Firebird 3.0 Language Reference

Dmitry Filippov, Alexander Karpeykin, Alexey Kovyazin, Dmitry Kuzmenko,
Denis Simonov, Paul Vinkenoog, Dmitry Yemanov, Mark Rotteveel

Version 1.8, 3 January 2022

Preface

The source of much copied reference material: Paul Vinkenoog

Copyright © 2017-2022 Firebird Project and all contributing authors, under the
Public Documentation License Version 1.0. Please refer to the License Notice in
the Appendix

https://www.firebirdsql.org/manual/pdl.html

Table of Contents

Table of Contents

1. About the Firebird 3.0 Language Reference
1.1. Subject
1.2. Authorship
1.2.1. Contributors
1.3. Acknowledgments
1.4. Contributing
2. SQL Language Structure
2.1. Background to Firebird’s SQL Language
2.1.1. SQL Flavours
2.1.2. SQL Dialects
2.1.3. Error Conditions

2.2. Basic Elements: Statements, Clauses, Keywords

2.3. Identifiers
2.3.1. Rules for Regular Object Identifiers
2.3.2. Rules for Delimited Object Identifiers
2.4. Literals
2.5. Operators and Special Characters
2.6. Comments
3. Data Types and Subtypes
3.1. Integer Data Types
3.1.1. SMALLINT
3.1.2. INTEGER
3.1.3. BIGINT

3.1.4. Hexadecimal Format for Integer Numbers

3.2. Floating-Point Data Types
3.2.1. FLOAT
3.2.2. DOUBLE PRECISION
3.3. Fixed-Point Data Types
3.3.1. NUMERIC
3.3.2. DECIMAL
3.4. Data Types for Dates and Times
3.4.1. DATE
3.4.2. TIME
3.4.3. TIMESTAMP
3.4.4. Operations Using Date and Time Values
3.5. Character Data Types
3.5.1. Unicode
3.5.2. Client Character Set

15
15
15
15
16
16
17
17
17
17
19
19
20
20
20
21
21
22
24
26
26
26
27
27
28
28
28
29
29
30
31
32
32
32
32
33
34
34

Table of Contents

3.5.3. Special Character Sets 34
3.5.4. Collation Sequence 35
3.5.5. Character Indexes 36
3.5.6. Character Types in Detail 37
3.6. Boolean Data Type 38
3.6.1. BOOLEAN 38
3.7. Binary Data Types 40
3.7.1. BLOB Subtypes 41
3.7.2. BLOB Specifics 41
3.7.3. ARRAY Type 42
3.8. Special Data Types 44
3.8.1. SQL_NULL Data Type 44
3.9. Conversion of Data Types 46
3.9.1. Explicit Data Type Conversion 46
3.9.2. Implicit Data Type Conversion 51
3.10. Custom Data Types — Domains 52
3.10.1. Domain Attributes 53
3.10.2. Domain Override 53
3.10.3. Creating and Administering Domains 53
3.11. Data Type Declaration Syntax 55
3.11.1. Scalar Data Types Syntax 55
3.11.2. BLOB Data Types Syntax 57
3.11.3. Array Data Types Syntax 57

4. Common Language Elements 59
4.1. Expressions 59
4.1.1. Literals (Constants) 61
4.1.2. SQL Operators 65
4.1.3. Conditional Expressions 67
4.1.4. NULL in Expressions 69
4.1.5. Subqueries 70
4.2. Predicates 72
4.2.1. Conditions 72
4.2.2. Comparison Predicates 72
4.2.3. Existential Predicates 85
4.2.4. Quantified Subquery Predicates 89

5. Data Definition (DDL) Statements 91
5.1. DATABASE 91
5.1.1. CREATE DATABASE 91
5.1.2. ALTER DATABASE 98
5.1.3. DROP DATABASE 103
5.2. SHADOW 103

5.2.1. CREATE SHADOW
5.2.2. DROP SHADOW
5.3. DOMAIN
5.3.1. CREATE DOMAIN
5.3.2. ALTER DOMAIN
5.3.3. DROP DOMAIN
5.4. TABLE
5.4.1. CREATE TABLE
5.4.2. ALTER TABLE
5.4.3. DROP TABLE
5.4.4. RECREATE TABLE
5.5. INDEX
5.5.1. CREATE INDEX
5.5.2. ALTER INDEX
5.5.3. DROP INDEX
5.5.4. SET STATISTICS
5.6. VIEW
5.6.1. CREATE VIEW
5.6.2. ALTER VIEW
5.6.3. CREATE OR ALTER VIEW
5.6.4. DROP VIEW
5.6.5. RECREATE VIEW
5.7. TRIGGER
5.7.1. CREATE TRIGGER
5.7.2. ALTER TRIGGER
5.7.3. CREATE OR ALTER TRIGGER
5.7.4.DROP TRIGGER
5.7.5. RECREATE TRIGGER
5.8. PROCEDURE
5.8.1. CREATE PROCEDURE
5.8.2. ALTER PROCEDURE
5.8.3. CREATE OR ALTER PROCEDURE
5.8.4. DROP PROCEDURE
5.8.5. RECREATE PROCEDURE
5.9. FUNCTION
5.9.1. CREATE FUNCTION
5.9.2. ALTER FUNCTION
5.9.3. CREATE OR ALTER FUNCTION
5.9.4. DROP FUNCTION
5.9.5. RECREATE FUNCTION
5.10. EXTERNAL FUNCTION

Table of Contents

103
105

106
107
111
115
115
115
132
138
139
140
140
144
145
146
147
148
152
153
154
155
156
156
168
170
171
172
173
173
178
179
180
181
182
182
189
190
191
191
192

Table of Contents

5.10.1. DECLARE EXTERNAL FUNCTION 193
5.10.2. ALTER EXTERNAL FUNCTION 197
5.10.3. DROP EXTERNAL FUNCTION 198
5.11. PACKAGE 199
5.11.1. CREATE PACKAGE 199
5.11.2. ALTER PACKAGE 202
5.11.3. CREATE OR ALTER PACKAGE 203
5.11.4. DROP PACKAGE 204
5.11.5. RECREATE PACKAGE 205
5.12. PACKAGE BODY 206
5.12.1. CREATE PACKAGE BODY 206
5.12.2. ALTER PACKAGE BODY 208
5.12.3. DROP PACKAGE BODY 210
5.12.4. RECREATE PACKAGE BODY 211
5.13. FILTER 212
5.13.1. DECLARE FILTER 212
5.13.2. DROP FILTER 215
5.14. SEQUENCE (GENERATOR) 216
5.14.1. CREATE SEQUENCE 216
5.14.2. ALTER SEQUENCE 218
5.14.3. CREATE OR ALTER SEQUENCE 220
5.14.4. DROP SEQUENCE 221
5.14.5. RECREATE SEQUENCE 222
5.14.6. SET GENERATOR 223
5.15. EXCEPTION 224
5.15.1. CREATE EXCEPTION 224
5.15.2. ALTER EXCEPTION 225
5.15.3. CREATE OR ALTER EXCEPTION 226
5.15.4. DROP EXCEPTION 227
5.15.5. RECREATE EXCEPTION 228
5.16. COLLATION 228
5.16.1. CREATE COLLATION 228
5.16.2. DROP COLLATION 232
5.17. CHARACTER SET 233
5.17.1. ALTER CHARACTER SET 233
5.18. Comments 234
5.18.1. COMMENT ON 234
6. Data Manipulation (DML) Statements 237
6.1. SELECT 237
6.1.1. FIRST, SKIP 238

6.1.2. The SELECT Columns List 240

Table of Contents

6.1.3. The FROM clause 244
6.1.4. Joins 253
6.1.5. The WHERE clause 264
6.1.6. The GROUP BY clause 267
6.1.7. The PLAN clause 272
6.1.8. UNION 281
6.1.9. ORDER BY 284
6.1.10. ROWS 287
6.1.11. OFFSET, FETCH 290
6.1.12. FOR UPDATE [OF] 293
6.1.13. WITH LOCK 293
6.1.14. INTO 297
6.1.15. Common Table Expressions (“WITH - AS --+ SELECT”) 298
6.2. INSERT 303
6.2.1. INSERT --- VALUES 304
6.2.2. INSERT --- SELECT 304
6.2.3. INSERT -+ DEFAULT VALUES 305
6.2.4. The RETURNING clause 306
6.2.5. Inserting into BLOB columns 307
6.3. UPDATE 307
6.3.1. Using an alias 308
6.3.2. The SET Clause 309
6.3.3. The WHERE Clause 309
6.3.4. The ORDER BY and ROWS Clauses 310
6.3.5. The RETURNING Clause 311
6.3.6. Updating BLOB columns 312
6.4. UPDATE OR INSERT 312
6.4.1. The RETURNING clause 314
6.4.2. Example of UPDATE OR INSERT 314
6.5. DELETE 314
6.5.1. Aliases 315
6.5.2. WHERE 316
6.5.3. PLAN 316
6.5.4. ORDER BY and ROWS 317
6.5.5. RETURNING 318
6.6. MERGE 318
6.6.1. The RETURNING Clause 321
6.6.2. Examples of MERGE 322
6.7. EXECUTE PROCEDURE 324
6.7.1. “Executable” Stored Procedure 324
6.7.2. Examples of EXECUTE PROCEDURE 325

Table of Contents

6.8. EXECUTE BLOCK
6.8.1. Examples
6.8.2. Input and output parameters
6.8.3. Statement Terminators
7. Procedural SQL (PSQL) Statements
7.1. Elements of PSQL
7.1.1. DML Statements with Parameters
7.1.2. Transactions
7.1.3. Module Structure
7.2. Stored Procedures
7.2.1. Benefits of Stored Procedures
7.2.2. Types of Stored Procedures
7.2.3. Creating a Stored Procedure
7.2.4. Modifying a Stored Procedure
7.2.5. Deleting a Stored Procedure
7.3. Stored Functions
7.3.1. Creating a Stored Function
7.3.2. Modifying a Stored Function
7.3.3. Deleting a Stored Function
7.4. PSQL Blocks
7.5. Packages
7.5.1. Benefits of Packages
7.5.2. Creating a Package
7.5.3. Modifying a Package
7.5.4. Deleting a Package
7.6. Triggers
7.6.1. Firing Order (Order of Execution)
7.6.2. DML Triggers
7.6.3. Database Triggers
7.6.4. DDL Triggers
7.6.5. Creating Triggers
7.6.6. Modifying Triggers
7.6.7. Deleting a Trigger
7.7. Writing the Body Code
7.7.1. Assignment Statements
7.7.2. DECLARE VARIABLE
7.7.3. DECLARE .. CURSOR
7.7.4. DECLARE FUNCTION
7.7.5. DECLARE PROCEDURE
7.7.6. BEGIN --- END
7.7.7.1IF --- THEN --- ELSE

325
326

328
328
329
329
329
329
329
333
333
334
334
334
334
335
335
335
335
335
336
336
337
337
337
337
338
338
339
339
340
340
340
340
341
342
344
348
350
352
354

Table of Contents

7.7.8. WHILE --- DO 357
7.7.9. BREAK 358
7.7.10. LEAVE 359
7.7.11. CONTINUE 361
7.7.12. EXIT 362
7.7.13. SUSPEND 363
7.7.14. EXECUTE STATEMENT 364
7.7.15. FOR SELECT 371
7.7.16. FOR EXECUTE STATEMENT 376
7.7.17. OPEN 377
7.7.18. FETCH 380
7.7.19. CLOSE 385
7.7.20. IN AUTONOMOUS TRANSACTION 385
7.7.21. POST_EVENT 387
7.7.22. RETURN 387
7.8. Trapping and Handling Errors 388
7.8.1. System Exceptions 388
7.8.2. Custom Exceptions 389
7.8.3. EXCEPTION 389
7.8.4. WHEN --- DO 393
8. Built-in Scalar Functions 398
8.1. Context Functions 398
8.1.1. RDB$GET_CONTEXT() 398
8.1.2. RDB$SET_CONTEXT() 401
8.2. Mathematical Functions 402
8.2.1. ABS() 402
8.2.2. ACOS() 402
8.2.3. ACOSH() 403
8.2.4. ASIN() 403
8.2.5. ASINH() 404
8.2.6. ATAN() 404
8.2.7. ATAN2() 405
8.2.8. ATANH() 406
8.2.9. CEIL(), CEILING() 406
8.2.10. COS() 407
8.2.11. COSH() 407
8.2.12. COT() 408
8.2.13. EXP() 408
8.2.14. FLOOR() 409
8.2.15. LN() 409
8.2.16. LOG() 410

Table of Contents

8217 L0GT0C) . 411
B2 A8 MOD() . - o v 411
B.2.19. PL(). 412
8.2.20. POWER() . . oo 412
B.2. 21 RAND () . - oo 413
8.2.22. ROUND() . - oo 413
8.2.23. SIAN () . - o 414
B.2.24, SIN() . o 415
8.2.25. SINH() . - o 415
B.2.26. SQRT (). - o 416
B.2. 27, TAN () . o o 416
8.2.28. TANH () . - o 417
8.2.29. TRUNC () . - oo 417
8.3.String FUNCLIONS 418
8.3. 1. ASCII _CHAR() . . o 419
8.3, 2. ASCIL _VAL() - .o 419
8.3. 3. BIT_LENGTH() . . o 420
8.3.4. CHAR_LENGTH(), CHARACTER_LENGTH() 421
8.3, 5. HASH () - - e 422
B.3.6. LEFT () . oo 422
8.3. 7. LOWER() - - o o 423
B.3.8. LPAD () . - oo 424
8.3.9. OCTET _LENGTH() . . o o oo 425
8.3.10. OVERLAY () . . o 426
8. 3. 11 POSTITION() . . o 428
8.3 12, REPLACE () . . . 429
8.3.13. REVERSE () . . . 430
8.3 14, RIGHT (). . o 431
8.3 15 RPAD() . - o 431
8.3.16. SUBSTRING() . . . oo 433
8. 3.1 7. TRIM() . oo 435
8.3 18 UPPER() . . oo 436
8.4.Date and Time FUNCHONS 437
BA L. DATEADD() - - . 437
8.4, 2. DATEDIFF () . . 438
8.4 3 EXTRACT () . . o 440
8.5. Type Casting FUNCUIONS 441
8.5 L. CAST () o oo 441
8.6. Bitwise FUNCUIONS 445
8.6. 1. BIN_AND() . . .o 445
8.6.2. BIN _NOT () . .. 446

