ArX

The ArX Revision Control System

Copyright (© 2001 2002 Thomas Lord, Walter Landry, and the Regents of the University
of California

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being:

(none)

with the Front-Cover Texts being

"visit www.regexps.com",

and with the Back-Cover Texts being

(none).

A copy of the license is included in the section entitled "GNU Free Documentation License".

ArX

Chapter 1: Introducing ArX 3

1 Introducing ArX

ArX is a source code management, revision control, and configuration management tool.

1.1 Advantages of ArX

What makes ArX better than other revision control systems?
There are minor advantages, and a a few major advantages.

The minor advantages are things like: regular, clean, interfaces; small code size; on-line
help; features for browsing change sets with a web browser; software tools architecture.
Some of these are arguably matters of taste — worth mentioning but not arguing for.

There are at least six major advantages to ArX: a file tree library of revisions, renam-
ing, distributed repositories, robust and easy operation, configurations, and sophisticated
branching and merging.

"a file tree library of revisions" means that all revisions can be made accessible in a
(space efficient) library of revision trees. That means that you can use ordinary tools like
diff, find, and grep to explore past revisions and revisions on other branches.

"renaming" means that you can rename files and directories and ArX keeps up just fine:
it rearranges the patches between revisions in the corresponding way. And it’s convenient:
you can use ArX in a mode that doesn’t require you to run add, remove, or move commands
every time you add, delete, or rename a file or directory.

"robust and easy operation" means that ArX repository transactions have ACID proper-
ties and repositories are stored as ordinary unix files. Commits may be concurrent with reads
and are atomic. There is no overhead from having to administer a relational or hash-table
database. The transient locks held by ArX never become permanently wedged (requiring
by-hand repair): they can be broken remotely to recover from interrupted commands.

"Distributed repositories" means that you never need write access to a repository in
order to start branches from projects stored in that repository. You can store branches in
any repository. That means every programmer can have private repositories for day-to-day
work or as scratch areas for working out complex merges. Every sub-group working on a
project can have their own repository. If two groups want to fork a project, but still loosely
cooperate, they can each have their own trunk in their own repository — selectively merging
changes between the two trunks. Without wishing to put too much hype on it, as far as ArX
is concerned, there is exactly one repository database for the entire world — we all share it.

"configurations" are a mechanism for defining "meta-projects" that are a combination of
multiple "sub-projects". For every meta-project, you need to be able to define configuration
rules, which explain which revisions from what branches to check out to get a particular
revision of the meta-project. ArX provides a flexible mechanism for that, allowing you
to pick and choose pieces from various branches and repositories with varying degrees of
specificity.

"Sophisticated branching and merging" has to do with ArX’s support for asynchronous
development on branches, coordinated by a shared trunk. Commonly, people arrange
branches in a "star topology". There is a trunk in the middle, surrounded by branches, as
in this (hypothetical) example:

4 ArX

patch-reviewer A patch-reviewer B
(who merges patches (another patch reviewer)
contributed by people /
who don’t have write-access /
to gcc-main) /
\ /
\ /
gcc-main (the trunk)
/ \
/ \
/ \
C 99 team Fortran team
(who work on features (who work on fortran)
required by the new
standard)

And we might imagine many more branches than are actually drawn here.

Ideally, each of the surrounding branches will sometimes be merged into gcc-main. And
as gcc—main changes, it wll sometimes be merged back into the surrounding branches.

When two versions each merge with the other repeatedly, forming a merge without
creating spurious conflicts is a tricky problem. (For a more detailed description of the
problem, see Chapter 14 [Star Topology Branching and Merging], page 71.)

In CVS, the problem is solved by using tags and not generating conflicts for changes
that appear to be redundant. Unfortunately, tags are expensive, work only within one
repository, and worst of all, are complicated to use correctly. If you forget to create a tag
at the right time (or worse, if your tagging operation is interleaved with other operations)
you're hosed.

In ArX, history sensitivity is taken to the next level. ArX knows how handle back-and-
forth merging in a star topology automatically.

This is an advance in revision control similar to the invention of lockless operation in
CVS. With lockless operation, you have a star topology with an archived development
path in the middle, surrounded not by branches, but by working copies. Programmers can
commit from the working copies to the trunk or merge from the trunk into working copies
repeatedly, and everything works beautifully. The trunk is used to syncronize the multiple
working copies.

ArX takes the next step. It allows those satellite working copies to be archived as long-
lived branches. The trunk is used to syncronize the surrounding branches.

ArX automates the merge operation (with the arx star-merge) command and gives you
control over the precedence-ordering of change sets (which branch takes priority, and which
has changes that are rejected if they conflict). You don’t have to use tags, and you don’t
have to figure out the right revision arguments to pass to an update command.

Each satellite has its own log history. Each can be used for progress tracking. A satellite
can be used to maintain an alternative distribution that tracks the trunk, but sometimes
takes the lead with additional features.

Chapter 1: Introducing ArX 5

In addition to star topology merging, ArX provides some other fancy merging options
too (e.g. see Chapter 17 [Multi-Branch Merging — The reconcile Command], page 81.)

1.2 Global Revision Control Done Right

The foundation of ArX is two commands: mkpatch and dopatch.

mkpatch computes a patch set describing the difference between two trees. dopatch
applies a patch set to a tree, gracefully handling the cases when a patch doesn’t apply
cleanly.

Conceptually, mkpatch is similar to diff -r and dopatch is similar to patch. Unlike
diff and patch, though, mkpatch and dopatch can handle the addition or removal of files
and directories, the renaming of files and directories, files which are symbolic links, changes
to file permissions, and binary files.

An ArX repository is a collection of full-source revisions, and patch sets. Brand new
trees are represented as full-source revisions. Modified trees are stored as patch sets. Any
revision can be reconstructed by retrieving a full-source revision, intermediate patch sets,
and applying those patches.

ArX repositories have globally unique names and every revision in a repository has an
easy to understand, easy to type name. Putting the two names together, ArX provides a
global namespace for revisions.

On the basis of that global namespace, branches and merge operations can span reposi-
tory boundaries. As far as ArX is concerned, all of the repositories you can access over the
Internet are integrated into one gigantic repository — seemlessly integrated.

In ArX, there is no such thing as a "working directory". That is to say, there is no
distinction between a tree that you download as a source distribution, and a tree that you
check out from a repository. ArX is happy to work with both.

Every tree that ArX works with has a "patch log" — a record of all of the patches (in
the global namespace) that have ever been applied to the tree, along with a record of the
full-source revision that the tree started from. In ArX, a tree never belongs to a specific
branch in some specific repository — instead: a source tree is considered to be a part of
every branch in every repository for which it has a patch log. At any time, any tree can
join any branch with which it has a common ancestor.

ArX is agile and flexible at handling patch sets. It provides update — a patch set manip-
ulation operation that is logically equivalent to the traditional update operation of CVS; it
provides replay — a history-sensative merge operation equivalent to the update operation
of Subversion (as documented in the Subversion manual); ArX also provides two rather
more sophisticated merge operations — reconcile and star-merge — which handle very
complex (yet quite realistic) branching and merging scenarios gracefully.

In general, the design philosophy of ArX is to be a very good librarian for whole-tree patch
sets, and a very good mechanic for manipulating whole-tree patch sets. ArX is designed to
stay out of your way while you hack, but come to your aid when you commit, review,
update, or merge. The aim is simplicity, clarity of function, and flexibility.

6 ArX

1.3 Introducing ArX Project Trees

ArX manages "project trees". A project tree is a file system tree, usually containing the
source code for a project.

What distinguishes a project tree from an ordinary tree is the presence of "ArX control
files", primarilly stored in a top-level subdirectory called {arch}.

The control files include information needed to keep an inventory of the tree, a "patch
log" documenting the history of the tree, various default values for ArX commands applied
to the tree, and a local cache of information to speed up some ArX commands.

When you distribute a tree, usually you will include all of the ArX control files — they
are useful to others.

ArX has no special concept of a "working copy" (in other revision control systems, a
working copy is a tree checked out from the revision control database, as contrasted with
a tree from any other source). Any tree that contains ArX control files can be used as a
"working copy". If you download a distribution for a project managed with ArX and unpack
that distribution — you have a working copy.

For more information, see Chapter 5 [ArX Project Trees|, page 25.

1.4 Introducing ArX Inventories

ArX keeps track of an inventory of the files in a project tree. For example, it can
distinguish the files that are officially part of the tree from other files, such as scratch files
or editor back-up files. The command:

% arx inventory --source

prints an inventory of files in a tree.

Every file has two names: its "location" (a path relative to the root of the tree) and its
"tag" (a logical, location-independent name for the file). The command:

% arx inventory --source --tags

prints an inventory of files in a tree, showing the logical name of each file.
ArX uses tags to keep track, for example, of when files are renamed.

For more information, see Chapter 6 [ArX Project Inventories|, page 27.

Chapter 1: Introducing ArX 7

1.5 Introducing ArX Patch Sets

Experienced programmers should be familiar with the standard command diff -c -r,
used to create a (standard) "patch set" describing the changes made between two copies of
a tree. And they are familiar with the standard command patch — used to modify a tree
according to the description of changes in a patch set.

Standard patch sets have limitations: they do not cleanly handle file or directory addi-
tions, removals, or renames, symbolic links, file permissions, or binary files.

ArX provides mkpatch and dopatch, similar to diff -r and patch, but without the
limitations.

For more information, see Appendix C [ArX Patch Sets], page 131.

1.6 Global Namespaces

ArX implements a global namespace of projects, taking into account the organization
publishing a project, branching of projects, and versioning of branches.

ArX implements a global namespace of patch sets, building on the global namespace of

projects.

Those namespaces give rise to the idea of a "development path". For example, the very
first revision of the project ArX, might be called:

lord@regexps.com--ArX/ArX--0.1--base-0

The next three revisions might be called:

lord@regexps.com—-ArX/ArX--0.1--patch-1
lord@regexps.com--ArX/ArX--0.1--patch-2
lord@regexps.com-—-ArX/ArX--0.1--patch-3

Each of those revision names is the name of a patch set that describes what changed in
that revision, compared to the previous revision.

If ArX forked into a separate development paths, say "intl" (for internationalizing the
code), there might be revisions such as:

lord@regexps.com--ArX/ArX--intl--0.1--patch-1
lord@regexps.com—-ArX/ArX--intl--0.1--patch-2

ArX implements a global namespace of all user’s of ArX (layered on top of email addresses).
Every patch set has an associated log entry, with a Creator: line that contains a user’s ArX
id.

For more information, see Chapter 7 [The ArX Global Name-space of Users|, page 39,
Chapter 8 [The ArX Global Name-space of Projects|, page 41, and Chapter 11 [Basic
Revision Control], page 51.

8 ArX

1.7 Introducing ArX Archives

ArX can manage repositories of revisions, storing those revisions as compressed tar files
of patch sets or compressed tar files of complete trees.

ArX archives can be used remotely if they are made accessible by an ordinary FTP server,
HTTP server with WebDAV, or sftp server. There is no need for a special ArX-specific server.

You can (safely, atomically) add a new revision to a repository (arx commit). You can
reconstruct an arbitrary revision from the files in a repository (arx get). You can "branch"
a development path to create a new, related development path (arx create-branch, arx
create-version, and arx tag). Branches can cross repository boundaries, and to the user,
ArX appears to integrate the two repositories into one.

Repositories can be migrated and, for read-only access, replicated.

ArX repositories have an easy-to-understand format, amendable to browsing by hand or
with special-purpose interface programs.

For more information, see Chapter 9 [Archives], page 45.

1.8 Introducing ArX Patch Logs

In every project tree, ArX keeps a detailed "patch log": a record of what the original
source tree was, along with a record for every patch applied to the tree (regardless of what
branch the patch came from).

ArX log entries use RFC822-style formatting. Automatically generated headers record
what files were changed by each patch, what repository the patch came from, what user
created the patch, etc. The patch log is a very useful source of information for programmers.

ArX can automatically generate a GNU-style ChangeLog from its patch log.

When you "merge" two branches (combine the changes made in those branches), ArX
uses the information in the patch log to avoid redundantly applying patches.

For more information, see Chapter 13 [Patch Logs and Changelogs|, page 67.

Chapter 1: Introducing ArX 9

1.9 Cheap Branching and Smart Merging

Creating a branch in ArX is inexpensive in both space and time.
The ArX commands for merging have many subtle features to help a merge go smoothly.

For more information, see Chapter 12 [Basic Branching and Merging], page 63, Chap-
ter 17 [Multi-Branch Merging — The reconcile Command], page 81, and Appendix F [Idem-
potent Merging], page 143.

1.10 What Does It All Mean?

Putting all those features together, ArX is an elegant and more featureful replacement
for older systems like CVS.

For example, using ArX, every programmer can conveniently have a private repository
for day-to-day work rather than burdening a shared repository with per-user branches.

A project can be "multi-homed" — stored in multiple repositories — with different
branches in each repository.

It is easy and convenient, when using ArX, to improve and clean-up projects by reorga-
nizing the files and directories they contain: something that is quite awkward with CVS.

The fancy branching and merging commands of ArX make it convenient to do more
development than ever in feature-specific branches, merging features as they are completed,
generating a clean, complete, and isolated patch set for each new feature.

ArX is written in a software-tools style: it is made up of many small programs, each of
which does one job well. The commands have very regular option and argument syntax
and input and output formats. ArX is an excellent foundation for process automation and
for layering under fancy graphical interfaces. ArX is self-documenting and extensible.

10

ArX

Chapter 2: System Requirements 11

2 System Requirements

In order to use ArX, there are some software tools that you must already have available.
These don’t necessarily need to be on your PATH — ArX can use a separate PATH if you need
it to.

GNU Make You will need GNU Make in order to build ArX.

GNU Tar You must have GNU tar. More specificially, you must have a version of tar
that has options:

-zcf F to create a gzip-compressed tar file called
F, where F may be ‘-’, meaning to write
the tar file to the standard-output stream

-zxf F to extract files from a gzip-compressed tar
file called F, where F may be ‘-’, meaning
to read the tar file from the standard-input
stream.

-T - This option reads a list of files from
standard input. Only those files are
read or written to the archive -- others
are ignored.

-m When extracting files, don’t restore
modification times.

GNU diff and GNU patch After much deliberation, I've decided to go ahead and rely
on the GNU versions of diff and patch. Specifically, you need a version of diff that can
generate "unified format" output (option -u) and a version of patch that understands that
format and that understand --posix. (It would be trivial to use "context diffs" and, thus,
standard diff and patch, however, unified diffs are much easier to read, and I'm hoping
that picking specific implementations of these critical sub-components will help contribute
to the long-term stability of ArX.)

Standard Posix Shell Tools The package framework assumes that some standard Posix
shell tools are available on your system. At the moment, sh must be installed as /bin/sh,
but this will be corrected in a future release:

awk
cat
chmod
date
echo
find
fold
grep
head
1s

12 ArX

mkdir
printf
pwd
rm
sed
sh
tee
test
touch
tsort
wcC
xargs

ordinary -exec extension to find Your version of find must be able to expand {} even
in the context of a larger string. For example:

find . -exec echo ">>>{}<<g" ";n"

should print a list of all files and directories, surrounded by ’>>>" and '<<<’. GNU find has
this property as do, I believe, most implementations. (Posix explicitly requires only that {}
be expanded in isolation, leaving undefined the meaning of {} when embedded in a longer
string.)

The null Device Your system must have /dev/null. Output directed to /dev/null
should simply disappear from the universe, in the usual way.

The BSD column program — maybe If the program column is on your PATH (or the path
being used by ArX), it should be a program which formats its input into columns and, with
the option -x, fills columns before rows. If this program isn’t found, it won’t be used.

A C and C++ compiler To create ArX and related subprojects, you will need a C and a
C++ compiler. At this point, the Gnu compilers have been the most tested.

Chapter 3: Tutorial 13

3 Tutorial

In this tutorial, we are going to create an archive, put a simple program into it, and
then create successive revisions and branches. This uses the bash shell. Different shells may
require you to quote special characters differently.

3.1 Creating the first revision

We start with creating an archive. First, we have to tell arx who we are
% arx my-id ’J. Hacker <jhacker@foobar.org>’

You should also tell arx what kind of editor you like to use for editing logs etc. If you
already have the $EDITOR or $ARCHEDITOR shell variables set, then you can skip this step.
To set arx to use emacs, for example, you use the my-editor command

% arx my-editor emacs
and if you're a vi user, you can type
% arx my-editor vi
Now we create an archive
% arx make-archive jhacker@foobar.org--archive {archive}
This creates an archive in the directory {archive}. Normally, you should never need to
look in that directory.
Next, we make that archive our default archive
% arx my-default-archive jhacker@foobar.org--archive
Now we want to make a revision library. You may not always need this, but it is often
a nice feature if you have a lot of revisions that you want to look at.
% mkdir "{revisions}"
Then we tell arx about it

"‘pwd¢/{revisions}"

% arx my-revision-library
Finally, we can start writing a program. We will use the simplest shell script, Hello
world. First, we create a directory to house the project.
% mkdir hello
Then we create the program

% cd hello
% echo "echo Hello, World" > Hello

Now we are going to store this masterpiece in arx. We first have to create a log, letting
ArX know that we are creating a new project. We will call the project "hello". Since it is
the main line of development, we will call the branch "main". Since it is feature complete,
we make the version 1.0.

% arx create-version hello--main--1.0

This opens the log file in the editor that you specified earlier. It also creates an {arch}
sub-directory in the current directory. You should never need to look at things in this
directory.

14 ArX

You can edit the log file, ++log.hello--main--1.0--jhacker@foobar.org--archive
in this case. You have to be sure to put something in the Summary: line. Also, you have to
skip a line between headers (like Summary: and Keywords:) and the body. Otherwise the
commit into arx won’t work.

Alternately, we can just execute

% echo "Summary: initial" \
> ./‘arx create-version --non-interactive hello--main--1.0°

The --non-interactive option prevents arx from running the editor. Instead it just
prints the name of the log file to standard output.

If you wanted to have a multi-line Summary:, you can continue by indenting the next
line. As an example,

Summary: initial version of the foo-bar-baz program,
which does foo, bar and baz.

Now we have to register our file with arx
% arx add Hello
Finally, you can now archive the program in arx by running

% arx commit

3.2 Revisions

Now that you’ve archived the program, you've realized that you don’t like the comma
in "Hello, World", and you like it to output "Hello World". So you edit Hello, or just run

% echo "echo Hello World" > Hello
You need to make a log file, so you run either
% arx make-log
and edit the file ++log.hello--main--1.0--jhacker@foobar.org--archive, or just
run
% echo "Summary: Removed a comma" > ‘arx make-log ——non—interactive‘l
Then you commit the change
% arx commit

Now you get the idea for a bigger change. You want to make the program say goodbye.
So you edit the program again

% echo "echo Hello World. Goodbye" > Hello

Since this is major change, you decide to bump the version number to 1.1. You do this
just by using create-version again with a new version number

% arx create-version hello--main—-1.1
and editing the file, or just running

% echo "Summary: Added goodbye" \
> ‘arx create-version --non-interactive hello--main--1.1°¢

Then you commit the change for the new version.

% arx commit

Chapter 3: Tutorial 15

3.3 Branches

Now you’ve decided that you want to internationalize your program. So you want to
create a german version. Since this version will have a lot of parts that won’t be shared with
the english version, you decide to make a branch. Your german is pretty rusty, and you've
forgotten how to spell Auf Wiedersehen, so you decide to branch from the older, simpler
version without goodbye. The simplest way to do this is to go into the parent directory and
create a branch

% cd ..
% arx create-branch hello--main--1.0 hello--german--1.0 \
hello--german

This creates a directory hello-german and pops up an editor to edit the log file. You can
also do it non-interactively

% echo "Summary: German version" \
> ‘arx create-branch hello--main--1.0 hello--german--1.0 \
hello--german®

Now change into the directory and commit the new branch

% cd hello--german
% arx commit
Now you can edit the program, create a log, and commit a change as normal.
% echo "echo Guten Tag" > Hello
% echo "Summary: Translated" > ‘arx make-log --non-interactive
% arx commit

4

3.4 Wrapping up

Congratulations. You have now created a project, made revisions, changed the version
number, and created a branch. You can view what versions are in the archive with

% arx versions
It should echo
hello--german--1.0
It only looked at the german line of development because your current directory (project
tree) version is set to hello-german—1.0. We can look at the main line of development by
specifying it explicitly.
% arx versions hello--main
and it should echo

hello-—-main--1.0
hello-—-main--1.1

We can see what revisions were made to hello-main—1.0

% arx revisions hello--main--1.0
base-0
patch-1

We can see what branches have been made

16 ArX

% arx branches
hello--german
hello-—-main

Finally, we can see what projects we have

% arx categories
hello

3.5 Revision Trees

Now suppose you have forgotten what things looked like in hello-main—1.0. A simple
way to view them is with revision trees. It is a complete version of the source tree for
a particular revision. For successive revisions, arx uses hard links to prevent unnecessary
copying. To create a revision for hello-main—1.0-base-0, it is simply

% arx library-add hello--main--1.0--base-0
To view the original version of the file, then is just

% more ../\{revisions\}/jhacker@foobar.org--archive/\
hello/hello--main/hello--main--1.0/\
hello--main--1.0--base-0/Hello

Chapter 4: ArX Commands in General 17

4 ArX Commands in General

Every command in ArX is accessed via the program ArX, using an ordinary sub-command
syntax:

% arx <sub-command> <options> <parameters>

A list of all sub-commands can be obtained from:

% arx --help-commands

The most complete documentation for each command is available via its help message.
The help messages in ArX are roughly comparable to traditional unix man pages. For exam-
ple, try:

% arx make-archive --help
create a new archive directory
usage: make-archive [options] (-u | name) directory

-V --version print version info
-h —--help display help
-r —-readme file save FILE as the README

for this archive
-u --update update an existing archive

NAME is the global name for the archive. It must be an
email address with a fully qualified domain name, optionally
followed by "--" and a string of letters, digits, periods
and dashes (but not two dashes in a row).

Normally the archive directory must not already exist, but.
there is an exception:

If -u or --update is specified, then attempt to bring
an existing archive up to date with respect to this
version of arx and update meta-info, such as the README.
file.

If -u or --update is specified, the archive name must
not be specified.

There is a great deal of regularity among commands regarding option names and pa-
rameter syntax. Hopefully, you’ll pick this up as you learn the various commands.

