which is
exactly what it is; it’s not called as part of the completion system at all. After the specified
completion, zle reads in the next keystroke, which is stored in $KEYS, and calls this function
as a zle widget. This means it can manipulate the line buffer; we only need to look at what
is at the left of the cursor, stored in $LBUFFER.

The function is called with the length of the suffix added to the function. In this case, it’s
just a space — we’ve finshed a normal completion, so the system has automatically added a
space to what’s on the command line. We therefore check we’ve just got one single character
in the suffix, to avoid getting confused.

Next, we look at what’s immediately left of the cursor, which is the last character in
$LBUFFER, i.e. $LBUFFER[-1], to make sure this is a space.

If everything looks OK, we consider the keys typed and decide whether to modify the line.
You may already have noticed that in some cases zsh automatically removes that space by
itself; for example, if you hit return — or any other non-printing character — or if it’s a
character that terminates a command such as ‘&’ or ‘;’. We emulate that behaviour — most
of the second test is simply to do that. The only differences from normal are if the key typed
was ‘@’ or ‘#’.

The ‘@’ is simple — we just remove the last character, the same as we do for the other
characters. For ‘#’, however, we also add a backslash to the command line before the ‘#’.
That’s because ‘#’ is a special character with extended globbing, and the completion system
generally runs with extended globbing switched on. Adding the backslash means the user
doesn’t have to; it’s never harmful.

To show the next effect, suppose we complete a file name:

p4 diff fil<TAB>

308 CHAPTER 6. COMPLETION, OLD AND NEW

to get:

p4 diff filename _

where ‘_’ shows the cursor position, and then typed ‘#’; we would get:

p4 diff filename\#

with the cursor right at the end.

So far so good. For the second step, we need to modify _perforce_files to spot that there
is a ‘#’ on the line before the cursor, and to call the revision code. To do this we add an extra
branch at the start of the ‘if’ in _perforce_files — at the start, because any ‘#’ before the
cursor forces us to look at revisions, so this takes precedence over the other choices. When
this is added, the code will look like:

if [[-prefix *\#]]; then
_perforce_revisions

elif [[$PREFIX = //*]]; then
as before.

In fact, that -prefix test is just a fancy way of saying the same thing as the ‘[[$PREFIX =

*\#]]’ and if I wasn’t so hopelessly inconsistent I would have written both tests the same.

So now the third step: write _perforce_revisions to complete revisions numbers with
the all-important descriptions.

_perforce_revisions() {
local rline match mbegin mend pfx
local -a rl

pfx=${${(Q)PREFIX}%%\#*}
compset -P ’*\#’

Numerical revision numbers, possibly with text.
if [[-z $PREFIX || $PREFIX = <->]]; then

always allowed (same as none)
rl=($rl 0)
_call_program filelog p4 filelog \$pfx 2>/dev/null |

while read rline; do
if [[$rline = (#b)’... #’(<->)*\’(*)\’]]; then

rl=($l "${match[1]}:${match[2]}")
fi

done
fi
Non-numerical (special) revision names.
if [[-z $PREFIX || $PREFIX != <->]]; then

rl=($rl ’head:head revision’ ’none:empty revision’
’have:current synced revision’)

fi
_describe -t revisions ’revision’ rl

}

6.9. WRITING NEW COMPLETION FUNCTIONS AND WIDGETS 309

Thankfully, a lot of the structure of this is already familiar. We extract the existing prefix
before the ‘#’, being careful about quoting — this is the filename for which we want a list of
revisions. We ignore everything in the command argument before the ‘#’. After generating
the completions, we use the _describe function to add them with the tag ‘revisions’ and
the description ‘revision’.

The main new part is the loop over output from ‘p4 filelog’, which is the Perforce
command that tells us about the revisions of a file. We extract the revision number and the
comment from the line using backreferences (see previous chapter) and weld them together
with a colon so that _describe will be able to separate the completion from its description.
Then we add a few special non-numerical revisions which Perforce allows, and pass this
list down to _describe. The extra if’s are a very minor optimization to check if we are
completing a numerical or non-numerical revision.

6.8.4 The rest

It’s obvious that this tutorial could expand in any number of directions, but as it’s really just
to point out some possibilities and directions, that would would miss the point. So the rest
of this chapter takes the completion system apart and looks at the individual components. It
should at least now be a bit more obvious where each component fits.

6.9 Writing new completion functions and widgets

Now down to the nitty gritty. When I first talked about new completion, I explained that
the functions beginning ‘_’ were the core of the system. For the remainder of the chapter,
I’ll explain what goes in them in more detail than I did in the tutorial. However, I’ll try to
do it in such a way that you don’t need to know every single detail. The trade off is that
if you just use the simplest way of writing functions, many of the mechanisms I told you
about above, particularly those involving styles and tags, won’t work. For example, much
of the code that helps with smart formatting of completion listings is buried in the function
‘_description’; if you don’t know how to call that — which is often done indirectly — then
your own completions won’t appear in the same format as the pre-defined ones.

The easiest way of getting round that is to take a dual approach: read the following as
far as you need, but also try to find the existing completion that comes nearest to meeting
your needs, then copy that and change it. For example, here’s a function that completes
files ending in .gz (the supplied function which does this has now changed), which are
files compressed by the gzip program, for use by the corresponding program that does
decompression, gunzip — hence the file and function are called _gunzip:

#compdef gunzip zcat

local expl

_description files expl ’compressed file’
_files "$expl[@]" -g ’*.[gG][zZ]’

You can probably see straight away that if you want to design your own completion function
for a command which takes, say, files ending in .exe, you need to change three things: the
line at the top, which gives the names of programmes whose arguments are to be completed

310 CHAPTER 6. COMPLETION, OLD AND NEW

here, the description ‘compressed file’ to some appropriate string, and the argument
following the -g to something like ’*.exe’ — any globbing pattern should work, just
remember to quote it, since it shouldn’t be expanded until the inside of the function _files.
Once you’ve installed that somewhere in your $fpath and restarted the shell, everything
should work, probably following a longer pause than usual as the completion system has to
rescan every completion function when it finds there is a new one.

What you might miss is that the first argument to _description, ‘files’, is the all-
important mystical tag for the type of completion. In this case, you would probably want
to keep it. Indeed, the _files function is used for all file completions of any type, and knows
all about the other tags — globbed-files, directories, all-files — so virtually all
your work’s done for you here.

If you’re adding your own functions, you will need your own functions directory. This was
described earlier in this guide, but just to remind you: all you need to do is create a directory
and add it to $fpath in either .zshenv (which a lot of people use) or .zshrc (which some
sticklers insist on, since it doesn’t affect non-interactive shells):

fpath=(~/funcs $fpath)

It’s best to put it before the standard completion directories, since then you can override a
standard completion function simply by copying it into your own directory; that copy will
then be found first and used. This is a perfectly reasonable thing to do with any completion
function — although if you find you need to tweak one of the larger standard functions, that’s
probably better done with styles, and you should suggest this to us.

6.9.1 Loading completion functions: compdef

The first thing to understand is that top line of _gunzip. The ‘#compdef’ tag is what tells the
system when it checks through all files beginning with ‘_’ that this is a function implementing
a completion. Files which don’t directly implement completions, but are needed by the
system, instead have the single word ‘#autoload’ at that point. All files are only loaded
when needed, using the usual autoloading system, to keep memory usage down.

You can supply various options to the ‘#compdef’ tag; these are listed in the
‘Initialization’ section of the zshcompsys(1) manual page or ‘Completion System’
info node. The most useful are -k and -K, which allow you to define a completion command
and binding rather than a function used in a particular context. There are also -p and -P
which tell the system that what follows is a pattern rather than a literal command name;
any command matching the pattern will use that completion function, unless you used -P
and a normal (non-pattern) completion function for the name was found first.