Table of Contents

8.6.3. BIN_OR() 446
8.6.4. BIN_SHL() 447
8.6.5. BIN_SHR() 448
8.6.6. BIN_XOR() 448
8.7. UUID Functions 449
8.7.1. CHAR_TO_UUID() 449
8.7.2. GEN_UUID() 450
8.7.3. UUID_TO_CHAR() 450
8.8. Functions for Sequences (Generators) 451
8.8.1. GEN_ID() 451
8.9. Conditional Functions 452
8.9.1. COALESCE() 452
8.9.2. DECODE() 453
8.9.3. IIF() 454
8.9.4. MAXVALUE() 455
8.9.5. MINVALUE() 455
8.9.6. NULLIF() 456

9. Aggregate Functions 458
9.1. General-purpose Aggregate Functions 458
9.1.1. AVG() 458
9.1.2. COUNT() 459
9.1.3. LIST() 460
9.1.4. MAX() 461
9.1.5. MIN() 462
9.1.6. SUM() 462
9.2. Statistical Aggregate Functions 463
9.2.1. CORR 463
9.2.2. COVAR_POP 464
9.2.3. COVAR_SAMP 465
9.2.4. STDDEV_POP 466
9.2.5. STDDEV_SAMP 467
9.2.6. VAR_POP 468
9.2.7. VAR_SAMP 468
9.3. Linear Regression Aggregate Functions 469
9.3.1. REGR_AVGX 470
9.3.2. REGR_AVGY 470
9.3.3. REGR_COUNT 471
9.3.4. REGR_INTERCEPT 472
9.3.5. REGR_R2 474
9.3.6. REGR_SLOPE 474
9.3.7. REGR_SXX 475

10

Table of Contents

9.3.8. REGR_SXY
9.3.9. REGR_SYY
10. Window (Analytical) Functions

10.1. Aggregate Functions as Window Functions

10.2. Partitioning

10.3. Ordering

10.4. Ranking Functions
10.4.1. DENSE_RANK
10.4.2. RANK
10.4.3. ROW_NUMBER

10.5. Navigational Functions
10.5.1. FIRST_VALUE
10.5.2. LAG
10.5.3. LAST_VALUE
10.5.4. LEAD
10.5.5. NTH_VALUE

10.6. Aggregate Functions Inside Window Specification

11. Context Variables

11.1. CURRENT_CONNECTION

11.2. CURRENT_DATE

11.3. CURRENT_ROLE

11.4. CURRENT_TIME

11.5. CURRENT_TIMESTAMP

11.6. CURRENT_TRANSACTION

11.7. CURRENT_USER

11.8. DELETING

11.9. GDSCODE

11.10. INSERTING

11.11. LOCALTIME

11.12. LOCALTIMESTAMP

11.13. NEW

11.14. "Now'

11.15.0LD

11.16. ROW_COUNT

11.17. SQLCODE

11.18. SQLSTATE

11.19. 'TODAY'

11.20. 'TOMORROW'

11.21. UPDATING

11.22. "YESTERDAY'

11.23. USER

11

476
476

478
479
479
480
481
482
483
484
485
485
486
487
488
489
489
491
491
491
492
492
493
495
495
496
496
497
497
498
500
500
501
502
502
503
504
505
506
506
507

12. Transaction Control

12.1. Transaction Statements
12.1.1. SET TRANSACTION
12.1.2. COMMIT
12.1.3. ROLLBACK
12.1.4. SAVEPOINT
12.1.5. RELEASE SAVEPOINT
12.1.6. Internal Savepoints
12.1.7. Savepoints and PSQL

13. Security

13.1. User Authentication
13.1.1. Specially Privileged Users
13.1.2. RDBSADMIN Role

13.1.3. Administrators

Table of Contents

13.2. SQL Statements for User Management

13.2.1. CREATE USER
13.2.2. ALTER USER
13.2.3. CREATE OR ALTER USER
13.2.4. DROP USER

13.3. SQL Privileges
13.3.1. The Object Owner

13.4. ROLE
13.4.1. CREATE ROLE
13.4.2. ALTER ROLE
13.4.3. DROP ROLE

13.5. Statements for Granting Privileges
13.5.1. GRANT

13.6. Statements for Revoking Privileges
13.6.1. REVOKE

13.7. Mapping of Users to Objects
13.7.1. The Mapping Rule
13.7.2. CREATE MAPPING
13.7.3. ALTER MAPPING
13.7.4. CREATE OR ALTER MAPPING
13.7.5. DROP MAPPING

13.8. Database Encryption
13.8.1. Encrypting a Database
13.8.2. Decrypting a Database

14. Management Statements

14.1. Changing the Current Role
14.1.1. SET ROLE

12

508
508
508
516
517
519
520
520
521
522
522
523
524
529
530
530
534
536
537
538
538
539
539
540
541
541
541
551
551
556
556
557
560
561
561
562
563
564
565
565
565

Table of Contents

14.1.2. SET TRUSTED ROLE
Appendix A: Supplementary Information
The RDB$VALID_BLR Field
How Invalidation Works
A Note on Equality
Appendix B: Exception Codes and Messages
SQLSTATE Error Codes and Descriptions
SQLCODE and GDSCODE Error Codes and Descriptions
Appendix C: Reserved Words and Keywords
Reserved words
Keywords
Appendix D: System Tables
RDBSAUTH_MAPPING
RDB$BACKUP_HISTORY
RDB$CHARACTER_SETS
RDB$CHECK_CONSTRAINTS
RDB$COLLATIONS
RDB$DATABASE
RDB$DB_CREATORS
RDB$DEPENDENCIES
RDB$EXCEPTIONS
RDB$FIELDS
RDB$FIELD_DIMENSIONS
RDB$FILES
RDB$FILTERS
RDB$FORMATS
RDB$FUNCTIONS
RDB$FUNCTION_ARGUMENTS
RDB$GENERATORS
RDB$INDICES
RDB$INDEX_SEGMENTS
RDB$LOG_FILES
RDB$PACKAGES
RDB$PAGES
RDB$PROCEDURES
RDB$PROCEDURE_PARAMETERS
RDB$REF_CONSTRAINTS
RDB$RELATIONS
RDBSRELATION_CONSTRAINTS
RDB$RELATION_FIELDS
RDB$ROLES

13

566
568

568
568
570
572
572
379
626
626
628
632
634
635
635
636
636
637
638
638
640
640
645
645
646
647
647
649
651
651
653
653
653
654
654
656
657
658
659
660
661

Table of Contents

RDB$SECURITY_CLASSES
RDB$TRANSACTIONS

RDB$TRIGGERS
RDB$TRIGGER_MESSAGES
RDB$TYPES
RDB$USER_PRIVILEGES
RDB$VIEW_RELATIONS
Appendix E: Monitoring Tables
MON$ATTACHMENTS
Using MONSATTACHMENTS to Kill a Connection
MON$CALL_STACK
MON$CONTEXT_VARIABLES
MONS$DATABASE
MON$IO_STATS
MON$MEMORY _USAGE
MON$RECORD_STATS
MON$STATEMENTS
Using MON$STATEMENTS to Cancel a Query
MON$TABLE _STATS
MON$TRANSACTIONS
Appendix F: Security tables
SEC$DB_CREATORS
SEC$GLOBAL_AUTH_MAPPING
SEC$USERS
SEC$USER_ATTRIBUTES
Appendix G: Character Sets and Collation Sequences
Appendix H: License notice

Appendix I: Document History

14

662
662

662
665
666
666
668
669
670
671
672
673
674
675
676
677
678
678
679
680
682
682
682
683
684
685
691
692

Chapter 1. About the Firebird 3.0 Language Reference

Chapter 1. About the Firebird 3.0 Language
Reference

This Language Reference decribes the SQL language supported by Firebird 3.0.

This Firebird 3.0 Language Reference is the second comprehensive manual to cover all aspects of
the query language used by developers to communicate, through their applications, with the
Firebird relational database management system.

1.1. Subject

The subject of this volume is wholly Firebird’s implementation of the SQL relational database
language. Firebird conforms closely with international standards for SQL, from data type support,
data storage structures, referential integrity mechanisms, to data manipulation capabilities and
access privileges. Firebird also implements a robust procedural language —procedural SQL
(PSQL) — for stored procedures, triggers and dynamically-executable code blocks. These are the
areas addressed in this volume.

This document does not cover configuration of Firebird, Firebird command-line tools, nor its
programming APIs.

1.2. Authorship

For the Firebird 3.0 version, the Firebird 2.5 Language Reference was taken as the base, and Firebird
3.0 information was added based on the Firebird 3.0 release notes, feature documentation, and the
Russian Firebird 3.0 Language Reference. This document, however, is not a direct translation of the
Russian Firebird 3.0 Language Reference.

1.2.1. Contributors

Direct Content

* Dmitry Filippov (writer)

* Alexander Karpeykin (writer)

» Alexey Kovyazin (writer, editor)

* Dmitry Kuzmenko (writer, editor)

e Denis Simonov (writer, editor)

Paul Vinkenoog (writer, designer)
* Dmitry Yemanov (writer)

» Mark Rotteveel (writer)

Resource Content

e Adriano dos Santos Fernandes

15

Chapter 1. About the Firebird 3.0 Language Reference

¢ Alexander Peshkov

Vladyslav Khorsun

Claudio Valderrama
¢ Helen Borrie

¢ and others

1.3. Acknowledgments

Sponsors and Other Donors

See also the Firebird 2.5 Language Reference for its donors.

Sponsors of the Russian Language Reference Manual

Moscow Exchange (Russia)

Moscow Exchange is the largest exchange holding in Russia and Eastern Europe, founded on
December 19, 2011, through the consolidation of the MICEX (founded in 1992) and RTS (founded in
1995) exchange groups. Moscow Exchange ranks among the world’s top 20 exchanges by trading
in bonds and by the total capitalization of shares traded, as well as among the 10 largest exchange
platforms for trading derivatives.

IBSurgeon (ibase.ru) (Russia)

Technical support and developer of administrator tools for the Firebird DBMS.

1.4. Contributing

There are several ways you can contribute to the documentation of Firebird, or Firebird in general:

* Participate on the mailing lists (see https://www.firebirdsql.org/en/mailing-lists/)
* Report bugs or submit pull requests on GitHub (https://github.com/FirebirdSQL/)

* Become a developer (for documentation contact us on firebird-docs, for Firebird in general, use
the Firebird-devel mailing list)

* Donate to the Firebird Foundation (see https://www.firebirdsql.org/en/donate/)

* Become a paying member or sponsor of the Firebird Foundation (see
https://www.firebirdsql.org/en/firebird-foundation/)

16

https://www.moex.com
https://www.ib-aid.com
https://ibase.ru
https://www.firebirdsql.org/en/mailing-lists/
https://github.com/FirebirdSQL/
https://www.firebirdsql.org/en/donate/
https://www.firebirdsql.org/en/firebird-foundation/

Chapter 2. SQL Language Structure

Chapter 2. SQL Language Structure

This reference describes the SQL language supported by Firebird.

2.1. Background to Firebird’s SQL Language

To begin, a few points about some characteristics that are in the background to Firebird’s language
implementation.

2.1.1. SQL Flavours

Distinct subsets of SQL apply to different sectors of activity. The SQL subsets in Firebird’s language
implementation are:

* Dynamic SQL (DSQL)
* Procedural SQL (PSQL)

Embedded SQL (ESQL)

Interactive SQL (ISQL)

Dynamic SQL is the major part of the language which corresponds to the Part 2 (SQL/Foundation)
part of the SQL specification. DSQL represents statements passed by client applications through the
public Firebird API and processed by the database engine.

Procedural SQL augments Dynamic SQL to allow compound statements containing local variables,
assignments, conditions, loops and other procedural constructs. PSQL corresponds to the Part 4
(SQL/PSM) part of the SQL specifications. Originally, PSQL extensions were available in persistent
stored modules (procedures and triggers) only, but in more recent releases they were surfaced in
Dynamic SQL as well (see EXECUTE BLOCK).

Embedded SQL defines the DSQL subset supported by Firebird gpre, the application which allows
you to embed SQL constructs into your host programming language (C, C++, Pascal, Cobol, etc.) and
preprocess those embedded constructs into the proper Firebird API calls.

o Only a portion of the statements and expressions implemented in DSQL are
supported in ESQL.

Interactive ISQL refers to the language that can be executed using Firebird isql, the command-line
application for accessing databases interactively. As a regular client application, its native language
is DSQL. It also offers a few additional commands that are not available outside its specific
environment.

Both DSQL and PSQL subsets are completely presented in this reference. Neither ESQL nor ISQL
flavours are described here unless mentioned explicitly.

2.1.2. SQL Dialects

SQL dialect is a term that defines the specific features of the SQL language that are available when

17

Chapter 2. SQL Language Structure

accessing a database. SQL dialects can be defined at the database level and specified at the
connection level. Three dialects are available:

* Dialect 1 is intended solely to allow backward comptibility with legacy databases from very old
InterBase versions, v.5 and below. Dialect 1 databases retain certain language features that
differ from Dialect 3, the default for Firebird databases.

o

Date and time information are stored in a DATE data type. A TIMESTAMP data type is also
available, that is identical to this DATE implementation.

Double quotes may be used as an alternative to apostrophes for delimiting string data. This
is contrary to the SQL standard —double quotes are reserved for a distinct syntactic
purpose both in standard SQL and in Dialect 3. Double-quoting strings is therefore to be
avoided strenuously.

The precision for NUMERIC and DECIMAL data types is smaller than in Dialect 3 and, if the
precision of a fixed decimal number is greater than 9, Firebird stores it internally as a long
floating point value.

The BIGINT (64-bit integer) data type is not supported.

Identifiers are case-insensitive and must always comply with the rules for regular
identifiers — see the section Identifiers below.

Although generator values are stored as 64-bit integers, a Dialect 1 client request, SELECT
GEN_ID (MyGen, 1), for example, will return the generator value truncated to 32 bits.