18 ArX

4.1 The ArX Commands

Here is a synopsis of all ArX commands: the output of arx --help-commands:

arx sub-commands

* User Commands
my-id : print or change your id
my-default-archive : print or change your default archive
gui-diff : print or change path to your GUI-based diff tooll
my-browser : print or change your default arch browser
my-editor : print or change your default arch editor
my-guidiff : print or change your default arch guidiff
register-archive : record the location of an archive

whereis-archive : print the registered location of an archivel
archives : report registered archives and their locationsl

* Project Tree Commands

tree-version : print the default version for a project treel

* Project Tree Inventory Commands
inventory : inventory a source tree

tagging-method : print or change a project tree tagging methodl
tree-lint : audit a source tree

add : add an explicit inventory tag
delete : remove an explicit inventory tag

move : move an explicit inventory tag

explicit-default : set the default explicit tag for a directoryl

Chapter 4: ArX Commands in General 19

* Patch Set Commands

mkpatch : compare two source trees and create a patch treel
mkpatch-files : compare select files in two source trees and create a p
dopatch : apply a patch tree to a source tree

patch-report : generate a report from a patch set
* Archive Commands
make-archive : create a new archive directory
categories : list the categories in an archive
branches : list the branches in an archive category
versions : list the versions in an archive branch
revisions : list the revisions in an archive version
cat-archive-log : print the contents of an archive log entryl
archive-cache-revision : cache a full source tree in an archive
archive-cached-revisions : list full source trees cached in an archivel
archive-uncache-revision : remove a cached revision from an archive
category-readme : print the =README of a category

branch-readme : print the =README of a branch
version-readme : print the =README of a version

20

* Patch Log Commands
make-log
logs
add-log
remove-log
log-1s
cat-log

log-header-field

changelog
log-for-merge

merge-points

new-on-branch :

* Archive Transaction Commands

commit
get
push-mirror

ArX

initialize a new log file entry

list patch logs in a project tree
add a version patch log to a project tree
remove a version patch log from a project treel

: print version patches in a project tree
: print the contents of a project tree log entryl

filter a header field from a log entry

generate a change log from a patch log
generate a log entry bodyfor a merge

report where two branches have been mergedl
list tree patches new to a branch

archive a revision
construct a project tree for a revision

: update a read-only repository mirror

* Multi-project Configuration Commands

build-config
update-config
replay-config

record-config
show-config

config-history

instantiate a multi-project tree

: update a multi-project tree

replay a multi-project tree

record a revision-specific configuration
show the revision frontier of a configurationl

report the history of a configuration

Chapter 4: ArX Commands in General

21

* Commands for Branching and Merging

update
replay

star-merge
make-sync-tree

tag

create-branch :
create-version :

join-branch :

whats-missing
reconcile

* Local Cache Commands

what-changed :

file-diffs
file-undo

undo
redo

add-pristine
delete-pristine
pristines

: merge local changes with the latest revisionl
: merge the latest revsion with local changesl
delta-patch :
: merge of mutually merged branches

: prepare a tree that will synchronize branchesl

compute and apply an arbitrary patch

create a continuation revision (tag or branch)|]

create a project tree for a new branch
make the current tree into a new version

join-branch a sibling branch

: print patches missing from a project tree

filter which plans a replay-based multi-branch mergel

compare project tree to cached pristine
compare file with cached pristine revisionl

: undo file changes from cached pristine revisionl

temporarily undo changes in working directoryl
redo undone changes in working directory

locally cache a pristine revision
remove a pristine trees from a project treel
list the pristine trees in a project tree

22

* Revision Library Commands
my-revision-library
library-find
library-add

library-remove
library-archives
library-categories
library-branches
library-versions

library-revisions

library-log
library-file

touched-files-prereqgs

* Web Related Commands

patch-set-web
update-distributions

distribution—-name

ArX

print or set your revision library path

find a revision in a revision library
add a revision to a revision library
remove a revision from a revision library

list the archives in the revision library
list categories in the revision library
list branches in the revision library
list versions in the revision library
list revisions in the revision library

print a log message from the library
find a file in a revision library

print prereqs of a revision

create or update a patch-set web
build or update an FTP area

revision name -> distribution name

Chapter 4: ArX Commands in General

* Notification Commands

notify

my-notifier
mail-new-categories
mail-new-branches
mail-new-versions

mail-new-revisions

notify-library
notify-browser

push-new-revisions

sendmail-mailx

For help with a command, try:

23

trigger actions for changes to an archive
print or set your default notify directoryl

send email notices about
send email notices about
send email notices about
send email notices about

add new revisions to the
add new revisions to the

send email notices about

send email with sendmail

arx command --help

new categories
new branches
new versions
new revisions

library
browser

new revisions

ala POSIX mailx

24

ArX

Chapter 5: ArX Project Trees 25

5 ArX Project Trees

One of the central organizing concepts of ArX is the project tree. For the most part, a
project tree is an ordinary tree of files, directories and symbolic links — all files that you
create and maintain as part of your project.

In addition to the tree content you create, ArX itself maintains some control files in a
project tree. You should regard these extra control files as part of your project’s content.
For example, if you distribute source for a program managed by ArX, you will ordinarilly
want to include the control files: they are useful to other people.

5.1 Initializing a Project Tree

To initialize a project tree for the first time, from the root of the tree, use the command:
% arx create-version (project name)

That will create a subdirectory, at the root of the tree, called {arch}. It will also open
an editor for entering your initial log file. Most ArX control files are stored in the tree rooted
at {arch}. You should never create, remove, or modify files there by hand.

When you have multiple project trees for related projects it is good practice to make
them sibling directories. This is because ArX sometimes caches information in project trees
and those caches can speed up some operations. When looking for information in a cache,
ArX looks not only in the current project tree, but in any sibling project trees. For example,
while working on ArX, I might have several copies of ArX, each for working on a different
set of features:

% cd ~/wd
% 1s
ArX ArX-branches ArX-inventory ArX-reporting

In this manual, ~/wd always refers to a "directory of project trees". (The convention
means the same thing as, but is less cumbersome than ${PROJECT_TREES} — there is no
requirement that your directory of project trees be called ~/wd, or that you only have one
such directory.)

26

ArX

Chapter 6: ArX Project Inventories 27

6 ArX Project Inventories

In a project tree, some of the files and directories are "part of the source" — they are of
interest to ArX. Other files and directories may be scratch files, editor back-up files, and
temporary or intermediate files generated by programs. Those other files should be ignored
by most ArX commands.

This chapter discusses how ArX recognizes which files to pay attention to, and which to
ignore.

ArX has flexible facilities for keeping track of all of the files and directories in your project:
for taking "inventories" of your project tree. It has these facilities for three reasons:

Distinguishing Source ArX uses a project inventory to distinguish files and directories
which are part of your project from other files and directories which are temporary files,
scratch files, editor backup-files, and so forth.

Additionally, ArX permits you to overlay projects: store more than one project at a
single root. When you do that, ArX uses inventories to sort out which files and directories
belong to each project. (The topic of overlays, however, is deferred until a later chapter.)

Recognizing Renames Every file or directory in an ArX inventory has two names. One
name is simply the location (path) of the file relative to the root of the project tree. The
other name is a "logical name" for the file: a name that remains the same regardless of
where in the project tree the file is located. When ArX compares two versions of a project
tree, it uses logical names to discover when files or directories have been moved, renamed,

deleted, or added.
6.1 Choices Regarding Inventories

For each project tree, you have a choice to make regarding how project inventories work.
The options are described briefly here, then in more detail in the sections that follow.

Explicit Inventories The most familiar (and default) option is to use an explicit inventory.
Whenever you add, delete or rename a file, you must inform ArX of that fact explicitly. For
example, after adding the file foo.c, you have to tell ArX

% arx add foo.c
If you rename foo.c to bar.c, then you must use ArX to do so
% arx move foo.c bar.c
Finally, if you delete foo.c, you must do so with ArX
% arx delete foo.c

Naming Conventions Another option is to simply use naming conventions. ArX will
search your tree for files matching certain naming patterns, and consider all of those files
to be source files.

When you use only naming conventions to take an inventory, the logical name of a file
and its location name are exactly the same. For that reason, if you rename a file, ArX will
think you deleted a file with the old name, and added a file with the new name. If you delete
a file, then add a file with the same name, ArX will think that the new file is a modified
form of the old file. None of these limitations are fatal. ArX will still work, but they do

28 ArX

limit the effectiveness of ArX at branching and merging. ("Branching" and "merging" are
topics of a later chapter.)

Implicit Inventories A third option combines some of the advantages of using naming
conventions with some of the advantages of explicit inventories: implicit inventories. When
you use an implicit inventory, every file that passes the naming conventions is considered
source. You may explicitly add, delete, and rename files — allowing ArX to precisely track
renames for those files and directories. You also may store a file tag (the "logical name" of
a file) in any file. If you don’t explicitly tag a file, and use an implicit inventory, ArX will
search for those embedded tags and use them to precisely detect new files, deleted files, and
renamed files.

Each of the three options is called a tagging method.

There is some advice at the end of this chapter about how to choose among the three
tagging methods.

6.2 Specifying a Tagging Method

If you never explicitly specify a tagging method, ArX will use explicit inventories. You
choose it specifically with this command issued in a project tree:

% arx tagging-method explicit
Similarly, to use either naming conventions or implicit inventories, use one of the com-
mands:
% arx tagging-method names
% arx tagging-method implicit
To find out what method a given project tree uses, use the same command with no
argument:

% arx tagging-method
names

6.3 The inventory Command

The command arx inventory is used to print a list of source files. It has many options,
including options to print other kinds of file lists (such as a list of all editor backup files, or
a list of all files which are not source):

% cd source-tree

% arx inventory --source
hello.c

hello.h

library

library/buffer.c
library/buffer.h

contrasted with:

Chapter 6: ArX Project Inventories 29

% cd source-tree

% 1s
hello.c hello.c.”1™ hello.h 1library

(Notice that hello.c.~ 1" is not included in the inventory of source files.)
The naming conventions used by ArX are as follows:

Control Files A control file is part of the source, but control files are not included in the
output of arx inventory unless the ——all flag is used. Control file and directory names
match any of these patterns:

.arch-project-tree
.arch-ids

.owned. *

. common

{arch}

Junk Files A junk file is not part of the source. A junk file or directory name matches
the pattern:

or if it contains any of the characters:
<space>
<tab>
<newline>

L
]

?

\

Note that if a directory name matches that pattern, then none of the contents of the
directory are part of the source, regardless of their names.

Junk files are listed by the command:

% arx inventory --junk

ArX sometimes creates junk files and directories of its own. When it does, those files
and directories have names that match the pattern:

*

L]

You should avoid creating files and directories with names that match that pattern. ArX
will freely delete files and directories with names that match , ,* whenever it needs to re-use
such a name.

Usually, ArX will delete any junk file it creates before the command that created the junk
file terminates. Sometimes, though, when a command fails, ArX will leave behind junk files
or directories matching , ,*. This is a debugging feature, likely to be removed in a future

30 ArX

release. For now, whenever you find such a file (and are confident it isn’t being used by a
currently running command), you are free to delete it.

Backup Files If a file is not a junk file, it may be a backup file. Backup files are not part
of the source. They match any of the patterns:

.bak
.modified
.orig
.original
.rej
.rejects

¥ X X X X ¥ ¥

Backup files are listed by the command:

% arx inventory --backups

Precious Files If a file is not a control file, junk file, or backup file, it might be a precious
file. Precious files are not part of the source. For all intents and purposes, ArX treats
precious, backup, and unrecognized files the same.

Precious files and directories match one of these patterns:

+%
.gdbinit
=buildx*
=install*
CvVs

RCS

TAGS

Of course, precious files can be listed by the command:

% arx inventory --precious

Sometimes ArX will create its own precious files — usually to save some information that
you might not want to lose. When it does, it creates a file or directory matching the pattern:

++%

You should avoid creating such filenames yourself. ArX won’t ever delete such a file -
but if one happens to get in the way of an ArX command, that command will fail with an
€error.

Source Files If a file is not a control or junk file, it might be an ordinary source file.
Source files are, of course, the files that ArX stores in an archive (along with control files).

Source files must match the pattern:
[=a-zA-Z0-9] *
but must not match any of the patterns:

*.0
*.core
core

Chapter 6: ArX Project Inventories 31

Ordinary source files are listed by:
% arx inventory --source

Some files which are ArX control files are counted as source even though they don’t match
the patterns above. However, these files are not listed by default. All source files (ordinary
source plus control files) are listed by:

% arx inventory --source --all

Unrecognized Files Any file that doesn’t fall into the above categories is an unrecognized
file. Unrecognized files can be listed by the command:

% arx inventory --unrecognized

WARNING The basic pattern for source files is:
[=a-zA-Z]*

however, you should restrict yourself to file names that do not contain spaces. Filenames
containing spaces are likely to trigger bugs in the current release of ArX.

6.4 Using an Explicit Inventory

Explicit inventories are the default, but if you want to set it anyway, then use this
command:

% arx tagging-method explicit

Note that you must use that command from within a working directory tree that has
already been initialized.

When using explicit designation, it is (ordinarilly) necessary to add every file and direc-
tory in the source to the explicit list using the command:

% arx add FILE

If FILE is a directory, that will create FILE/.arch_ids/=id. If it is a regular file or
symbolic link, it will create (in the same directory) .arch_ids/FILE.id. In either case, the
file created will contain an obscure string known as an "inventory tag" (inventory tags are
explained in more detail below).

If you remove a regular file or symbolic link, you must use the command:
% arx delete FILE
It will remove FILE and its inventory tag.

In order to remove a directory, you must yourself remove the .arch_ids subdirectory.
That will also implicitly remove the inventory tags of any files that ArX thinks are stored
in that directory.

If you rename a regular file or symbolic link, you can use the command:
% arx move OLD-NAME NEW-NAME

to move the file and its inventory tag.

32 ArX

If you rename a directory, it’s inventory tag (and the tags for all files and subdirectories
it contains) move with it automatically (because the .arch_ids subdirectory has moved).

When you run arx inventory in a working directory using explicit designation, only
explicitly designated source files are listed. If you would rather see a list of all files passing
the naming conventions for source files, use:

% arx inventory --source --names

If you are importing a project into ArX, it may be convenient to add everything that
matches the naming conventions. An idiom for doing this is

$ arx inventory --names --source --both | xargs arx add
Then you can clean up by explicitly add’ing or delete’ing files.

You should also read about tree-1lint later in this chapter.
6.5 Using an Implicit Inventory

To use implicit tagging, use the following command in your working directory:

% arx tagging-method implicit

When implicit tagging is used, every file that passes the naming conventions is treated
as source. If a file or directory has an explicit tag (created with add), ArX will use that
explicit tag to recognize when a file has moved. If a file (but not a directory or symbolic
link) lacks an explicit tag, ArX will look for a tag in the file itself.

A tag within a file has one of two forms. It may be either:

<punct><basename><spaces>-<spaces><tag>

where <punct> is an arbitrary string of punctuation and spaces, <basename> is the basename
of the file, and <tag> an inventory tag for the file. Or:

<punct>tag:<spaces><tag>

In either case, <tag> should be unique among the files within a directory. A tag within
a file must occur within the first 1024 bytes of the file.

One convention for source files is to add a comment to the top of every file, briefly stating
the purpose of the file:

/* hello.c - ‘main’ for the hello world program

or:

/* tag: ‘main’ for the hello world program

This may cause problems if you rename the file. You’ll probably want to change the
name and/or the description, but ArX will think that the old file was deleted and a new
one created.

Another possible convention is to use a string identifying the author and the time the
file was first created (or first tagged):

Chapter 6: ArX Project Inventories 33

/* tag: joe.hacker@gnu.org Thu Nov 29 17:25:15 PST 2001

If you use the basename form of an implicit tag, and actually rename a file (rather than
simply move it between directories), you do need to remember to update the tag line to
reflect the new basename.

When you use implicit tagging, it is ok if a file lacks any tag at all, either explicit or
implicit. In that case, if you rename the file, ArX will think you’ve deleted the old file and
added a new one — but aside from that, everything will work normally.

CAUTION: Leading and trailing spaces around an inventory tag are not considered part
of the tag. Within a tag, every non-graphical character is replaced by _. For example, you
write the that tag:

‘main’ for the hello world program

the actual inventory tag is:

‘main’_for_the_hello world_program

It is possible that a future release of ArX will slightly change the rule — so that multiple
spaces and tabs are replaced by a single _.

6.6 Recognizing Renames — Inventory Tags

If you are using naming conventions only to recognize source files, then if you rename a
directory or file, ArX will conclude that you have deleted the old file, and created a new file.

If you are using an explicit source inventory, ArX will always recognize when a directory
is renamed (presuming that the .arch_ids subdirectory is preserved), and it will recognize
when a file is renamed if you use move (rather than delete and add). Of course, ArX can
be fooled if you swap two files without swapping their inventory tags.

If you are using an implicit inventory, ArX will never recognize when an untagged file is
renamed (it will think "delete" and "add"). If a file is tagged explicitly, ArX will recognize
when the file is added, deleted, or renamed — just as when using an explicit inventory. If
a file is not tagged explicitly, but has an embedded tag, ArX will recognize when the file is
added, deleted or moved.

34 ArX

6.7 Keeping Things Neat and Tidy

The command:

% arx tree-lint

is useful for keeping things neat and tidy.

If you use explicit tagging, it will tell you of any tags for which the corresponding file
does not exist. It will tell you of any files that pass the naming conventions, but for which
no explicit tag exists.

If you use implicit tagging, it will tell you of any files for which no tag can be found —
either explicit or implicit. It will tell you of any explicit tags for which the corresponding
file does not exist.

In either case, or if you are using naming conventions only, tree-1lint will tell you of
any files that don’t fit the naming conventions at all.

Finally, if you use explicit or implicit tagging, tree-lint will check for cases where
multiple files use the same tag. If any two files do have the same tag, you must correct that,
either by editing the tag (if it is in the file itself) or by using delete and add to replace a
duplicated explicit tag.

6.8 The Inventory Tag Abstraction in Detail

When ArX considers the files and directories in a working directory it builds a one-to-one
index mapping path names (relative to the root of the working directory tree) to inventory
tags.

The inventory tag of a file is its "logical identity". The path is the position of that
identity within the particular working dir.

You can see the inventory tag for each source file with the command:

% arx inventory --source --tags

When ArX compares two project trees, it bases the comparison on logical identities. If
both trees have a file with a particular inventory tag, but the files are in different positions,
then ArX considers the file to have been moved or renamed. Similarly, if an inventory tag is
present in one tree, but missing in the other, then ArX considers the file to have been added
or deleted.

If you use naming conventions only, the inventory tag of each file is the same as its path.
Thus, when using the names tagging method, ArX never recognizes that a file has been
moved or renamed.

When you use the explicit tagging method, inventory tags are stored in the .arch-ids
directories. There is a file in .arch-ids for each tagged file (and one file for the directory
containing .arch-ids), and those files contain the tags.

When you use the implicit tagging method, tags in .arch-ids directories take prece-
dence (if they exist). If a file is not explicitly tagged, ArX searches for the inventory tag in

Chapter 6: ArX Project Inventories 35

the file itself (as described earlier in the chapter). Finally, if a file is not tagged at all, then
its path is used as the inventory tag.

6.9 A Warning About Changing Tagging Methods

Be cautious when changing tagging methods for directories already checked-in to an ArX
revision control archive.

For example, if you change from the tagging method names to explicit, then the
inventory tag for every file will change. ArX will think that you’ve deleted all of the files in
the old tree, and added all of the files in the new tree.

6.10 Other Ways to Tag Files

In some situations, it isn’t convenient to explicitly tag every file or to add an implicit
tag to every file.

You can supply a default tag for every file that doesn’t have an explicit tag with the
command:

% arx explicit-default TAG-PREFIX

After that, every file in that directory which lacks an explicit tag will have the tag:
TAG-PREFIX__BASENAME

where BASENAME is the basename of the file. Default tags created in this way take precedence
over implicit tags embedded in files. You can find out the default tag for a directory with:

% arx explicit-default
TAG-PREFIX
and remove the default with:

% arx explicit-default --delete

You can also specify a default tag which has lower precedence than implicit tags:

% arx explicit-default --weak TAG-PREFIX

and view that default:

% arx explicit-default --weak

or delete it:

% arx explicit-default --weak --delete

36 ArX

6.11 Telling tree-lint to Shut Up

When using implicit tags, you may sometimes have a directory with many files that have
no tag (either explicit or implicit), but not want those files to appear in a report of untagged
files generated by tree-1lint. There are two ways to tell tree-1lint to shut-up about such
files:

One is to provide a default explicit tag or weak default explicit tag using arx explicit-
default, as described above.

The second method is to label the directory as "don’t care" directory — which means
that tree-1int shouldn’t complain about untagged files. You can do that with:

% arx explicit-default --dont-care set

or remove the "don’t care" flag with:

% arx explicit-default --delete --dont-care

You can find out whether the "don’t care" flag is set in a given directory with:

% arx explicit-default --dont-care

6.12 Which Tagging Method Should You Use?

Given the choice of the names, explicit, and implicit tagging conventions, which one
should you choose?

The explicit method is the default. It requires manually informing ArX that a par-
ticular file should be under version control. Both names and implicit try to guess what
kind of files should be archived, and which shouldn’t. Unless you are very careful, and, for
example, don’t include any generated files in your source directory, names and implicit
will accidently add unwanted files to your archive.

The names method is best for project trees that you don’t control, and for which the
maintainer does not include file tags (either explicit or implicit). For such trees, the names
method will always work, but if you want to use the explicit or implicit method, you’ll
have to add file tags yourself. It also works reasonably well for scripts (such as perl, python,
or shell), because there are no object files that can be accidently included in the archive.

The implicit method is, for some, the most convenient. You just get in the habit
of adding a tag: line to the bottom of each new file and doing a single arx add for each
directory. After those steps, you can rename files and directories freely — without having to
remember to tell ArX in a separate command.

On the other hand, the implicit method has two limitations. One limitation is that
you must accept the possibility of accidently adding new files to the inventory. Any file
you create that passes the naming conventions counts as source. The other, closely related,
limitation is that if you use implicit inventories, you will never want to compile a program
in its own source directory. When you compile a program, that creates intermediate files

Chapter 6: ArX Project Inventories 37

and executables. Many of those files will almost certainly pass the naming conventions for
source — so ArX will wrongly include them in a source inventory. You might want to include
a safeguard in your configure scripts that causes them to refuse to compile my programs
in the source tree.