For normal #compdef entries, however, what comes next is a list of command names — or
rather a list of contexts, since the form ‘-context-’ can be used here. For example, the
function _default has the line ‘#compdef -default-’. You can give as many words as
you like and that completion will be used for each. Note that contexts in the colon-separated
form can’t appear here, just command names or the special contexts named with hyphens.

The system does its work by using a function compdef; it gets as arguments more or
less what you see, except that the function name is passed as the first argument. Thus
the _gunzip completion is loaded by ‘compdef _gunzip gunzip zcat’, _default by
‘compdef _default -default-’, and so on. This simply records the name of the function
handling the context in the $_comps associative array which you’ve already met. You can

6.9. WRITING NEW COMPLETION FUNCTIONS AND WIDGETS 311

make extra commands/contexts be handled by an existing completion function in this way,
too; this is generally more convenient than copying and modifying the function. Just add
‘compdef <_function> <command-to-handle>’ to .zshrc after the call to compinit.

It’s also high time I mentioned an easy way of using the completion already defined for
an existing function: ‘compdef newcmd=oldcmd’ tells the completion system that the
completion arguments for ‘newcmd’ are to be the same as the ones already defined for
‘oldcmd’; it will complain if nothing is known about completing for oldcmd. This works
recursively; you can now define completions in terms of that for newcmd. If you happen to
know the name of the completion function called, you can use that; the following three lines
are broadly equivalent:

compdef $_comps[typeset] foo
compdef _vars_eq foo
compdef foo=typeset

since the completion for typeset is stored in $_comps along with all the others, and this
happens to resolve to _vars_eq; but the last example is easier and safer and the intention
more obvious. The manual refers to typeset here as a ‘service’ for foo (guess what the shell
stores in the associative array element $_services[foo]).

There’s actually more to services: when a function is called, the parameter $service is set.
Usually this will just be the name of the command being completed for, or one of the special
contexts like ‘-math-’. However, in a case like the last compdef in the list above, the service
will be typeset even though the command name may be ‘foo’.

This is also used in ‘#compdef’ lines. The top of ‘_gzip’ contains:

#compdef gzip gunzip gzcat=gunzip

which says that the file provides two services, for gzip and gunzip, and also handles
completion for gzcat, but with the service name gunzip. Only a few of the completion
functions actually care what service they provide (you can check, obviously, by looking to see
if they refer to $service); but you may have uses for this. Note that if you define services
with a compdef command, all the arguments must be in the foo=bar form; the mixed form
is only useful after a #compdef inside completion functions.

6.9.2 Adding a set of completions: compadd

Once you know how to make a new completion function, there is only one other basic
command you need to know before you can create your own completions yourself. This is
the builtin compadd. It is at the heart of the completions system; all its arguments, after the
options, are taken as possible completions. This is the list from which the system selects the
possibilities that match what you have already typed. Here’s a very basic example which you
can type or paste at the command line:

_foo() { compadd Yan Tan Tethera; }
compdef _foo foo

Now type ‘foo ’ and experiment with completions after it. If only it were all that simple.

There are a whole list of options to compadd, and you will have to look in the
zshcompwid(1) manual page or the ‘Completion Widgets’ info node for all of them.

312 CHAPTER 6. COMPLETION, OLD AND NEW

I’ve already mentioned -M and (long ago) -f. Here are other interesting ones. -X
<description> provides a description — this is used by the format style to pass
descriptions, and if you use the normal tags system you shouldn’t pass it directly; I’ll explain
this later.

-P <prefix> and -S <suffix> allow you to specify bits which are not treated as part
of the completion, but appear on the line none the less. In fact, they do two different
things: if the prefix or suffix is already there, it is ignored, and if it isn’t, it is inserted.
There are also corresponding hidden and ignored prefixes, necessary for the full power of the
completion system, but you will need to read the manual for the full story. The -q option is
useful with -S; it enables auto-remove behaviour for the suffix you gave, just like / with the
AUTO_REMOVE_SLASH option when completing filenames.

-J <group> is the way group names are specified, used by the group-name tag; there is
also -V <group>, but the group here is not sorted (and is distinct from any group of the
same name passed to -J). -Q tells the completion code not to quote the words — this is
useful where you need to have unquoted metacharacters in the final completion. It is also
useful when you are completion something where the result isn’t going to be expanded by
the shell.

-U tells compadd to use the list of completions even if they don’t match what’s on the
command line; you will need this if your completion function modifies the prefix or suffix
so that they no longer fit what’s already there. If you use this, you might consider turning on
menu completion (using compstate[insert]=menu), since it might otherwise be difficult
to select the appropriate completion.

Finally, note the -F and -W options which I describe below for _files actually are options
to compadd too.

6.9.3 Functions for generating filenames, etc.

However, for most types of completion the possibilities will not be a simple list of things you
already know, so that you need to have some way of generating the required values. In this
section, I will describe some of the existing functions you can call to do the hard work. In
the next section I will show how to retrieve information from some special parameters made
available by the zsh/parameter module.

Files etc.: the function _files

You have already seen _files in action. Calling this with no arguments simply adds all
possible files as completions, taking account of the word on the command line to establish
directories and so on.

For more specific use, you can give it various options: ‘-/’ means complete directories, and, as
you saw, ‘-g "<pattern>"’ gives a filename generation pattern to produce matching files.

A couple of other options, which can be combined with the ones above, are worthy of mention.
If you use ‘-W <dir>’, then completion takes place under directory <dir> rather than in the
current directory — it has no effect if you are using an absolute path. Here, ‘<dir>’ can also
be a set of directories separated by spaces or, most usefully since it avoids any problems with
quoting, the name of an array variable which contains the list of possible directories. This is
essentially how completion for cd with the $cdpath array works. So if you have a program

6.9. WRITING NEW COMPLETION FUNCTIONS AND WIDGETS 313

that looks for files with the suffix ‘.mph’, first in the current directory, then in a standard
directory, say, /usr/local/oomph’, you can do this:

local oomph_dirs
oomph_dirs=(. /usr/local/oomph)
_files -W oomph_dirs -g ’*.mph’

— note there is no ‘$’ before the variable $oomph_dirs here, since it should only be expanded
deep inside _files.

The system that implements $fignore and the ignored-patterns style can be
intercepted, if you need to, with the option ‘-F "<pat>"’; ‘<pat>’ is an array of patterns
to ignore, in the usual completion format, in other words the name of a real shell array, or
a list of values inside parentheses. If you make sure all the tags stuff is handled properly,
ignored-patterns will work automatically, however, and in addition extended globbing
allows you to specify patterns with exclusion directly, so you probably won’t use this feature
directly unless you’re in one of your superhero moods.

In addition, _files also takes many of the standard completion options which apply to
compadd, for convenience.

Actually, the function _path_files is the real engine room of the system. The advantage of
using _files is that it prepares all the tags for you, deciding whether you want directories to
be completed as well as the globbed files, and so on. If you have particularly specific needs you
can use _path_files directly, but you won’t get the automatic fallback one directories
and all-files. Because it doesn’t handle the tags, _path_files is too lowly to do the
usual tricks with label loops, i.e. pretending ‘dog:-setter’ is a tag ‘dog-setter’ with the
usual completions for ‘dog’; likewise, it doesn’t implement the file-patterns style. So you
need to know what you’re doing when you use it directly.

Parameters and options

These can be completed by calls to the _parameters and _options functions, respectively.
Both set up their own tags, and _options uses the matching control mechanism described
above to allow options to be given in all the available forms. As with _files, they will also
pass standard compadd options down to that function. Furthermore, they are all at a high
enough level to handle tags with labels: to translate that into English, you can use them
directly without any of the preprocessing described later on which are necessary to make
sure the styles dealing with tags are respected.

For more detailed control with options, the functions _set_options and _unset_options
behave like _options, but the possible completions are limited to options which are set or
unset, respectively. However, it’s not that simple: the completion system itself alters the
options, and you need to enable some code near the top of _main_complete (it’s clearly
marked) to remember the options which were set or unset when completion started. A straw
poll based on a sample of two zsh developers revealed that in any case many people don’t like
the completion system to second guess the options they want to set or unset in this way, so
it’s probably better just to stick to _options.