* Dialect 2 is available only on the Firebird client connection and cannot be set in the database. It
is intended to assist debugging of possible problems with legacy data when migrating a
database from dialect 1 to 3.

e In Dialect 3 databases,

o

numbers (DECIMAL and NUMERIC data types) are stored internally as long fixed point values
(scaled integers) when the precision is greater than 9.

The TIME data type is available for storing time-of-day data only.
The DATE data type stores only date information.
The 64-bit integer data type BIGINT is available.

Double quotes are reserved for delimiting non-regular identifiers, enabling object names
that are case-sensitive or that do not meet the requirements for regular identifiers in other
ways.

All strings must be delimited with single quotes (apostrophes).

Generator values are stored as 64-bit integers.

Use of Dialect 3 is strongly recommended for newly developed databases and

o applications. Both database and connection dialects should match, except under

migration conditions with Dialect 2.

This reference describes the semantics of SQL Dialect 3 unless specified otherwise.

18

Chapter 2. SQL Language Structure

2.1.3. Error Conditions

Processing of every SQL statement either completes successfully or fails due to a specific error
condition. Error handling can be done as in the client the application and on the server side using
PSQL.

2.2. Basic Elements: Statements, Clauses, Keywords

The primary construct in SQL is the statement. A statement defines what the database management
system should do with a particular data or metadata object. More complex statements contain
simpler constructs — clauses and options.

Clauses

A clause defines a certain type of directive in a statement. For instance, the WHERE clause in a
SELECT statement and in some other data manipulation statements (UPDATE, DELETE) specifies
criteria for searching one or more tables for the rows that are to be selected, updated or deleted.
The ORDER BY clause specifies how the output data — result set — should be sorted.

Options
Options, being the simplest constructs, are specified in association with specific keywords to
provide qualification for clause elements. Where alternative options are available, it is usual for
one of them to be the default, used if nothing is specified for that option. For instance, the SELECT
statement will return all of the rows that match the search criteria unless the DISTINCT option
restricts the output to non-duplicated rows.

Keywords

All words that are included in the SQL lexicon are keywords. Some keywords are reserved,
meaning their usage as identifiers for database objects, parameter names or variables is
prohibited in some or all contexts. Non-reserved keywords can be used as identifiers, although it
is not recommended. From time to time, non-reserved keywords may become reserved when
some new language feature is introduced.

For instance, the following statement will be executed without errors because, although ABS is a
keyword, it is not a reserved word.

CREATE TABLE T (ABS INT NOT NULL);

On the contrary, the following statement will return an error because ADD is both a keyword and
a reserved word.

CREATE TABLE T (ADD INT NOT NULL);

Refer to the list of reserved words and keywords in the chapter Reserved Words and Keywords.

19

Chapter 2. SQL Language Structure

2.3. Identifiers

All database objects have names, often called identifiers. The maximum identifier length is 31 bytes.
Two types of names are valid as identifiers: regular names, similar to variable names in regular
programming languages, and delimited names that are specific to SQL. To be valid, each type of
identifier must conform to a set of rules, as follows:

2.3.1. Rules for Regular Object Identifiers

* Length cannot exceed 31 characters

* The name must start with an unaccented, 7-bit ASCII alphabetic character. It may be followed
by other 7-bit ASCII letters, digits, underscores or dollar signs. No other characters, including
spaces, are valid. The name is case-insensitive, meaning it can be declared and used in either
upper or lower case. Thus, from the system’s point of view, the following names are the same:

fullname
FULLNAME
FuL1NaMe
FullName

Regular name syntax

<name> ::=
<letter> | <name><letter> | <name><digit> | <name>_ | <name>$

<letter> ::= <upper letter> | <lower letter>

<upper letter> ::=A|B|C|D|E|F|G|H|I|J|K|L]|M]
NJO[PlQ[R[ISITIU|IVIW|[X]Y]Z

<lower letter> ::=a |b|c|d]e|f|g|h|i|j|k]|]1T]|m]
nlolplalrlsltlulv]iw]|x]|yl]z

«digit> ::=0 | 1] 2|3 |4|5]6]7]|8]9

2.3.2. Rules for Delimited Object Identifiers
* Length cannot exceed 31 bytes. Identifiers are stored in character set UNICODE_FSS, which means
characters outside the ASCII range are stored using 2 or 3 bytes.
* The entire string must be enclosed in double-quotes, e.g. "anIdentifier"

It may contain any character from the UNICODE_FSS character set, including accented characters,
spaces and special characters

* An identifier can be a reserved word

* Delimited identifiers are case-sensitive in all contexts

20

Chapter 2. SQL Language Structure

* Trailing spaces in delimited names are removed, as with any string constant

* Delimited identifiers are available in Dialect 3 only. For more details on dialects, see SQL
Dialects

Delimited name syntax

<delimited name> ::= "<permitted_character>[<permitted_character> ...]"

A delimited identifier such as "FULLNAME" is the same as the regular identifiers
FULLNAME, fullname, FullName, and so on. The reason is that Firebird stores regular

o identifiers in upper case, regardless of how they were defined or declared.
Delimited identifiers are always stored according to the exact case of their
definition or declaration. Thus, "FullName" (quoted) is different from FullName
(unquoted, i.e. regular) which is stored as FULLNAME in the metadata.

2.4. Literals

Literals are used to directly represent data. Examples of standard types of literals are:

integer - 0, -34, 45, 0X080000000;
fixed-point - 0.0, -3.14

floating-point - 3.23e-23;

string - "text', 'don''t!';

binary string - x'48656C6C6F20776F726C64'

date - DATE '2018-01-19';

time - TIME '15:12:56"';

timestamp - TIMESTAMP '2018-01-19 13:32:02';
boolean - true, false, unknown

null state - null

Details about handling the literals for each data type are discussed in the next chapter, Data Types
and Subtypes.

2.5. Operators and Special Characters

A set of special characters is reserved for use as operators or separators.

<special char> ::=
<space> | " | %
|70

—_
— ——
— %
— —
— +
>_
—_——
1
-

Some of these characters, alone or in combinations, may be used as operators (arithmetical, string,
logical), as SQL command separators, to quote identifiers and to mark the limits of string literals or
comments.

21

Chapter 2. SQL Language Structure

Operator Syntax

<operator> ::=
<string concatenation operator>
| <arithmetic operator>
| <comparison operator>
| <logical operator>

<string concatentation operator> ::= "||"

<arithmetic operator> ::=* | / | + | - |

<comparison operator> ::
= o=l = =] > <]>] <
| 1> »> | > I < | &

<logical operator> ::= NOT | AND | OR

For more details on operators, see Expressions.

2.6. Comments

Comments may be present in SQL scripts, SQL statements and PSQL modules. A comment can be
any text specified by the code writer, usually used to document how particular parts of the code
work. The parser ignores the text of comments.

Firebird supports two types of comments: block and in-line.
Syntax
<comment> ::= <block comment> | <single-line comment>

<block comment> ::=
/* <character>[<character> -:] */

<single-line comment> ::=
-- <character>[<character> ::*]<end line>

Block comments start with the /* character pair and end with the */ character pair. Text in block
comments may be of any length and can occupy multiple lines.

In-line comments start with a pair of hyphen characters, -- and continue up to the end of the
current line.

22

Chapter 2. SQL Language Structure

Example

CREATE PROCEDURE P(APARAM INT)
RETURNS (B INT)
AS
BEGIN
/* This text will be ignored during the execution of the statement
since it is a comment
*/
B=A+1; -- In-line comment
SUSPEND;
END

23

Chapter 3. Data Types and Subtypes

Chapter 3. Data Types and Subtypes

Data of various types are used to:

* define columns in a database table in the CREATE TABLE statement or change columns using ALTER

TABLE

* declare or change a domain using the CREATE DOMAIN or ALTER DOMAIN statements

* declare local variables in stored procedures, PSQL blocks and triggers and specify parameters in

stored procedures

* indirectly
(UDFs — user-defined functions)

specify arguments and return values when declaring external functions

» provide arguments for the CAST() function when explicitly converting data from one type to

another

Table 1. Overview of Data Types

Name Size

BIGINT 64 bits

BLOB Varying

BOOLEAN 8 bits

CHAR(n), n characters. Size

CHARACTER(n) in bytes depends
on the encoding,
the number of
bytesin a
character

DATE 32 bits

Precision &
Limits
From -2% to (2% -
1)

The size of a BLOB
segment is limited
to 64K. The
maximum size of
a BLOB field is 4
GB

false, true,
unknown

from 1 to 32,767
bytes

From 0001-01-01
AD to 9999-12-31
AD

24

Description

The data type is available in Dialect 3
only

A data type of variable size for storing
large amounts of data, such as images,
text, digital sounds. The basic
structural unit is a segment. The blob
subtype defines its content

Boolean data type

A fixed-length character data type.
When its data is displayed, trailing
spaces are added to the string up to
the specified length. Trailing spaces
are not stored in the database but are
restored to match the defined length
when the column is displayed on the
client side. Network traffic is reduced
by not sending spaces over the LAN. If
the number of characters is not
specified, 1 is used by default.

ISC_DATE. Date only, no time element

Chapter 3. Data Types and Subtypes

Name Size

DECIMAL (Varying (16, 32 or
precision, scale) 64 bits)

DOUBLE PRECISION 64 bits
FLOAT 32 bits
INTEGER, INT 32 bits

NUMERIC (Varying (16, 32 or
precision, scale) g4 bits)

SMALLINT 16 bits

TIME 32 bits

TIMESTAMP 64 bits (2 X 32 bits)

Precision &
Limits

precision = from 1
to 18, defines the
least possible
number of digits
to store; scale =
from 0 to 18,
defines the
number of digits
after the decimal
point

2.225 *10°* to
1.797 * 10°®

1.175 * 10*® to
3.402 * 10*®

-2,147,483,648 up
to 2,147,483,647

precision = from 1
to 18, defines the
exact number of
digits to store;
scale = from 0 to
18, defines the
number of digits
after the decimal
point

-32,768 to 32,767

0:00 to
23:59:59.9999

From start of day
0001-01-01 AD to
end of day 9999-

12-31 AD

25

Description

A number with a decimal point that
has scale digits after the point. scale
must be less than or equal to precision.
Example: DECIMAL(10,3) contains a
number in exactly the following
format: ppppppp.sss

Double-precision IEEE, ~15 digits,
reliable size depends on the platform

Single-precision IEEE, ~7 digits

Signed long

A number with a decimal point that
has scale digits after the point. scale
must be less than or equal to precision.
Example: NUMERIC(10,3) contains a
number in exactly the following
format: ppppppp.sss

Signed short (word)

ISC_TIME. Time of day. It cannot be
used to store an interval of time

Date and time of day

Chapter 3. Data Types and Subtypes

Name Size Precision & Description
Limits

VARCHAR(n), CHAR n characters. Size from 1 to 32,765 Variable length string type. The total

VARYING, CHARACTER in bytes depends bytes size of characters in bytes cannot be
VARYING on the encoding, larger than (32KB-3), taking into
the number of account their encoding. The two
bytes in a trailing bytes store the declared
character length. There is no default size: the n

argument is mandatory. Leading and
trailing spaces are stored and they are
not trimmed, except for those trailing
characters that are past the declared
length.

Note About Dates

o Bear in mind that a time series consisting of dates in past centuries is processed
without taking into account the actual historical facts, as though the Gregorian
calendar were applicable throughout the entire series.

3.1. Integer Data Types

The SMALLINT, INTEGER and BIGINT data types are used for integers of various precision in Dialect 3.
Firebird does not support an unsigned integer data type.

3.1.1. SMALLINT

The 16-bit SMALLINT data type is for compact data storage of integer data for which only a narrow
range of possible values is required. Numbers of the SMALLINT type are within the range from -2'° to
2'°-1, that is, from -32,768 to 32,767.

SMALLINT Examples

CREATE DOMAIN DFLAG AS SMALLINT DEFAULT @ NOT NULL
CHECK (VALUE=-1 OR VALUE=@ OR VALUE=1);

CREATE DOMAIN RGB_VALUE AS SMALLINT;
3.1.2. INTEGER

The INTEGER data type is a 32-bit integer. The shorthand name of the data type is INT. Numbers of the
INTEGER type are within the range from -2* to 2* - 1, that is, from -2,147,483,648 to 2,147,483,647.

26

Chapter 3. Data Types and Subtypes

INTEGER Example

CREATE TABLE CUSTOMER (
CUST_NO INTEGER NOT NULL,
CUSTOMER VARCHAR(25) NOT NULL,
CONTACT_FIRST VARCHAR(15),
CONTACT_LAST VARCHAR(20),

PRIMARY KEY (CUST_NO))

3.1.3. BIGINT

BIGINT is an SQL:99-compliant 64-bit integer data type, available only in Dialect 3. If a client uses
Dialect 1, the generator value sent by the server is reduced to a 32-bit integer (INTEGER). When
Dialect 3 is used for connection, the generator value is of type BIGINT.

Numbers of the BIGINT type are within the range from -2* to 2% - 1, or from
-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

3.1.4. Hexadecimal Format for Integer Numbers

Starting from Firebird 2.5, constants of the three integer types can be specified in hexadecimal
format by means of 9 to 16 hexadecimal digits for BIGINT or 1 to 8 digits for INTEGER. Hex
representation for writing to SMALLINT is not explicitly supported but Firebird will transparently
convert a hex number to SMALLINT if necessary, provided it falls within the ranges of negative and
positive SMALLINT.

The usage and numerical value ranges of hexadecimal notation are described in more detail in the
discussion of number constants in the chapter entitled Common Language Elements.

27

Chapter 3. Data Types and Subtypes

Examples Using Integer Types

CREATE TABLE WHOLELOTTARECORDS (
ID BIGINT NOT NULL PRIMARY KEY,
DESCRIPTION VARCHAR(32)

);

INSERT INTO MYBIGINTS VALUES (
-236453287458723,
328832607832,
22,
-56786237632476,
0X6F55A09D42, -- 478177959234
OX7FFFFFFFFFFFFFFF, -- 9223372036854775807
OXFFFFFFFFFFFFFFFF, -- -1

0X80000000, -- -2147483648, an INTEGER
0X080000000, -- 2147483648, a BIGINT
OXFFFFFFFF, -- -1, an INTEGER
OXOFFFFFFFF -- 4294967295, a BIGINT

)

The hexadecimal INTEGERs in the above example are automatically cast to BIGINT before being
inserted into the table. However, this happens after the numerical value is determined, so
0x380000000 (8 digits) and 0x080000000 (9 digits) will be saved as different BIGINT values.