6.13 Altering the Naming Conventions

The file {arch}/=tagging-method defines the naming conventions used for a particular
project tree. By editing that file, you can estalish naming conventions that are different
from the defaults, which are described above.

That file can contain blank lines and comments (lines beginning with #) and directives,
one per line. The permissable directives are:

implicit
explicit
names
specify the tagging method to use for this tree

exclude RE

junk RE

backup RE

precious RE

unrecognized RE

source RE
specify a regular expression to use for the indicated
category of files.

Regular expressions are specified in Posix ERE syntax (the same syntax used by egrep,
grep -E, and awk) and have default values which implement the naming conventions de-
scribed above.

The exclude pattern should match a subset of files matched by the source pattern.
Files which match exclude are printed by:

% arx inventory --source --control

but not printed by:

% arx inventory --source

Although you can define your own naming conventions, there are some minor limitations:
The file names . and .. are always ignored by inventory.

File names which contain non-printing characters, spaces, or any of the globbing char-
acters (*, [, 1, \, 7) are always placed in the category unrecognized. This is so that
tools which operate on project trees can safely presume that no source file has a name that
includes these characters.

File names which begin with ,, are always placed in the category junk. This is so that
tools which operate on a project tree can safely destroy or create files beginning with ,,.

The default naming conventions are given by:

38

ArX

exclude ~(.arch-ids|\{arch\})$

junk ~(,.%)$

backup “.*(”I\.”[O-9]+”|\.bak|\.orig|\.rej|\.origina1|\.modified|\.reject)$l
precious ~(\+.*|\.gdbinit|=build\.*|=install\.*|CVS|CVS\.adm|RCS|RCSLOG|SCCS|TA
unrecognized ~(.*\.(olalsolcore)|core)$

source A([_=a—zA—ZO—9].*I\.arch—ids|\{arch\}I\.arch—project—tree)$l

Chapter 7: The ArX Global Name-space of Users 39

7 The ArX Global Name-space of Users

For various purposes (such as labelling the author of log messages), ArX maintains a
global name-space of users. Every user of ArX has an associated user ID, which is (ideally)
globally unique.

An id string has two parts: a free-form part, and a unique-id part. The unique-id part
is an email address with a fully-qualified domain name. That part of your id string should

be unique to you in the world. Here is an example:

Joe Hacker <joe.hacker@gnu.org>

-~ ~

free form part unique id

The free-form part must match the regexp:

[[:alnum:] [:space:] [:punct:]]*

and the unique-id part must match the regexp:

<[-.[:alnum:]]+@[-.[:alnum:]J]+\\.[-.[:alnum:]]+>

You should only need to set your ID once, which you can do with the command:

% arx my-id ID-STRING

You can check your id with:

% arx my-id
Joe Hacker <joe.hacker@gnu.org>

or:

% arx my-id --uid
joe.hacker@gnu.org

Clearly it is a good idea to use a real email address (belonging to you) for the id string,
but there is nothing that requires this.

40

ArX

Chapter 8: The ArX Global Name-space of Projects 41

8 The ArX (lobal Name-space of Projects

Another central organizing concept of ArX is a global namespace of projects.

This chapter describes how projects are named, and how the names are applied to project
trees.

8.1 The Structure of Project Names

The ArX project name-space is designed to reflect the intricacies of how projects evolve
in the real world. For example, two or more different organizations may separately develop
and distribute a given project. A project can split into multiple development paths. Each
path typically evolves through a series of versions. ArX provides a way to precisely name
all of these different instances of a given project.

An ArX project name has four basic parts, introduced here, and explained in detail below.

An Archive Name The archive name identifies the organization that distributes partic-
ular versions of a project. Some example archive names might be:

hackerlab@regexps.com—-hackerlab
hurd@gnu.org--hurd-team

The Category Name The category name is a generic name for the project. It is what
people usually think of as a "project name". Some example category names are:

ArX
gcc
rx

The Branch Label When a project splits into multiple development paths (even if only
temporarilly — as a convenience to the maintainers), each path is given a branch label. Some
example branch labels are:

development
experimental

The Version Number ArX uses fairly simple version numbers, consisting of a major and

minor version number:

1.2
2.0

The four parts of a project name fit together this way:

<archive-name>/<category>[--<branch-label>]--<version-number>

As in the example:

hackerlab@regexps.com--hackerlab/ArX--development--2.0

archive name category branch version
label

42 ArX

Notice that the archive name is separated from the rest of the project name by /. The
other parts of the project name are separated by --.

When you use ArX, you often abbreviate project names. For example, you can leave off
the archive name and a default archive will be presumed:

ArX--development--2.0
or you can leave off the version number and, depending on context, that means either "the
latest version" or "all versions":

ArX--development

If you have one branch which is "primary branch", you can leave out the branch label:

ArX--2.0
hackerlab@regexps.com--hackerlab/ArX--2.0
ArX

hackerlab@regexps.com--hackerlab/ArX

Those last two names are also sometimes used to mean "every branch of ArX" or "every
branch of ArX at the hackerlab archive", respectively.

8.2 Archive Names

An archive name designates an organization that develops and/or distributes software.
Archive names should be globally unique.

Later in the manual, we’ll see that archive names are specifically used to identify revision
control archives.

An archive name consists of an email address (with complete hostname), followed by —,
followed by an additional string of numbers, letters and dashes. Choose an email address
which is exclusively yours (or your project’s). That way, your archive name(s) will be
globally unique. Here is an example:

joe.hacker@gnu.org--test-archive

If your organization is going to have more than one revision control archive, you’ll use
more than one archive name:

joe.hacker@gnu.org--gcc-archive
joe.hacker@gnu.org--guile-archive
joe.hacker@gnu.org--2001

You can choose an archive name to use as the default for all ArX commands. When you
run a command without explicitly specifying a archive, the default is used:

% arx my-default-archive joe.hacker@gnu.org--2001

To find out the current default:

% arx my-default-archive
joe.hacker@gnu.org--2001

Chapter 8: The ArX Global Name-space of Projects 43

In general, ArX sub-commands accept the option -A to specify a non-default archive:

% arx my-default-archive -A joe.hacker@gnu.org--test-archive
joe.hacker@gnu.org--test-archive

8.3 Category Names and Branch Labels

The category of a project name identifies, generally, what the project is. The category
is the same no matter who is distributing the project, or which development path is being
considered.

The branch label is optional. It can be used to distinguish alternative development paths
for a given project.

The category and branch label must match the regexp:

[[:alpha:]1]([[:alnum:]]*(-[[:alnum:]]+)7)*

or in other words, they must begin with a letter and consist entirely of digits, letters, and
dashes — but must not contain two dashes in a row, and must not end with a dash.

8.4 Version Numbers

In a somewhat arbitrary but extremely traditional way, branches are divided into a series
of versions.

The version number must match the regexp:

[[:digit:11+\\.[[:digit:]1]+

or in other words, it must consist of two strings of digits, separated by a single period. The
first string of digits is called the major version number and the second string of digits is
called the minor version number.

Note: Version numbers are not revision numbers. In other words, when the ArX revision
control system stores multiple snapshots of the development of your project, it does not
assign a new version number to each snapshot. Instead, each project version is further
subdivided into something called "patch levels", which are explained in detail later in the
manual.

44 ArX

8.5 Labelling Project Trees

Every project tree may be labeled with a project name using the set-tree-version
command, as in this example:

% cd ~/wd/ArX

% arx set-tree-version ArX--1.0
That project name becomes the default for ArX operations within that tree.
You can find out the project name of a tree with tree-version:

% arx tree-version
joe.hacker@gnu.org--2001/ArX--1.0

Notice that ArX used the default archive (returned by my-default-archive) when set-
tree-version was invoked. You can also specify an archive explicitly, as in these two
examples:

% arx set-tree-version joe.hacker@gnu.org--alt/ArX--1.0
or

% arx set-tree-version -A joe.hacker@gnu.org--alt ArX--1.0
8.6 Combining Project Trees

You can, in fact, combine project trees: storing the files and directories from multiple
projects under a common root. This can be useful if you have separately maintained projects
that, nevertheless, are tightly integrated.

Chapter 9: Archives 45

9 Archives

This chapter discusses archives — places where revisions can stored and shared. Archives
are used to keep a detailed history of how a project evolves. They are used to help a team of
developers stay "in sync" — in agreement about what the official, latest revision of a project
really is. Archives are used to help coordinate divergent development paths (branches) and
to merge changes between branches.

9.1 Archive Names Revisited

Every archive has a name which should be globally unique. These names were previously
introduced in the context of project names generally (see Section 8.2 [Archive Names],
page 42.)

To briefly review, an archive name consists of an email address (with complete hostname),
followed by "-", followed by an additional string of numbers, letters and dashes (but not
two dashes in a row). Choose an email address which is exclusively yours (or your project’s).
That way, your archive name will be globally unique. Here is an example:

joe.hacker@gnu.org--test-archive

9.2 Creating a New Archive

To create a new archive on a local file system, use the make-archive command:
% arx make-archive NAME LOCATION
The NAME is the name for the archive. The LOCATION is a name for a directory that will
be created to hold the archive. For example:

% arx make-archive \
joe.hacker@gnu.org--test-archive \
“/{test-archive}

46 ArX

9.3 Mapping Archive Names to Locations

ArX maintains a mapping of archive names to archive locations separately for each user,
in the directory ~/.arch-params.

You can see the list of archives for which you have a recorded location by using the
archives command, as in this example:

% arx archives
joe.hacker@gnu.org--test-archive
/home/joe/{test-archive}

The command register-archive is used to add, remove, or update the location of an
archive:

% arx register-archive ARCHIVE-NAME LOCATION

records a new archive location or changes an old one. The command:

% arx register-archive -d ARCHIVE-NAME

removes the record of an archive location.
If you want to know the registered location of a particular archive, you can use:

% arx whereis-archive ARCHIVE-NAME
LOCATION

9.4 Remote Archives

There are four ways to set up a remote archive: ftp, wu-ftp, sftp, and http. The wu-ftp
method works around some bugs in wu-ftpd’s implementation of the ftp protocol.

The first thing that you have to do is set up the (s)ftp or http server on the remote
machine. ArX does NOT have to be installed.

9.4.1 HTTP
There are two ways that http access can work.

9.4.1.1 Webdav

This is the recommended and most reliable way. For apache, this usually involves in-
stalling the mod_dav modules. This will work with apache 1.3 or later. Then you have to
add something like the following to the conf file for apache:

Chapter 9: Archives 47

<Directory /home/*/public_html>
DAV On
AllowOverride FileInfo AuthConfig Limit
Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec
<Limit GET POST OPTIONS PROPFIND>
Order allow,deny
Allow from all
</Limit>
<Limit PUT DELETE PATCH PROPPATCH MKCOL COPY MOVE LOCK UNLOCK>
Order deny,allow
Deny from all
</Limit>
</Directory>
You might have to change the first line of that to make it point to where your archives
are.

9.4.1.2 Explicit lists

This should only be used if you are unable to install webdav support on your server.
You do this by creating a listing file. One idiom to do this is with the command

find . -type d -exec sh -c "(cd ; 1ls | sed -e ’s/$/°M/’ > .listing)" \;I

this is CTRL-M ---!
You will have to run this script each time you update the archive.

9.4.2 SFTP

Setting up the sftp server generally requires just setting up an ssh server. On De-
bian systems, there is a bug in the default config file (see http://bugs.debian.org/cgi-
bin/bugreport.cgi?bug=141979).

9.4.3 Accessing the Archives

You can access the archive by specifying the uri:

ftp://[user@]host/dir # passive ftp
wu-ftp://[user@lhost/dir # passive ftp with wu-ftp
sftp://[user@lhost/dir # the ssh ftp protocol

httpl[s]://[user@lhost[:port]/dir # webdav
ArX saves the location in your .arch-params directory, and it is made unreadable to
anyone but you. Pretty worthless security, so don’t rely on it. Currently, https is not
implemented, so the only way to create secure remote writeable archives is with sftp.
As a concrete example, to register an anonymous ftp server, the command would look
something like
% arx register-archive joe.hacker@gnu.org--test-archive \
ftp://anonymous@ftp.gnu.org/users/joe/{test-archive}

48 ArX

and then you can treat it like a local, read-only archive. For an http server, it would
look like

% arx register-archive joe.hacker@gnu.org--test-archive \
http://www.gnu.org/~ joe/{test-archive}

9.5 Your Default Archive

Using ArX is generally simplified by setting a default archive — the archive to use by
default when no other is specified.

The command:

% arx my-default-archive [options] [archive]

can be used to set or check your default archive. (This command was previously introduced.
See Section 8.2 [Archive Names], page 42.)

Chapter 10: Development Paths 49

10 Development Paths

An ArX archive is organized around development paths. Each development path is a
succession of revisions, each (usually) differing from the previous revision by a simple patch.

Every development path has a project name with version number, such as:
hello--devo--1.0
Project names were previously discussed (see Chapter 8 [The ArX Global Name-space
of Projects], page 41).

As we’ll see in the next chapter, each development path is further subdivided into specific
revisions, each having a patch level name, as in these examples:

hello--devo--1.0--patch-3

hello--devo--1.0--patch-4
hello--devo—-1.0--patch-5

10.1 Creating a Development Path

Supposing that you have set your default archive, you can create a new development
path with the create-branch or create-version commands.

10.2 Examining an Archive

You can review what’s in an archive using the commands:

% arx categories
- print a list of categories

% arx branches CATEGORY-NAME
- print a list of branches within a category

% arx versions BRANCH-NAME
-print a list of versions within a branch

50 ArX

10.3 Fully Qualified Version Names

Every version is associated with a particular archive. Ordinarilly, if you write a simple
version name, your default archive is presumed. However, wherever a version name is called
for, you can use a fully qualified version name of the form:

ARCHIVE-NAME/VERSION-NAME

as in the example:
joe.hacker@gnu.org--test-archive/hello--devo--1.0

That can be useful when operating on a remote archive that is not your default archive.
For example, you could use the name in the example to retrieve the latest revision from Joe
Hacker’s archive, in preparation for creating a branch of that version in your local archive.

Chapter 11: Basic Revision Control 51

11 Basic Revision Control

This chapter introduces the fundamental operations for storing revisions in archives,
retrieving them, doing clever things with patches, and managing project trees for archived
projects.

11.1 The First Revision

When beginning a new project, the first step is to check in the very first revision of the
tree. From the top level directory of the project tree, you can do this with create-version.
For example

% arx create-version CATEGORY--BRANCH--VERSION
This will set up all of the things behind the stage needed to commit the tree. It will not

actually modify the archive. It will also pop up an editor (set with my-editor) to edit a
log file template. It will look like

Summary :
Keywords:

The details of what should go in a log message are project specific. To make a multi-
line Summary: or Keywords: line, just indent it. Also, you have to skip a space after the
Keywords: line before. So a complete log entry might look like

Summary: Added foo, removed bar. Rearranged and split up
the baz directories.
Keywords: foo, bar

Added foo, which required reworking lart.c to handle
a more general case.
Removed bar, because it is now subsumed by foo.

It could also be as simple as
Summary: Added foo, removed bar.

In general, the format of a log message uses RFC822 style headers followed by a free-form
body. The only required header is the Summary:. A body is not required. When ArX stores
a log message, it will add some headers of its own.

Add files By default, you have to explicitly add files to the list of files that are considered
to be source (and thus should be archived). So if you have files foo.c, bar.py, and baz.pl
in the project tree, but you only want to archive foo.c and bar.py, then issue the command

% arx add foo.c bar.py
You can check which files have been marked as source with
% arx inventory

See Chapter 6 [ArX Project Inventories|, page 27 for more information about how ArX
decides what to archive.

Archive the Tree Again, in the root of the project tree, use the commit command to
archive the tree:

52 ArX

% arx commit

commit will make all of the necessary categories, branches, and versions, store the tree
in the archive (as a compressed tar file), and update the patch log of the working directory
to reflect the commit.

After commiting a revision to, say, hello--devo--1.0, you can use the command
revisions to see a list of archived revisions:

% arx revisions hello--devo--1.0
base-0

base-0 is the "patch level name" for the first revision. Patch levels are described in
greater detail below.

11.2 Successive Revisions

Suppose that you have continued to edit your working directory after checking in the
initial revision. Successive revisions can be checked in with the command commit, issued
at the root of the working directory. As before, you must first have a log file. You can use
the make-log function to prepare a log message for each commit:

% arx make-log

This will pop up an editor to modify the log file template. To commit the changes, you
once again use commit.

% arx commit
After several commits, you will have a number of patch levels:

% arx revisions hello--devo--1.0
base-0
patch-1
patch-2
patch-3

As a point of interest, the base revision is stored as a compressed tar file of the entire
tree. Each patch-N is stored as a compressed tar file of just a patch set that describes how
to derive that revision from the previous revision.

Chapter 11: Basic Revision Control 53

11.3 Patch Levels

Within a version, there is a sequence of revisions, each of which is a different patch level.
Every patch level has a patch level name, derived from the version name by adding a suffix:

hello--devo--1.0--base-0

hello--devo--1.0--patch-1
hello--devo--1.0--patch-2
hello--devo--1.0--patch-3

Just as with version names, there is also such a thing as a fully qualified patch level
name:

joe.hacker@gnu.org--test-archive/hello--devo--1.0--patch-3
It is perhaps worth mentioning that patch level names can be sorted easily using:
sort -t - -k 1,1 -k 2,2n
or in reverse:

sort -t - -k 1,1r -k 2,2rn

11.4 Tagging

You can also give alternative names for revisions. For example, you can use the tag
release-candidate to name whatever revision people should download for testing pur-
poses, regardless of what branch, version, or patch level the release candidate happens to
be on.

In ArX, tags are revisions on ordinary branches. For example, suppose we are developing
ArX--devo--0.5 and want to create a tag release-candidate to mark revisions which
"early adopters" should test. This is as simple as

% arx tag ArX--devo--0.5--patch-37 \
ArX--release-candidate--0.5

Note that source-revision and tag-revision may be abbreviated. For example, to
tag the most recent revision of ArX--devo:

% arx tag ArX--devo--0.5 ArX--release-candidate--0.5
or

% arx tag ArX--devo ArX--release-candidate

After such a command, you can retrieve the tagged revision in the ordinary way:
% arx get ArX--release-candidate--0.5

Note that when you get a tag that way, the default version of the resulting project
tree is the tag’s version, not the tagged version (see Section 8.5 [Labelling Project Trees],
page 44).

You can always update a tag, making it point to a later revision, again using the tag
command:

54 ArX

% arx tag ArX--devo--0.5--patch-53 \
ArX--release-candidate--0.5
You can see the history of a tag in the usual way, too:

% arx revisions --summary ArX--release-candidate--0.5
base-0

tag of joe.hacker@gnu.org--ArX/ArX--devo--0.5--patch-37
patch-1

tag of joe.hacker@gnu.org--ArX/ArX--devo--0.5--patch-53

11.5 Development Phases

Note: Phased development may be removed in the future. Its’ status is uncertain.

Development within a version may be optionally divided into four phases: base revision,
pre-patches, version revision, and post-patches. Conceptually, "pre-patches" are revisions
made before the version is "done". "Post-patches" are revisions made after the version is
done (e.g. "bug fix patches").

At the beginning of a development path is the base revision (called base-0). Between the
pre-patch and post-patch phases is the version revision (called version-0). Post-patches
have names like versionfix-1, versionfix-2, etc.

So the total sequence of revisions within a development path has the form:

The Initial Revision:
base-0
Pre-Patches:

patch-1
patch-2
patch-3
patch-N

The Version Revision:
version-0

Post-Patches:

versionfix-1
versionfix-2
versionfix-3

Chapter 11: Basic Revision Control 55

Typically, the version-0 revision is what would be released under the version number
and the post-patch revisions are fixes made after the release.

The ordinary commit command creates pre-patches (patch-N revisions).
To create the version revision, use commit --seal:

% arx commit --seal

After the version revision exists, ordinary commit will no longer work. To create a
post-patch revision, use commit --fix:

% arx commit --fix

If you are familiar with other revision control systems, a four-phased development process
may at first seem somewhat arbitrary and needlessly complicated. T'wo points are worth
mentioning:

First, phased development is entirely optional. Nothing requires you to ever --seal a
version, and if you never seal a version, you never need to use --fix. Instead, every revision
(after base-0) will be a patch-N revision.

Second, phased development is a handy way to prevent accidents when organizing more
complex projects. Sealing a version is a way to set a flag that says, in effect, "ordinary
development in this version has stopped — you might not really want to make a new revision
here." You can make a new revision if you insist (by specifying --fix), but the requirement
that you insist helps alert you to the fact that your new revision might need to be merged
with later versions of the same project; or that that version you are revising has already
been released. Phased development is a bookkeeping convenience: for the most part, ArX
treats all revisions equally, regardless of their phase.

11.6 Getting a Revision

To retrieve a revision from an archive, use arx get:
% arx get REVISION DIR
as in:
% arx get hello--devo--1.0--patch-4 hello
to retrieve the revision patch-4 and store it in the new directory hello.
An abbreviation can be used to obtain the most recent revision of a version:
% arx get hello--devo--1.0 hello
or to obtain the most recent revsion of the highest-numbered version:
% arx get hello--devo hello

A fully-qualified name can be used to obtain a revision from someplace other than the
default archive:

% arx get joe.hacker@gnu.org--test-archive/hello--devo

56 ArX

11.7 Optimizing Archives for get

The way that get ordinarily works is that it searches backwards from the desired revi-
sion to find the nearest full-source base revision. It gets the compressed tar file for that
base revision and creates a source tree. Then, for each intermediate patch level, it gets a
compressed tar file of the patch set, uncompresses and un-tars the patch-set, and applies
the patch-set to the source tree.

If there are many intermediate patch-sets, that process can be slow. In such cases, you
can ask ArX to cache a full-source copy of an arbitrary revision, with the command:

% arx archive-cache-revision [ARCHIVE/]REVISION

That command first builds the requested revision, then it builds a compressed tar file of
the revision, then it stores the tar file back in the archive. Subsequent attempts to get the
same revision (or any later revision) will use the cached tree.

To remove a previously cached tree, use:

% arx archive-uncache-revision [ARCHIVE/]REVISION

For each user, ArX also maintains a "client side" cache of revisions that can speed up get
(and other operations). See Chapter 22 [Revision Tree Libraries|, page 99 for more details.

11.8 Finding Out What Changed

Before performing a commit, you might want to check to see what has actually changed
— that is, find out exactly what patch set your commit will create.