314 CHAPTER 6. COMPLETION, OLD AND NEW

Miscellaneous

There are also many other completion functions adding matches of a certain type. These
can be used in the same way as _parameters and _options; in other words they do all
the work needed for tags themselves and can be given options for compadd as arguments.
Normally, these functions are named directly after the type of matches they generate, like
_users, _groups, _hosts, _pids, _jobs, etc.

6.9.4 The zsh/parameter module

The new completion system automatically makes the zsh/parameter module available for
use. This provides an easy way of generating arguments for compadd. To get the maximum
use out of this, you should be familiar with zsh’s rather self-willed syntax for extracting
bits out of associative arrays. Note in particular ${(k)assoc}, which expands to a list of
the keys of the associative array $assoc, ${(v)assoc}, which expands to just its values
(actually, so does $assoc on its own), and ${(kv)assoc} which produces key/value pairs.
For all intents and purposes, the keys and values, or the pairs of them, are in a random order,
but as the completion system does it’s own sorting that shouldn’t be a problem. Mostly, the
important parts for completion are in the keys, i.e. to add all aliases as possible completions,
you need ‘compadd ${(k)aliases}’.

Here’s a list of associative and ordinary arrays provided; for more information on the values
of the associative arrays, which could be useful in some cases, consult the section The
zsh/parameter Module in the zshmodules(1) manual page or the corresponding info
node. First, the associative arrays.

$aliases, $dis_aliases, $galiases The keys of these arrays give ordinary aliases,
disabled ordinary aliases for those where you have done disable -a <alias> to turn
them off temporarily, and global aliases as defined with alias -g.

$builtins, $dis_builtins The keys give active and disabled shell builtin commands.

$commands The keys are all external commands stored in the shells internal tables; it does
this both for the purposes of fast completion, and to avoid having to search each time
a command is executed. It’s possible that a command is missing or incorrectly stored
if the contents of your $path directories has changed since the shell last updated its
tables; the rehash command fixes it.

$functions, $dis_functions The keys are active and disabled shell functions.

$history Here, the values are complete lines stored in the internal history. The keys are
the numbers of the history line; it’s an associative, rather than an ordinary, array
because they don’t necessarily start at line 1. However, see the historywords ordinary
array below.

$jobtexts, $jobdirs, $jobstates These give you information about jobs; the keys are
the job numbers, as presented by the jobs command, and the values give you the other
information from jobs: $jobtexts tells you what the job is executing, $jobdirs its
working directory, and $jobstates its state, where the bit before the colon is the most
useful as it refers to the whole job. The remainder describes the state of individual
processes in the job.

$modules The keys give the names of modules which are currently available to the shell,
i.e. loaded or to be autoloaded, essentially the same principle as with functions.

6.9. WRITING NEW COMPLETION FUNCTIONS AND WIDGETS 315

$nameddirs If you have named directories, either explicitly (e.g. assigning ‘foo=/mydir’
and using ‘~foo’) or via the AUTO_NAME_DIRS option, the keys of this associative array
give the names and the values the expanded directories.

$options, $parameters The keys give shell options and parameters, and are used by the
functions _options and _parameters for completion, so you will mostly not need to
refer to them directly.

$userdirs The keys give all the users on the system. The values give the corresponding
home directory, so ‘${userdirs[juser]}’ is equivalent to having ~juser expanded
and is thus not all that interesting, except that by doing it this way you can test whether
the expansion exists without causing an error.

Now here are the ordinary arrays, which you would therefore refer to simply as
${reswords} etc.

$dirstack This contains your directory stack, what you see with ‘dirs -v’. Note, however
that the current directory, which appears as number 0 with that command, doesn’t
appear in dirstack. Of course it’s easy to add it to a completion if you want.

$funcstack This is the call stack of functions, i.e. all the functions which are active at
the time the array was referenced. ^Xh uses this to display which functions have been
called for completion.

$historywords Unlike $history, this contains just the individual words of the shell’s
command line history, and is therefore likely to be more useful for completion purposes.

$reswords, $dis_reswords The active
and disabled reserved words (effectively syntactically special commands) understood
by the shell.

Other ways of getting at information

Since the arguments to compadd undergo all the usual shell expansions, it’s easy to get words
from other sources for completion, and you can look in the existing completion functions
for many examples. A good understanding of zsh’s parameter and command expansion
mechanisms and a strong stomach will be useful here.

For example, here is the expansion used by the _limits function to retrieve the names of
resource limits from the limit command itself:

print ${${(f)"$(limit)"}%% *}

which you can test does the right thing. Here’s a translation: "$(limit)" calls the command
in a quoted context, which means you get the output as if it were a single file (just type
‘limit’ to see what that is). ${(f)...} splits this into an array (it is now outside quotes,
so splitting will generate an array) with one element per line. Finally, ${...%% *} removes
the trailing end of each array element from the first piece of whitespace on, so that ‘cputime
unlimited’ is reduced to ‘cputime’, and so on. Type ‘limit ^D’, and you will see the
practical upshot of this.

That’s by no means the most complicated example. The nested expansion facility is used
throughout the completion functions, which adds to brevity but subtracts considerably from
readability. It will repay further study, however.

316 CHAPTER 6. COMPLETION, OLD AND NEW

6.9.5 Special completion parameters and compset

Up to now, I’ve assumed that at the start of your completion function you already know
what to complete. In more complicated cases that won’t be the case: different things may
need completing in different arguments of a command, or even some part of a word may
need to be handled differently from another part, or you need to look for a word following
a particular option. I will first describe some of the lower level facilities which allow you
to manipulate this; see the manual page zshcompwid(1) or the info node Completion
Widgets for the details of these. Later, I will show how you can actually skip a lot of this for
ordinary commands with options and arguments by using such functions as _arguments,
where you simply specify what arguments and options the function takes and what sort of
completion they need.

The heart of this is the special parameters made available in completion for testing what
has already been typed. It doesn’t matter if there are parameters of that name outside
the completion system; they will be safely hidden, the special values used, and the original
values restored when completion is over.

$words is an array corresponding to the words on the command line — where by a ‘word’ I
mean as always a single argument to the command, which may include quoted whitespace.
$CURRENT is the index into that array of the current word. Note that to avoid confusion the
ksh-like array behaviour is explicitly turned off in _main_complete, so the command itself
is $words[1], and so on.

The word being completed is treated specially. The reason is that you may only want to
complete some of it. An obvious example is a file with a path: if you are completing at
‘foo/bar’, you don’t want to have to check the entire file system; you want the directory foo
to be fixed, and completion just for files in that. There are actually two parts to this. First,
when completion is entered, $PREFIX and $SUFFIX give you the part of the current word
before the cursor, and the remainder, respectively. It’s done like this to make it possible to
write functions for completing inside a word, not just at the end. The simplest possible way
of completing a file is then to find everything that matches $PREFIX*$SUFFIX.

But there’s more to it than that: you need to separate off the directory, hence the
second part. The parameters $IPREFIX and $ISUFFIX contain a part of the string which
will be ignored for completion. It’s up to you to decide what that is, then to move
the bit you want to be ignored from $PREFIX to $IPREFIX (that’s the usual case) or
from $SUFFIX to $ISUFFIX, making sure that the word so far typed is still given by
$IPREFIX$PREFIX$SUFFIX$ISUFFIX. Thus in completing foo/bar, you would strip foo/
from the start of $PREFIX and tack it onto the end of $IPREFIX — after recording the fact
that you need to move to directory foo, of course. Then you generate files in foo, and the
completion system will happily accept barrack or barbarous as completions because it
doesn’t care about the foo any more.