3.2. Floating-Point Data Types

Floating point data types are stored in an IEEE 754 binary format that comprises sign, exponent and
mantissa. Precision is dynamic, corresponding to the physical storage format of the value, which is
exactly 4 bytes for the FLOAT type and 8 bytes for DOUBLE PRECISION.

Considering the peculiarities of storing floating-point numbers in a database, these data types are
not recommended for storing monetary data. For the same reasons, columns with floating-point
data are not recommended for use as keys or to have uniqueness constraints applied to them.

For testing data in columns with floating-point data types, expressions should check using a range,
for instance, BETWEEN, rather than searching for exact matches.

When using these data types in expressions, extreme care is advised regarding the rounding of
evaluation results.

3.2.1. FLOAT

The FLOAT data type has an approximate precision of 7 digits after the decimal point. To ensure the
safety of storage, rely on 6 digits.

3.2.2. DOUBLE PRECISION

The DOUBLE PRECISION data type is stored with an approximate precision of 15 digits.

28

Chapter 3. Data Types and Subtypes

3.3. Fixed-Point Data Types

Fixed-point data types ensure the predictability of multiplication and division operations, making
them the choice for storing monetary values. Firebird implements two fixed-point data types:
NUMERIC and DECIMAL. According to the standard, both types limit the stored number to the declared
scale (the number of digits after the decimal point).

Different treatments limit precision for each type: precision for NUMERIC columns is exactly “as
declared”, while DECIMAL columns accepts numbers whose precision is at least equal to what was
declared.

o The behaviour of NUMERIC and DECIMAL in Firebird is like the SQL-standard DECIMAL;
the precision is at least equal to what was declared.

For instance, NUMERIC(4, 2) defines a number consisting altogether of four digits, including two
digits after the decimal point; that is, it can have up to two digits before the point and no more than
two digits after the point. If the number 3.1415 is written to a column with this data type definition,
the value of 3.14 will be saved in the NUMERIC(4, 2) column.

The form of declaration for fixed-point data, for instance, NUIMERIC(p, s), is common to both types. It
is important to realise that the s argument in this template is scale, rather than “a count of digits
after the decimal point”. Understanding the mechanism for storing and retrieving fixed-point data
should help to visualise why: for storage, the number is multiplied by 10° (10 to the power of s),
converting it to an integer; when read, the integer is converted back.

The method of storing fixed-point data in the DBMS depends on several factors: declared precision,
database dialect, declaration type.

Table 2. Method of Physical Storage for Real Numbers

Precision Data type Dialect 1 Dialect 3
1-4 NUMERIC SMALLINT SMALLINT
1-4 DECIMAL INTEGER INTEGER
5-9 NUMERIC or DECIMAL INTEGER INTEGER
10-18 NUMERIC or DECIMAL DOUBLE PRECISION BIGINT

3.3.1. NUMERIC

Data Declaration Format

NUMERIC
| NUMERIC(precision)
| NUMERIC(precision, scale)

Table 3. NUMERIC Type Parameters

29

Chapter 3. Data Types and Subtypes

Parameter Description
precision Precision, between 1 and 18. Defaults to 9.
scale Scale, between 0 and scale. Defaults to 0.

Storage Examples

Further to the explanation above, the DBMS will store NUMERIC data according the declared precision
and scale. Some more examples are:

NUMERIC(4) stored as SMALLINT (exact data)

NUMERIC(4,2) SMALLINT (data * 10%)

NUMERIC(10,4) (Dialect 1) DOUBLE PRECISION
(Dialect 3) BIGINT (data * 10%)

Always keep in mind that the storage format depends on the precision. For
instance, you define the column type as NUMERIC(2,2) presuming that its range of
values will be -0.99...0.99. However, the actual range of values for the column will

o be -327.68..327.67, which is due to storing the NUMERIC(2,2) data type in the
SMALLINT format. In storage, the NUMERIC(4,2), NUMERIC(3,2) and NUMERIC(2,2) data
types are the same, in fact. It means that if you really want to store data in a
column with the NUMERIC(2,2) data type and limit the range to -0.99...0.99, you will
have to create a constraint for it.

3.3.2. DECIMAL

Data Declaration Format
DECIMAL

| DECIMAL(precision)
| DECIMAL(precision, scale)

Table 4. DECIMAL Type Parameters

Parameter Description
precision Precision, between 1 and 18. Defaults to 9.
scale Scale, between 0 and scale. Defaults to 0.

Storage Examples

The storage format in the database for DECIMAL is very similar to NUMERIC, with some differences that
are easier to observe with the help of some more examples:

DECIMAL(4) stored as INTEGER (exact data)

DECIMAL(4,2) INTEGER (data * 10%)

DECIMAL(10,4) (Dialect 1) DOUBLE PRECISION
(Dialect 3) BIGINT (data * 10%)

30

Chapter 3. Data Types and Subtypes

3.4. Data Types for Dates and Times

The DATE, TIME and TIMESTAMP data types are used to work with data containing dates and times.
Dialect 3 supports all the three types, while Dialect 1 has only DATE. The DATE type in Dialect 3 is
“date-only”, whereas the Dialect 1 DATE type stores both date and time-of-day, equivalent to
TIMESTAMP in Dialect 3. Dialect 1 has no “date-only” type.

o Dialect 1 DATE data can be defined alternatively as TIMESTAMP and this is
recommended for new definitions in Dialect 1 databases.

Fractions of Seconds

If fractions of seconds are stored in date and time data types, Firebird stores them to ten-
thousandths of a second. If a lower granularity is preferred, the fraction can be specified explicitly
as thousandths, hundredths or tenths of a second in Dialect 3 databases of ODS 11 or higher.

Some useful knowledge about subseconds precision:

The time-part of a TIME or TIMESTAMP is a 4-byte WORD, with room for
decimilliseconds precision and time values are stored as the number of deci-
milliseconds elapsed since midnight. The actual precision of values stored in or
read from time(stamp) functions and variables is:

* CURRENT_TIME defaults to seconds precision and can be specified up to
milliseconds precision with CURRENT_TIME (@|1|2|3)

o CURRENT_TIMESTAMP milliseconds precision. Precision from seconds to
milliseconds can be specified with CURRENT_TIMESTAMP (@]1]2]3)

* Literal '"NOW': milliseconds precision

» Functions DATEADD() and DATEDIFF() support up to milliseconds precision. Deci-
milliseconds can be specified but they are rounded to the nearest integer
o before any operation is performed

* The EXTRACT() function returns up to deci-milliseconds precision with the
SECOND and MILLISECOND arguments

» For TIME and TIMESTAMP literals, Firebird happily accepts up to deci-
milliseconds precision, but truncates (not rounds) the time part to the nearest
lower or equal millisecond. Try, for example, SELECT TIME '14:37:54.1249"' FROM
rdb§database

* the ‘+’ and ‘-’ operators work with deci-milliseconds precision, but only within
the expression. As soon as something is stored or even just SELECTed from
RDBSDATABASE, it reverts to milliseconds precision

Deci-milliseconds precision is rare and is not currently stored in columns or
variables. The best assumption to make from all this is that, although Firebird
stores TIME and the TIMESTAMP time-part values as the number of deci-milliseconds
(10" seconds) elapsed since midnight, the actual precision could vary from seconds
to milliseconds.

31

Chapter 3. Data Types and Subtypes

3.4.1. DATE

The DATE data type in Dialect 3 stores only date without time. The available range for storing data is
from January 01, 1 to December 31, 9999.

Dialect 1 has no “date-only” type.

In Dialect 1, date literals without a time part, as well as 'TODAY', 'YESTERDAY' and
'TOMORROW' automatically get a zero time part.

(’) If, for some reason, it is important to you to store a Dialect 1 timestamp literal with
an explicit zero time-part, the engine will accept a literal like '2016-12-25
00:00:00.0000'. However, '2016-12-25"' would have precisely the same effect, with
fewer keystrokes!

3.4.2. TIME

The TIME data type is available in Dialect 3 only. It stores the time of day within the range from
00:00:00.0000 to 23:59:59.9999.

If you need to get the time-part from DATE in Dialect 1, you can use the EXTRACT function.

Examples Using EXTRACT()

EXTRACT (HOUR FROM DATE_FIELD)
EXTRACT (MINUTE FROM DATE_FIELD)
EXTRACT (SECOND FROM DATE_FIELD)

See also the EXTRACT() function in the chapter entitled Built-in Functions.

3.4.3. TIMESTAMP

The TIMESTAMP data type is available in Dialect 3 and Dialect 1. It comprises two 32-bit words—a
date-part and a time-part —to form a structure that stores both date and time-of-day. It is the same
as the DATE type in Dialect 1.

The EXTRACT function works equally well with TIMESTAMP as with the Dialect 1 DATE type.

3.4.4. Operations Using Date and Time Values

The method of storing date and time values makes it possible to involve them as operands in some
arithmetic operations. In storage, a date value or date-part of a timestamp is represented as the
number of days elapsed since “date zero” — November 17, 1898 — whilst a time value or the time-
part of a timestamp is represented as the number of seconds (with fractions of seconds taken into
account) since midnight.

An example is to subtract an earlier date, time or timestamp from a later one, resulting in an
interval of time, in days and fractions of days.

32

Table 5. Arithmetic Operations for Date and Time Data Types

Chapter 3. Data Types and Subtypes

Operand 1 Operation Operand 2 Result

DATE + TIME TIMESTAMP

DATE + Numeric value n DATE increased by n whole days.
Broken values are rounded (not
floored) to the nearest integer

TIME + DATE TIMESTAMP

TIME + Numeric valuen TIME increased by n seconds. The
fractional part is taken into account

TIMESTAMP + Numeric value n TIMESTAMP, where the date will advance
by the number of days and part of a
day represented by number n—so “+
2.75” will push the date forward by 2
days and 18 hours

DATE - DATE Number of days elapsed, within the
range DECIMAL(9, 0)

DATE - Numeric value n DATE reduced by n whole days. Broken
values are rounded (not floored) to the
nearest integer

TIME - TIME Number of seconds elapsed, within the
range DECIMAL(9, 4)

TIME - Numeric valuen TIME reduced by n seconds. The
fractional part is taken into account

TIMESTAMP - TIMESTAMP Number of days and part-day, within
the range DECIMAL(18, 9)

TIMESTAMP - Numeric value n TIMESTAMP where the date will decrease

Notes

by the number of days and part of a
day represented by number n—so “-
2.25” will decrease the date by 2 days
and 6 hours

o The DATE type is considered as TIMESTAMP in Dialect 1.

See also

DATEADD, DATEDIFF

3.5. Character Data Types

For working with character data, Firebird has the fixed-length CHAR and the variable-length VARCHAR
data types. The maximum size of text data stored in these data types is 32,767 bytes for CHAR and
32,765 bytes for VARCHAR. The maximum number of characters that will fit within these limits

33

Chapter 3. Data Types and Subtypes

depends on the CHARACTER SET being used for the data under consideration. The collation sequence
does not affect this maximum, although it may affect the maximum size of any index that involves
the column.

If no character set is explicitly specified when defining a character object, the default character set
specified when the database was created will be used. If the database does not have a default
character set defined, the field gets the character set NONE.

3.5.1. Unicode

Most current development tools support Unicode, implemented in Firebird with the character sets
UTF8 and UNICODE_FSS. UTF8 comes with collations for many languages. UNICODE_FSS is more limited
and is used mainly by Firebird internally for storing metadata. Keep in mind that one UTF8
character occupies up to 4 bytes, thus limiting the size of CHAR fields to 8,191 characters (32,767/4).

The actual “bytes per character” value depends on the range the character belongs

o to. Non-accented Latin letters occupy 1 byte, Cyrillic letters from the WIN1251
encoding occupy 2 bytes in UTF8, characters from other encodings may occupy up
to 4 bytes.

The UTF8 character set implemented in Firebird supports the latest version of the Unicode standard,
thus recommending its use for international databases.

3.5.2. Client Character Set

While working with strings, it is essential to keep the character set of the client connection in mind.
If there is a mismatch between the character sets of the stored data and that of the client
connection, the output results for string columns are automatically re-encoded, both when data are
sent from the client to the server and when they are sent back from the server to the client. For
example, if the database was created in the WIN1251 encoding but KOI8R or UTF8 is specified in the
client’s connection parameters, the mismatch will be transparent.

3.5.3. Special Character Sets

Character set NONE

The character set NONE is a special character set in Firebird. It can be characterized such that each
byte is a part of a string, but the string is stored in the system without any clues about what
constitutes any character: character encoding, collation, case, etc. are simply unknown. It is the
responsibility of the client application to deal with the data and provide the means to interpret the
string of bytes in some way that is meaningful to the application and the human user.

Character set OCTETS

Data in OCTETS encoding are treated as bytes that may not actually be interpreted as characters.
OCTETS provides a way to store binary data, which could be the results of some Firebird functions.
The database engine has no concept of what it is meant to do with a string of bits in OCTETS, other
than just store it and retrieve it. Again, the client side is responsible for validating the data,
presenting them in formats that are meaningful to the application and its users and handling any
exceptions arising from decoding and encoding them.

34

Chapter 3. Data Types and Subtypes

3.5.4. Collation Sequence

Each character set has a default collation sequence (COLLATE) that specifies the collation order.
Usually, it provides nothing more than ordering based on the numeric code of the characters and a
basic mapping of upper- and lower-case characters. If some behaviour is needed for strings that is
not provided by the default collation sequence and a suitable alternative collation is supported for
that character set, a COLLATE collation clause can be specified in the column definition.

A COLLATE collation clause can be applied in other contexts besides the column definition. For
greater-than/less-than comparison operations, it can be added in the WHERE clause of a SELECT
statement. If output needs to be sorted in a special alphabetic sequence, or case-insensitively, and
the appropriate collation exists, then a COLLATE clause can be included with the ORDER BY clause
when rows are being sorted on a character field and with the GROUP BY clause in case of grouping
operations.