You can do that with the command what-changed:

% arx what-changed
[...patch set report...]

what-changed computes a patch set between your modified project tree and the latest
patch level for which your project tree is up-to-date. In other words, it tells you what
changes have been made to your tree compared to the tree in the archive.

what-changed leaves behind a directory containing the patch set and patch report, which
you can usefully browse by hand.

% 1s
, »what-changed.ArX--devo--0.5--patch-14--lord@regexps.com——-ArX-1
[...]

The default output of what-changed is formatted for use with the outline mode of
GNU Emacs. The emacs mode bundled in the distribution makes it easy to browse the
differences.

You can ask what-changed to also generate an HTML-formatted report with:

Chapter 11: Basic Revision Control 57

% arx what-changed --url
URL of patch report

The HTML report has links to each context diff, added, and removed file. The output
of the command is a file: method URL, which can be used by browsers

% mozilla -remote "openURL(‘arx what-changed --url‘)"

A simpler solution is to set your browser using the my-browser command. Then you
can invoke what-changed with the -—new-browser or --new-tab options. For example,

% arx what-changed --new-tab

will open the report in a new tab of your browser.

11.9 The whats-missing Command

Suppose that more than one programmer is checking revisions into a version, Alice and
Bob for example.

Alice and Bob both start with working directories and both make some changes. Alice
commits several changes. Now Bob’s working directory has fallen behind archived develop-

ment path.

The command whats-missing can be used to tell Bob which patches he is missing:

% arx whats-missing --summary
patch-N

summary of patch N
patch-N+1

summary of patch N+1

For each patch that Bob is missing, whats-missing --summary prints the name of the
patch and the contents of the Summary: header from its log message.

The whats-missing command is explained in greater detail in a later chapter (see Chap-
ter 13 [Patch Logs and ChangeLogs]|, page 67).

58 ArX

11.10 Update

So Bob is behind by a few patches, but also has his own modifications.
Diagramatically, we have something like:
Patch Levels Bob’s Working

in the Directory
Archive:

patch-4 --—----- > bob-0 (Bob’s initial working directory)
patch-5 [
patch-6 |
patch-7 \Y
patch-8 bob-1 (Bob’s working dir with changes)

Bob is missing patches five through eight.

The command update can be used to fix the situation:
% arx update OLD-DIR NEW-DIR

as in:

% arx update bob-1 bob-2

update works in several steps. First, it gets a copy of the latest revision (patch-8 in
this case). It also gets a copy of the revision from which OLD-DIR is dervied (patch-4 in
this case). Then it uses mkpatch to compute the differences between OLD-DIR and its source
revision, and applies those differences (using dopatch) to the latest revision.

In the example, update will create the directory bob-2, with the source:

delta(patch-4, bob-1) [patch-8]

(For information about this notation, see Appendix B [The Theory of Patches and Re-
visions|, page 123.)

Applying that patch might cause conflicts. In that case, update will print a message
telling Bob to look for .rej files.

As a convenience, update also copies all non-source, non-junk files from OLD-DIR to
NEW-DIR (see Chapter 6 [ArX Project Inventories|, page 27).

Of course, if Bob only wanted to "partly update", he could do that with an extra
parameter to update, as in the example:

Chapter 11: Basic Revision Control 59

update, but only up to patch level 6:
#

% arx update bob-1 bob-2 hello--devo--1.1--patch-6

Finally, update can replace OLD-DIR with the updated directory if given the --in-place
flag:

% arx update --in-place OLD-DIR

11.11 Replay

update isn’t the only way to catch-up with a development path. Another option is
replay:

% arx replay old-dir new-dir

Using the same example:

Patch Levels Bob’s Working
in the Directory
Archive:

patch-4 —--—----- > bob-0 (Bob’s initial working directory)

patch-5 |

patch-6 [

patch-7 v

patch-8 bob-1 (Bob’s working dir with changes)
and the command:

% arx replay bob-1 bob-2

replay will first copy bob-1 to create bob-2. Then it will apply each missing patch in
succession until bob-2 is up-to-date, or until a merge conflict occurs.

Thus, if no conflict occurs, replay computes:
patch-8 [patch-7 [patch-6 [patch-5 [bob-1 1111

If a conflict occured in, say, patch-6, then replay would compute:
patch-6 [patch-5 [bob-1 1]

60 ArX

and after fixing the conflict, Bob could use a second replay command to apply patches
seven and eight.

As with update, replay also copies all non-source, non-junk files from 0LD-DIR to NEW-
DIR (see Chapter 6 [ArX Project Inventories|, page 27).

Of course, if Bob only wanted to "partly replay", he could do that with an extra param-
eter to replay, as in the example:

replay, but only up to patch level 6:
#

% arx replay bob-1 bob-2 hello--devo--1.1--patch-6

You can use replay to modify an existing directory rather than creating a new directory:

% arx replay --in-place DIR [REVISION]

but be careful: if DIR contains precious local changes, and conflicts occur, or if you simply
decide the replay wasn’t a good idea, you’ll have to do some work to revert the replay.

11.12 The Next Version

In simple situations, a version like hello--devo--1.0 will be followed by the next ver-
sion: hello--devo--1.1 or hello--devo--2.0, for example.

Such a version is called a continuation of the previous version and it is created with
create-version.

% arx create-version NEXT-VERSION
[...edit log message...]
% arx commit

as in:

% arx create-version hello--devo—-1.1
[...edit log message...]
% arx commit

Those commands create the base-0 revision of the new version but instead of storing
complete source for the base revision, they store a pointer to the older revision which the
base revision is equal to.

Chapter 11: Basic Revision Control

61

62

ArX

Chapter 12: Basic Branching and Merging 63

12 Basic Branching and Merging

When a single development path splits into two paths, that’s called a branch. Typically,
a branch is followed by a merge — adding the changes made in a branch back to the branch
from which it diverged.

This chapter explains how to create a branch and the simplest way to merge changes
from two branches. Later chapters will explain fancier techniques, useful in more complex
situations.

12.1 Creating a Branch

You can create branches with the create-branch command. It leaves you with a working
directory for the new branch. The sequence of commands is simply

% arx create-branch OLD-REVISION NEW-BRANCH-VERSION WORKING-DIR
[...edit log message...]

% cd WORKING-DIR

% arx commit

create-branch will invoke an editor (specified by my-editor) to modify the log tem-
plate.

For example, to create a branch hello--experimental--1.0 from the latest revision of
hello--devo—-1.0, use:

% arx create-branch hello--devo--1.0 \
hello--experimental--1.0 \
wd

[...edit log message...]

% cd wd

% arx commit

If you make modifications to a project tree, but then decide that those modifications
should go into a new branch, you can use the ——in-place option to create-branch. For
example,

% arx get hello--devo--1.0 wd

% cd wd

[...edit files...]

% arx create-branch --in-place hello--experimental--1.0
[...edit log file...]

% arx commit

64 ArX

12.2 Distributed Branches

There is no requirement that a branch be stored in the same archive as the revision from
which it branched. For example, you can create a private archive, and store some branches
there — only merging those changes back into the shared archive when they are ready.

Here’s a tip: make your private archive your default archive. Use fully-qualified version
and revision names when getting or committing revisions in the shared archive. This makes
it less likely that you’ll accidently make unintended changes to the shared archive.

12.3 whats-missing Revisited

If you have a project tree for a branch, you might want to know what has happened in
the version from which you branched.

The whats-missing command is used for this. In a working directory for a branch, use:

% arx whats-missing --summary ORIGINAL-VERSION

where ORIGINAL-VERSION is the version name of the version from which you branched.
Actually, ORIGINAL-VERSION can be any version for which your project tree has a patch
log.

The whats-missing command is explained in greater detail in the next chapter (see
Chapter 13 [Patch Logs and ChangeLogs|, page 67).

Chapter 12: Basic Branching and Merging 65

12.4 update and replay Revisited

Similarly, update and replay work for any version for which a project tree has a patch
log, such as a version from which a branch occurred:

% arx update OLD-DIR NEW-DIR [archive/]VERSION

% arx replay OLD-DIR NEW-DIR [archive/]VERSION

12.5 Merging After a Branch

The simplest use of branching and merging is this: you have one development path, call
it the "trunk". You form a branch from that development path, which we’ll just call "the
branch".

To make some changes, you do your work on the branch: check out the latest revision
from the branch, make changes, commit, make more changes, commit again, etc.

As you work, you might sometimes need to "catch up" to changes made to the trunk.
You can do that by using update or replay.

When you’re done, and the branch is fully up-to-date with the trunk, you can check out
the latest branch revision, then commit that version to the trunk. All of the changes that
you made on the branch will be summarized into a single patch.

There are more complicated and more realistic uses of branches. These are the subjects
of the next several chapters.

66

ArX

Chapter 13: Patch Logs and Changelogs 67

13 Patch Logs and ChangeLogs

Every project tree has an associated patch log: a collection of log entries for each commit
or import in the history of that patch tree. When you commit a new revision, the log entry
you write is saved in two places: it is saved in the archive as a plain text file (for browsing and
as a record of complex ancestory relationships), and in the project tree itself (for browsing
and to control history sensative merging).

Logs are organized by version. The command:
% arx logs
lists all of the version names for which a project tree has a patch log.
The command:

% arx log-ls [[ARCHIVE/]VERSION-NAME]

lists all of the patch levels for which a tree has log entries (for revisions in the indicated
version). With the summary flag:

% arx log-ls --summary [[ARCHIVE/]VERSION-NAME]

the Summary: header of each log entry is printed.
To see the complete text of an entry, use:

% arx cat-log [ARCHIVE/]VERSION--PATCH-LEVEL

68 ArX

13.1 Branches and Patch Logs

When you form a branch, project trees on the branch have (at least) two patch logs: one
for the original development path, and one for the branch itself. When you merge changes
from one branch to another, so long as both branches have the same project category, the
merged tree has patch logs for both branches. ("Project categories" were introduced in
Chapter 8 [The ArX Global Name-space of Projects|, page 41).)

13.2 Comparing Patch Logs to Archives
You can find out if an archive contains patches that haven’t yet been applied to your
project tree with this command:

% arx whats-missing [[ARCHIVE/]JVERSION ...]
<list of missing patches>

That command compares the patch log stored in the archived with the patch log found
in the project tree and prints the list of missing patches. There may be missing patches if
your tree is not up-to-date with respect to the archive, or if when your tree was created,
some patches were skipped.

You can see the Summary: line of each missing patch with:

% arx whats-missing --summary [[ARCHIVE/]JVERSION ...]

If you want the list to contain fully-qualified patch level names, use the -—full option.

If you want to know where branch A stands in relation to branch B, one way to find out
is with:

% arx get A dir
% cd dir

% arx whats-missing B

(It is possible to obtain the same information without having to get a revision from
branch A, using commands already introduced, plus some other shell commands. The
details are left as an exercise for the interested reader.)

Chapter 13: Patch Logs and Changelogs 69

13.3 ChangeLogs

The command arx changelog generates a GNU-style ChangeLog file from a patch log:
% arx changelog

or

% arx changelog [ARCHIVE/]VERSION

The ChangeLog file generated for ArX, for example, might begin:
do not edit -- automatically generated by ArX changelog
#

tag: automatic-ChangelLog--lord@regexps.com—-ArX-1/ArX--devo--0.5
#

2001-12-17 Tom Lord <lord@regexps.com>

Summary:
‘update’ and ‘replay’ output format and bug fixes

‘update’ and ‘replay’ -- structured output and updated argument
processing for reasonable defaults.

‘replay’: copy precious files before (not after) appling patches
so they are carried along with directory renames in patch sets.

‘dopatch’: don’t pipe ‘arx heading’ into ‘arx body-indent’.

modified files:
ChangeLog src/ArX/=T0ODO
src/ArX/branching-and-merging/replay.sh
src/ArX/branching-and-merging/update.sh
src/ArX/patch-sets/dopatch.sh

2001-12-17 Tom Lord <lord@regexps.com>

Summary:

[...]

If someone has a full distribution of your work, they can generate a Changel.og as needed.
You can also include Changel.ogs in tarball distributions using the —-changelog option for
update-distributions. That will make a directory ChangeLog.d, and the ChangeLogs
will go in ChangeLog.d/ARCHIVE/REVISION. If ChangeLog.d already exists, then ArX
will not put Changelogs into that tree.

70

ArX

Chapter 14: Star Topology Branching and Merging 71

14 Star Topology Branching and Merging

A common way to use branches is to form a star topology. At the center is a trunk
or "primary development path". A number of branches form a "star" around the trunk.
There might be one branch for each developer or sub-team; one branch for each large task;
one branch for each change reviewer; one branch for each category of tasks, etc. Here’s a
(fictional) example of using a star topology to work on various aspects of GNU emacs:

emacs-—-display emacs--intl
(for hacking on (for lisp-level character-set
display features) support)
\ /
\ /
emacs--main (the trunk)
/ \
/ \
emacs--bugs emacs--guile
(for simple bug (for preparing to use
fixes) Guile Scheme)

When using a star topology, developers make changes on the branches, merging those
changes into emacs-main at significant milestones. Periodically, they merge the collected
changes on emacs-main back to the development branches. The trunk is the official devel-
opment sources. Work takes place on the branches, and the developers use the trunk to
stay in-sync.

This results in a situation where each branch has merged with emacs-main multiple
times, and emacs-main with each branch several times. In such situations, simple update
and replay are inadequate for performing merges.

This chapter illustrates the problem with using update and replay for merging in a
star topology, explains the solution in general terms, and finally presents star-merge, a
command that implements the solution.

72 ArX

14.1 The Star Topology Merge Problem

Consider the trunk and one of its branches after several revisions and merges on each:

emacs—-main emacs—-—-display
A-0 - > B-0 (a tag)
A-1 B-1
A-2 ymmm > B-2 (merge w/ A-1..3)
A-3 - B-3
A-4 it B-4
(merge w/ A-5 <-——--——- B-5
B-0..4) A-6 y T > B-6 (merge w/ A-4..7)
A-7 - B-7
A-8 B-8

Now, suppose we have a working directory that was checked-out from A-8 and perhaps
contains local modifications. Our goal is to merge B-8 with that working directory, giving
a revision that is up-to-date with both branches and that includes any local changes.

% arx update --in-place --dir WD emacs--display

modifies WD such that:
WD := delta(B-4, WD) [B-8]
Well, what has changed in WD since B-47 B-4 was up-to-date up to A-3, but WD contains
additional changes from A-4..A-8 — all of those changes are included in the delta computed

by update.

update applies that delta to B-8. Unfortunately, B-8 already includes the changes in
A-4..7 — so conflicts are guaranteed.

We can’t use replay either:
% arx replay --in-place --dir WD emacs-display
tries to apply all the patches missing from B. For WD, those patches are B-5..B-8. Unfor-
tunately, patch B-6 includes all the changes from A-4..7 (perhaps with additional changes

or conflict resolutions). WD already has all of those same changes, so again, conflicts are
guaranteed.

Chapter 14: Star Topology Branching and Merging 73

14.2 Solving the Star Topology Merge Problem

In the case of the example above, there are three reasonable ways to solve the merge
problem, depending on the relative precedence we want to give the two development paths
and the working directory.

If we want to give precedence to the changes already in the working directory, we can
perform the merge by computing:

WD := delta (A-7, B-8) [WD]

If we want to give precedence to the changes in emacs--display, we can perform the
merge by computing:

WD := delta (A-7, WD) [B-8]

Finally, we might want to merge in two steps: first merging emacs--display with A-8
(giving precedence to emacs--display), then adding the local changes of WD to that:

tmp := delta (A-7, B-8) [A-8]
WD := delta (A, WD) [tmp]

There are in fact six different ways of precedence-ordering the two branches and WD
however one of the above solutions works for each of the six possibilities.

Three different solutions are needed if WD was checked out from emacs--display and
our goal is to merge in changes from emacs--main. These are:

1: WD := delta (A-7, A-8) [WD]

2: tmp := delta (A-7, A-8) [B-8]
WD := delta (B-8, WD) [tmp]

3: WD := delta (A-7, WD) [A-8]
(this is an ordinary ‘update’)

In the two two-step solutions, legitimate conflicts can occur while building the tmp tree:
its necessary to resolve such conflicts by hand before performing the second step.

Suitably abstracted, those six merge techniques are sufficient to solve all star topology
merging problems with a choice of branch and local change precedence without generating
any spurious merge conflicts.

74 ArX

14.3 The star-merge Command

The star-merge command figures out how to solve a star topology merge problem and
performs the merge. Its syntax is:

% arx star-merge [--in-place] A B C [output-dir]

where A, B, and C are the names of two branches and a working directory (in any order). (If
your working directory name can be mistaken for a branch name, and most of them can,
you should prefix the directory name with ./).

With the --in-place option, the working directory is directly modified or else com-
pletely replaced with the result. Otherwise, the merge is stored in a new directory (output-
dir).

The order of arguments determines the precedence of changes. A, B and C have a comman
ancestor revision — call it X. The order of arguments means (conceptually): start with
revision X, add the changes from A, then the changes from B, then the changes from C. The
specific ordering of changes determines, when there are conflicts, which branch’s code is
automatically encorporated, and which is left as .rej files.

If the merge requires two steps, and conflicts occur in the first step, star-merge will
stop after the first step leaving the output directory in an intermediate state. After fixing
the conflicts, you can complete such a merge with:

% arx star-merge --finish [directoryl]

NOTE: In the current release, there is a limitation on star merge. Suppose that B is
a branch of A and that B and A have never been previously merged. In order to merge
them, you must use a working directory checked out from B (the branch version) not from
A (the branched-from version). Alternately, you can use the join-branch command on the
directory checked out from A.

This restriction will be removed in the next release.

Chapter 14: Star Topology Branching and Merging

75

76

ArX

Chapter 15: Writing Log Entries for Merges 7

15 Writing Log Entries for Merges

Suppose you have used star-merge or some other commands to merge two or more
branches. You are ready to commit those changes, but first you have to write a log message.

All of the changes you’ve just merged are already explained in existing log messages.
Your new log message can simply summarize the changes, and point to the more detailed
log entries. ArX has commands which help with this.

The command:

% arx new-on-branch [--reverse] [--dir .] VERSION

reports a list of patches found in a project tree, but not previously merged with VERSION.
Those patches are the ones that were added by your merging activity.

You can print a summary of the changes made by those patches by using xargs and the
log-1s command. For example, the main development path for ArX 1.0 is called ArX--
devo--1.0. I develop new features on various branches. When it comes time to write a log
message before committing a merge to ArX--devo, I use:

% arx new-on-branch --reverse ArX--devo--1.0 \
| xargs arx log-ls --full --summary

lord@regexps.com--2002/ArX--lord--1.0--patch-14
‘merge-points’ fixes and ‘new-on-branch’ speed-up
lord@regexps.com--2002/ArX--lord--1.0--patch-13
Use --dir consistently.
lord@regexps.com--2002/ArX--lord--1.0--patch-12
output format touch-ups

That idiom is captured, along with a little bit of formatting, by the command log-for-
merge:

% arx log-for-merge ArX--devo--1.0
Patches applied:

* lord@regexps.com--2002/ArX--lord--1.0--patch-14
‘merge-points’ fixes and ‘new-on-branch’ speed-up

* lord@regexps.com--2002/ArX--lord--1.0--patch-13
Use --dir consistently.

* lord@regexps.com--2002/ArX--lord--1.0--patch-12
output format touch-ups

(An advantage of using the formate generated by log-for-merge is that it is understood
by other ArX commands which automatically format web pages from ChangeLogs.)

78

ArX

Chapter 16: Arbitrary Patching with delta-patch 79

16 Arbitrary Patching with delta-patch

A general purpose, though low-level tool for merging is the delta-patch command:
% arx delta-patch FROM TO UPON QUTPUT-DIR

computes a patch set from FROM to TO and applies that patch set to UPON storing the result
in OUTPUT-DIR.

The arguments FROM, TO, and UPON can be the names of (any) revision, or the directory
names of project trees.

If UPON is a project tree, you can modify that tree directly with the ——in-place option:
% arx delta-patch --in-place FROM TO UPON

Note: You pretty much have to know what you’re doing to use this command. Normally,
you should use star-merge, update or replay.

80

ArX

Chapter 17: Multi-Branch Merging — The reconcile Command 81

17 Multi-Branch Merging — The reconcile
Command

History sensative merging with replay can avoid some avoidable merge conflicts, but
not all. One example is a class of merge problems that we’ll name "Repeated Multi-
Branch Merging": the problem of merging several branches when each of the branches have
previously merged with some of the others. Although this kind of merging seems arcane,
it can, in fact, easily arise in quite realistic situations (for example, when simultaneously
supporting multiple releases of a single project).

Below is an example to illustrate the problem. The set-up in this example is a bit long,
but each step along the way is perfectly reasonable, and the end result is quite a tangled
knot. The pay-off will be seeing how to cope with the resulting mess.

17.1 The Repeated Multi-Branch Merge Problem

Imagine that we start with a particular version of a particular branch, call it X. We’ll
begin at a particular revision in that branch version: X-1 (for the purposes of this explana-
tion, calling the revision X-1 is much less cumbersome than using a real revision name like
foo--mumble--3.5--patch-24).

Three programmers each form their own branch from X-1: call them A, B, and C:

--=> A-0
I

X-1 -———+-—--> B-0
|
--=> C-0

The plan here is develop on each branch, then merge the changes together to create a
new revision of X.