Actually, this is already done by the the _files and _path_files functions for filename
completion. Also, you can get some help using the compset builtin command. In this case,
the incantation is

if compset -P "*/"; then
do whatever you need to with the leading
string up to / stripped off

else
no prefix stripped, do whatever’s necessary in this case

fi

6.9. WRITING NEW COMPLETION FUNCTIONS AND WIDGETS 317

In other words, any initial match of the pattern ‘*/’ in $PREFIX is removed and transferred
to the end of $IPREFIX; the command status tells you whether this was done. Note that it
is the longest possible such match, so if there were multiple slashes, all will be moved into
$IPREFIX. You can control this by putting a number <N> between the -P and the pattern,
which says to move only up to the <N>th such match; here, that would be a pattern with
exactly <N> slashes. Note that -P stands for prefix, not pattern; there is a corresponding -S
option for the suffix. See the manual for other uses of compset; these are probably the most
frequent.

If you want to make the test made by compset, but without the side effect of changing the
prefixes and suffixes, there are tests like this:

if [[-prefix */]]; then
same as with ‘compset -P "*/"’, except prefixes were left alone.

fi

These have the advantage of looking like all the standard tests understood by the shell.

There are three other parameters special to completion. The $QIPREFIX and $QISUFFIX
are a special prefix and suffix used when you are dividing up a quoted word — for example,
in ‘zsh -c "echo hi"’, the word "echo hi" is going to be used as a command line in its
own right, so if you want to do completion there, you need to have it split up. You can use
‘compset -q’ to split a word in this fashion.

There is also an associative array $compstate, which allows you to inspect and change
the state of many internal aspects of completion, such as use of menus, context, number of
matches, and so on. Again, consult the manual for more detail. Many of the standard styles
work by altering elements of $compstate.

Finally, in addition to the parameters special to completion, you can examine (but not alter)
any of the parameters which appear in all editing widgets: $BUFFER, the contents of the
current editing line; $LBUFFER, the part of that before the cursor; $RBUFFER, the rest;
$CURSOR, the index of the cursor into $BUFFER (with the first character at zero, in this
case — or you can think of the zero as being the point before the first character, which
is where insertion would take place with the cursor on the first character); $WIDGET and
$LASTWIDGET, the names of the current and last editing or completion widget; $KEYS,
the keys typed to invoke the current widget; $NUMERIC, any numeric prefix given, unset
if there is none, and a few other probably less useful values. These are described in the
zshzle(1) manual page and the Zsh Line Editor info node. In particular, I already
mentioned $NUMERIC as of possible use in various styles, and it is used by the completers
which understand a ‘numeric’ value in their relevant styles; the $WIDGET and $KEYS
parameters are useful for deciding between different behaviours based on what the widget
is called (as in _history_complete_word), or which keys are used to invoke it (as in
_bash_completions).

Here are a few examples of using special parameters and compset.

One of the shortest standard completions is this, _precommand:

#compdef - nohup nice eval time rusage noglob nocorrect exec

shift words
((CURRENT--))

_normal

318 CHAPTER 6. COMPLETION, OLD AND NEW

It applies for all the standard commands which do nothing but evaluate their remaining
arguments as a command, with some change of state, e.g. ignoring a certain signal (nohup)
or altering the priority (nice). All the completion system does here is shift the first word
off the end of the $words array, decrement the index of the current word into $words, and
call _normal. This is the function called when completion occurs not in one of the special
-context-s, in other words when an argument to an ordinary command is being completed.
It will look at the new command word $words[1], which was previously the first argument
to nohup or whatever, and start completion again based on that, or even complete that word
itself as a command if necessary. The net effect is that the first word is ignored completely,
as required.

Here’s just an edited chunk of the file _user_at_host; as its name suggests, it completes
words of the form <user>@<host>, and it’s used anywhere the user-hosts style, described
above, is appropriate:

if [[-prefix 1 *@]]; then
local user=${PREFIX%%@*}

compset -P 1 ’*@’

complete the host for which we want the user
else

no @, so complete the user
fi

We test to see if there is already a ‘<user>@’ part. If there is, we extract the user with an
ordinary parameter substitution (so ordinary even other shells could do it). Then we strip
off that from the bit to be completed with compset; we already know it matches the prefix,
so we don’t need to test the return value. Then we just do normal hostname completion on
what remains — except that the user-hosts style might be able to give us a clue as to which
hosts have such a user. If the original test failed, then we simply complete what’s there as a
user.

Finally, here is essentially what the function _most_recent_file uses to extract the
$NUMERICth (default first) most recently modified file.

local file
file=($~PREFIX*$~SUFFIX(om[${NUMERIC:-1}]N))
(($#file)) && compadd -U -i "$IPREFIX" -I "$ISUFFIX" -f -Q - $file

Instead of doing it with mirrors, this uses globbing qualifiers to extract the required file; om
specifies ordering by modification time, and the expression in square brackets selects the
single match we’re after. The N turns on NULL_GLOB, so $file is empty if there are no
matches, and the parameter expansions with ‘$~’ force patterns in $PREFIX and $SUFFIX to
be available for expansion (a little extra feature I use, although ordinary completion would
work without).

Most of the compadd command is bookkeeping to make sure the parts of the prefix and suffix
we’ve already removed, if there are any, get passed on, but the reason for that deserves a
mention, since normally this is handled automatically. The difference here is that -U usually
replaces absolutely everything that was in the word before, so if you need to keep it you have
to pass it back to compadd. For example, suppose you were in a context where you were
completing after ‘file=... and you had told the completion system that everything up to
‘file=’ was not to count and not to be shown as part of the completion. You would want

6.9. WRITING NEW COMPLETION FUNCTIONS AND WIDGETS 319

to keep that when the word was put back on the command line. However, ‘-U’ would delete
that too. Hence the ‘-i "$IPREFIX"’ to make sure it’s retained. The same argument goes
for the ignored suffix. However, there’s currently no way of getting _most_recent_file to
work on only a part of a string, so this explanation really only applies when you call it from
another completion function, not directly from the command line.

6.9.6 Fancier completion: using the tags and styles mechanism

At this point, you should be in a position to construct, although maybe not in the best possible
way, pretty much any completion list you want. Now I need to explain how you make sure
it all fits in with the usual tags and styles system. You will need to pick appropriate tags
for your completions. Although there is no real restriction, it’s probably best to pick one of
the standard tags, some of which are suitably general to cover just about anything: files,
options, values, etc. There is a list in the completion system manual entry. Remember
that the main use for tags is to choose what happens when more than one tag can be
completed in the same place. Finding such things that can’t be separated using the standard
tag names is a good reason for inventing some new ones; you don’t have to do anything
special if the tag names are new, just make sure they’re documented for anyone using the
completion function.

How to call functions so that ‘It Just Works’

The simplest way of making your own completion function recognize tags is to use the
_description function, which is usually called with three arguments: the name of the
tag you’re completing for, the name of a variable which will become an array containing
arguments to pass to compadd, and the full description. Then you have to make sure that
array gets passed down to compadd, or to any of the higher-level completion functions which
will pass the arguments on to compadd. For example,

local expl
_description files expl ’my special files’
_files "$expl[@]"

This sets the files tag; _description sets $expl to pass on the description, and maybe
other things such as a group name for the tag, in the appropriate format; we pass this down
to _files which will use it for calling compadd. Generally, you will call _description for
each time you call compadd or something that in turn calls compadd.

The _description function calls another function _setup to do much of the setting up of
styles for the particular tag. Mostly, _setup is buried deeply enough that you don’t need to
worry about it yourself. Sometimes you can’t do completion, and just want to print a message
unconditionaly to say so, irrespective of tags etc.; the function _message does this, taking
the message as its sole argument.

There are two levels above that; these implement the tags mechanism in full. In
_description, all that happens is that the user is informed what tag is coming up; there’s
no check what preferences the user has for tags (the first level), nor whether he wants tags
to be split up using the labelling mechanism, e.g. picking out certain sorts of files using the
labelled tag ‘file:-myfiles’ to get the final tag ‘file-myfiles’ (the second level).