Case-Insensitive Searching

For a case-insensitive search, the UPPER function could be used to convert both the search argument
and the searched strings to upper-case before attempting a match:

where upper(name) = upper(:flt_name)

For strings in a character set that has a case-insensitive collation available, you can simply apply
the collation, to compare the search argument and the searched strings directly. For example, using
the WIN1251 character set, the collation PXW_CYRL is case-insensitive for this purpose:

WHERE FIRST_NAME COLLATE PXW_CYRL >= :FLT_NAME

ORDER BY NAME COLLATE PXW_CYRL

See also
CONTAINING

UTF8 Collation Sequences
The following table shows the possible collation sequences for the UTF8 character set.

Table 6. Collation Sequences for Character Set UTF8
Collation Characteristics

UCS_BASIC Collation works according to the position of the character in the table
(binary). Added in Firebird 2.0

UNICODE Collation works according to the UCA algorithm (Unicode Collation
Algorithm) (alphabetical). Added in Firebird 2.0

35

Chapter 3. Data Types and Subtypes

Collation Characteristics
UTF8 The default, binary collation, identical to UCS_BASIC, which was added for
SQL compatibility
UNICODE_CI Case-insensitive collation, works without taking character case into

account. Added in Firebird 2.1

UNICODE_CI_AI Case-insensitive, accent-insensitive collation, works alphabetically
without taking character case or accents into account. Added in Firebird
2.5
Example

An example of collation for the UTF8 character set without taking into account the case or
accentuation of characters (similar to COLLATE PXW_CYRL).

ORDER BY NAME COLLATE UNICODE_CI_AI

3.5.5. Character Indexes

In Firebird earlier than version 2.0, a problem can occur with building an index for character
columns that use a non-standard collation sequence: the length of an indexed field is limited to 252
bytes with no COLLATE specified or 84 bytes if COLLATE is specified. Multi-byte character sets and
compound indexes limit the size even further.

Starting from Firebird 2.0, the maximum length for an index equals one quarter of the page size, i.e.
from 1,024 — for page size 4,096 — to 4,096 bytes — for page size 16,384. The maximum length of an
indexed string is 9 bytes less than that quarter-page limit.

Calculating Maximum Length of an Indexed String Field

The following formula calculates the maximum length of an indexed string (in characters):
max_char_length = FLOOR((page_size / 4 - 9) / N)

where N is the number of bytes per character in the character set.

The table below shows the maximum length of an indexed string (in characters), according to page
size and character set, calculated using this formula.

Table 7. Maximum Index Lengths by Page Size and Character Size

Page Size Bytes per character
1 2 3 4 6
4,096 1,015 507 338 253 169
8,192 2,039 1,019 679 509 339
16,384 4,087 2,043 1,362 1,021 682

36

Chapter 3. Data Types and Subtypes

With case-insensitive collations (“_CI”), one character in the index will occupy not
4, but 6 (six) bytes, so the maximum key length for a page of —for example — 4,096
bytes, will be 169 characters.

See also

CREATE DATABASE, Collation sequence, SELECT, WHERE, GROUP BY, ORDER BY

3.5.6. Character Types in Detail

CHAR

CHAR is a fixed-length data type. If the entered number of characters is less than the declared length,
trailing spaces will be added to the field. Generally, the pad character does not have to be a space: it
depends on the character set. For example, the pad character for the OCTETS character set is zero.

The full name of this data type is CHARACTER, but there is no requirement to use full names and
people rarely do so.

Fixed-length character data can be used to store codes whose length is standard and has a definite
“width” in directories. An example of such a code is an EAN13 barcode — 13 characters, all filled.

Declaration Syntax

{CHAR | CHARACTER} [(length)]
[CHARACTER SET <set>] [COLLATE <name>]

If no length is specified, it is taken to be 1.

A valid length is from 1 to the maximum number of characters that can be
e accommodated within 32,767 bytes.

Formally, the COLLATE clause is not part of the data type declaration, and its position
depends on the syntax of the statement.

VARCHAR

VARCHAR is the basic string type for storing texts of variable length, up to a maximum of 32,765 bytes.
The stored structure is equal to the actual size of the data plus 2 bytes where the length of the data
is recorded.

All characters that are sent from the client application to the database are considered meaningful,
including the leading and trailing spaces. However, trailing spaces are not stored: they will be
restored upon retrieval, up to the recorded length of the string.

The full name of this type is CHARACTER VARYING. Another variant of the name is written as CHAR
VARYING.

37

Chapter 3. Data Types and Subtypes

Syntax
{VARCHAR | {CHAR | CHARACTER} VARYING} (length)
[CHARACTER SET <set>] [COLLATE <name>]

o Formally, the COLLATE clause is not part of the data type declaration, and its position
depends on the syntax of the statement.

NCHAR

NCHAR is a fixed-length character data type with the IS08859_1 character set predefined. In all other
respects it is the same as CHAR.

Syntax

{NCHAR | NATIONAL {CHAR | CHARACTER}} [(length)]

o If no length is specified, it is taken to be 1.

A similar data type is available for the variable-length string type: NATIONAL {CHAR | CHARACTER}
VARYING.

3.6. Boolean Data Type

Firebird 3.0 introduced a fully-fledged Boolean data type.

3.6.1. BOOLEAN

The SQL:2008 compliant BOOLEAN data type (8 bits) comprises the distinct truth values TRUE and
FALSE. Unless prohibited by a NOT NULL constraint, the BOOLEAN data type also supports the truth value
UNKNOWN as the null value. The specification does not make a distinction between the NULL value of
this data type and the truth value UNKNOWN that is the result of an SQL predicate, search condition, or
Boolean value expression: they may be used interchangeably to mean exactly the same thing.

As with many programming languages, the SQL BOOLEAN values can be tested with implicit truth
values. For example, field1 OR field2 and NOT field1 are valid expressions.

The IS Operator

Predicates can use the operator Boolean IS [NOT] for matching. For example, field1 IS FALSE, or
field1 IS NOT TRUE.

o * Equivalence operators (“=”, “!=", “<>” and so on) are valid in all comparisons.

BOOLEAN Examples

1. Inserting and selecting

38

Chapter 3. Data Types and Subtypes

CREATE TABLE TBOOL (ID INT, BVAL BOOLEAN);
COMMIT;

INSERT INTO TBOOL VALUES (1, TRUE);
INSERT INTO TBOOL VALUES (2, 2 = 4);
INSERT INTO TBOOL VALUES (3, NULL = 1);
COMMIT;

SELECT * FROM TBOOL;
ID BVAL

T <true>
2 <false>
3 <null>

2. Test for TRUE value

SELECT * FROM TBOOL WHERE BVAL;
ID BVAL

T <true>

3. Test for FALSE value

SELECT * FROM TBOOL WHERE BVAL IS FALSE;
ID BVAL

2 <false>

4, Test for UNKNOWN value

SELECT * FROM TBOOL WHERE BVAL IS UNKNOWN;
ID BVAL

5. Boolean values in SELECT list

SELECT ID, BVAL, BVAL AND ID < 2
FROM TBOOL;
ID BVAL

1 <true> <true>
2 <false> <false>
3 <null> <false>

39

Chapter 3. Data Types and Subtypes

6. PSQL declaration with start value

DECLARE VARIABLE VAR1 BOOLEAN = TRUE;

7. Valid syntax, but as with a comparison with NULL, will never return any record

SELECT * FROM TBOOL WHERE BVAL = UNKNOWN;
SELECT * FROM TBOOL WHERE BVAL <> UNKNOWN;

Use of Boolean against other data types

Although BOOLEAN is not inherently convertible to any other datatype, from version 3.0.1 the strings
"true’ and 'false’ (case-insensitive) will be implicitly cast to BOOLEAN in value expressions, e.g.

if (true > 'false') then ...

"false' is converted to BOOLEAN. Any attempt to use the Boolean operators AND, NOT, OR and IS will fail.

NOT 'False', for example, is invalid.
A BOOLEAN can be explicitly converted to and from string with CAST. UNKNOWN is not available for any

form of casting.

Other Notes
* The type is represented in the API with the FB_BOOLEAN type and FB_TRUE and

o FB_FALSE constants.

* The value TRUE is greater than the value FALSE.

3.7. Binary Data Types

BLOBs (Binary Large Objects) are complex structures used to store text and binary data of an

undefined length, often very large.
Syntax
BLOB [SUB_TYPE <subtype>]
[SEGMENT SIZE <segment size>]

[CHARACTER SET <character set>]
[COLLATE <collation name>]

Shortened syntax
BLOB (<segment size>)

BLOB (<segment size>, <subtype>)
BLOB (, <subtype>)

40

Chapter 3. Data Types and Subtypes

o Formally, the COLLATE clause is not part of the data type declaration, and its position
depends on the syntax of the statement.

Segment Size

Specifying the BLOB segment size is throwback to times past, when applications for working
with BLOB data were written in C (Embedded SQL) with the help of the gpre pre-compiler.
Nowadays, it is effectively irrelevant. The segment size for BLOB data is determined by the
client side and is usually larger than the data page size, in any case.

3.7.1. BLOB Subtypes

The optional SUB_TYPE parameter specifies the nature of data written to the column. Firebird
provides two pre-defined subtypes for storing user data:

Subtype 0: BINARY

If a subtype is not specified, the specification is assumed to be for untyped data and the default
SUB_TYPE 0 is applied. The alias for subtype zero is BINARY. This is the subtype to specify when the
data are any form of binary file or stream: images, audio, word-processor files, PDFs and so on.

Subtype 1: TEXT

Subtype 1 has an alias, TEXT, which can be used in declarations and definitions. For instance, BLOB
SUB_TYPE TEXT. It is a specialized subtype used to store plain text data that is too large to fit into a
string type. A CHARACTER SET may be specified, if the field is to store text with a different encoding
to that specified for the database. From Firebird 2.0, a COLLATE clause is also supported.

Specifying a CHARACTER SET without SUB_TYPE implies SUB_TYPE TEXT.

Custom Subtypes

It is also possible to add custom data subtypes, for which the range of enumeration from -1 to
-32,768 is reserved. Custom subtypes enumerated with positive numbers are not allowed, as the
Firebird engine uses the numbers from 2-upward for some internal subtypes in metadata.

3.7.2. BLOB Specifics

Size
The maximum size of a BLOB field is limited to 4GB, regardless of whether the server is 32-bit or 64-

bit. (The internal structures related to BLOBs maintain their own 4-byte counters.) For a page size of
4 KB (4096 bytes) the maximum size is lower — slightly less than 2GB.

Operations and Expressions

Text BLOBs of any length and any character set— including multi-byte —can be operands for
practically any statement or internal functions. The following operators are supported completely:

= (assignment)

=, <>, <, &, > >= (comparison)

41

Chapter 3. Data Types and Subtypes

| (concatenation)
BETWEEN, IS [NOT] DISTINCT FROM,
IN, ANY | SOME,

ALL
Partial support:
* An error occurs with these if the search argument is larger than or equal to 32 KB:

STARTING [WITH], LIKE,
CONTAINING

» Aggregation clauses work not on the contents of the field itself, but on the BLOB ID. Aside from
that, there are some quirks:

SELECT returns several NULL values by mistake if they are present

DISTINCT

ORDER BY _

GROUP BY concatenates the same strings if they are adjacent to each other, but does not do

it if they are remote from each other

BLOB Storage

* By default, a regular record is created for each BLOB and it is stored on a data page that is
allocated for it. If the entire BLOB fits onto this page, it is called a level 0 BLOB. The number of
this special record is stored in the table record and occupies 8 bytes.

» If a BLOB does not fit onto one data page, its contents are put onto separate pages allocated
exclusively to it (blob pages), while the numbers of these pages are stored into the BLOB record.
This is a level 1 BLOB.

« If the array of page numbers containing the BLOB data does not fit onto a data page, the array is
put on separate blob pages, while the numbers of these pages are put into the BLOB record. This
is a level 2 BLOB.

* Levels higher than 2 are not supported.

See also

FILTER, DECLARE FILTER

3.7.3. ARRAY Type

The support of arrays in the Firebird DBMS is a departure from the traditional relational model.
Supporting arrays in the DBMS could make it easier to solve some data-processing tasks involving
large sets of similar data.

Arrays in Firebird are stored in BLOB of a specialized type. Arrays can be one-dimensional and
multi-dimensional and of any data type except BLOB and ARRAY.

42

Chapter 3. Data Types and Subtypes

Example

CREATE TABLE SAMPLE_ARR (

ID INTEGER NOT NULL PRIMARY KEY,
ARR_INT INTEGER [4]

);

This example will create a table with a field of the array type consisting of four integers. The
subscripts of this array are from 1 to 4.

Specifying Explicit Boundaries for Dimensions

By default, dimensions are 1-based — subscripts are numbered from 1. To specify explicit upper
and lower bounds of the subscript values, use the following syntax:

"[" <lower>:<upper> ']’

Adding More Dimensions

A new dimension is added using a comma in the syntax. In this example we create a table with a
two-dimensional array, with the lower bound of subscripts in both dimensions starting from zero:

CREATE TABLE SAMPLE_ARR2 (

ID INTEGER NOT NULL PRIMARY KEY,
ARR_INT INTEGER [0:3, 0:3]

);

The DBMS does not offer much in the way of language or tools for working with the contents of
arrays. The database employee.fdb, found in the ../examples/empbuild directory of any Firebird
distribution package, contains a sample stored procedure showing some simple work with arrays:

PSQL Source for SHOW_LANGS, a procedure involving an array

43

Chapter 3. Data Types and Subtypes

CREATE OR ALTER PROCEDURE SHOW_LANGS (
CODE VARCHAR(5),
GRADE SMALLINT,
CTY VARCHAR(15))
RETURNS (LANGUAGES VARCHAR(15))
AS
DECLARE VARIABLE I INTEGER;
BEGIN
I1-=1;
WHILE (I <= 5) DO
BEGIN
SELECT LANGUAGE_REQ[:1I]
FROM JOB
WHERE (JOB_CODE = :CODE)
AND (JOB_GRADE = :GRADE)
AND (JOB_COUNTRY = :CTY)
AND (LANGUAGE_REQ IS NOT NULL))
INTO :LANGUAGES;

IF (LANGUAGES = '') THEN
/* PRINTS 'NULL' INSTEAD OF BLANKS */
LANGUAGES = 'NULL';
I =1+1;
SUSPEND;
END
END

If the features described are enough for your tasks, you might consider using arrays in your
projects. Currently, no improvements are planned to enhance support for arrays in Firebird.