Programmer B starts off, and creates a series of revisions. Simultaneously, A creates a
project tree and starts making local changes for his first revision:

——=> A0
\

A’s project tree with local changes

-—-> B-0 -> B-1 -> B-2 -> B-3

0
[
[
[
|
[
—_ 4+ — — —

-—-> C-0

Programmer A wants to develop on top of those three patches from B, and so forms a
merge. At this stage, A can do a simple update or replay to create a merged project tree:

82 ArX

———> A-0
\

A’s merged project tree

___________ |_________
/ \
---> B-0 -> B-1 -> B-2 -> B-3

—_t — — — — —

-——> C-0

Let’s assume that A’s merge involved some conflicts: B’s code has been slightly rearranged
in the merged tree. Now A can check in that revision. Meanwhile, C starts work:

--=> A-0 -> A-1

_______ |_____________
/ \
---> B-0 -> B-1 -> B-2 -> B-3

C’s project tree with local changes

/
——-> C-0

0
[RY
|
|
|
|
—_ — — 4 — — — —

C decides it would be a good idea to merge with the feature’s found in A-1. In doing so,
he’ll also be picking up B-0..3. Once again, a simple update (or replay) is sufficient at
this point, though to keep things interesting, we’ll again assume that there are conflicts to
resolve during the update. And meanwhile, by the way, B works on his next patch, and A
commits a new revision:

---> B-0 -> B-1 -> B-2 -> B-3

C’s merged project tree
B |
/ v
--=> C-0 -> C-1

| \ /\
Il |
| | v
| | B’s project tree
| v

X-1 ————4-=-> A-0 -> A-1 -> A-2
| |
| v
|
|
|

We're nearly done with the set-up: B decides to merge in the changes in A-2. This is a
slightly interesting merge (although not the primary topic of this chapter). The common
ancestor of A-2 and B’s project tree is B-3. We previously assumed that when A updated
against B-3 there were conflicts that had to be resolved by hand. B has a choice. He can
use update against A-2 to create a new tree:

Chapter 17: Multi-Branch Merging — The reconcile Command 83

delta (B-3, B’s project tree) [A-2]

giving priority to A’s resolution of those merge conflicts. Or, he can commit his project
tree, get revision A-2, and update against the committed project tree (or do an equivalent
thing by hand, without comitting, using mkpatch and dopatch):

delta(B-3, A-2) [B’s project tree]

giving priority to B’s code, and reconsidering the merge conflicts that A handled. The choice
is arbitrary and the best answer depends on the particular changes made. B might want to
experimentally try both merges (perhaps in a scratch repository) before picking one. Either
way, after a commit, we’ll have something like:

---> B-0 -> B-1 -> B-2 -> B-3 -> B-4 -> B-5

I / -
I / /
I / /
Sttt /
I e
I / /
I v /
X-1 —=——+--=> A-0 -> A-1 -> A-2
I I
I v
---> C-0 -> C-1

or in English:

A-1 is up-to-date with respect to B-3
B-5 is up-to-date with respect to A-2
C-1 is up-to-date with respect to A-1 and (therefore) B-3

Finally, let’s assume that the main development path, X, has evolved independently of
these three branches, and that A has added a few more revisions:

---> B-0 -> B-1 -> B-2 -> B-3 -> B-4 -> B-5
/ ~

-—=> A-0 -> A-1 -> A-2 -> A-3 -> A4
I
v

X-2 --—> C-0 -> C-1

I
I
I
I
I
I
| v /
+
I
I

84 ArX

17.2 The Challenge

Whew. What an (unfortunately plausible) mess. Now for the challenge:

Create X-3, which is up-to-date with A-4, B-5, and C-1

There is no one right answer to the challenge: no elegant solution that is guaranteed to
avoid merge conflicts. Indeed, there are many ways to perform the merge which differ in
terms of what conflicts they’ll produce. The goal of ArX is to arm programmers with plenty
of tools to understand the situation, explore, generate and apply patches effectively, and
find a reasonable solution with the greatest degree possible of automated assistance.

17.3 The Simple update Solutions

Simple update gives us a whole collection of simplistic solutions. For example, X could
update against A, then B, then C or:

intermediate-1 := delta (A-4, X-1) [X-2]
intermediate-2 := delta (B-5, X-1) [intermediate-1]
X-3-candidate delta (C-1, X-1) [intermediate-2]

That update path has some problems, though. delta (A-4, X-1) includes the changes
in delta (A-1, X-1), and so does delta (B-5, X-1). So creating intermediate-2 will
involve redundant patching and plenty of opportunities for conflicts. Similar problems
occur when creating X-3-candidate.

X could try doing the updates in a different order, but similar problems will still occur.

17.4 The Simple replay Solutions

X could replay the branches in some order. Suppose he replays A, then B, then C:

A-4 [A-3 [A-2 [A-1 [A-0 [X-2 11111
B-5 [B-4 [intermediate-1]]
C-1 [C-0 [intermediate-2]]

intermediate-1 :
intermediate-2 :
X-3-candidate

History sensitivity helped a bit there: replay knows better than to apply B-0..3 -
eliminating one source of needless conflicts. Still, when we replay B-5 and C-1, there will
be plenty of conflicts to make up for that.

It’s also worth mentioning that that this solution involves applying nine different patches:
we can do better. By differently ordering the replay solution, we get by with fewer patches
(replay C first, then A, then B, for example). Figuring out the best order in which to apply
patches is, ultimately, the subject of this chapter:

Chapter 17: Multi-Branch Merging — The reconcile Command 85

17.5 The reconcile Solution

Suppose that X asks, of the tree X-2:

% arx whats-missing A B C

the answer is:

OOUJUJUJUJ?UJ>>2>3>2>
R O U W NEL, O PPWNERO

X can also ask the more interesting question:

% arx whats-missing --merges A B C

which will answer not only what patches are missing, but what patches include other
patches:

W www W e
AR WNER, O WNR - B P PO

mwwwmwbara>wmmwa>:>
O WO O WNWNEFEOFRO

86 ArX

OOOOOCFOOUJUUUJ
el ol e R e @ B¢ B¢ By
tUUJUth>:JI>OO:J>:I>:!>
WNNHFP, O, O, ONRO

X can pipe that list into a filtering command, arx reconcile, which does some magic
(the trick is revealed below):

% arx whats-missing --merges A B C \
| arx reconcile

which means that X can perform the merge with just:

A-4 [A-3 [B-5 [B-4 [C-1 [C-0 [X-2 111111

There is still a potential source of conflicts — when applying B-5 in this case — but the
patch set is as small as possible (six patches instead of our earlier nine), and the sources of
conflicts are as few as possible.

How did reconcile find that solution? What’s the magic? Conceptually, reconcile
works in two steps.

First, reconcile computes a subset of all the patches: the necessary patches. The set
of necessary patches is the smallest set of patches which, applied in some order, is sufficient
to bring the tree up to date. (Proof that there is a unique smallest set of patches with that
property is left as an exercise for the interested reader.)

Second, reconcile repeatedly selects the next "necessary" patch to apply, until none
are left. At each step of this loop, candidates for the next patch to apply are the patches
all of whose prerequisites are in place. Of those, the next patch is the one that comes first
in the first column of the input to reconcile.

So, you don’t believe this obscure command is useful in real life? See Even/Odd Versions
in Appendix A [Implementing Development Policies|, page 113.

Chapter 17: Multi-Branch Merging — The reconcile Command

87

88

ArX

Chapter 18: Reverting Development 89

18 Reverting Development

Suppose that you are working along, making revisions, when you realize that the last
few revisions are just bad, and you want to revert them. You don’t want to completely
erase the development, since there may be pieces that you would want to use in a different
context. But you do want to make it look as all of those changes were reversed.

There is a command for this situation:
% arx make-sync-tree good-revision version [dir]

This creates a project tree for version whose source code is exactly the same as good-
revision but which has all of the current patch logs. You can then commit that tree,
reverting the patches after good-revision.

However, make-sync-tree is more general in application. Suppose that you have two
branches: a primary development line and a developer branch from that trunk. For one
reason or another, none of those changes which are on the developer branch but not the
trunk are needed — perhaps similar changes have recently been made on the trunk.

Now the developer wants to merge the trunk back to his branch, but the desired outcome
of this merge is quite trivial: he wants the source in the branch to wind up looking exactly
like the source in the trunk, but the patch log in the branch to have all log entries from
both the trunk and the branch. In short, it should appear that after diverging, the branch
was later editted to agree with the trunk on how to make the branch’s changes.

In this case, the command looks like
% arx make-sync-tree from-revision to-version [dir]

This creates a project tree for to-version whose source code is exactly the same as
from-revision but whose patch log is a combination of the latest patch log from to-
version and the patch log of from-revision.

The project tree thus created can be committed to to-version, resulting in in a perfect
synchronization between two branches.

90

ArX

Chapter 19: Multi-Tree Projects 91

19 Multi-Tree Projects

Large projects are often most naturally divided into a number of independently main-
tained sub-projects. For example, ArX itself consists of six separate projects:

./src
A generic top-level source file for combining
projects.

./src/arx

ArX itself. That is, the ‘arx’ command and all of
the shell scripts that implement it.

./src/file-utils
Generic utilities for operating on files and
directories.

./src/ftp-utils
A scriptable FTP client.

./src/hackerlab
The hackerlab C library.

./src/text-utils
Generic utilities for operating on text files.

In an ArX source tree, each of those sub-directories is a separate project tree (each has
its own {arch} subdirectory; each is in a separate category in the repository).

To put all the pieces together, use the ArX configuration commands:

(TO BE DOCUMENTED:)

Config file format, e.g.:

./configs/regexps.com/devo.ArX:

#
Check out an ArX distribution from the devo branches.
Latest revisions.

#

./src lord@regexps.com——2002/package—framework--devol
./src/ArX lord@regexps.com--2002/ArX--devo
./src/file-utils lord@regexps.com--2002/file-utils--devo
./src/ftp-utils lord@regexps.com--2002/ftp-utils--devo
./src/hackerlab lord@regexps.com--2002/hackerlab--devo
./src/shell-utils lord@regexps.com--2002/shell-utils--devo
./src/text-utils lord@regexps.com--2002/text-utils--devo

and

92

and

and

% arx build-config --help
instantiate a multi-project tree
usage: build-config [options] config-name

-V --version print version info

-h --help display help

-d --dir DIR cd to DIR first

--config-dir CFG get config from directory CFG
--silent no output

--quiet only output errors
--default-output default output

--report slightly verbose output
--verbose maximal output

-—debug debugging output

Build the named configuration based on the specification
in the "configs" subdirectory at the root of the project
tree.

% arx update-config --help
update a multi-project tree
usage: update-config [options] config-name

-V --version print version info

-h --help display help

--silent no output

-—quiet only output errors
--default-output default output

--report slightly verbose output
--verbose maximal output

--debug debugging output

-d --dir DIR cd to DIR first

--config-dir CFG get config from directory CFG
-—force pass the --force flag to update

Update the named configuration based on the specification
in the CFG directory (or "configs" subdirectory
at the root of the project tree containing DIR).

ArX

Chapter 19: Multi-Tree Projects

% arx replay-config --help
replay a multi-project tree
usage: replay-config [options] config-name

-V --version print version info

-h --help display help

-d --dir DIR cd to DIR first

--config-dir CFG get config from directory CFG
--silent no output

--quiet only output errors
--default-output default output

--report slightly verbose output
--verbose maximal output

-—debug debugging output

Update the named configuration based on the specification
in the CFG directory (or the "configs" subdirectory
at the root of the project tree in DIR).

and

% arx record-config --help
record a revision-specific configuration
usage: record-config [options] config-name new-config-name

-V --version print version info

-h --help display help

--silent no output

--quiet only output errors
-—-default-output default output

--report slightly verbose output
--verbose maximal output

--debug debugging output

-d --dir DIR cd to DIR first

--config-dir CFG get config from directory CFG
-f -—force overwrite an existing config

Record a new configuration based on the old one.

and

93

94 ArX

% arx show-config --help
show the revision frontier of a configuration
usage: show-config [options] config-name

-V --version print version info

-h --help display help

-d --dir DIR cd to DIR first

--config-dir CFG get config from directory CFG

Print the revision frontier specified by the named configuration
in the CFG directory (or "configs" subdirectory
at the root of the project tree containing DIR).

Chapter 20: ArX Distribution Tools

95

20 ArX Distribution Tools

To be documented:

% arx update-distributions --help

build or update a tar ball

usage: update-distributions [options] [archive/]revision dist-name dir

-V --version
-h --help

—-—control
--changelog
--cache DIR

--config NAME

--silent

-—quiet
--default-output
--report
—--verbose
-—debug

print version info
display help

include control files in the tar file.
include Changelog’s in the tar file.
cache directory for locally cached
revisions

after checking out the revision, pass
NAME to "build-config" to complete
the source tree.

no output

only output errors
default output

slightly verbose output
maximal output
debugging output

Ensure that DIR exists and is populated with the indicated revision

from the archive.

The tar file will be named:

DIST-NAME-${VERSION}${SUFFIX}

where VERSION is the version number of the revision being packaged, andl

SUFFIX is derived from the patc

The value of ${SUFFIX} depends
these examples:

revision:

ArX--release--1.0--base-0
ArX--release--1.0--patch-
ArX--release--1.0--versio
ArX--release--1.0--versio

The top-level directory in the
file (but without the ".tar.gz"

h-level name of the revision.

on the revision’s patch level, as in

tar file:

ArX-1.0pre0.tar.gz
ArX-1.0pre3.tar.gz
ArX-1.0.tar.gz
ArX-1.0.5.tar.gz

3
n-0
nfix-5

tar file has the same name as the tar
suffix) .

96

ArX

Chapter 21: The Pristine Revision Cache 97

21 The Pristine Revision Cache

Each project tree contains a cache of pristine revisions: revisions extracted from an
archive and stored without modifications. This cache is used to speed up operations such
as commit.

It is occasionally useful to know what revisions are cached in a given tree, and to add or
remove cached revisions.

commands to doccument

% arx pristines --help
% arx add-pristine --help

% arx delete-pristine --help

98

ArX

Chapter 22: Revision Tree Libraries 99

22 Revision Tree Libraries

For many purposes, it is useful to have a library containing pristine trees of a large
number of revisions — for example, all of the revisions in a particular version. To be practical,
though, such a library must be represented in a space-efficient way.

Unix hard-links provide a natural way to store such a library. Each successive revision
in a series is a copy of the previous, but with unmodified files shared via hard-links.

ArX provides commands to help you build, maintain, and browse such a library.

22.1 Your Revision Library Location

To begin a new revision library, first create a new directory (DIR) and then register its
location:

% arx my-revision-library DIR

You can check the location of your library with:

% arx my-revision-library

or unregister it with:

% arx my-revision-library -d

22.2 Revision Library Format

A revision library has subdirectories of the form:

ARCHIVE-NAME/CATEGORY/BRANCH/VERSION/REVISION/

Each REVISION directory contains the complete source of a particular revision, along
with some supplemantary subdirectories and files:

REVISION/, ,patch-set/

The patch set that creates this revision from
its ancestor (unless the revision is a full-source
base revision).

Although the permissions on files in the revision library are determined by patch sets,
you must never modify files int the revision library. Doing so will cause odd errors and
failures in various ArX commands.

100 ArX

22.3 Adding a Revision to the Library

You can add a selected revision to your revision library with:

% arx library-add REVISION

That will add not only REVISION to the library, but all directly preceeding revisions
(recursively) which are either from the same archive, or from other archives which are also
in the same library. ("Directly preceeding" in this case means the previous patch level, for
ordinary revisions, or the tagged revision (for revisions which are tags).)

22.4 Finding a Revision in the Library

You can find a particular revision in the library with 1ibrary-find:

% arx library-find REVISION
PATH-TO-REVSION

The output is an absolute path name to the library directory containing the revision.
(Once again, you must not modify files in that directory.)

22.5 Removing a Revision from the Library

To remove a particular revision from the library, use:

% arx library-remove REVISION

Be aware of the following limitation in the current release: suppose that you add three
successive revisions, A, B, and C. Then you remove B, then re-add B. Now there is a chance
that the file sharing between B and C will be less than optimal, causing your library to be
larger than it needs to be. (You can fix this by then removing and re-adding C.)

Chapter 22: Revision Tree Libraries 101

22.6 Listing Library Contents

The command library-archives lists all archives with records in the library:

% arx library-archives
ARCHIVE-NAME
ARCHIVE-NAME

Similarly, you can list categories, branches, versions, or revisions:

% arx library-categories [ARCHIVE]

% arx library-branches [ARCHIVE/CATEGORY]
% arx library-versions [ARCHIVE/BRANCH]

% arx library-revisions [ARCHIVE/VERSION]

22.7 Individual Files in the Revision Library

You can locate an individual file in a revision library with:

% archive library-file FILE [REVISION]
PATH

or obtain its contents with:

% archive cat-library-file FILE [REVISION]
...file contents...

Both commands accept the options --tag and --this. With --tag, the argument FILE
is interpreted as an inventory tag, and the file with that tag is found.

With --this, FILE is interpreted as a file relative to the current directory, which should
be part of a project tree. The file’s inventory tag is computed and the corresponding file
found in REVISION.

102 ArX

22.8 Determining Patch Set Prerequisits

% arx touched-files-prereqs REVISION

That command looks at the patch set for REVISION and at all preceding patch sets in
the same version (it searches your library rather than your repository for this purpose).
It reports the list of patches that touch overlapping sets of files and directories — in other
words, it tells you what patches can be applied independently of others. The command
has an option to exclude from consideration file names matching a certain pattern (e.g.
=README or ChangeLog). It has an option to exclude from the output list patches which
have already been applied to a given project tree. It has an option to report the specific
files which are overlapped.

Chapter 23: ArX Triggers 103

23 ArX Triggers

In some circumstances, it is very useful to trigger actions upon the detection of changes
to an archive. For example, you might want to send an email notification whenever new
revisions are checked in.

Note: Notifiers are being revamped. This section is expected to be obsolete soon.
The command notify provides this capability:
% arx notify NOTIFICATION-DIR

That command reads configuration files found in NOTIFICATION-DIR. Those configu-
ration files explain what parts of which repositories to monitor, and what actions to take
upon changes. When changes are detected, notify invokes actions.

This chapter explains notify in general. It documents the format of a NOTIFICATION-
DIR and the configuration files. It explains what notify does. Later in the manual is
documentation explaining how to use notify to achieve certain specific effects.

23.1 The Four notify Configuration Files

| =rules.archives| |=rules.categories| |=rules.branches| |=rules.versions]|

notify is controlled by four configuration files, found at the root of a NOTIFICATION-DIR.
These are:

=rules.archives
Specifies actions to take whenever new categories
are added to specific archives.

=rules.categories
Specifies actions to take whenever new branches
are added to specific categories.

=rules.branches
Specifies actions to take whenever new versions
are added to specific branches.

=rules.versions
Specifies actions to take whenever new revisions
are added to specific versioms.

Within these files, blank lines are permitted and comments begin with ’#’ and continue
to the end of line.
The file =rules.versions contains lines with the format:

VERSION ACTION

where VERSION is a fully-qualified version name, and action a string (with no whitespace)
of the form:

104 ArX

COMMAND : THUNK

Whenever new revisions are detected in VERSION, notify invokes:
arx COMMAND THUNK RVN ...

where COMMAND and THUNK are from the configuration file, and the trailing RVN arguments
are a list of fully qualified revision names of newly detected revisions.

The file =rules.branches is similar. It contains lines of the form:
BRANCH COMMAND:THUNK VERSION-ACTION

Whenever new versions are created in BRANCH, notify takes two actions. First, it invokes:
arx COMMAND THUNK VSN ...

Second, it adds new rules to =rules.versions of the form:
VSN VERSION-ACTION

The files =rules.categories and =rules.archives are similar. The former contains
lines of the form:

CATEGORY COMMAND:THUNK BRANCH-ACTION VERSION-ACTION

and the latter lines of the form:
ARCHIVE COMMAND:THUNK CATEGORY-ACT BRANCH-ACT VERSION-ACT

In addition to the configuration files, notify maintains its private state in NOTIFY-DIR.
In particular, it keeps track of what notifications have already been sent, in order to try to
avoid sending redundant notifications.

23.2 Triggers for Everything in a Repository

Configuring triggers for every category, branch, and version in an archive is quite sim-
ple: you only need to write the =rules.archives file — other configuration files will be
automatically genrated from that.

The initial =rules.archives file should contain lines of the form:

ARCHIVE COMMAND:THUNK CATEGORY-ACT BRANCH-ACT VERSION-ACT

for ach set of actions you want to trigger. After creating the config file, run notify in that
directory. The first run will detect all categories in the repository, invoke COMMAND for those,
and create a rules.categories file with lines:

CATEGORY CATEGORY-ACT BRANCH-ACT VERSION-ACT

Then notify will read that config file, detect all the branches in the repository, invoke
CATEGORY-ACT, and create =rules.branches.

Chapter 23: ArX Triggers 105

Finally, =rules.versions will be automatically created in a similar way.

Whenever a new category, branch, or version is added to an archive, the rules files will
be automatically updated to reflect the addition (when notify is run, of course).

23.3 Robustness Issues with Triggers

Unfortunately, some fundamental physical properties of the universe make it impossible
for notify to guarantee that actions will be invoked only once for each new category, branch,
version, or revision. A (presumably rare) well timed interrupt or system failure can cause
notify to invoke actions more than once for a given change to the archive.

Consequently, actions should be designed to be robust against that eventuality.

notify is designed to be safe in the face of concurrent invocations: if two processes
invoke notify at the same time, everything should work wonderfully with no resultant
redundant actions or NOTIFY-DIR corruptions.

23.4 Scheduling Triggers with cron
One strategy for using notify is to run it from a cron job.

23.5 Scheduling Triggers Directly

These commands (and only these commands) modify ArX repositories in ways that are
significant to notify:

make-category
make-branch
make-version
import
commit
tag
Corresponding to those commands, are four others:
% arx my-category-action COMMAND ARGUMENTS...

% arx my-branch-action COMMAND ARGUMENTS...
% arx my-version-action COMMAND ARGUMENTS...
% arx my-revision-action COMMAND ARGUMENTS...
which in those invocations, set an action to be taken upon successful completion of an

archive transaction, and in these invocations:

% arx my-category-action

106 ArX

% arx my-branch-action
% arx my-version-action
% arx my-revision-action

report the actions to be taken.

The actions have a fairly obvious meaning. After creating a new branch, for example,
the command make-branch will invoke:

% COMMAND ARGUMENTS... BRANCH

where BRANCH is a fully qualified branch name.

A wuseful action to take is to invoke notify directly. Another useful action (though
imposing a greater system administration burden) is to invoke a script which sends mail to
some address, informing the recipient of the repository change. The recipient can be, for
example, an automated process which invokes notify.

When the repository-modifying commands invoke one of these actions, they run the
action as a daemon: an asynchronous process with no controlling terminal, with standard
input redirected from /dev/null, and with stdout and stderr saved in a temporary file.
If the command exits with non-0 status, the output from the command is sent to the user
in an email notice.

Once again, the damn constraints of physics, particularly the prohibition against "action
at a distance", impose a constraint: it is impossible to guarantee the COMMAND will be invoked
and in (hopefully rare) circumstances, it might not be. COMMANDs should be chosen with
that constraint in mind.

Chapter 24: Using Triggers 107

24 Using Triggers

This chapter describes two ways to use triggers: for sending email about changes to
an archive, and for keeping a revision library up to date (see Chapter 22 [Revision Tree
Libraries], page 99).

Note: Notifiers are being revamped. This section is expected to be obsolete soon.