To get this for simple cases you use the function _wanted. Unlike _description, it’s an
interface to the function that generates completion as well as a handler for tags — that’s so

320 CHAPTER 6. COMPLETION, OLD AND NEW

it can loop over the generated tags, checking the labels. The call above would now look like
this:

_wanted files expl ’my special files’ _files

Note that you now don’t pass the "$expl[@]", which hasn’t even been set yet; _wanted will
generate the string using the parameter name you say (here ‘expl’, as usual), and assume
that the function generating the completions can use the result passed down to it. This is
true of pretty much anything you are likely to want to use.

Note also the fact you need to pass ‘_files’, i.e. the function generating the completion. You
can put pretty much any command line which generates completions here, down to a simple
‘compadd’ expression. The reason it has to be here is the tag labelling business: _wanted
could check whether the tag you specify, ‘files’, is wanted by the user and then return
control to you, but it wouldn’t be able to split up and loop over labelled tags set in this case
for the file-patterns style and in other case by the tag-order style.

Unless you’re really going into the bowels, _wanted is probably the lowest level you will
want to use. I’d suggest you remember that one, and only go back and look at the other stuff
if you need to do something more complicated.

If your function handles multiple tags, you need to loop over the different tags to find out
which sort the tag order wants next. For this, you first need to tell the system which tags are
coming up, using the _tags function with a list. Then you need to to test whether each tag
in turn actually needs to be completed, and go on doing this until you run out of tags which
need completions performing; the _tags function without arguments does this. Finally, you
need to use _requested, which works a bit like _wanted but is made to fit inside the loop
we are using. The end result looks like this:

local expl ret=1
_tags foo bar rod
while _tags; do

_requested foo expl "This is the description for tag foo" \
compadd all foos completions && ret=0

_requested bar expl "This is the description for tag bar" \
compadd all bars completions && ret=0

_requested rod expl "This is the description for tag rod" \
compadd all rods completions && ret=0

((ret)) || return 0 # leave if matches were generated
done

If you do include the completion function line as arguments, the loop over labels for the tag
you specify is automatically handled as with _wanted. It may be a little confusing that both
_requested and _wanted exist: the specific difference is that with _requested you call
the _tags function yourself, whereas _wanted assumes the only valid tag is its argument
and acts accordingly, and can be used only for simple, ‘one-shot’ completions.

With _requested, unlike _wanted, you can separate out the arguments to the completion
generator itself — here compadd — into a different statement, remembering the
"$expl[@]" argument in that case. You can miss out the second and third arguments for
_requested in this way. This time the loop which generates labels for tags is not performed,
and you have to arrange it yourself, with the usual trade off of greater complexity for greater
flexibility. To do this, there are two other functions: _all_labels and _next_label. The

6.9. WRITING NEW COMPLETION FUNCTIONS AND WIDGETS 321

simpler case is with _all_labels, which just implements the loop over the labels using the
same arguments as _wanted:

_requested values &&
_all_labels values expl ’values for my special things’ \

compadd alpha bravo charlie delta echo foxtrot.

In case you haven’t understood (and it’s quite complicated, I’m afraid): the _requested looks
at whether the tag you use has been asked for by the user. Having found out that it is, the
_all_labels function calls the command compadd which actually adds the completions,
but it does it in such a way as to take account of labelled tags — you might have both a plain
‘values’ tag and ‘values:-special’ labelled tag, and _all_labels is needed to decide
which is being used here. This last example is actually exactly what _requested does when
given the compadd as argument, so it’s only really useful when there is some code between
the _requested and the _all_labels, for example to compute the strings to complete.

The most complicated case you are likely to come across is when inside the part of the tags
loop which handles a particular tag (i.e. the _requested lines in the example above),
you actually want to add more than one possible sort of completion. Then _all_labels
is no longer enough, because completion needs to sort out the different things which are
being added. This can also happen when there is only one valid tag, but that has multiple
completions so that _wanted isn’t any use. In this case you need to use _next_label inside
a loop, which, as its names suggests, fixes up labels for the current tag and stops when it’s
found the right one. Here’s a stripped down example which handles completion of messages
from the MH mail handling system; you’ll find it complete inside the function _mh.

_tags sequences
while _tags; do

while _next_label sequences expl sequence; do
compadd "$expl[@]" $(mark $foldnam 2>/dev/null |

awk -F: ’{ print $1 }’) && ret=0
compadd "$expl[@]" reply next cur prev \

first last all unseen && ret=0
_files "$expl[@]" -W folddir -g ’<->’ && ret=0

done
((ret)) || return 0

done

Here’s what’s going on. The _tags call works just as it did in the first example I showed for
that, deciding whether the tag in question, sequences, has been asked for; the tag name
comes because MH allows you to define sets of messages called exactly ‘sequences’. The
first ‘while’ selects all values from tag-order where the ‘sequences’ tag appears, with or
without a label. The second ‘while’ loop then sorts out any occurrences of labelled sequences
to be presented to the user at the same time, i.e. given in the same element of the tag-order
value array. The first compadd extracts from the folder (MH’s name for a directory) identified
by the function the names of any sequences you have defined; the second adds a lot of
standard sequences — although strictly speaking unseen isn’t a standard sequence since
you can name it yourself in ~/.mh_profile. Finally, the third adds files in the folder itself
whose names are just digits, which is how MH stores messages. The handling of return
makes sure it stops as soon as you have matches for one particular element of tag-order;
if you put it in the inner loop, you would just have the first of those sets that happened to
be generated, while here, if you specify that all types of sequence should appear in the same
completion list, they are all correctly collected.

322 CHAPTER 6. COMPLETION, OLD AND NEW

Why, in that last example, is there no call to _requested, now I’ve gone to the trouble of
explaining what that does? The answer is that there is only one tag; _tags can decide if we
want it at all, and after that the tag is known, so we don’t need _requested to find that
information out for us. It’s only needed if there is more than one type of match — indeed,
that’s why we introduced it, so this is not actually a new complication, although you can be
forgiven for thinking otherwise.

Here’s an example of using that code for sequences. You might decide that you only want
to see named sequences unless there aren’t any, otherwise ordinary messages. You could do
this by setting your styles as follows:

zstyle ’:completion:*’ tag-order sequences:-name sequences:-num
zstyle ’:completion:*:sequences-name’ ignored-patterns ’(|,)<->’
zstyle ’:completion:*:sequences-num’ ignored-patterns ’^<->’

which tries sequences under the labels sequences-name and sequences-num; which
ignore completions which are all digits, and those which are not all digits, respectively. The
slight twiddle in the pattern for sequences-name ignores messages marked for deletion as
well, which have a comma stuck in front of the number (this is configurable, so your version
of MH may be different).

All of _description, _wanted, _requested, _all_labels and _next_label take the
options -J and -V to specify sorted or unsorted listings and menus, and the options -1 and
-2 for removing consecutive duplicates or all duplicates. These are also options to compadd;
the reason for handling them here is that they can be different for each tag, and the function
called will set expl appropriately.

If your requirements are simple enough, you can replace that _tags loop above with
a single function, _alternative. This takes a series of arguments each in the form
‘<tag>:<description>:<action>’, with the first two in the form you now know, and the third
an action. These are essentially the same as actions for the _arguments function, described
below, except that the form ‘->state’, which says that the calling function will handle the
action itself by using the value of the parameter $state, is not available. The most common
forms of action here will be a call to another completion function, maybe with arguments
(e.g. ‘_files -/’), or a simple list in parentheses (e.g. ‘(see saw margery daw)’). Here,
for example, is how the _cd function handles the two cases of local directories (under the
current directory) and directories reached via the $cdpath parameter:

local tmpcdpath
tmpcdpath=(${(@)cdpath:#.})
_alternative \

’local-directories:local directories:_path_files -/’ \
’path-directories:directories in cdpath:

_path_files -W tmpcdpath -/’

The only tricky bit is that $tmpcdpath: it removes the ‘.’ from $cdpath, if it’s present,
so that the current directory is always searched for with the tag ‘local-directories’,
never with ‘path-directories’. Actually, you could argue that it should be treated as
being in ‘path-directories’ when it’s present; but that confuses the issue over what
‘local-directories’ really means, and it is useful to have the distinction.