3.8. Special Data Types
“Special” data types ...

3.8.1. SQL_NULL Data Type

The SQL_NULL type holds no data, but only a state: NULL or NOT NULL. It is not available as a data type
for declaring table fields, PSQL variables or parameter descriptions. It was added to support the use
of untyped parameters in expressions involving the IS NULL predicate.

An evaluation problem occurs when optional filters are used to write queries of the following type:
WHERE col1 = :paraml OR :param1 IS NULL

After processing, at the API level, the query will look like this:

44

Chapter 3. Data Types and Subtypes

WHERE coll = 7 OR ? IS NULL

This is a case where the developer writes an SQL query and considers :paraml as though it were a
variable that he can refer to twice. However, at the API level, the query contains two separate and
independent _parameters. The server cannot determine the type of the second parameter since it
comes in association with IS NULL.

The SQL_NULL data type solves this problem. Whenever the engine encounters an “? IS NULL”
predicate in a query, it assigns the SQL_NULL type to the parameter, which will indicate that
parameter is only about “nullness” and the data type or the value need not be addressed.

The following example demonstrates its use in practice. It assumes two named parameters — say,
:size and :colour —which might, for example, get values from on-screen text fields or drop-down
lists. Each named parameter corresponds with two positional parameters in the query.

SELECT
SH.SIZE, SH.COLOUR, SH.PRICE
FROM SHIRTS SH
WHERE (SH.SIZE = 7 OR ? IS NULL)
AND (SH.COLOUR = ? OR ? IS NULL)

Explaining what happens here assumes the reader is familiar with the Firebird API and the passing
of parameters in XSQLVAR structures — what happens under the surface will not be of interest to
those who are not writing drivers or applications that communicate using the “naked” API.

The application passes the parameterized query to the server in the usual positional ?-form. Pairs of
“identical” parameters cannot be merged into one so, for two optional filters, for example, four
positional parameters are needed: one for each ? in our example.

After the call to isc_dsql_describe_bind(), the SQLTYPE of the second and fourth parameters will be
set to SQL_NULL. Firebird has no knowledge of their special relation with the first and third
parameters: that responsibility lies entirely on the application side.

Once the values for size and colour have been set (or left unset) by the user and the query is about
to be executed, each pair of XSQLVARs must be filled as follows:

User has supplied a value

First parameter (value compare): set *sqldata to the supplied value and *sqlind to @ (for NOT
NULL)

Second parameter (NULL test): set sqldata to null (null pointer, not SQL NULL) and *sqlind to @ (for
NOT NULL)

User has left the field blank

Both parameters: set sqldata to null (null pointer, not SQL NULL) and *sqlind to -1 (indicating
NULL)

In other words: The value compare parameter is always set as usual. The SQL_NULL parameter is set

45

Chapter 3. Data Types and Subtypes

the same, except that sqldata remains null at all times.

3.9. Conversion of Data Types

When composing an expression or specifying an operation, the aim should be to use compatible
data types for the operands. When a need arises to use a mixture of data types, it should prompt
you to look for a way to convert incompatible operands before subjecting them to the operation.
The ability to convert data may well be an issue if you are working with Dialect 1 data.

3.9.1. Explicit Data Type Conversion
The CAST function enables explicit conversion between many pairs of data types.

Syntax
CAST (<expression> AS <target_type>)
<target_type> ::= <domain_or_non_array_type> | <array_datatype>

<domain_or_non_array_type> ::=
I'l See Scalar Data Types Syntax !!

<array_datatype> ::=
I'l See Array Data Types Syntax !!

See also CAST() in Chapter Built-in Scalar Functions.

Casting to a Domain

When you cast to a domain, any constraints declared for it are taken into account, i.e., NOT NULL or
CHECK constraints. If the value does not pass the check, the cast will fail.

If TYPE OF is additionally specified — casting to its base type —any domain constraints are ignored
during the cast. If TYPE OF is used with a character type (CHAR/VARCHAR), the character set and
collation are retained.

Casting to TYPE OF COLUMN

When operands are cast to the type of a column, the specified column may be from a table or a
view.

Only the type of the column itself is used. For character types, the cast includes the character set,
but not the collation. The constraints and default values of the source column are not applied.

46

Chapter 3. Data Types and Subtypes

Example

CREATE TABLE TTT (

S VARCHAR (40)

CHARACTER SET UTF8 COLLATE UNICODE_CI_AI
K
COMMIT;

SELECT

CAST ('I have many friends' AS TYPE OF COLUMN TTT.S)
FROM RDB$DATABASE;

Conversions Possible for the CAST Function

Table 8. Conversions with CAST

From Data Type To Data Type

Numeric types Numeric types, [VAR]CHAR, BLOB

[VARJCHAR [VAR]CHAR, BLOB, Numeric types, DATE, TIME, TIMESTAMP, BOOLEAN
BLOB [VAR]CHAR, BLOB, Numeric types, DATE, TIME, TIMESTAMP, BOOLEAN
DATE, TIME [VARICHAR, BLOB, TIMESTAMP

TIMESTAMP [VAR]ICHAR, BLOB, DATE, TIME

BOOLEAN BOOLEAN, [VAR]CHAR, BLOB

To convert string data types to the BOOLEAN type, the value must be (case-insensitive) 'true' or
"false', or NULL.

o Keep in mind that partial information loss is possible. For instance, when you cast
the TIMESTAMP data type to the DATE data type, the time-part is lost.

Literal Formats

To cast string data types to the DATE, TIME or TIMESTAMP data types, you need the string argument to
be one of the predefined date and time literals (see Table 9) or a representation of the date in one of
the allowed date-time literal formats:

47

<timestamp_format> ::=
{ [YYYY<p>]IMM<p>DD[<p>HH[<p>mm[<p>SS[<p>NNNNT]]1]
| MM<p>DD[<p>YYYY[<p>HH[<p>mm[<p>SS[<p>NNNN]]11]
| DD<p>MM[<p>YYYY[<p>HH[<p>mm[<p>SS[<p>NNNNT]11]
| MM<p>DD[<p>YY[<p>HH[<p>mm[<p>SS[<p>NNNN]11]1]
| DD<p>MM[<p>YY[<p>HH[<p>mm[<p>SS[<p>NNNN]]11]1]

| NOW

| TODAY

| TOMORROW

| YESTERDAY }

<date_format> ::=

{ [YYYY<p>]MM<p>DD
| MM<p>DD[<p>YYYY]
| DD<p>MM[<p>YYYY]
| MM<p>DD[<p>YY]

| DD<p>MM[<p>YY]

| TODAY

| TOMORROW

| YESTERDAY }

<time_format> :=
{ HH[<p>mm[<p>SS[<p>NNNN]T]

<p>

| NOW }

::= whitespace | . | :

Chapter 3. Data Types and Subtypes

| -1/

Table 9. Date and Time Literal Format Arguments

Argument

timestamp_format

date_literal

time_literal

YYYY

YY
MM

DD
HH

SS

NNNN

Description
Format of timestamp literal
Format of date literal
Format of time literal
Four-digit year
Two-digit year

Month. It may contain 1 or 2 digits (1-12 or 01-12). You can
also specify the three-letter shorthand name or the full
name of a month in English. Case-insensitive

Day. It may contain 1 or 2 digits (1-31 or 01-31)
Hour. It may contain 1 or 2 digits (0-23 or 00-23)
Minutes. It may contain 1 or 2 digits (0-59 or 00-59)
Seconds. It may contain 1 or 2 digits (0-59 or 00-59)

Ten-thousandths of a second. It may contain from 1 to 4
digits (0-9999)

48

Chapter 3. Data Types and Subtypes

Argument Description

p A separator, any of permitted characters. Leading and
trailing spaces are ignored

Table 10. Literals with Predefined Values of Date and Time

Literal Description Data Type
Dialect 1 Dialect 3
"NOw’ Current date and time DATE TIMESTAMP
"TODAY' Current date DATE with zero time DATE
' TOMORROW' Current date + 1 (day) DATE with zero time DATE
'YESTERDAY' Current date - 1 (day) DATE with zero time DATE

o Use of the complete specification of the year in the four-digit form —YYYY—is
strongly recommended, to avoid confusion in date calculations and aggregations.

49

Chapter 3. Data Types and Subtypes

Sample Date Literal Interpretations

select
cast('04.12.2014"' as date) as d1, -- DD.MM.YYYY
cast('04 12 2014' as date) as d2, -- MM DD YYYY
cast('4-12-2014" as date) as d3, -- MM-DD-YYYY
cast('04/12/2014"' as date) as d4, -- MM/DD/YYYY
cast('04,12,2014"' as date) as d5, -- MM,DD,YYYY
cast('04.12.14"' as date) as d6, -- DD.MM.YY
-- DD.MM with current year
cast('04.12" as date) as d7,
-- MM/DD with current year
cast('04/12" as date) as d8,
cast('2014/12/04"' as date) as d9, -- YYYY/MM/DD
cast('2014 12 04' as date) as d10, -- YYYY MM DD
cast('2014.12.04"' as date) as d11, -- YYYY.MM.DD
cast('2014-12-04"' as date) as d12, -- YYYY-MM-DD
cast('4 Jan 2014' as date) as d13, -- DD MM YYYY
cast('2014 Jan 4' as date) as dt14, -- YYYY MM DD
cast('Jan 4, 2014' as date) as dt15, -- MM DD, YYYY
cast('11:37" as time) as t1, -- HH:mm
cast('11:37:12"' as time) as t2, -- HH:mm:ss
cast('11:31:12.1234" as time) as t3, -- HH:mm:ss.nnnn
cast('11.37.12"' as time) as t4, -- HH.mm.ss
-- DD.MM.YYYY HH:mm
cast('04.12.2014 11:37"' as timestamp) as dt1,
-- MM/DD/YYYY HH:mm:ss
cast('04/12/2014 11:37:12"' as timestamp) as dt2,
-- DD.MM.YYYY HH:mm:ss.nnnn
cast('04.12.2014 11:31:12.1234" as timestamp) as dt3,
-- MM/DD/YYYY HH.mm.ss
cast('04/12/2014 11.37.12" as timestamp) as dt4
from rdb$database

Shorthand Casts for Date and Time Data Types

Firebird allows the use of a shorthand “C-style” type syntax for casts from string to the types DATE,
TIME and TIMESTAMP. The SQL standard calls these datetime literals.

Syntax

<data_type> 'date_literal_string'

50

Chapter 3. Data Types and Subtypes

Example

==

UPDATE PEOPLE

SET AGECAT = 'SENIOR'

WHERE BIRTHDATE < DATE '1-Jan-1943";
oo)

INSERT INTO APPOINTMENTS

(EMPLOYEE_ID, CLIENT_ID, APP_DATE, APP_TIME)

VALUES (973, 8804, DATE 'today' + 2, TIME '16:00');
== 3

NEW.LASTMOD = TIMESTAMP 'now';

These shorthand expressions are evaluated directly during parsing, as though the
statement were already prepared for execution. Thus, even if the query is run
several times, the value of, for instance, timestamp 'now' remains the same no
matter how much time passes.

If you need the time to be evaluated at each execution, use the full CAST syntax. An
o example of using such an expression in a trigger:

NEW.CHANGE_DATE = CAST('now' AS TIMESTAMP);

Firebird 4 will no longer allow these implicit datetime values like 'now', 'today’,
etc in these shorthand casts. It is advisable to switch to using the full CAST
expression for implicit values.

3.9.2. Implicit Data Type Conversion

Implicit data conversion is not possible in Dialect 3— the CAST function is almost always required to
avoid data type clashes.

In Dialect 1, in many expressions, one type is implicitly cast to another without the need to use the
CAST function. For instance, the following statement in Dialect 1 is valid:

UPDATE ATABLE
SET ADATE = '25.12.2016" + 1

and the date literal will be cast to the date type implicitly.

In Dialect 3, this statement will throw error 35544569, “Dynamic SQL Error: expression evaluation
not supported, Strings cannot be added or subtracted in dialect 3” — a cast will be needed:

UPDATE ATABLE
SET ADATE = CAST ('25.12.2016" AS DATE) + 1

31

Chapter 3. Data Types and Subtypes

or, with the short cast:

UPDATE ATABLE
SET ADATE = DATE '25.12.2016" + 1

In Dialect 1, mixing integer data and numeric strings is usually possible because the parser will try
to cast the string implicitly. For example,

2+ '

will be executed correctly.
In Dialect 3, an expression like this will raise an error, so you will need to write it as a CAST
expression:

2 + CAST('1" AS SMALLINT)

The exception to the rule is during string concatenation.

Implicit Conversion During String Concatenation

When multiple data elements are being concatenated, all non-string data will undergo implicit
conversion to string, if possible.

Example

SELECT 30||"' days hath September, April, June and November' CONCAT$
FROM RDB$DATABASE;

CONCAT$

30 days hath September, April, June and November

3.10. Custom Data Types — Domains

In Firebird, the concept of a “user-defined data type” is implemented in the form of the domain.
Creating a domain does not truly create a new data type, of course. A domain provides the means to
encapsulate an existing data type with a set of attributes and make this “capsule” available for
multiple usage across the whole database. If several tables need columns defined with identical or
nearly identical attributes, a domain makes sense.

Domain usage is not limited to column definitions for tables and views. Domains can be used to
declare input and output parameters and variables in PSQL code.

52

Chapter 3. Data Types and Subtypes

3.10.1. Domain Attributes

A domain definition contains required and optional attributes. The data type is a required attribute.
Optional attributes include:

a default value

* to allow or forbid NULL

CHECK constraints

 character set (for character data types and text BLOB fields)

collation (for character data types)

Sample domain definition

CREATE DOMAIN BOOL3 AS SMALLINT
CHECK (VALUE IS NULL OR VALUE IN (@, 1));

See also

Explicit Data Type Conversion for the description of differences in the data conversion mechanism
when domains are specified for the TYPE OF and TYPE OF COLUMN modifiers.

3.10.2. Domain Override

While defining a column using a domain, it is possible to override some of the attributes inherited
from the domain. Table 3.9 summarises the rules for domain override.