24.1 Sending Email Notices About Repository Changes

ArX provides four commands designed for use as triggers that send email about changes
to a repository. (See Chapter 23 [ArX Triggers|, page 103.) These are:

arx mail-new-categories
arx mail-new-branches
arx mail-new-versions
arx mail-new-revisions

You can create a triggers for sending email with a notify =rules.archives configura-
tion rule such as this (here split over multiple lines to fit the printed page — in practice, this
rule would be on one line):

joe.hacker--2002@gnu.org
mail-new-categories:joe@gnu.org
mail-new-branches: joe@gnu.org
mail-new-versions:joe@gnu.org
mail-new-revisions: joeQgnu.org

108 ArX

24.2 Updating a Revision Library

You can use triggers to keep a revision library automatically up-to-date with a rule like
this:
joe.hacker--2002Qgnu.org
noop:
noop:
noop:
library-add:--ignore-extra-args

Chapter 25: Automatic Triggers 109

25 Automatic Triggers

Note: Notifiers are being revamped. This section is expected to be obsolete soon.
There are exactly six commands which modify repositories:

arx commit

arx import

arx make-category
arx make-branch
arx make-version
arx tag

Those commands can automatically invoke arx notify if you have a default notify
direcotry set. You can set such a default with:

% arx my-notifier DIR

check your current default with:

% arx my-notifier

or delete your default setting with:
% arx my-notifier -d

110 ArX

Chapter 26: Graphical User Interface 111

26 Graphical User Interface

At present there is no real GUI for ArX. For emacs lovers, there is an incomplete emacs
mode. It should be in the src/user-interface/emacs directory, along with instructions on
how to install it.

You can also use your favorite gui diff when using file-diff. First, you must set your
gui diff program using my-guidiff
arx my-guidiff tkdiff

Then you invoke file-diffs with the —--gui option. That is, when using the default
revision

arx file-diffs --gui file

112 ArX

Appendix A: Implementing Development Policies 113

Appendix A Implementing Development Policies

Different projects have different policies for managing the "main development path"
as distinguished from various kinds of release (such as candidate releases, experimental
releases, and stable releases).

ArX is flexible enough to allow many such policies to be implemented in a direct way.
Here are some examples and hints about using ArX.

A.1 Milestone/Numbered Versions

One development policy is based on milestones. The team works on one milestone goal
at a time. When they have just about reached that milestone, they make candidate releases
of the milestone for people to test. After fixing bugs, a milestone release is made.

After several milestones, the milestone release gets a version number, and becomes a
version release.

Beginning from scratch on the first milestone, the developers create the first development
path — in which to work on reaching the first milestone:

mozilla--devo--1.0

After some time, they are ready to make some candidate releases and enter a bug-fixing
cycle. They’ll use tags for that — making the bug fixes in the devo branch:

mozilla--devo--1.0

patch-2 mozilla--milestone--1.0

patch-4 —-——————————————— >base-0 (tag -- 1st release candidate)
patch-5 S >patch-1 (tag -- 2nd candidate)
patch-6 —-———————-————- ---->patch-3 (tag -- 3rd candidate)

In the diagram, patches 5. .8 in the devo branch are fixes made based on reports from
candidate releases. We’ll suppose that after patch-8, the first milestone appears to be
stable. The developers want to make the milestone release, and begin work on milestone 2:

114 ArX

mozilla--devo--1.0

base-0

patch-1

patch-2 mozilla--milestone--1.0

patch-3 ~ mmmmm———————————————

patch-4 --—-—————————————m—— >base-0 (tag -- 1st release candidate)

patch-5 S >patch-1 (tag -- 2nd candidate)

patch-6 --—-——————————- —---->patch-3 (tag -- 2rd candidate)

patch-7 version-0 (milestone release)
--patch-8 --——-———————--—-

| mozilla--devo--2.0 (development path for the second milestone)

->base-0 (continuation)

That pattern can continue indefinately, eventually resulting in a versioned release, (again
using tags):

mozilla--devo--1.0 mozilla-milestone--1.0

--patch-N--——--------"-"""----—— >...
| version-0 (milestone 1 release)
|

|

| mozilla--devo--2.0 mozilla-milestone—--2.0

| e

|

->patch-N---------------—————- >
version-0 (milestone 2 release)

mozilla--devo--3.0 mozilla-milestone--3.0

->patch-N--———-—-----""""""""--— >...
version-0 (milestone 3 release)

|
|
|
| mozilla--devo--10.0 mozilla-milestone--10.0
| e

...
->patch-N--——-—-----""""""---— >...

--version-0 (milestone 10 release)

Appendix A: Implementing Development Policies 115

I
| mozilla-1.0
[
->base-0 (tag)
version-0 (versioned release)

That pattern of ArX usage is very simple because the developers stay in sync, following a
strict cycle of working on a milestone, making candidate releases and bug-fixing, making a
milestone releases and starting on the next milestone. Less synchronized development can
be much more complicated, as illustrated in the next example:

A.2 Even/Odd Versions

Another, more intricate policy is based on version numbers. Odd numbered versions
are the "leading-edge" of development — often unstable, but having the very latest sources.
Even numbered versions are "stable" — lagging behind the leading-edge, but containing only
code known to work reasonably well.

The ArX concept of a "continuation version" is ideal for this, because there is no require-
ment that a continuation version be a continuation of the immediately preceeding version.

A series of diagrams can help to illustrate this usage of ArX and some of the subtleties
that can arise. We'll start with just the initial leading-edge development path

linux--0.1

version-0

At that point, the developers decide to make the first stable release:

linux--0.1 linux--0.2

base-0 —----> base-0 (continuation)
patch-1 | patch-1

patch-2 [version-0

patch-3 [

patch-4 |

version-0 ---—---

We can suppose that patch-1 of linux--0.2 is just a quick change to the top level
README file, and that after that — the new stable version is sealed (creating version-0)
and released. We never particularly want to merge patch-1 of 1inux-0.2 back on to the
odd-numbered versions.

Naturally, some bugs are detected in the stable release — three in rapid succession. The
developers fix these on the leading edge branch, planning to merge them with the stable
tree later:

116 ArX

linux--0.1 linux--0.2

base-0 ----> base-0 (continuation)
patch-1 [patch-1

patch-2 | version-0

patch-3 |

patch-4 [

version-0 ------
versionfix-1
versionfix-2
versionfix-3

They wait a week for some testing to occur. The bug fixes are looking ok, so the
developers decide to start work on the next leading-edge version:

linux--0.1 linux--0.2

base-0 ----> base-0 (continuation)
patch-1 | patch-1

patch-2 [version-0

patch-3 |

patch-4 |

version-0 --—-———-

versionfix-1

versionfix-2
--versionfix-3

->base-0 (continuation)
patch-1

Just as the developers are about to merge the bug fixes with the stable version, one more
bug report trickles in. Fortunately, it’s a trivial bug — so the developers are confident about
making the fix in the leading edge, but immediately releasing it in the stable version.

Here’s a catch, though — the latest leading edge version (1inux--0.3) has already di-
verged from the stable version because of patch-1. The developers definately don’t want
patch-1 of 0.3 in the the stable 0.2 yet, so they fix the newly reported bug in 0.1, then
merge all four bug fixes with the stable tree in the usual way. Meanwhile, separate work
also continues on 0. 3:

linux--0.1 linux--0.2
base-0 -——-> base-0 (continuation)
patch-1 [patch-1

patch-2 | version-0

Appendix A: Implementing Development Policies

patch-3 I ->versionfix-1 (merge)
patch-4 | |
version-0 ------ |
versionfix-1\ |
versionfix-2 |------—-

--versionfix-3 |

versionfix-4/

linux--0.3

->base-0 (continuation)

patch-1
patch-2
patch-3

117

It’s worth noting at that point that linux--0.3 is missing a bug-fix (versionfix-4)
from linux--0.1:

% cd ~/wd/linux--0.3

% arx whats-missing linux--0.1
versionfix—-4

We’ll eventually do an update to pick up that bug fix, but first, let’s make the situation
more complicated.

Suppose, some mailing lists get wind of patch-3 in 1linux--0.3. Soon Slashdot and
Newsforge pick up the story. It turns out that patch-3 is a very desirable feature and the
implementation appears to be clean and stable. People are clammering for its appearence
in a stable release, and the developers happen to think it is a good idea.

So, they start the next stable revision:

--versionfix-3 |

linux--0.1 linux--0.2

base-0 --—-> base-0 (continuation)
patch-1 | patch-1

patch-2 | version-0

patch-3 | ->versionfix-1 (merge)
patch-4 [|

version-0 ------ | |

versionfix-1\ | |

versionfix-2 |--——-—-—- | linux--0.4
|

versionfix-4/ --—>base-0 (continuation)

118

->base-0 (continuation)

ArX

patch-1
patch-2
patch-3
They only want patch-3 of 0.3 for 0.4 — not anything else. That’s a job for replay
--exact:
linux--0.1 linux--0.2
base-0 —----> base-0 (continuation)
patch-1 | patch-1
patch-2 [version-0
patch-3 [->versionfix-1 (merge)
patch-4 | |

version-0 --————- | |
versionfix-1\ | |
|
|

versionfix-2 |-----—- linux--0.4
--versionfix-3 | | = —=———---—=
versionfix-4/ --->base-0 (continuation)

=->patch-1 (replay --exact merge)

|
|
| | version-0
|
|

linux--0.3 |
I
->base-0 (continuation) |
patch-1 .
patch-2 |
patch-3-=—-=--=--=—-=--=--=-

After merging the much-desired patch-3 of 0.3 into 0.4, the developers seal 0.4 and

make the stable release.
Let’s suppose that development on 0.3 continues for a while.

After some time, the

developers decide that 0.3 has aquired enough new features. They want to do two things:

start 0.5, and start getting the stable 0.6 release ready:

linux--0.1 linux--0.2

base-0 —----> base-0 (continuation)
patch-1 | patch-1

patch-2 [version-0

patch-3 [->versionfix-1 (merge)
patch-4 | |

version-0 ------ | |
versionfix-1\ | |
|

versionfix-2 |-—————- linux--0.4

Appendix A: Implementing Development Policies 119

--versionfix-3 | |

| versionfix-4/ --->base-0 (continuation)

| =->patch-1 (replay --exact merge)
| I version-0
|
|

linux--0.3 |
[——
->base-0 (continuation) |

patch-1 .

patch-2

patch-3-=--=--=—-=—-=--=—-=-

... linux--0.6
-version-O0 mmmm—————

|
|
|
| linux--0.5

Notice that they haven’t created the base revision for 0.6 yet. There’s a choice here.
They could make 0.6 a continuation of 0.4, then merge in all the patches they’'re missing
from 0.3. On the other hand, they could make 0.6 a continuation of some 0.3 and pick
up all those missing patches "the easy way".

But, oops, when someone checks out version-0 from 0.3 and runs whats-missing,
they find out that the 0.3 branch never picked up versionfix-4 from 0.1. That’s easily
fixed by updating a 0.3 tree against 0.1, and checking in the resulting merge to 0.3. The
resulting merge is also the revision that will become the base revision for 0.6:

linux--0.1 linux--0.2

base-0 --—-> base-0 (continuation)
patch-1 | patch-1

patch-2 | version-0

patch-3 | ->versionfix-1 (merge)
patch-4 [|

version-0 ------ |
versionfix—-1\ |
versionfix-2 |--—-————-
--versionfix-3 | | —————————
| versionfix-4/ --->base-0 (continuation)
| [=->patch-1 (replay --exact merge)
it I version-0
|

120 ArX

->base-0 (continuation) |

patch-1 | .

patch-2 |

patch-3-=--=--=--=--=--=--=-

. | linux--0.6
-version-0 v e
| versionfix-1 (0.1 update)------ >base-0 (continuation)
| version-0

->base-0
patch-1
patch-2
Meanwhile, new work continues on 0.5.

But now, the 0.5 tree is in an interesting state. If a developer checks out the latest 0.5
and asks:

% arx whats-missing linux--0.1
linux--0.1--versionfix-4

If the developer asks whats-missing from 0.3, the answer is:

% arx whats-missing linux--0.3
linux--0.3--versionfix-1

If those two patches were unrelated — there would be no problem: simply update from
both branches and check the result into 0.5.

In fact, though, versionfix-1 from 0.3 is really the same change as versionfix-4
from 0.1 (look back at how versionfix-1 was created). Let’s also suppose that when the
fix was merged into 0.3, a slight change had to be made — to resolve a merge conflict.

So if the developer just blindly updates from 0.1, then from 0.3, the second update will
result in new conflicts. That might not be so bad if we’re only talking about two patches —
but if we were talking about 20 or 200, a lot of needless work would be called for.

Fortunately, ArX can help. First, the developer gets the latest 0.5 revision:
% arx get linux--0.5 ~/wd/linux--0.5

Then gets a list of all patches missing from 0.1 and 0.3:
% cd “/wd/linux--0.5

% arx whats-missing --full linux--0.1 linux--0.3
archive@kernel.org--primary/linux--0.1--versionfix-4
archive@kernel.org--primary/linux--0.3--versionfix-1

That list can be piped into the reconcile tool:

Appendix A: Implementing Development Policies 121

% ... | arx reconcile
archive@kernel.org--primary/linux--0.3--versionfix-1

What happened? reconcile figured out that versionfix-1 from 0.3 already includes
versionfix-4 from 0.1 — there’s no need to apply both patches. So patch-plan reported
the list of patches that do need to be applied, and in this case, there’s only one.

In a more complicated situation, patch-plan would print a list of patches in the order
they should be applied. In general, it will be a subset of the patches in its input, but
applying that subset will have the same effect as applying all of the patches (but hopefully
with fewer conflicts).

The developer uses arx replay --1list to process that list, finally winding up with:

linux--0.1 linux--0.2

base-0 ----> base-0 (continuation)
patch-1 [patch-1

patch-2 | version-0

patch-3 [->versionfix-1 (merge)
patch-4 (. |

version-0 ------ |
versionfix-1\ |

versionfix-2 |--—————- linux--0.4

|

|

|
--versionfix-3 | |
| versionfix-4/ --->base-0 (continuation)
| | =->patch-1 (replay --exact merge)
I I version-0
|
|

->base-0 (continuation) |

patch-1 | .
patch-2 | |
patch-3-=--=--=--=—-=--=--=-
. | linux--0.6
-version-0 v e
| versionfix-1 (0.1 update)------ >base-0 (continuation)

I | version-0
| |
linux--0.5
->base-0 |
patch-1 I
patch-2 v
patch-3 (0.1/0.3 reconciliation)

Now if someone gets the latest revision of 0.5 and asks:

122 ArX

% arx whats-missing --full linux--0.1 linux--0.3
[no output]

Isn’t reconcile handy?

Appendix B: The Theory of Patches and Revisions 123

Appendix B The Theory of Patches and
Revisions

This appendix briefly explains "patch sets" and "revision control" in the abstract.

B.1 The Theory of Patches

A patch set is an expression of the differences between two revisions of a tree of files
(usually, primarily, text files). A patch set tells you what files and directories have been
added or removed between the two revisions, what files have been renamed, what files have
changed. For files added or removed, a patch set tells you the complete contents of those
files. For files modified, a patch set contains a description of the changes in the form of a
context diff (see the man page for diff (1)). If a file is a symbolic link, and the link target
has changed, the patch set records that fact. If a regular file or directory is replaced by a
symbolic link (or vice versa) the patch records that fact. Finally, if any files have had their
permissions or modification times changed — a patch set records that too.

Some notation will be helpful. A shorter name for "patch set" is delta. Let’s suppose
that A and B are two revisions of a source tree. Then:

delta (A, B)

is the name for a patch set describing the differences between A and B.

Anytime you make a series of changes to a tree, perhaps using shell utilities and text
editors, the entire series of changes can be summarized as a single patch set. In a sense, a
patch set (or "delta") is the fundamental editting operation, in terms of which all others,
and all combinations of others, can be described.

You can apply a patch — which means to make the changes it describes. In our notation:
delta (A, B) [A] ==

says "the patch set describing the differences between A and B, when applied to A, gives
B". A patch set can also be applied "in reverse":

delta (A, B) {B} == A

"the delta from A to B, applied in reverse to B, gives A".

A patch set can also be applied (or reverse-applied) to a tree which is not the same as
either A or B. For example, suppose that we have a tree A_prime which is similar to A, but
has some slight differences. Then:

delta (A, B) [A_prime] “== B_prime

where “== means "approximately equals". When a patch set is applied to a tree which is
not one of the trees used to compute the patch set, the edits might or might not go well. For
example, if the patch set wants to modify a file F, but A_prime doesn’t contain F, the patch
can’t be applied perfectly. Similarly, if the patch set wants to modify F, but the version of
F in A_prime is already very different from the version in A, then those edits can’t be done
automatically.

124 ArX

Nevertheless, for the kinds of changes people typically make to trees of source code,
approximately applied patch sets are very useful. For example, suppose we start with tree
A, and create two revisions B_one and B_two. Then:

delta (A, B_one) [B_two] “== delta (A, B_two) [B_one]

To make that more concrete: if programmer Alice makes a set of changes to give us
B_one, and programmer Bob makes a set of changes to give us B_two, then the patch sets
between A and those two revisions of B give us a way to get B_three — a tree that contains
both Alice’s and Bob’s changes. Even when a patch set can’t be perfectly applied in that
way, it can often be applied to do "80%" of the work, making it much easier to finish
merging the two sets of changes by hand.

Incidently, patch sets have a useful algebraic property if we think of them as functions
that can be composed. Using the notation F o G to mean "the function F composed with
the function G":

For all trees, A, B, and C:
delta (B, C) o delta (A, B) == delta (A, C)

8o to build C from A, we can use:
delta (A, C) [A] ==

but that is the same as:
(delta (B, C) o delta (A, B)) [A] ==

or, in other words:
delta (B, C) [delta (A, B) [A]] ==

The algebraic property suggests that if I want to apply:
delta (B, C) o delta (A, B)

I can save time by instead applying:
delta (A, C)

and if I want to have a record of all three:
delta (A, B)
delta (B, C)
delta (A, C)

I can save space by storing only:

delta (A, B)
delta (B, C)

And if we're applying patch sets to trees that might need to be touched up by hand, and
I want to apply delta (A, C), then I have a choice between applying;:

Appendix B: The Theory of Patches and Revisions 125

delta (A, C)

and have just one, possibly large set of errors to clean-up by hand, or applying:
delta (A, B) then delta (B, C)

and having two, but possibly smaller sets of errors to clean-up by hand.
Patch sets have many uses, but three important ones are:

Compression One use is compression. If A and B are large trees, and the differences
between them small, then the patch set between them will be much smaller than either
tree. You can save disk space by not storing both A and B, but instead, storing only A (or
only B) along with delta (A, B). That makes patch sets an ideal form for space-efficient
archival of multiple revisions of a tree.

Similarly, if someone has downloaded a copy of A (or B) and they want a copy of B (or
A), they can save download time and bandwidth by downloading only delta (A, B). That
makes patch sets a good way to distribute multiple revisions of a tree.

Inspection Another use for patch sets is inspection. If a patch set is stored in a human-
readable format, it provides a useful way to quickly see precisely what has changed between
two revisions of a tree. For example, a patch set is handy for reviewing the changes made
by programmers to a large source tree.

Combining Separate Efforts For some kinds of trees, patch sets are good at merging
(combining) changes made by people working separately (as in the example of Alice and
Bob, above). This is especially true of program source code. That makes patch sets a very
handy tool for making a team of programmers more effective — allowing the work separately
up to a point, then combine their efforts by creating and applying patch sets.

B.2 The Theory of Revisions

Suppose that we start with a tree, A0, and make a set of changes resulting in the tree
Al:

AO
Al

We can repeat that process several times:

AO
Al
A2
A3

Each instance of the tree is called a revision. Between each revision and its successor,
we can compute a patch set:

delta (AO,A1) [AO] == A1l
delta (A1,A2) [A1] == A2
delta (A2,A3) [A2] == A3

126 ArX

Something we can usefully do is create an archive of revisions. We might store the first
tree verbatim, and every successive tree as a delta:

AO: "complete copy of tree"
Al: delta (AO,Al1)
A2: delta (A1,A2)
A3: delta (A2,A3)

If we want to retrieve an An, we start with A0 and apply the first n deltas:

delta (An-1, An) [delta (An-2, An-1) [....[AO]...]] = An

or, making our notation more concise:

An [An-1 [An-2 [... [AO] ...]1]] = An

Each revision in a series like this is called a patch level. The entire series is called a
development path.

At any point along the way, we might make a copy of some An, and start a new devel-
opment path. For example, we might copy A2 to form BO:

AO
Al
A2 > BO
A3 B1

When we have multiple, related development paths, each is called a branch. The tree
we copied to start a new branch (e.g. A2) is called a branch point.

If we’re building an archive, we can store BO as a pointer to the A0 development path,
and every successive revision of the BO path as an ordinary delta:

AO BO: "equal to A2"
Al: delta (AO,A1) Bi: delta (BO, B1)
A2: delta (A1,A2) B2: delta (B1, B2)
A3: delta (A2,A3) B3: delta (B2, B3)

To make all this more concrete, imagine that the A0 development path is successive
revisions of a program we’re working on. Alice wants to add a very complicated feature.
Rather than make many small changes to the A0 development path, she makes a branch,
the BO development path — and works on the complicated feature there. Each new revision
of the BO branch is a small step on the way to the complicated feature.

Eventually, Alice is done with the feature — but meanwhile, the A0 development path
has added several changes of its own. What we’d like to do next is to make a revision of
the tree that has both sets of changes — from both development paths.

Appendix B: The Theory of Patches and Revisions 127

AO BO: "equal to A2"
Al: delta (AO,A1) B1: delta (BO, B1)
A2: delta (A1,A2) B2: delta (B1, B2)
A3: delta (A2,A3) B3: delta (B2, B3)
Ad: delta (A3,A4) B4: delta (B3, B4)

How can we make revision A5, which
includes all the changes made on
both branches?

The "theory of patches" gives us several possible solutions.
One solution is to make this tree:
B4 [B3 [B2 [B1 [A4]]1]]

That solution is called replaying the patches from the BO branch against the A0 branch.

That might work reasonably, but patch set B1 wasn’t formed from A4 — it was formed
from BO which is the same as A2. So when we apply B1 to A4, there might be problems that
have to be resolved "by hand". The same will happen again when we apply B2, B3, and
B4. In some situations, the risk and complexity of doing all that work by hand is worth it
— but not in other situations. What other options do we have?