It’s now an easy exercise to replace the example function I gave for _requested by a call
to _alternative with the arguments to compadd turned into a list in parentheses as the
<action> part of the arguments to _alternative.

6.9. WRITING NEW COMPLETION FUNCTIONS AND WIDGETS 323

How to look up styles

If your completion function gets really sophisticated, you may want it to look up styles to
decide what its behaviour should be. The same advice goes as for tags: only invent a new
style if the old ones don’t seem to cover the use you want to make, since by using contexts you
can always restrict the scope of the style. However, by the same token don’t try to squeeze too
much meaning into one style, which will force the user to narrow the context — it’s always
much easier to set a style for the general context ‘:completion:*’ than to have to worry
about all the circumstances where you need a particular value.

Retrieving values of styles is no harder than defining them, but you will need to know about
the parameter $curcontext, which is what stores the middle part of the context, sans
‘:completion:’ and sans tag. When you need to look something up, you pass this context
to zstyle with ‘:completion:’ stuck in front:

zstyle -b ":completion:${curcontext}:tag" style-name parameter

If the tag is irrelevant, you can leave it empty, but you still need the final colon since there
should always be six in total. In some cases where multiple tags apply it’s useful to have a
:default tag context as a fall back if none of the actual tags yield styles for that context;
hence you should test the style first for the specific tag, then with the default.

Style lookups all have the form just shown; the result for looking up style-name in the
given context will be saved in the parameter (which you should make local, obviously). In
addition, zstyle returns a zero status if the lookup succeeded and non-zero if it failed. The
-t lookup is different from the rest as it only returns a status for a boolean, i.e. returns
status 0 if the value is true, yes, 1 or on, and doesn’t require a parameter name. There is
also a -T, which is identical except that it returns status 0 if the style doesn’t exist, i.e. the
style is taken to default to true.

The other lookup options return the style as a particular type in the parameter with exit
status zero if the lookup succeeded, i.e. a value was found, and non-zero otherwise; -b, -s,
and -a specify boolean (parameter is either yes or no), scalar (parameter is a scalar), and
array (parameter is an array, which may still be a single word, of course), You can retrieve
an associative array with -a as long as the parameter has already been declared as one.

There’s also a convenience option for matching, -m; instead of a parameter this takes a
pattern as the final argument, and returns status zero if and only if the pattern matches
one of the values stored in the style for the given context.

Typical usages are thus:

if zstyle -t ":completion:${curcontext}:" foo; then
do things in a fooish way

else
do things in an unfooish way

fi

or to use the value:

local val
if zstyle -s ":completion:${curcontext}:" foo val; then

use $val to establish how fooish to be

324 CHAPTER 6. COMPLETION, OLD AND NEW

else
be defaultly fooish

fi

6.9.7 Getting the work done for you: handling arguments etc.

The last piece of unfinished completion business is to explain the higher level functions which
can save you time writing completions for commands which behave in a standard way, with
arguments and options. The good news is that all the higher functions here handle tags
and labels internally, so you don’t need to worry about _tags, _wanted, _requested, etc.
There’s one exception: the ‘state’ mechanism to be described, where a function signals you
that you’re in a given state using the parameter $state, expects you to handle tag labels
yourself — pretty reasonable, as you have requested that the function return control to you
to generate the completions. I’ve mentioned that here so that I don’t have to gum up the
description of the functions in this section by mentioning it again.

Handling ordinary arguments

The most useful function is _arguments. There are many examples of this in the completion
functions for external commands, since so many external commands take the standard
format of a command with options, some taking their own arguments, plus command
arguments.

The basic usage is to call it with a series of arguments (which I’ll call ‘specifications’) like:

<where I am>:<description>:<what action to take>

although there are a whole series of more complicated possibilities.

The initial ‘<where I am>’ part tells the function whether the specification applies to an
argument in a particular position, or to an option and possibly any arguments for that
option. Let’s start with ordinary arguments, since these are simpler. In this case ‘<where I
am>’ will be either a number, giving the number of the argument, or a ‘*’, saying that this
applies to all remaining arguments (or all arguments, if you haven’t used any of the other
form). You can simplify the first form, by just missing out the number; then the function will
assume it applies to the first argument not yet specified. Hence the standard way of handling
arguments is with a series of specifications just beginning ‘:’ for arguments that need to be
handled their own way, if any, then one beginning ‘*: for all remaining arguments, if any.

The message that follows is a description to be passed on down to _description. You don’t
specify the tags at this point; that comes with the action.

The action can have various forms, chosen to be easily distinguishable from one another.

1. A list of strings in parentheses, such as ‘(red blue green)’. These are the possible
completions, passed straight down to compadd.

2. The same, but with double parentheses; the list in this case consists of the completion,
a backslashed colon, and a description. So an extended version of the previous action
is ‘((red\:The\ colour\ red blue\:The\ colour\ blue))’ and so on. You can
escape other colons inside the specifications in this way, too.

6.9. WRITING NEW COMPLETION FUNCTIONS AND WIDGETS 325

3. A completion function to call, with any arguments, such as ‘_files -/’ to complete
directories. Usually this does the business with $expl which should be familiar from
the section on basic tag handling, however you can put an extra space in front of the
action to have it called exactly as is, after word splitting.

4. A word preceded by ‘->’ for example ‘->state’. This specifies that _arguments should
return and allow the calling function to process the argument. To signal back to the
calling function, the parameter $state will be set to what follows the ‘->’. It’s up to
the calling function to make $state a local parameter — _arguments can’t do that,
since then it couldn’t return a value.

You should also make the parameters $context and $line local; the former is set
to the new part to be added to $curcontext, which, as you can find out from ^Xh,
is option-<option>-<arg>, for example option-file-1 for the first argument of
the option-file option, or argument-N, for example argument-2 for the second
argument of the command.

In simple cases, you will just test the parameter $state after _arguments has
returned to see what to do: the return value is 300 to distinguish it from other returns
where _arguments itself performed the completion.

5. A chunk of code to evaluate, given in braces, which removes the need for a special
function or processing states. Obviously this is best used for the simplest cases.

These are the main possibilities, but I have not described every variation. As always, you
should see the manual for all the detail.

Here’s a concocted example for that ‘->state’ action specifier, in case it’s confusing you. It’s
for a command that takes arguments ‘alpha’, ‘beta’ and ‘gamma’, and takes a single option
‘-type’ which takes one argument, either ‘normal’ or ‘unusual’.

local context state line
typeset -A opt_args

_arguments ’-type[specify type]:type:->type’ \
’*:greek letter:->gklet’ && return 0

case $state in
(type) compadd normal unusual && return 0

;;
(gklet) compadd alpha beta gamma && return 0

;;
esac

return 1

In fact the possibilities here are so simple that you don’t need to use $state; you can just
use the form with the values in parentheses as the action passed to ‘_arguments’. Anyway,
if you put this into a function ‘_foo’, type ‘compdef _foo foo’, and attempt completion for
the fictitious command ‘foo’, you will see _arguments in action.

I haven’t shown the gory tag handling; as it’s written, you’ll see that no tag is ever defined
for the compadd arguments shown. In this case you could just use _wanted. What you
get for free with arguments, however, is the context: in the first case, you would have
‘:option-type-1’ in the argument field (the second last, just before the tag), and in the

326 CHAPTER 6. COMPLETION, OLD AND NEW

second case ‘:argument-rest:’. Go back to where I originally described contexts if you’ve
forgotten about these; I didn’t tell you at the time, but it’s the _argument function that is
responsible for them. (However, you can supply a ‘-C’ argument to _wanted to tell that a
context.)