Table 11. Rules for Overriding Domain Attributes in Column Definition

Attribute Override? Comments
Data type No
Default value Yes
Text character set Yes It can be also used to restore the default

database values for the column

Text collation sequence Yes

CHECK constraints Yes To add new conditions to the check, you can use
the corresponding CHECK clauses in the CREATE
and ALTER statements at the table level.

NOT NULL No Often it is better to leave domain nullable in its

definition and decide whether to make it NOT
NULL when using the domain to define columns.

3.10.3. Creating and Administering Domains

A domain is created with the DDL statemnent CREATE DOMAIN.

33

Chapter 3. Data Types and Subtypes

Short Syntax

CREATE DOMAIN name [AS] <type>
[DEFAULT {<const> | <literal> | NULL | <context_var>}]
[NOT NULL] [CHECK (<condition>)]
[COLLATE <collation>]

See also

CREATE DOMAIN in the Data Definition Language (DDL) section.

Altering a Domain

To change the attributes of a domain, use the DDL statement ALTER DOMAIN. With this statement you
can:

* rename the domain

* change the data type

* drop the current default value

* set a new default value

* drop the NOT NULL constraint

 set the NOT NULL constraint

* drop an existing CHECK constraint

e add a new CHECK constraint

Short Syntax

ALTER DOMAIN name

[{TO new_name}]

[{SET DEFAULT { <literal> | NULL | <context_var> } |
DROP DEFAULT}]

[{SET | DROP} NOT NULL]

[{ADD [CONSTRAINT] CHECK (<dom_condition>) |
DROP CONSTRAINT}]

[{TYPE <datatype>}]

Example

ALTER DOMAIN STORE_GRP SET DEFAULT -1;

When changing a domain, its dependencies must be taken into account: whether there are table
columns, any variables, input and/or output parameters with the type of this domain declared in
the PSQL code. If you change domains in haste, without carefully checking them, your code may
stop working!

54

Chapter 3. Data Types and Subtypes

When you convert data types in a domain, you must not perform any conversions
that may result in data loss. Also, for example, if you convert VARCHAR to INTEGER,
check carefully that all data using this domain can be successfully converted.

See also

ALTER DOMAIN in the Data Definition Language (DDL) section.

Deleting (Dropping) a Domain

The DDL statement DROP DOMAIN deletes a domain from the database, provided it is not in use by any
other database objects.

Syntax

DROP DOMAIN name

o Any user connected to the database can delete a domain.

Example

DROP DOMAIN Test_Domain

See also

DROP DOMAIN in the Data Definition Language (DDL) section.

3.11. Data Type Declaration Syntax

This section documents the syntax of declaring data types. Data type declaration most commonly
occurs in DDL statements, but also in CAST and EXECUTE BLOCK.

The syntax documented below is referenced from other parts of this language reference.

3.11.1. Scalar Data Types Syntax

The scalar data types are simple data types that hold a single value. For reasons of organisation, the
syntax of BLOB types are defined separately in BLOB Data Types Syntax.

55

Chapter 3. Data Types and Subtypes

Scalar Data Types Syntax

<domain_or_non_array_type> ::=
<scalar_datatype>
| <blob_datatype>
| [TYPE OF] domain
| TYPE OF COLUMN rel.col

<scalar_datatype> ::=
SMALLINT | INT[EGER] | BIGINT
| FLOAT | DOUBLE PRECISION
| BOOLEAN
| DATE | TIME | TIMESTAMP
| {DECIMAL | NUMERIC} [(precision [, scale])]
| {VARCHAR | {CHAR | CHARACTER} VARYING} (length)
[CHARACTER SET charset]
| {CHAR | CHARACTER} [(length)] [CHARACTER SET charset]
| {NCHAR | NATIONAL {CHARACTER | CHAR}} VARYING (length)
| {NCHAR | NATIONAL {CHARACTER | CHAR}} [(length)]

Table 12. Arguments for the Scalar Data Types Syntax

Argument Description
domain Domain (only non-array domains)
rel Name of a table or view
col Name of a column in a table or view (only columns of a non-array type)
precision Numeric precision in decimal digits. From 1 to 18
scale Scale, or number of decimals. From 0 to 18. It must be less than or equal

to precision
length The maximum length of a string, in characters
charset Character set

domain_or_non_array_t Non-array types that can be used in PSQL code and casts
ype

Use of Domains in Declarations

A domain name can be specified as the type of a PSQL parameter or local variable. The parameter
or variable will inherit all domain attributes. If a default value is specified for the parameter or
variable, it overrides the default value specified in the domain definition.

If the TYPE OF clause is added before the domain name, only the data type of the domain is used:
any of the other attributes of the domain—NOT NULL constraint, CHECK constraints, default
value — are neither checked nor used. However, if the domain is of a text type, its character set and
collation sequence are always used.

56

Chapter 3. Data Types and Subtypes
Use of Column Type in Declarations

Input and output parameters or local variables can also be declared using the data type of columns
in existing tables and views. The TYPE OF COLUMN clause is used for that, specifying relationname
.columnname as its argument.

When TYPE OF COLUMN is used, the parameter or variable inherits only the data type and — for string
types —the character set and collation sequence. The constraints and default value of the column
are ignored.

3.11.2. BLOB Data Types Syntax

The BLOB data types hold binary, character or custom format data of unspecified size. For more
information, see Binary Data Types.

BLOB Data Types Syntax

<blob_datatype> ::=
BLOB [SUB_TYPE {subtype_num | subtype_name}]
[SEGMENT SIZE seglen] [CHARACTER SET charset]
| BLOB [(seglen [, subtype_num])]

Table 13. Arguments for the Blob Data Types Syntax

Argument Description
charset Character set (ignored for sub-types other than TEXT/1)
subtype_num BLOB subtype number
subtype_name BLOB subtype mnemonic name; this can be TEXT, BINARY, or one of the

(other) standard or custom names defined in RDB$TYPES for RDBSFIELD_ NAME
= "RDB$FIELD SUB TYPE'.

seglen Segment size, cannot be greater than 65,535, defaults to 80 when not
specified. See also Segment Size

3.11.3. Array Data Types Syntax

The array data types hold multiple scalar values in a single or multi-dimensional array. For more
information, see ARRAY Type

57

Chapter 3. Data Types and Subtypes

Array Data Types Syntax

<arr

<arr

ay_datatype> ::=

{SMALLINT | INT[EGER] | BIGINT} <array_dim>

{FLOAT | DOUBLE PRECISION} <array_dim>

BOOLEAN <array_dim>

{DATE | TIME | TIMESTAMP} <array_dim>

{DECIMAL | NUMERIC} [(precision [, scale])] <array_dim>
{VARCHAR | {CHAR | CHARACTER} VARYING} (length)
<array_dim> [CHARACTER SET charset]

{CHAR | CHARACTER} [(length)] <array_dim>

[CHARACTER SET charset]

{NCHAR | NATIONAL {CHARACTER | CHAR}} VARYING (length)
<array_dim>

{NCHAR | NATIONAL {CHARACTER | CHAR}}

[(length)] <array_dim>

ay_dim> ::= '["' [m:]n [,[m:]n ...] ']

Table 14. Arguments for the Array Data Types Syntax

Argument Description

array_dim Array dimensions

precision Numeric precision in decimal digits. From 1 to 18

scale Scale, or number of decimals. From 0 to 18. It must be less than or equal
to precision

length The maximum length of a string, in characters; optional for fixed-width
character types, defaults to 1

charset Character set

m, n Integer numbers defining the index range of an array dimension

38

Chapter 4. Common Language Elements

Chapter 4. Common Language Elements

This chapter covers the elements that are common throughout the implementation of the SQL
language — the expressions that are used to extract and operate on conditions about data and the
predicates that test the truth of those assertions.

4.1. Expressions

SQL expressions provide formal methods for evaluating, transforming and comparing values. SQL
expressions may include table columns, variables, constants, literals, various statements and
predicates and also other expressions. The complete list of possible tokens in expressions follows.

Description of Expression Elements
Column name

Identifier of a column from a specified table used in evaluations or as a search condition. A
column of the array type cannot be an element in an expression except when used with the IS
[NOT] NULL predicate.

Array element

An expression may contain a reference to an array member i.e., <array_name>[s], where s is the
subscript of the member in the array <array_name>

Arithmetic operators

The +, -, *, / characters used to calculate values

Concatenation operator

The || (“double-pipe”) operator used to concatenate strings

Logical operators

The reserved words NOT, AND and OR, used to combine simple search conditions in order to create
complex conditions

Comparison operators

The symbols =, <>, 1=, »=, A=, <, <=, >, >=, 1<, ~<, A< 1> ~> and A>

Comparison predicates

LIKE, STARTING WITH, CONTAINING, SIMILAR TO, BETWEEN, IS [NOT] NULL, IS [NOT] {TRUE | FALSE |
UNKNOWN} and IS [NOT] DISTINCT FROM

Existential predicates

Predicates used to check the existence of values in a set. The IN predicate can be used both with
sets of comma-separated constants and with subqueries that return a single column. The EXISTS,
SINGULAR, ALL, ANY and SOME predicates can be used only with subqueries.

Constant or Literal

Numbers, or string literals enclosed in apostrophes, Boolean values TRUE, FALSE and UNKOWN, NULL

39

Chapter 4. Common Language Elements

Date/time literal

An expression, similar to a string literal enclosed in apostrophes, that can be interpreted as a
date, time or timestamp value. Date literals can be predefined literals (' TODAY', 'NOW', etc.) or
strings of characters and numerals, such as '25.12.2016 15:30:35', that can be resolved as date
and/or time strings.

Context variable

An internally-defined context variable

Local variable

Declared local variable, input or output parameter of a PSQL module (stored procedure, trigger,
unnamed PSQL block in DSQL)

Positional parameter

A member of in an ordered group of one or more unnamed parameters passed to a stored
procedure or prepared query

Subquery

A SELECT statement enclosed in parentheses that returns a single (scalar) value or, when used in
existential predicates, a set of values

Function identifier

The identifier of an internal or external function in a function expression

Type cast
An expression explicitly converting data of one data type to another using the CAST function (
CAST (<value> AS <datatype>)). For date/time literals only, the shorthand syntax <datatype>
<value> is also supported (DATE '2016-12-25").

Conditional expression

Expressions using CASE and related internal functions

Parentheses

Bracket pairs (--+) used to group expressions. Operations inside the parentheses are performed
before operations outside them. When nested parentheses are used, the most deeply nested
expressions are evaluated first and then the evaluations move outward through the levels of
nesting.

COLLATE clause

Clause applied to CHAR and VARCHAR types to specify the character-set-specific collation
sequence to use in string comparisons

NEXT VALUE FOR sequence

Expression for obtaining the next value of a specified generator (sequence). The internal
GEN_ID() function does the same.

60

Chapter 4. Common Language Elements

4.1.1. Literals (Constants)

A literal — or constant —is a value that is supplied directly in an SQL statement, not derived from
an expression, a parameter, a column reference nor a variable. It can be a string or a number.

String Literals

A string literal is a series of characters enclosed between a pair of apostrophes (“single quotes”).
The maximum length of a string literal is 32,765 for CHAR/VARCHAR, or 65,533 bytes for BLOB; the
maximum character count will be determined by the number of bytes used to encode each
character.

* Double quotes are NOT VALID for quoting strings. The SQL standard reserves
double quotes for a different purpose: quoting identifiers.

* If a literal apostrophe is required within a string constant, it is “escaped” by
o prefixing it with another apostrophe. For example, 'Mother 0''Reilly’s home-
made hooch'.

¢ Care should be taken with the string length if the value is to be written to a CHAR
or VARCHAR column. The maximum length for a CHAR or VARCHAR " literal is
32,765 bytes.

The character set of a string constant is assumed to be the same as the character set of its destined
storage.

String Literals in Hexadecimal Notation

From Firebird 2.5 forward, string literals can be entered in hexadecimal notation, so-called “binary
strings”. Each pair of hex digits defines one byte in the string. Strings entered this way will have
character set OCTETS by default, but the introducer syntax can be used to force a string to be
interpreted as another character set.

Syntax

{x|X}'<hexstring>'

<hexstring>
<hexdigit>

an even number of <hexdigit>
one of 0..9, A..F, a..f

61

Chapter 4. Common Language Elements

Examples

select x'4E657276656E' from rdb$database
-- returns 4E657276656E, a 6-byte 'binary' string

select _ascii x'4E657276656E' from rdb$database
-- returns 'Nerven' (same string, now interpreted as ASCII text)

select 1508859 1 x'53E46765' from rdb$database
-- returns 'Sdge' (4 chars, 4 bytes)

select utf8 x'53C3A46765' from rdb$database
-- returns 'Sdage' (4 chars, 5 bytes)

Notes

The client interface determines how binary strings are displayed to the user. The

isql utility, for example, uses upper case letters A-F, while FlameRobin uses lower

case letters. Other client programs may use other conventions, such as displaying
o spaces between the byte pairs: '4E 65 72 76 65 6E"'.

The hexadecimal notation allows any byte value (including 00) to be inserted at
any position in the string. However, if you want to coerce it to anything other than
OCTETS, it is your responsibility to supply the bytes in a sequence that is valid for
the target character set.

Alternative String Literals

Since Firebird 3.0, it is possible to use a character, or character pair, other than the doubled
(escaped) apostrophe, to embed a quoted string inside another string. The keyword q or Q preceding
a quoted string informs the parser that certain left-right pairs or pairs of identical characters
within the string are the delimiters of the embedded string literal.

Syntax

<alternative string literal> ::=
{ q | Q} <quote> <start char> [<char> ...] <end char> <quote>

Rules

When <start char> is ‘(’, {’, ‘[’ or ‘<’, <end char> is paired up with its respective
o “partner”, viz.)’, ‘¥, ‘I’ and >’. In other cases, <end char> is the same as <start
char>.

Inside the string, i.e. <char> items, single (not escaped) quotes can be used. Each
quote will be part of the result string.

62

Chapter 4. Common Language Elements

Examples
select q'{abc{def}ghi}' from rdb§database; -- result: abc{def}ghi
select q'!That's a string!' from rdb$database; -- result: That's a string

Introducer Syntax for String Literals

If necessary, a string literal may be preceded by a character set name, itself prefixed with an
underscore “_”. This is known as introducer syntax. Its purpose is to inform the engine about how to
interpret and store the incoming string.