Another solution is to make this tree:
A4 [A3 [B4] 1]

That solution is also replaying: replaying the patches from the A0 branch against the
BO branch. The same kind of problem might occur (having to fix things up by hand), but
in this case, we're only applying two patches instead of four — so this might be a simpler
solution.

Here’s a third solution:

delta (A2, B4) [A4]

That solution is based on the fact that:
BO == A2

and the algebraic property that:
B4 o B3 o B2 o Bl == delta (BO, B4)

That solution is called updating the BO development path with respect to the A0 path.
The difference between "replaying" and "updating" is a little bit subtle. When we "replay"
from another development path, that means that we take all patches we're missing from
that other path, and apply them in order. When we "update"from another development
path, that means we take the latest revision on that other path, and apply to it a delta
between the branch point and our own most-recent revision.

Applying the patch during an update certainly can fail to work perfectly — it might
require fixing up by-hand. On the other hand, an update only ever applies one patch; often,

128 ArX

therefore, the amount of by-hand repairs is minimized. "Nine times out of ten," updating
is the preferred technique for joining two previously branched revisions.

There are other, more obscure solutions too. To choose one arbitrarilly, we might try
building:

B4 [A3 [B2 [A4 [B1 [B3 [A2 111111

A bizarre solution like that is so rare it doesn’t really have name — but "one time in ten
thousand" — it’s the solution that works best.

No matter what solution we choose, if we store the resulting revision back on the BO
path, we’ll wind up with:

AO BO: "equal to A2"
Al: delta (AO,Al1) B1l: delta (BO, B1)
A2: delta (A1,A2) B2: delta (B1, B2)
A3: delta (A2,A3) B3: delta (B2, B3)
Ad: delta (A3,A4) B4: delta (B3, B4)

B5: delta (B4, B5) "has changes A3, A4"

We can store that same revision back on the A0 development path:

AO BO: "equal to A2"
Al: delta (AO,A1) B1l: delta (BO, B1)
A2: delta (A1,A2) B2: delta (B1, B2)
A3: delta (A2,A3) B3: delta (B2, B3)
Ad: delta (A3,A4) B4: delta (B3, B4)
A5: delta (A5, A4) == B5: delta (B4, B5) "has changes A3, A4"

A5 and B5 are called a merge point. For all practical purposes, a merge point is also a
branch point — since, using the example, B5 and A5 are equal, just the the two revisions of
the original branch point (A2 and BO) were equal. If additional development happens on
the two branches, we no longer have to worry about merging all changes since A2 and BO;
we can instead just merge only the changes since A5 and B5.

Appendix B: The Theory of Patches and Revisions 129

B.3 What is a Revision Control System?

So what is a revision control system?

A revision control system is a set of tools for computing and applying patch sets, for
archiving patch sets, for distributing patch sets, and for helping to merge changes on the
basis of patch sets.

A revision control system has to come up with a reasonable way of naming and cataloging
revisions. It has to be able to represent branch points and help with merges. When merges
occur, a good revision control system should help figure out what patches to apply to which
revisions in order to minimize hand-editting.

130 ArX

Appendix C: ArX Patch Sets 131

Appendix C ArX Patch Sets

It is often extremely useful to compare two project trees (usually for the same project)
and figure out exactly what has changed between them. A record of such changes is called
a patch set or a delta.

If you have a patch set between an "old tree" and a "new tree", you can "apply the
patch" to the old tree to get the new tree — in other words, you can automatically make
the editting changes described by a patch set. If you have some third tree, you can apply
the patch to get an approximation of making the same changes to that third tree. (see
Appendix B [The Theory of Patches and Revisions], page 123).

ArX includes sophisticated tools for creating and applying patch sets. In general, you
will not use the commands in this section. You will use higher level commands like update,
replay, or star-merge.

C.1 mkpatch

mkpatch computes a patch set describing the differences between two trees. The basic
command syntax is:

% mkpatch ORIGINAL MODIFIED DESTINATION

which compares the trees ORIGINAL and MODIFIED.
mkpatch creates a new directory, DESTINATION, and stores the patch set there.

When mkpatch compares trees, it uses inventory tags. For example, it considers two
directories or two files to be "the same directory (or file)" if they have the same tag —
regardless of where each is located in its respective tree.

A patch set produced by mkpatch describes what files and directories have been added
or removed, which have been renamed, which files have been changed (and how they have
been changed), and what file permissions have changed (and how). When regular text files
are compared, mkpatch produces a context diff describing the differences. mkpatch can
compare binary files (saving complete copies of the old and new versions if they differ) and
symbolic links (saving the old and new link targets, if they differ).

A detailed description of the format of a patch set is provided in an appendix (see
Appendix D [The ArX Patch Set Format|, page 137).

132 ArX

C.2 dopatch

dopatch is used to apply a patch set to tree:
% dopatch patch-set tree

If tree is exactly the same as the the "original" tree seen by mkpatch, then the effect is
to modify tree so that it is exactly the same as the the "modified" tree seen by mkpatch,
with one exception (explained below).

"Exactly the same" means that the directory structure is the same, symbolic link targets
are the same, the contents of regular files are the same, and file permissions are the same.
Modification times, files with multiple (hard) links, and file ownership are not reliably
preserved.

The exception to the "exactly the same" rule is that if the patch requires that files or
directories be removed from tree, those files and directories will be saved in a subdirectory
of tree with an eye-splitting name matching the pattern:

++removed-by-dopatch-PATCH--DATE

where PATCH is the name of the patch-set directory and DATE a timestamp.

dopatch also supports reverse patching.

C.3 Inexact Patching

What if a tree patched by dopatch is not exactly the same as the original tree seen by
mkpatch?

Below is a brief description of what to expect. Complete documentation of the dopatch
process is included with the source code.

dopatch takes an inventory of the tree being patched. It uses inventory tags to decide
which files and directories expected by the patch set are present or missing from the tree,
and to figure out where each file and directory is located in the tree.

Simple Patches If the patch set contains an ordinary patch or metadata patch for a
link, directory or file, and that file is present in the tree, dopatch applies the patch in the
ordinary way. If the patch applies cleanly, the modified file, link, or directory is left in place.

If a simple patch fails to apply cleanly, dopatch will always leave behind a .orig file
(the file originally in the tree being patched, without any changes) and a .rej file (the part
of the patch that could not be applied).

If the patch was a context diff, dopatch will also leave behind the file itself — partially
patched.

If an (unsucessful) patch was for a binary file, no partially-patched file will be left.
Instead, there will be:

.orig -- the file originally in the tree being patched,
without modifications.

Appendix C: ArX Patch Sets 133

.rej -- a complete copy of the file from the modified tree,
with permissions copied from ‘.orig’.

.patch-orig -- a complete copy of the file from the original
tree seen by ‘mkpatch’, with permissions
retained from that original

-or-

the symbolic link from the original tree seen
by ‘mkpatch’ with permissions as in the original
tree.

If an (unsucessful) patch was for a symbolic link, no partially patched file will be left.
Instead there will be:

.orig -- the unmodified file from the original tree

.rej -- a symbolic link with the target intended by the
patch and permissions copied from .orig

.patch-orig -- a complete copy of the file from the original
tree seen by ‘mkpatch’, with permissions
retained from that original

-or-

the symbolic link from the original tree seen
by ‘mkpatch’ with permissions as in the original
tree.

Patches for Missing Files

All patches for missing files and directories are stored in a subdirectory of the root of
the tree being patched called

==missing-file-patches-PATCH-DATE

where PATCH is the basename of the patch set directory and DATE a time-stamp.
Directory Rearrangements and New Directories

Directories are added, deleted, and rearranged much as you would expect, even if you
don’t know it’s what you’d expect.

Suppose that when mkpatch was called the ORIGINAL tree had:

Directory or file: Tag:
a/x.c tag_1
a/bar.c tag_2

but the MODIFIED tree had:

134 ArX

a/x.c tag_1
aly.c tag_2

with changes to both files. The patch will want to rename the file with tag tag_2 to y.c,
and change the contents of the files with tags tag_1 and tag_2.
Suppose, for example, that you have a tree with:
a/foo.c tag_1
a/zip.c tag_2
and the you apply the patch to that tree. After the patch, you’ll be left with:
a/foo.c tag_1
a/y.c (was zip.c) tag_2
with patches made to the contents of both files.
Here’s a sample of some subtleties and ways of handling conflicts:

Suppose that the original tree seen by mkpatch has:

Directory or file: Tag:

./a tag_a
./a/b tag_b
./a/b/c tag_c

and that the modified directory has:

./a tag_a
./a/c tag_c
./a/c/b tag_b

Finally, suppose that the tree has

/% tag_a

./x/b tag_b

./x/c tag_new_directory
./x/c/b tag_diffent_file_named_b
./x/c/q tag_c

When patch gets done with the tree, it will have:

/x tag_a
Since the patch doesn’t do anything
to change the directory with tag_a.

./x/c.orig tag_new_directory
./x/c.rej tag_c
Since the patch wants to make the
directory with tag_c a subdirectory named "c"
of the directory with tag_a, but the tree
already had a different directory there,
with the tag tag_new_directory.

Appendix C: ArX Patch Sets 135

./x/c.rej/b tag_b
Since the patch wants to rename the directory
with tag_b to be a subdirectory named "b"
of the directory with tag_c.

./x/c.orig/b tag_diffent_file_named_b
Since the patch made new changes to this file,
it stayed with its parent directory.

136 ArX

Appendix D: The ArX Patch Set Format 137

Appendix D The ArX Patch Set Format

An ArX patch set is a directory containing a number of files and subdirectories. Each is
described below.

Files:
orig-dirs-index
mod-dirs-index
orig-files—-index
mod-files-index
Format:
<file><space><tag>
Sorting:
sort -k 2

These contain indexes for all files and directories added, removed, or modified between
the two trees.

Files:

original-only-dir-metadata

modified-only-dir-metadata
Format:

<metadata><space><name>
Sorting:

sort -k 2

The field <metadata> contains literal output from the program file-metadata given
the options —-permissions. Some example output is:

-—-permissions 777

That output is also suitable for use as options and option arguments to the program
set-file-metadata. Future releases of ArX might add additional flags (beside just
permissions).

The list records the file permissions for all directories persent in only one of the two
trees.

Directories:
removed-files—-archive

new-files-archive

Each of these directories contains complete copies of all files that occur in only the original
tree (removed-files-archive) or modified tree (new-files-archive). Each saved file is

138 ArX

archived at the same relative location it had in its source tree, with permissions (at least)
preserved.

Directory:

patches

This directory contains a tree whose directory structure is a subset of the directory
structure of the modified tree. It contains modification data for directories and files common
to both trees.

For a file stored in the modified tree at the path new_name, the patches directory may
contain:

new_name.link-orig

The original file is a symbolic link.
‘new_name.link-orig’ is a text file containing the
target of that link plus a final newline.

This file is only present if link target has changed,
or if the link was replaced by a regular file.

new_name.link-mod
The modified file is a symbolic link and this file

is a text file containing the target for the link plus
a final newline.

This file is only present if the link target has
changed, or if the link replaces a regular file.

new_name.original
This is a complete copy of the file from the original
tree, preserving (at least) permissions.

This file is only present if the file was replaced by
a symbolic link, or if the file contents can not be
handled by ‘diff(1)’.

new_name.modified
This is a complete copy of the file from the modified
tree, preserving (at least) permissions.

This file is only present if the file replaces a
symbolic link, or if the file contents can not be
handled by ‘diff(1)’.

new_name.patch

Appendix D: The ArX Patch Set Format 139

This is a standard context diff between the original
file and modified file. One popular version of diff
(‘GNU diff’) generates non-standard context diffs by
omitting one copy of lines of context that are
identical between the original and modified file, so
for now, ‘.patch’ files may have the same bug.
Fortunately, the only popular version of ‘patch’
(““GNU patch’’) is tolerant of receiving such input.

new_name.meta-orig
new_name.meta-mod

File metadata (currenly only permissions) changed
between the two versions of the file. These files
contain output from the ‘file-metadata’ program with
the flags ‘--symlink --permissions’, suitable for
comparison to similar output, and for use as options
and option arguments to ‘set-file-metadata’.

These files are also included if a regular file has
replaced a symbolic link or vice versa.

new_name/=dir-meta-orig
new_name/=dir-meta-mod

Directory metadata (currenly only permissions) changed
between the two versions of the directory containing
these files. These files contain output from the
‘file-metadata’ program with the flags ‘--symlink
--permissions’, suitable for comparison to similar
output, and for use as options and option arguments to
‘set-file-metadata’.

Note: If a regular file (or symbolic link) replaces a directory, or vice versa, this is recorded
as a file (or link) removed (or added) in one tree and added (or removed) in the other.

140 ArX

Appendix E: The ArX Archive Format 141

Appendix E The ArX Archive Format

An ArX archive is a directory containing a number of files and subdirectories. Its struc-
ture is described in this appendix.

E.1 Directory Structure

Each category, branch, version, and revision are given a separate directory. These are
nested. From the root of the archive:

CATEGORY/
CATEGORY/BRANCH/
CATEGORY/BRANCH/VERSION/
CATEGORY/BRANCH/VERSION/REVISION/

For example, version 1.0 of the devo branch of the ArX category might have these
directories:

ArX/
ArX/ArX--devo/
ArX/ArX--devo-—-1.0/
ArX/ArX--devo--1.0/base-0/ # the base revision
ArX/ArX--devo--1.0/patch-1/ # pre-patch revisions
ArX/ArX--devo--1.0/patch-2/ # ...

ArX/ArX--devo--1.0/version-0/ # the version revision
ArX/ArX--devo--1.0/versionfix-1/ # post-patch revisions
ArX/ArX--devo--1.0/versionfix-2/ # ...

E.2 Within a Revision Directory

Every revision directory contains the log message for that revision as a plain-text file:
File: log
Format: RFC822-style headers plus body

If a revision directory is a full-source revision (typically a base-0 revision) it will contain
a compressed tar file of the entire revision tree. The name of the tar file is the full name
(sans archive name) of the revision:

File: REVISION.tar.gz

Format: gzip-compressed tar file containing a complete source tree, rooted in a single
top-level directory named REVISION.

Example: ArX-devo—1.0-base-0.tar.gz

contains a full-source tree rooted at
‘ArX--devo--1.0--base-0’

142 ArX

If a revision directory is a patch (not a full-source revision), then the revision directory
contains a compressed tar file of the patch set (see Appendix D [The ArX Patch Set Format],
page 137):

File: REVISION.patches.tar.gz

Format: gzip-compressed tar file containing a patch set, rooted in a single top-level
directory named REVISION.

Example: ArX—devo—1.0-patch-1.tar.gz

contains a patch-set tree rooted at ‘ArX--devo--1.0--patch-1’

Note: Every revision is either a full source revision or a patch revision. Thus, every
revision directory contains exactly one of the two files:

REVISION.tar.gz
REVISION.patches.tar.gz

If a revision is a continuation revision (a tag of some other revision)

Appendix F: Idempotent Merging 143

Appendix F Idempotent Merging

[Idempotent merging is not implemented in the current release.]
Let’s suppose that we have a main development path, with several branches:

main

base-0

patch-1

patch-2--—————-----——————————- > branch-a

patch-3 |

patch-4 I

patch-5 | -———- > branch-b
I
I

————— > branch-c

What happens if each of the three branches checks in a revision that is an update against
the main branch. In other words, each branch will have a delta that that summarizes patches
3..5 of the main branch.

If we try to replay from two or more of those branches, we’ll wind up replaying several of
those deltas that summarize 3. .5. Those patches will be redundant and will likely generate
merge conflicts.

Update won’t do much better in this case. The common ancestor of all three branches
is their base-0 revision, which is the same as patch-2 on main.

Now suppose I start with the latest revision on branch-a, which includes patches 3. .5
of the main branch, plus some changes specific to branch-a. And branch-b is similar — it
has 3. .5 from main some changes specific to branch-b.

If I update my branch-A revision against branch-B, the A revision is compared to the
common ancestor. In essence:

upate_patch = delta (branch-a--latest, main--patch-2)

Note that the update patch contains all the changes needed for 3. .5 from main. update
will apply that patch to the latest revision of branch-B:

update_a_from_b = update_patch [branch-b--latest]

but branch-b--latest already includes patches 3..5 from main. There’s a good chance
the merge will have conflicts.

When such messes occur, the reconcile command, introduced in the previous chapter,
can help you out of them. But wouldn’t it be better to avoid such problems in the first
place?

144 ArX

F.1 The i-merge Command

A tool for tackling the problem directly is an idempotent merge:

% arx i-merge [--update [ARCHIVE/]REVISION
| --replay [ARCHIVE/]JREVISION]
[ARCHIVE/]SOURCE-REVISION
directory

That creates a project tree in DIRECTORY by using arx get to obtain the SOURCE-
REVISION, then applying each of the specified update and replay commands, in the order
specified.

If any merge conflicts occur, the command issues an error, and leaves the partially meged
directory, along with an explanation of where it left off.

If the command succeeds, though, the project tree will be left in a special state which
permits the use of the ~—idempotent flag to commit.

% arx commit --idempontent

which, in fact, creates two new revisions. The first revision created is the intermediate
directory, containing only SOURCE-REVISION plus the series of updates and replays you
specified — no other changes. The log message for this revision is automatically generated,
and has the special header idempotent-merge: with the list of patches applied.

The second revision contains the log message you wrote, plus any subsequent changes
you made.

When reply wants to apply a patch set, it checks to see if it is an idempotent patch
set. If it is, and all of the patches included in the patch set are missing from the tree being
patched, replay proceeds in the usual way: by applying the set of deltas in the patch set.

If some of the patches included in an idempotent merge have already been applied to
the tree being patched, then ‘replay applies only those patches not already included.

One possible policy is that every branch should merge only from the main branch, and
should always merge from the main branch using an idempotent update:

% cd “/wd

% arx i-merge --update main branch-a branch-a-merged

[...]

Each branch will then contain a number of idempotent patch sets, as in this example:
branch-a branch-b
base-0 base-0
patch-1 patch-1
patch-2..."idempotent merge w/main patches 2,3" patch-2
patch-3 "idempotent merge w/main patch 2"...patch-3
patch-4 patch-4

patch-5..."idempotent merge w/main patch 4" patch-5

Appendix F: Idempotent Merging 145

patch-6 "idempotent merge w/main patch 3"...patch-6
patch-7..."idempotent merge w/main patch 5" patch-7
patch-8 patch-8
"idempotent merge w/main patches 4,5"...patch-9

patch-10

What if we want to form a merge of these two branches?

F.2 idempotent Merges and the replay Command

We can start with a project tree for the latest revision of branch-a

% arx get ~/wd/branch-a
% cd ~/wd/branch-a

Branch-a does not already have a patch log for branch-b, though the two branches have
a common ancestor, so add-sibling-log will solve that problem:

% arx add-sibling-log branch-b
....]

Now we can find out what the merge needs to do:

% arx whats-missing branch-b
patch-1
patch-2
patch-3
patch-4
patch-5
patch-6
patch-7
patch-8
patch-9
patch-10

If we use replay:

% cd ~/ud
% arx replay ~/wd/branch-a ~/wd/branch-a-merged branch-b

These patches will be applied:

branch-b/patch-1
branch-b/patch-2
branch-b/patch-4
branch-b/patch-5
branch-b/patch-7
branch-b/patch-8
branch-b/patch-10

Patches 3, 6, 9 are skipped (though their log entries are added to the project tree)
because branch-a already has all of the patches those idempotent patch sets include.

146 ArX

F.3 idempotent Patch Sets and the update Command
What will update do? It computes a patch between the project tree being updated and
the common ancestor:

update_patch = delta (branch-a--patch-8, branch-b--base-0)

then applies that to the update revision:
branch-a-mege = update_patch [branch-b--patch-10]

The idempotent revisions don’t help there. However....

F.4 idempotent Patch Sets and Partial Updates

The --partial flag to the update command takes advantage of idempotent patch sets.

As before, we assume these revisions:

branch-a branch-b
base-0 base-0
patch-1 patch-1
patch-2..."idempotent merge w/main patches 2,3" patch-2
patch-3 "idempotent merge w/main patch 2"...patch-3
patch-4 patch-4
patch-5..."idempotent merge w/main patch 4" patch-5
patch-6 "idempotent merge w/main patch 3"...patch-6
patch-7..."idempotent merge w/main patch 5" patch-7
patch-8 patch-8
"idempotent merge w/main patches 4,5"...patch-9

patch-10

We have a tree for branch-a--patch-8 and it’s ancestor on branch-b is base-0. So:

% cd ~/wd/branch-a--patch-8
% arx whats-missing branch-b
patch-1

patch-2

patch-3

patch-4

patch-5

[...]

patch-10

If we use:
% arx update --partial ~/wd/branch-a--patch-8 \
~/wd/branch-a-b-partial-update \
branch-b

Appendix F: Idempotent Merging 147

then update uses not the latest revision of branch-b, but the revision just prior to the
oldest idempotent patch set that branch-a does not yet have. In this case, patch-3 of
branch-b is the oldest idempotent patch that branch-a is missing. So:
% arx update --partial ~/wd/branch-a--patch-8 \
~/wd/branch-a-b-partial-update \
branch-b

is eqivalent to:
% arx update --partial ~/wd/branch-a--patch-8 \
~/wd/branch-a-b-partial-update \
branch-b--patch-2

After which:
% cd “/wd/branch-a-b-partial-update
% arx whats-missing branch-b
patch-3
patch-4
patch-5
[...]
patch-10

When the earliest missing patch prior to a partial update is an idempotent patch set,
and the tree already has all of the patches included in that patch set, update simply adds
the log message for the idempotent patch to the tree being patched, and stops.

If the tree being patched has none of the patches included in that patch set, update
updates against the idempotent revision in the normal way.

Finally, if the tree being patch has some but not all of the patches included in the
idempotent patch set, udpate gives up with an error and suggests that you use replay
to apply the idempotent patch set. (In a future release, update will do something more
intellegent in this case).

The upshot of this is that you can merge branches A and B with a series of partial updates
and replays:

update against patch-level 2

#

% arx update --partial ~/wd/branch-a--patch-8
~/wd/branch-a-b-partial-update

branch-b
replay patch-level 3
-- we already have all the patches included in the
idempotent branch-b patch, "patch-3" - so all this
really does is install a log message.