A note about the form: that ‘&& return 0’ makes the completion function return if
_arguments was satisfied that it found a completion on its own. It’s useful in more complex
cases. Remember that most completion functions return status zero if and only if matches
were added; this function is written to follow that convention. I already showed this in the
section on tags, but you might have skipped that.

Note all the things you had to make local: $context, $state, $line and the associative
array $opt_args. The last named allows you to retrieve the values for a particular option;
for example ‘$opt_args[-o]’ contains any value already on the command line for the option
-o. For options that take multiple arguments, these appear separated by colons, so if the line
contains ‘-P prefix 3’, $opt_args[-P] will contain ‘prefix:3’.

Handling options

Option handling is broadly similar, with the ‘<where I am>’ part just giving the option
name — I already showed one example with ‘-type’ above. In this case, the option will
just be completed to itself, the first part of the specification, and the rest says how to
complete its arguments. Since options can take any number of arguments, including zero,
the :description:action pair can be repeated, or omitted entirely. Otherwise, it behaves
similarly to the way described for ordinary command arguments, with all the same possible
actions. So a simple option specification could be

_arguments ’-turnmeon’

for an option with no arguments,

_arguments ’-file:input file:_files’

for an option with one argument, or

_arguments ’-iofiles:input file:_files:output file:_files’

for an option with two arguments, both files but with different descriptions.

The first part of the specification for an option can be more complicated, to reflect the fact
that options can be used in all sorts of different ways. You can specify a description for
the option itself — as I tried to explain, the descriptions in the rest of the specification are
instead for the arguments to the option. To specify an option description, just put that after
the option, before any colons, in square brackets:

_arguments ’-on[turn me on, why not]’

Next, some options to a command are mutually exclusive. As _arguments has to read its
way along the command line to parse it, it can record what options have already appeared,
and can ensure that an option incompatible with one there already will not be completed. To
do this, you need to include the excluded option in parentheses before the option itself:

6.9. WRITING NEW COMPLETION FUNCTIONS AND WIDGETS 327

_arguments ’(-off)-on[turn me on, why not]’ \
’(-on)-off[turn me off, please]’

This completes either of the options ‘-on’ or ‘-off’, but if you’ve already given one, it won’t
complete the other on the same command line. If you need to give multiple excluded options,
just list them separated by spaces, like ‘(-off -noton)’.

Some options can themselves be repeated; _arguments usually won’t do that (in a sense,
they are mutually exclusive with themselves), but you can allow it to happen by putting a ‘*’
in front of the option specification:

_arguments ’*-o[specify extra options]:option string:->option’

allows you to complete any number of ‘-o <option>’ sets using the $state mechanism.
The * appears after any list of excluded options.

There are also ways of allowing different methods of option handling. If the option is followed
by -, that means the value must be in the same word as the option, instead of in the next
word; if that is allowed, but the argument could be in the next word instead, the option
should be followed by a ‘+’. The latter behaviour is very common for commands which take
single letter options. Some commands, particularly many recent GNU commands, allow you
to have the argument in the next word or in the current word after an ‘=’ sign; you get this
by putting an ‘=’ after the option name. For example,

_arguments ’-file=:input file:_files’

allows you to complete ‘-file <filename>’ or ‘-file=<filename>’. With

_arguments ’-file=-:input file:_files’

only the second is possible, i.e. the argument must be after the ‘=’, not in its own word.

You can handle optional and repeated arguments to options, too. This illustrates some
possibilities:

_arguments ’-option:first arg:->first::optional arg:->second’

The doubled colon indicates that the second argument is optional. In other words, at that
point on the command line _arguments will either try to complete via the state second, or
will try to start another specification entirely.

_arguments ’-option:first arg:->first:*:other args:->other’

Here, all arguments after the first — everything else on the command line — is taken as an
argument to the option, to be completed using the state other.

_arguments ’-option:first arg:->first:*-:other args till -:->other’

This is similar, but less drastic: there is a pattern after the ‘*’, here a ‘-’, and when that is
encountered, processing of arguments to ‘-option’ stops. A command using this might be
called as follows:

328 CHAPTER 6. COMPLETION, OLD AND NEW

cmdname -option <first> <other1> <other2> - <remainder>

where of course completion for <remainder> might be handled by other specifications.

There are yet more possible ways of handling options. I’ve assumed that option names can
have multiple letters and hence must occur in separate words. You can specify single-letter
options as well, of course, but many commands allow you to combine these into one word.
To tell _arguments that’s OK you should give it the option -s; it needs to come before
any specifications, to avoid getting mixed up with them. After you specify this, a command
argument beginning with a single ‘-’ will be treated by _arguments as a list of single options,
so ‘-lt’ is treated the same as ‘-l -t’. However, options beginning with ‘--’ are still treated
as single options, so a ‘--prefix’ on the command line is still handled as a single long option
by _arguments.

One nice feature which can save a lot of trouble when using certain commands, notably those
written by the GNU project and hence installed on most Linux-based systems, which take
an option ‘--help’ that prints out a list of all options. This is in a human-readable form,
but _arguments is usually able to extract a list of available options which use the ‘--...’
form, and even in many cases whether they take an argument, and if so what type that is. It
knows because ‘<command> --help’ often prints out a message like ‘--file=FILE’ which
would tell _arguments (1) that ‘--file’ is a possible option (2) that it takes an argument
because of the ‘=’ (3) that that argument should be a file because of the message ‘FILE’ at the
end.

You specify that the command in question works in this way by using the (fairly memorable)
option ‘--’ to ‘_arguments’. You can then help it out with completion of option arguments
by including a pattern to be matched in the help test after the ‘--’; the format is otherwise
similar to a normal specification. For example ‘*=FILE*:file:_files’ says that any option
with ‘=FILE’ in it has the description ‘file’ and uses the standard _files function for
completion, while ‘*=DIR*:directory:_files -/’ does the same for directories. These
two examples are so common that they are assumed by ‘_arguments --’.

So for example, here is the completion for gdb, the GNU debugger, which not surprisingly
understands the GNU option format:

_arguments -- ’*=(CORE|SYM)FILE:core file:_files’ \
’*=EXECFILE:executable:_files -g *\(*\)’ \
’*=TTY:terminal device:compadd /dev/tty*’ && return 0

If you run ‘gdb -help’, you’ll see where these come from: ‘-core=COREFILE’,
‘-exec=EXECFILE’ and ‘-tty=TTY’ are all listed as possible option/argument pairs. Doing it
this way neatly allows the argument completions to work whatever the names of the options
— though of course it’s possible for the rest of the pattern to change, too, and the commands,
being written by lots of different people, are not necessarily completely consistent in the way
their help text is presented.

6.9.8 More completion utility functions

This is now just a ragbag of other functions which might prove useful in your own completion
functions, and which haven’t been mentioned before, with some examples; once again,
consult the manual for more detail. Note that many of these functions can take the most
useful arguments to compadd and pass them on, even where I haven’t explicitly said so.

6.9. WRITING NEW COMPLETION FUNCTIONS AND WIDGETS 329

_call_function

This is a simple front end to calling a function which may not be defined and hanging onto
the return status of the function. One good use for this is to call a possibly non-existent
function which might have been defined by the user, before doing some default stuff the user
might want to skip. That would look like this:

local ret # returned status from called function, if it was called

_call_function ret _hook_function arg1 arg2 && return ret

if we get here, _hook_function wasn’t called,
so do the default stuff.

As you can work out, _call_function itself returns status zero if the function in the second
argument got called, and in that case the first argument is the name of a parameter with the
return status from the function itself. The whole point is that this is safe if _hook_function
doesn’t exist.

This function is too low level to know about the tags mechanism; use _wanted or similar to
handle tags properly.