#

% arx replay ~/wd/branch-a-b-partial-update
~/wd/branch-a-b-partial-update-2
branch-b--patch-3

148

ArX

update against patch-level 5

arx

arx

arx

arx

arx

update --partial ~/wd/branch-a-b-partial-update-2
~/wd/branch-a-b-partial-update-3
branch-b

replay ~/wd/branch-a-b-partial-update-3
~/wd/branch-a-b-partial-update-4
branch-b--patch-5

update --partial “/wd/branch-a-b-partial-update-5
~/wd/branch-a-b-partial-update-6
branch-b

replay ~/wd/branch-a-b-partial-update-6
~/wd/branch-a-b-partial-update-7
branch-b--patch-9

update --partial ~/wd/branch-a-b-partial-update-9
~/wd/branch-a-b-merged
branch-b

Appendix G: The GNU Free Documentation License 149

Appendix G The GNU Free Documentation
License

GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
written document "free" in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be distributed
under the terms of this License. The "Document", below, refers to any
such manual or work. Any member of the public is a licensee, and is
addressed as "you".

150 ArX

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding

them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage
subsequent modification by readers is not Transparent. A copy that is
not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML produced by some word processors for output
purposes only.

Appendix G: The GNU Free Documentation License 151

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100,
and the Document’s license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent

pages.

152

ArX

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the
general network-using public has access to download anonymously at no
charge using public-standard network protocols. If you use the latter
option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to
the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice

Appendix G: The GNU Free Documentation License 153

giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.
Include an unaltered copy of this License.

I. Preserve the section entitled "History", and its title, and add to
it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.
You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. In any section entitled "Acknowledgements" or "Dedications",
preserve the section’s title, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section entitled "Endorsements". Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section as "Endorsements"
or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

154

ArX

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History"
in the various original documents, forming one section entitled
"History"; likewise combine any sections entitled "Acknowledgements",
and any sections entitled "Dedications". You must delete all sections
entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

Appendix G: The GNU Free Documentation License 155

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, does not as a whole count as a Modified Version
of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an "aggregate", and this
License does not apply to the other self-contained works thus compiled
with the Document, on account of their being thus compiled, if they
are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one quarter
of the entire aggregate, the Document’s Cover Texts may be placed on
covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License provided that you also include the
original English version of this License. In case of a disagreement
between the translation and the original English version of this
License, the original English version will prevail.

9. TERMINATION

156

ArX

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions

of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License,
Version 1.1 or any later version published by the Free Software
Foundation; with the Invariant Sections being LIST THEIR TITLES,
with the Front-Cover Texts being LIST, and with the Back-Cover
Texts being LIST. A copy of the license is included in the
section entitled "GNU Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections"
instead of saying which ones are invariant. If you have no
Front-Cover Texts, write "no Front-Cover Texts" instead of
"Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

Appendix G: The GNU Free Documentation License 157

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,

to permit their use in free software.

158 ArX

Appendix H: The GNU General Public License 159

Appendix H The GNU General Public License

The Hackerlab C Library is free software: you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation (and reproduced below) .

This software is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License (reproduced below) for more details.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change
free software—-—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit
to using it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License instead.) You can
apply it to your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and
charge for this service if you wish), that you receive source code
or can get it if you want it, that you can change the software or
use pieces of it in new free programs; and that you know you can do
these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the
rights. These restrictions translate to certain responsibilities
for you if you distribute copies of the software, or if you modify
it.

160 ArX

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights
that you have. You must make sure that they, too, receive or can
get the source code. And you must show them these terms so they
know their rights.

We protect your rights with two steps: (1) copyright the software,
and (2) offer you this license which gives you legal permission to
copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make
certain that everyone understands that there is no warranty for this
free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not
the original, so that any problems introduced by others will not
reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making
the program proprietary. To prevent this, we have made it clear
that any patent must be licensed for everyone’s free use or not
licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which
contains a notice placed by the copyright holder saying it may be
distributed under the terms of this General Public License. The
"Program", below, refers to any such program or work, and a "work
based on the Program" means either the Program or any derivative
work under copyright law: that is to say, a work containing the
Program or a portion of it, either verbatim or with modifications
and/or translated into another language. (Hereinafter, translation
is included without limitation in the term "modification".) Each
licensee is addressed as "you".

Appendix H: The GNU General Public License 161

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on
the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any
warranty; and give any other recipients of the Program a copy of
this License along with the Program.

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for
a fee.

2. You may modify your copy or copies of the Program or any
portion of it, thus forming a work based on the Program, and copy
and distribute such modifications or work under the terms of Section
1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that
in whole or in part contains or is derived from the Program or
any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the program
under these conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement,
your work based on the Program is not required to print an

162 ArX

announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work
based on the Program, the distribution of the whole must be on the
terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of
who wrote it.

Thus, it is not the intent of this section to claim rights or
contest your rights to work written entirely by you; rather, the
intent is to exercise the right to control the distribution of
derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the
Program with the Program (or with a work based on the Program) on a
volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms
of Sections 1 and 2 above provided that you also do one of the
following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the
offer to distribute corresponding source code. (This
alternative is allowed only for noncommercial distribution and
only if you received the program in object code or executable
form with such an offer, in accord with Subsection b above.)

Appendix H: The GNU General Public License 163

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as
a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from
you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on
the Program), the recipient automatically receives a license from
the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any
further restrictions on the recipients’ exercise of the rights
granted herein. You are not responsible for enforcing compliance by
third parties to this License.

164 ArX

7. If, as a consequence of a court judgment or allegation of
patent infringement or for any other reason (not limited to patent
issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Program at all.
For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could
satisfy both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable
under any particular circumstance, the balance of the section is
intended to apply and the section as a whole is intended to apply in
other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed
to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces,
the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in
or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this
License.

Appendix H: The GNU General Public License 165

9. The Free Software Foundation may publish revised and/or new
versions of the General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies a version number of this License which applies to
it and "any later version", you have the option of following the
terms and conditions either of that version or of any later version
published by the Free Software Foundation. If the Program does not
specify a version number of this License, you may choose any version
ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other
free programs whose distribution conditions are different, write to
the author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. OQOur decision
will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and
reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

166 ArX

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the
greatest possible use to the public, the best way to achieve this is
to make it free software which everyone can redistribute and change
under these terms.

To do so, attach the following notices to the program. It is
safest to attach them to the start of each source file to most
effectively convey the exclusion of warranty; and each file should
have at least the "copyright" line and a pointer to where the full
notice is found.

<one line to give the program’s name and a brief idea of what it
does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA

Also add information on how to contact you by electronic and paper
mail.

If the program is interactive, make it output a short notice like
this when it starts in an interactive mode:

Appendix H: The GNU General Public License 167

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type

‘show w’. This is free software, and you are welcome to
redistribute it under certain conditions; type ‘show ¢’ for
details.

The hypothetical commands ‘show w’ and ‘show c’ should show the
appropriate parts of the General Public License. 0f course, the
commands you use may be called something other than ‘show w’ and
‘show c’; they could even be mouse-clicks or menu items--whatever
suits your program.

You should also get your employer (if you work as a programmer) or
your school, if any, to sign a "copyright disclaimer" for the
program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
program ‘Gnomovision’ (which makes passes at compilers) written by
James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking
proprietary applications with the library. If this is what you want
to do, use the GNU Library General Public License instead of this
License.

168 ArX

Appendix I: Preliminary Data Sheet for ArX 169

Appendix I Preliminary Data Sheet for ArX

Package:
ArX (a revision control system)

Function:

ArX performs revision control offering fancy

features for branching and merging. It provides distributed
repositories (repositories spread over multiple hosts) and a
global (world-wide) namespace for branches and revisions.

Key Features:
ArX is simple, small, and featureful.

Distributed repositories are especially appropriate for
projects developed in the "open source" style -- with
geographically distributed developers and sub-teams, loosely
and flexibly cooperating.

ArX’s fancy merging features are ideal for projects
supporting multiple concurrent releases and/or performing a

lot of development in separate branches.

PDF and HTML documentation are included.

Licensing:

ArX is distributed under the terms of
the GNU General Public License, Version 2, as published by the
Free Software Foundation.

170

ArX

Prerequisites:

standard C and C++ compiler

Posix libc.a (standard C library)

GNU Make

GNU tar

GNU patch

most of the standard Posix shell, text, and file utilities

Recommended and Disrecommended Applicatiomns:

ArX is brand new. The recommended application at this stage
is evaluation, help with porting, and help with testing.

Given resources for robust testing, ArX could be made ready
for heavy-duty, mission critical application within months --
but absent those resources, ArX suffers from the risks
associated with brand-new software.

If your projects are characterized by distributed development,
consider evaluating ArX and finding ways to contribute to a
polished, commercial-quality release.

Limitations:

Size:

The primary limitation is that ArX needs porting and testing.

A secondary limitation is that ArX likes to operate on
whole-trees, not individual files. This limitation can be
overcome with further development, though it remains to be
seen if user’s truly miss such features.

The core of ArX is around 40K lines of code, mostly shell and
awk scripts.

ArX relies on the Hackerlab C library, which
adds considerably to the overall code size. It is possible to
eliminate this dependency, but not necessarily desirable.

Appendix I: Preliminary Data Sheet for ArX 171

Performance:
ArX has some nice performance characteristics. At the moment,
ArX can still be quite slow, but there are many possible ways
to speed it up.

Repositories are stored in compressed format and tree-deltas
are efficiently represented. This both saves disk space and
reduces network traffic.

On the client side, ArX makes heavy use of caching to speed
up some operations and make detached operation possible.

172 ArX

Chapter 27: Indexes 173

27 Indexes

174 ArX

Short Contents

O 0 J O O = W N

N NN P /= = = = ==
_ O © 00~ O U= W NN = O

=R N lico Bl wil @R ve e

Introducing ArX . oo v v st n it eeeeeooennsas 3
System Requirements. . . v oo v e v veeeeieneeeeneeennn 11
Tutorial o v v v e v oot e sttt i i e e e oo osssooeeooasns 13
ArX Commands in General. . oo oo v vv v e v veeeeeennnns 17
ArX Project Trees . oo oo oo v e oo eeeeeeneennas 25
ArX Project InVentories « o v o v v v v oo v v v e v et neennn 27
The ArX Global Name-space of USers v oo eeeeeeeeeeens 39
The ArX Global Name-space of Projects. ..o oveeeeenn.. 41
N 4 45
Development Paths o o o oo v i i oo i i e i i i i iininnn.. 49
Basic Revision Control . v v v oo v v v v veeeeeeeeeennns 51
Basic Branching and Mergingc00vnn... 63
Patch Logs and ChangelLogs . v v v v v v v v v e e e e e eennn 67
Star Topology Branching and Mergingo oo vvea... 71
Writing Log Entries for Merges « o v v v v v v v v v e e v e e 7
Arbitrary Patching with delta-patch.................. 79
Multi-Branch Merging — The reconcile Command......... 81
Reverting Development . ..o oo v ee e e e i i ineeenns 89
Multi-Tree Projects o v v v o o o oo v i i e e aens 91
ArX Distribution Tools v v v v v e v e e v i e i i 95
The Pristine Revision Cacheo oo v i i iii i 97
Revision Tree Libraries « o oo e e oo e e v v vveeeenensess 99
ArX Triggerse o oo oo e e v veeveneeeeneeoooneososs 103
USING Triggers e v v oo oo oo v eeeeooosoeessseeennnss 107
Automatic Triggers o oo v v v v v v e e e e eeeeeeeeennnnns 109
Graphical User Interface . . v v v v v v e e e e i iiinn.. 111
Implementing Development Policies « o v v o v v v v v v venn 113
The Theory of Patches and Revisions « « o o o v v v v v v e v vus 123
ArX Patch Sets e v oo v e v i n i i i i iiieinneneens 131
The ArX Patch Set Format............oovo.. 137
The ArX Archive Format « « o o o v v v v v v v v e s s oeeeesnss 141
Idempotent Merging.oeeeeeevoeeeeeeeeeenenns 143
The GNU Free Documentation License . o o o oo v v v v v s 149
The GNU General Public License. ..o veveeeeeeneen.. 159

Preliminary Data Sheet for ArX0v e eveeeeeenenns 169

ii ArX
27 INAexXeS v v v v et oo e oo eeeceeeeooeooecoocoooeoos 173

Table of Contents

1 Introducing ArX............cciiiiiinn... 3
1.1 Advantages of ArX 3
1.2 Global Revision Control Done Right 5)
1.3 Introducing ArX Project Trees 6
1.4 Introducing ArX Inventories 6
1.5 Introducing ArX Patch Sets............. 7
1.6 Global Namespaces.couuiiineiiin ... 7
1.7 Introducing ArX Archives............... 8
1.8 Introducing ArX Patch Logs, 8
1.9 Cheap Branching and Smart Merging 9
1.10 What Does It All Mean?........, 9
2 System Requirements..................... 11
3 Tutorial.............. 13
3.1 Creating the first revision............................... 13
3.2 Revisions.........ooo i 14
3.3 Branches........ ... 15
3.4 Wrapping UP. ... vv ettt e 15
3.5 Revision Trees ... 16
4 ArX Commands in General 17
4.1 The ArX Commands, 18
5 ArX Project Trees........................ 25
5.1 Initializing a Project Tree......... 25
6 ArX Project Inventories................... 27
6.1 Choices Regarding Inventories........................... 27
6.2 Specifying a Tagging Method......................... ... 28
6.3 The inventory Command 28
6.4 Using an Explicit Inventory 31
6.5 Using an Implicit Inventory 32
6.6 Recognizing Renames — Inventory Tags 33
6.7 Keeping Things Neat and Tidy.......................... 34
6.8 The Inventory Tag Abstraction in Detail 34
6.9 A Warning About Changing Tagging Methods............ 35
6.10 Other Ways to Tag Files............. 35
6.11 Telling tree-lint to Shut Up 36
6.12 Which Tagging Method Should You Use? 36
6.13 Altering the Naming Conventions 37

iii

iv
7 The ArX Global Name-space of Users...... 39
8 The ArX Global Name-space of Projects... 41
8.1 The Structure of Project Names......................... 41
8.2 Archive Names........... ... 42
8.3 Category Names and Branch Labels 43
8.4 Version Numbers........... 43
8.5 Labelling Project Trees........ 44
8.6 Combining Project Trees..........., 44
9 Archivesciiiiiiiiiiiiiinnnnnn. 45
9.1 Archive Names Revisited 45
9.2 Creating a New Archive 45
9.3 Mapping Archive Names to Locations.................... 46
9.4 Remote Archives..............cviiiiieeiieinea 46
941 HTTP ... 46
9.4.1.1 Webdav............, 46
9.4.1.2 Explicit lists.......................... 47
9.4.2 SEFTP..... 47
9.4.3 Accessing the Archives......................... 47
9.5 Your Default Archive........ 48
10 Development Paths...................... 49
10.1 Creating a Development Path 49
10.2 Examining an Archive............... 49
10.3 Fully Qualified Version Names 50
11 Basic Revision Control................... 51
11.1 The First Revision i 51
11.2 Successive Revisions.......... o i 52
11.3 Patch Levels......... 53
114 Taggingot 53
11.5 Development Phases................. 54
11.6 Getting a Revision i 55
11.7 Optimizing Archives for get............................ 56
11.8 Finding Out What Changed 56
11.9 The whats-missing Command o7
1110 Update. . ..ooon e e 58
LLAT REPIAY « oot 59
11.12 The Next Version 60
12 Basic Branching and Merging 63
12.1 Creatinga Branch............. 63
12.2 Distributed Branches............, 64
12.3 whats-missing Revisited 64
12.4 update and replay Revisited 65

12.5 Merging After a Branch 65

ArX

13

14

15

16

17

18

19

20

21

22

Patch Logs and ChangelLogs.............. 67

13.1 Branches and Patch Logs 68
13.2 Comparing Patch Logs to Archives 68
13.3 Changeliogs ... 69

Star Topology Branching and Merging 71

14.1 The Star Topology Merge Problem 72
14.2 Solving the Star Topology Merge Problem............... 73
14.3 The star-merge Command 74
Writing Log Entries for Merges........... 77
Arbitrary Patching with delta-patch 79
Multi-Branch Merging — The reconcile

Command...............oiiiennnnn.. 81
17.1 The Repeated Multi-Branch Merge Problem............. 81
17.2 The Challenge ... 84
17.3 The Simple update Solutions........................... 84
17.4 The Simple replay Solutions............................ 84
17.5 The reconcile Solution.............. 85
Reverting Development 89
Multi-Tree Projects...................... 91
ArX Distribution Tools 95
The Pristine Revision Cache 97
Revision Tree Libraries 99
22.1 Your Revision Library Location 99
22.2 Revision Library Format............................... 99
22.3 Adding a Revision to the Library...................... 100
22.4 Finding a Revision in the Library 100
22.5 Removing a Revision from the Library................. 100
22.6 Listing Library Contents.................. 101
22.7 Individual Files in the Revision Library................ 101

22.8 Determining Patch Set Prerequisits.................... 102

vi
23 ArX Triggers.........coeeeiiinnnnnennns 103
23.1 The Four notify Configuration Files 103
23.2 Triggers for Everything in a Repository 104
23.3 Robustness Issues with Triggers 105
23.4 Scheduling Triggers with cron......................... 105
23.5 Scheduling Triggers Directly 105
24 Using Triggers........coovveeeeennnn.. 107
24.1 Sending Email Notices About Repository Changes. 107
24.2 Updating a Revision Library.......................... 108
25 Automatic Triggers..................... 109
26 Graphical User Interface................ 111
Appendix A Implementing Development Policies
....................................... 113
A1 Milestone/Numbered Versions 113
A2 Even/Odd Versions..................ocoiiiiiiii.. 115
Appendix B The Theory of Patches and
Revisionscoiiiiiiiiiinnnn., 123
B.1 The Theory of Patches................................ 123
B.2 The Theory of Revisions 125
B.3 What is a Revision Control System? 129
Appendix C ArX Patch Sets............... 131
C.1 mkpatcho 131
C.2 dopatch...... ... i 132
C.3 Imexact Patching 132

Appendix D The ArX Patch Set Format ... 137

Appendix E The ArX Archive Format 141
E.1 Directory Structureco i, 141
E.2 Within a Revision Directory 141
Appendix F Idempotent Merging.......... 143
F.1 The i-merge Commandcoouuiiiio... 144
F.2 idempotent Merges and the replay Command 145
F.3 idempotent Patch Sets and the update Command 146

F.4 idempotent Patch Sets and Partial Updates............. 146

ArX

Appendix G The GNU Free Documentation
Licensecciiiiiiiiinennnn. 149

Appendix H The GNU General Public License
....................................... 159

Appendix I Preliminary Data Sheet for ArX
....................................... 169

vii

viii ArX

	Introducing ArX
	Advantages of ArX
	Global Revision Control Done Right
	Introducing ArX Project Trees
	Introducing ArX Inventories
	Introducing ArX Patch Sets
	Global Namespaces
	Introducing ArX Archives
	Introducing ArX Patch Logs
	Cheap Branching and Smart Merging
	What Does It All Mean?

	System Requirements
	Tutorial
	Creating the first revision
	Revisions
	Branches
	Wrapping up
	Revision Trees

	ArX Commands in General
	The ArX Commands

	ArX Project Trees
	Initializing a Project Tree

	ArX Project Inventories
	Choices Regarding Inventories
	Specifying a Tagging Method
	The inventory Command
	Using an Explicit Inventory
	Using an Implicit Inventory
	Recognizing Renames -- Inventory Tags
	Keeping Things Neat and Tidy
	The Inventory Tag Abstraction in Detail
	A Warning About Changing Tagging Methods
	Other Ways to Tag Files
	Telling tree-lint to Shut Up
	Which Tagging Method Should You Use?
	Altering the Naming Conventions

	The ArX Global Name-space of Users
	The ArX Global Name-space of Projects
	The Structure of Project Names
	Archive Names
	Category Names and Branch Labels
	Version Numbers
	Labelling Project Trees
	Combining Project Trees

	Archives
	Archive Names Revisited
	Creating a New Archive
	Mapping Archive Names to Locations
	Remote Archives
	HTTP
	Webdav
	Explicit lists

	SFTP
	Accessing the Archives

	Your Default Archive

	Development Paths
	Creating a Development Path
	Examining an Archive
	Fully Qualified Version Names

	Basic Revision Control
	The First Revision
	Successive Revisions
	Patch Levels
	Tagging
	Development Phases
	Getting a Revision
	Optimizing Archives for get
	Finding Out What Changed
	The whats-missing Command
	Update
	Replay
	The Next Version

	Basic Branching and Merging
	Creating a Branch
	Distributed Branches
	whats-missing Revisited
	update and replay Revisited
	Merging After a Branch

	Patch Logs and ChangeLogs
	Branches and Patch Logs
	Comparing Patch Logs to Archives
	ChangeLogs

	Star Topology Branching and Merging
	The Star Topology Merge Problem
	Solving the Star Topology Merge Problem
	The star-merge Command

	Writing Log Entries for Merges
	Arbitrary Patching with delta-patch
	Multi-Branch Merging -- The reconcile Command
	The Repeated Multi-Branch Merge Problem
	The Challenge
	The Simple update Solutions
	The Simple replay Solutions
	The reconcile Solution

	Reverting Development
	Multi-Tree Projects
	ArX Distribution Tools
	The Pristine Revision Cache
	Revision Tree Libraries
	Your Revision Library Location
	Revision Library Format
	Adding a Revision to the Library
	Finding a Revision in the Library
	Removing a Revision from the Library
	Listing Library Contents
	Individual Files in the Revision Library
	Determining Patch Set Prerequisits

	ArX Triggers
	The Four notify Configuration Files
	Triggers for Everything in a Repository
	Robustness Issues with Triggers
	Scheduling Triggers with cron
	Scheduling Triggers Directly

	Using Triggers
	Sending Email Notices About Repository Changes
	Updating a Revision Library

	Automatic Triggers
	Graphical User Interface
	Implementing Development Policies
	Milestone/Numbered Versions
	Even/Odd Versions

	The Theory of Patches and Revisions
	The Theory of Patches
	The Theory of Revisions
	What is a Revision Control System?

	ArX Patch Sets
	mkpatch
	dopatch
	Inexact Patching

	The ArX Patch Set Format
	The ArX Archive Format
	Directory Structure
	Within a Revision Directory

	Idempotent Merging
	The i-merge Command
	idempotent Merges and the replay Command
	idempotent Patch Sets and the update Command
	idempotent Patch Sets and Partial Updates

	The GNU Free Documentation License
	The GNU General Public License
	Preliminary Data Sheet for ArX
	Indexes