_contexts

This is another shorthand: the arguments it takes are a set of short contexts, in other words
either names of commands or special contexts like ‘-math-’. The completion for each of these
contexts is tried in turn; _contexts simply handles all the boring looking up of functions
and testing the return values. The definition, if you want to look, is reassuringly simple. It
only has one use at the moment: _subscript, which handles the -subscript- context we
met early in the chapter, calls ‘_contexts -math-’ to try mathematical completion, since
ordinary array subscripts can contain mathematical expressions.

This is also too low level to handle tags. In zsh 4.1, it is made obsolete by a cleverer
mechanism for handling different contexts which can be used, for example, for handling of
arguments to redirections for particular commands, or keys in a particular associative array.
I expect I’ll describe that when 4.1 is finally released.

_describe

Don’t confuse this with _description which was explained above and is the basic function
for adding a description to a set of completions of a certain type. I mentioned in the
description of the verbose style that this function was responsible for showing, or not
showing, the descriptions for a whole lot of options at once. It allows you to do that with
several different sets of completions that may require different options to compadd. The
general form looks something like this:

_describe "description of set 1" descs1 compls1 \
<compadd-opts-1> -- \

"description of set 2" ...

330 CHAPTER 6. COMPLETION, OLD AND NEW

where you can have any number of sets separated by the ‘--’. The descs1 and compls1
are arrays of the same length, giving a list of descriptions and a list of completions,
respectively. Alternatively, you need only give one array name and each element of that
will contain a completion and a description separated by the now-traditional colon. The
‘<compadd-opts-1>’ are a set of any old options recognised by compadd, such as -q, or
-S=/, or what have you. I won’t give an example for this, since to find something requiring
it would almost need me to rewrite the completion system from scratch.

_combination

This is the function at the heart of the completions such as users-hosts described above,
where combinations of elements need to be completed at the same time. It’s easiest
to describe with an example; let’s pick the users-hosts example, and I’ll assume you
remember how that works from the user’s point of view, including the format of the
users-hosts style itself. The completion for the username part is performed as:

_combination my-accounts users-hosts users

where my-accounts is the tag to be used for the completion, then comes the style, and then
the part of the style to be extracted.

Now suppose we come back into the completion function again to complete the host later on
the command line, so that the username is already there. We can find that by searching
the command line; suppose we store what we find in $userarg. Then we can complete the
hostname as follows:

_combination my-accounts users-hosts users=$userarg hosts

and the magic part, the fact that we can limit the hostnames to be completed to only those
with a user $userarg, is handled by _combination. This extends to hosts-ports-users
and any larger combined set in the obvious way: the first field not to contain an ‘=’ is the
one being completed. You don’t need to supply other fields if they are not known; in other
words, the field to be completed doesn’t need to be the first one in sequence not known, it
can be any, just as long as it matches part of the style given in the second argument, so you
could have omitted the ‘users=$userarg’ in the last example if you couldn’t extract the
right username.

There are various bells and whistles: after the field to be completed you can add any options
to be passed down to compadd; you can give _combination itself the option ‘-s <sep>’
to specify a character other than colon to separate the parts of the style values; if the
style lookup fails, but there is a corresponding function, which would be called ‘_users’
or ‘_hosts’ in this example, it is called to generate the matches, and gets the options at the
end which are otherwise destined for compadd.

As you can see, this function is at a high enough level to handle the tags mechanism itself.

_multi_parts

This takes two arguments, a separator and a list of matches. The list of matches is normal,
except that each element is likely to contain the separator. In the most obvious usage, the
separator is ‘/’ and the list of matches is a lot of files with path components. Here’s another
reasonable usage:

6.9. WRITING NEW COMPLETION FUNCTIONS AND WIDGETS 331

local groups expl
groups=($(awk -F: ’{ print $1 }’ ~/.newsrc))
_wanted groups expl ’newsgroup’ _multi_parts "$expl[@]" . groups

The generated array contains names of Usenet newsgroups, i.e. names with components
separated by a ‘.’, and _multi_parts allows you to complete these piece by piece instead of
in one go. This is a good deal better for use with menu completion, and the list which appears
is smaller too. The _wanted part handles the tags mechanism, which _multi_parts
doesn’t.

_sep_parts

This also completes a word piece by piece, but unlike _multi_parts the trial completions
are also only supplied for each piece. The arguments are alternating arrays and separators;
arrays are in the usual form, in other words either the name of an array parameter, or
a literal array in parentheses, quoted to protect it from immediate shell expansion. The
separators are simply strings. For example

local expl
array1=(apple banana cucumber)
_wanted breakfast expl ’breakfast’ \

_sep_parts array1 + ’(bread toast croissant)’ @ ’(bowl plate saucer)’;

completes strings like ‘apple+toast@plate’, piece by piece. This is currently not used by
the distributed completion code.

_values

This works a little like _arguments, but is designed for completing the values of a single
argument in a form like ‘key=val,flag,key=other’, in which you can specify the list
separator, here ‘,’ by using the option -s, e.g. ‘-s ,’. The first argument to _values is
the overall description of the set of arguments. The other arguments are very much like
those to _arguments except that, as you would expect from the form given, no pluses or
minus signs are involved and each value can only have one argument, which must follow an
‘=’. Virtually everything else is identical, with the exception that the associative array where
the arguments are stored for each value is called $val_args.

I won’t bother giving the instructions for _arguments again; instead, here is an example
based on the values used by the -o option to the mount command:

local context state line
typeset -A val_args

_values -s , ’file system options’ \
’(rw)ro[mount file system read-only]’ \
’(ro)rw[mount file system read-write]’ \
’uid[set owner of root]:user ID:’ \
’gid[set group of root]:group ID:’ \
’bs[specify block size]:block size:(512 1024 2048 4192)’

332 CHAPTER 6. COMPLETION, OLD AND NEW

I’ve just picked out a few of the umpteen possibilities for illustration; see the function _mount
if you want more. Remember that the ‘(rw)’ before the ‘ro’ means that the options are
mutually exclusive, and the one in parentheses won’t be offered if the other appears on
the command line; the strings in square brackets are descriptions of the particular options;
and if there is a colon after the name of the value, the value takes an argument whose
own description comes next. The second colon is followed by possible completions for that
argument, using the usual convention for actions in _arguments; as you’ll see from the
local statement, the $state mechanism can be used here. Only the ‘bs’ argument here
is given possible completions; for uid and gid you’ll have to type in the number without
completion; ro and rw don’t take arguments.

Hence a typical(?) list to be completed by this would be ‘rw,uid=123,bs=2048’.

Remember also that you can use a ‘*’ before the option name to say that it can appear more
than once in the value list. The _values function handles the context and tags in a similar
way to _arguments.

_regex_arguments

This function is for use when the behaviour of a set of command arguments is so complicated
that even _arguments can’t help. It allows you to describe the arguments as a regular
expression (i.e. a pattern). I won’t explain it because I haven’t yet figured out how it works.
If you think you need to use it, look at the manual entry and then at the _apt function which
is currently its main application.

6.10 Finally

Completion is big and complex: this means that there are probably lots of bugs around,
and things that I haven’t described simply enough or which may be implemented in too
complicated a way. Please send the zsh-workers mailing list any reports or constructive
criticism on the subject.

Last of all, remember that the new completion system is ideally just supposed to work
without you needing to worry exactly how. That’s a bold hope, but at least much of the
time you should be able to get away with using just the tab key and ordinary characters.

Chapter 7

Modules and other bits and
pieces Not written

7.1 Control over modules: zmodload

7.1.1 Modules defining parameters

7.1.2 Low-level system interaction

7.1.3 ZFTP

7.2 Contributed bits

7.2.1 Prompt themes

7.3 What’s new in 4.1

333

334 CHAPTER 7. MODULES AND OTHER BITS AND PIECES NOT WRITTEN

Appendix A

Obtaining zsh and getting more
information Not written

This appendix gives some useful pointers for finding zsh, more information about zsh, and
people who know how to fix the problems (yours or its). It is mostly a set of URLs and
email addresses. If you just want to surf your way round, start from the main zsh site at
http://www.zsh.org/.

335