Example

INSERT INTO People
VALUES (_IS08859_1 'Hans-Jérg Schdfer')

Number Literals

A number literal is any valid number in a supported notation:

* In SQL, for numbers in the standard decimal notation, the decimal point is always represented
by period character (‘.’, full-stop, dot); thousands are not separated. Inclusion of commas,
blanks, etc. will cause errors.

» Exponential notation is supported. For example, 0.0000234 can be expressed as 2.34e-5.

* Hexadecimal notation is supported by Firebird 2.5 and higher versions — see below.

The format of the literal decides the type (<d> for a decimal digit, <h> for a hexadecimal digit):

Format Type

<d>[<d> -] INTEGER or BIGINT (depends on if value
fits in the type)

0{x|X} <h><h>[<h><h> -] INTEGER for 1-8 <h><h> pairs or BIGINT
for 9-16 pairs

<d>[<d> -] "7 [<d>] NUMERIC(18, n) where n depends on
the number of digits after the decimal
point

<d>[<d> -]J["." [<d> --]] E <d>[<d> -] DOUBLE PRECISION

Hexadecimal Notation for Numbers

From Firebird 2.5 forward, integer values can be entered in hexadecimal notation. Numbers with 1-
8 hex digits will be interpreted as type INTEGER; numbers with 9-16 hex digits as type BIGINT.

63

Chapter 4. Common Language Elements

Syntax

0{x|X}<hexdigits>

<hexdigits> = 1-16 of <hexdigit>
<hexdigit> ::= one of 0..9, A..F, a..f
Examples
select Ox6FAAOD3 from rdb$database -- returns 117088467
select Ox4F9 from rdb$database -- returns 1273
select Ox6E44F9A8 from rdb$database -- returns 1850014120
select Ox9E44F9A8 from rdb$database -- returns -1639646808 (an INTEGER)
select Ox09E44F9A8 from rdb$database -- returns 2655320488 (a BIGINT)
select Ox28ED678A4C987 from rdb$database -- returns 720001751632263

select OxFFFFFFFFFFFFFFFF from rdb$database -- returns -1

Hexadecimal Value Ranges

* Hex numbers in the range 0 .. 7FFF FFFF are positive INTEGERs with values between O ..
2147483647 decimal. To coerce a number to BIGINT, prepend enough zeroes to bring the total
number of hex digits to nine or above. That changes the type but not the value.

* Hex numbers between 8000 0000 .. FFFF FFFF require some attention:
o When written with eight hex digits, as in 0x9E44F9A8, a value is interpreted as 32-bit INTEGER.
Since the leftmost bit (sign bit) is set, it maps to the negative range -2147483648 .. -1 decimal.

o With one or more zeroes prepended, as in @x09E44F9A8, a value is interpreted as 64-bit BIGINT
in the range 0000 0000 8000 0000 .. 0000 0000 FFFF FFFF. The sign bit is not set now, so they
map to the positive range 2147483648 .. 4294967295 decimal.

Thus, in this range —and only in this range —prepending a mathematically insignificant 0
results in a totally different value. This is something to be aware of.

* Hex numbers between 1 0000 0000 .. 7FFF FFFF FFFF FFFF are all positive BIGINT.
* Hex numbers between 8000 0000 0000 0000 .. FFFF FFFF FFFF FFFF are all negative BIGINT.

* A SMALLINT cannot be written in hex, strictly speaking, since even 0x1 is evaluated as INTEGER.
However, if you write a positive integer within the 16-bit range 0x0000 (decimal zero) to 0x7FFF
(decimal 32767) it will be converted to SMALLINT transparently.

It is possible to write to a negative SMALLINT in hex, using a 4-byte hex number within the range
OxFFFF8000 (decimal -32768) to OxFFFFFFFF (decimal -1).

Boolean Literals

A Boolean literal is one of TRUE, FALSE or UNKNOWN.

64

Chapter 4. Common Language Elements

4.1.2. SQL Operators

SQL operators comprise operators for comparing, calculating, evaluating and concatenating values.

Operator Precedence

SQL Operators are divided into four types. Each operator type has a precedence, a ranking that
determines the order in which operators and the values obtained with their help are evaluated in
an expression. The higher the precedence of the operator type is, the earlier it will be evaluated.
Each operator has its own precedence within its type, that determines the order in which they are
evaluated in an expression.

Operators with the same precedence are evaluated from left to right. To force a different evaluation
order, operations can be grouped by means of parentheses.

Table 15. Operator Type Precedence

Operator Type Precedence Explanation
Concatenation 1 Strings are concatenated before any other operations take
place
Arithmetic 2 Arithmetic operations are performed after strings are
concatenated, but before comparison and logical
operations
Comparison 3 Comparison operations take place after string

concatenation and arithmetic operations, but before
logical operations

Logical 4 Logical operators are executed after all other types of
operators

Concatenation Operator

The concatenation operator, two pipe characters known as “double pipe” —‘||’— concatenates
(connects together) two character strings to form a single string. Character strings can be constants
or values obtained from columns or other expressions.

Example

SELECT LAST_NAME || ', " || FIRST_NAME AS FULL_NAME
FROM EMPLOYEE

Arithmetic Operators

Table 16. Arithmetic Operator Precedence

Operator Purpose Precedence
+signed_number Unary plus 1
-signed_number Unary minus 1

65

Chapter 4. Common Language Elements

Operator Purpose Precedence
* Multiplication 2
/ Division 2
+ Addition 3
- Subtraction 3
Example
UPDATE T

SET A =4 + 1/(B-C)*D

o Where operators have the same precedence, they are evaluated in left-to-right
sequence.

Comparison Operators

Table 17. Comparison Operator Precedence

Operator Purpose Precedence
IS Checks that the expression on the left is (not) 1
NULL or the Boolean value on the right
= Is equal to, is identical to 2
<>, Iz, v, A= Is not equal to 2
> Is greater than 2
< Is less than 2
>= Is greater than or equal to 2
<= Is less than or equal to 2
1> > N> Is not greater than 2
1<, ~<, N Is not less than 2

This group also includes comparison predicates BETWEEN, LIKE, CONTAINING, SIMILAR TO and others.

Example

IF (SALARY > 1400) THEN

See also

Other Comparison Predicates.

Logical Operators

Table 18. Logical Operator Precedence

66

Chapter 4. Common Language Elements

Operator Purpose Precedence
NOT Negation of a search condition 1
AND Combines two or more predicates, each of which 2

must be true for the entire predicate to be true

OR Combines two or more predicates, of which at 3
least one predicate must be true for the entire
predicate to be true

Example

IF (A< BOR (A>CANDA >D) AND NOT (C = D)) THEN --

NEXT VALUE FOR
Available in
DSQL, PSQL

Syntax

NEXT VALUE FOR sequence-name

NEXT VALUE FOR returns the next value of a sequence. SEQUENCE is the SQL-standard term for what is
historically called a generator in Firebird and its ancestor, InterBase. The NEXT VALUE FOR operator is
equivalent to the legacy GEN_ID (---, 1) function, and is the recommended syntax for retrieving the
next sequence value.

Unlike GEN_ID (---, 1), the NEXT VALUE FOR variant does not take any parameters

o and thus, provides no way to retrieve the current value of a sequence, nor to step
the next value by more than 1. GEN_ID (::-, <step value>) is still needed for these
tasks. A step value of 0 returns the current sequence value.

Example

NEW.CUST_ID = NEXT VALUE FOR CUSTSEQ;

See also
SEQUENCE (GENERATOR), GEN_ID()

4.1.3. Conditional Expressions

A conditional expression is one that returns different values according to how a certain condition is
met. It is composed by applying a conditional function construct, of which Firebird supports
several. This section describes only one conditional expression construct: CASE. All other conditional
expressions apply internal functions derived from CASE and are described in Conditional Functions.

67

Chapter 4. Common Language Elements
CASE

Available in
DSQL, PSQL

The CASE construct returns a single value from a number of possible values. Two syntactic variants
are supported:

» The simple CASE, comparable to a case construct in Pascal or a switch in C

e The searched CASE, which works like a series of “if :-* else if :+: else if” clauses.

Simple CASE

Syntax

CASE <test-expr>
WHEN <expr> THEN <result>
[WHEN <expr> THEN <result> ...]
[ELSE <defaultresult>]

END

When this variant is used, test-expr is compared to the first expr, second expr and so on, until a
match is found, and the corresponding result is returned. If no match is found, defaultresult from
the optional ELSE clause is returned. If there are no matches and no ELSE clause, NULL is returned.

The matching works identically to the “=” operator. That is, if test-expr is NULL, it does not match any
expr, not even an expression that resolves to NULL.

The returned result does not have to be a literal value: it might be a field or variable name,
compound expression or NULL literal.

Example

SELECT
NAME,
AGE,
CASE UPPER(SEX)
WHEN 'M" THEN 'Male’
WHEN 'F' THEN 'Female'
ELSE 'Unknown'
END GENDER,
RELIGION
FROM PEOPLE

A short form of the simple CASE construct is the DECODE function.

68

Chapter 4. Common Language Elements
Searched CASE

Syntax

CASE
WHEN <bool_expr> THEN <result>
[WHEN <bool_expr> THEN <result> -]
[ELSE <defaultresult>]

END

The bool _expr expression is one that gives a ternary logical result: TRUE, FALSE or NULL. The first
expression to return TRUE determines the result. If no expressions return TRUE, defaultresult from
the optional ELSE clause is returned as the result. If no expressions return TRUE and there is no ELSE
clause, the result will be NULL.

As with the simple CASE construct, the result need not be a literal value: it might be a field or
variable name, a compound expression, or be NULL.

Example

CANVOTE = CASE
WHEN AGE >= 18 THEN 'Yes'
WHEN AGE < 18 THEN 'No'
ELSE 'Unsure'

END

4.1.4.NULL in Expressions

NULL is not a value in SQL, but a state indicating that the value of the element either is unknown or it
does not exist. It is not a zero, nor a void, nor an “empty string”, and it does not act like any value.

When you use NULL in numeric, string or date/time expressions, the result will always be NULL. When
you use NULL in logical (Boolean) expressions, the result will depend on the type of the operation
and on other participating values. When you compare a value to NULL, the result will be unknown.

o NULL means NULL but, in Firebird, the logical result unknown is also represented by
NULL.

Expressions Returning NULL

Expressions in this list will always return NULL:

1T+ 2+ 3+ NULL

"Home ' || "sweet ' || NULL
MyField = NULL

MyField <> NULL

NULL = NULL

not (NULL)

69

Chapter 4. Common Language Elements

If it seems difficult to understand why, remember that NULL is a state that stands for “unknown”.

NULL in Logical Expressions

It has already been shown that NOT (NULL) results in NULL. The interaction is a bit more complicated
for the logical AND and logical OR operators:

NULL or false - NULL
NULL or true - true

NULL or NULL > NULL
NULL and false » false
NULL and true - NULL
NULL and NULL - NULL

As a basic rule-of-thumb, if applying TRUE instead of NULL produces a different
(;) result than applying FALSE, then the outcome of the original expression is

et unknown, or NULL.
Examples
(1T = NULL) or (1 <> 1) -- returns NULL
(1 = NULL) or FALSE -- returns NULL
(1T = NULL) or (1 = 1) -- returns TRUE
(1 = NULL) or TRUE -- returns TRUE
(1T = NULL) or (1 = NULL) -- returns NULL
(1T = NULL) or UNKNOWN -- returns NULL
(1T = NULL) and (1 <> 1) -- returns FALSE
(1 = NULL) and FALSE -- returns FALSE
(1 = NULL) and (1 = 1) -- returns NULL
(1 = NULL) and TRUE -- returns NULL
(1T = NULL) and (1 = NULL) -- returns NULL
(1 = NULL) and UNKNOWN -- returns NULL

4.1.5. Subqueries

A subquery is a special form of expression that is actually a query embedded within another query.
Subqueries are written in the same way as regular SELECT queries, but they must be enclosed in
parentheses. Subquery expressions can be used in the following ways:

* To specify an output column in the SELECT list

» To obtain values or conditions for search predicates (the WHERE, HAVING clauses).

» To produce a set that the enclosing query can select from, as though were a regular table or
view. Subqueries like this appear in the FROM clause (derived tables) or in a Common Table
Expression (CTE)

70

Chapter 4. Common Language Elements
Correlated Subqueries

A subquery can be correlated. A query is correlated when the subquery and the main query are
interdependent. To process each record in the subquery, it is necessary to fetch a record in the main
query; i.e. the subquery fully depends on the main query.

Sample Correlated Subquery

SELECT *
FROM Customers C
WHERE EXISTS
(SELECT *
FROM Orders 0
WHERE C.cnum = 0.cnum
AND 0.adate = DATE '10.03.1990');

When subqueries are used to get the values of the output column in the SELECT list, a subquery must
return a scalar result (see below).

Scalar Results

Subqueries used in search predicates, other than existential and quantified predicates, must return
a scalar result; that is, not more than one column from not more than one matching row or
aggregation. If the result would return more, a run-time error will occur (“Multiple rows in a
singleton select...”).

Although it is reporting a genuine error, the message can be slightly misleading. A
“singleton SELECT” is a query that must not be capable of returning more than one

o row. However, “singleton” and “scalar” are not synonymous: not all singleton
SELECTS are required to be scalar; and single-column selects can return multiple
rows for existential and quantified predicates.

Subquery Examples
1. A subquery as the output column in a SELECT list:

SELECT
e.first_name,
e.last_name,
(SELECT
sh.new_salary
FROM
salary_history sh
WHERE
sh.emp_no = e.emp_no
ORDER BY sh.change_date DESC ROWS 1) AS last_salary
FROM
employee e

71

Chapter 4. Common Language Elements

2. A subquery in the WHERE clause for obtaining the employee’s maximum salary and filtering by it:

SELECT
e.first_name,
e.last_name,
e.salary
FROM employee e
WHERE
e.salary = (
SELECT MAX(ie.salary)
FROM employee ie
)

4.2. Predicates

A predicate is a simple expression asserting some fact, let’s call it P. If P resolves as TRUE, it
succeeds. If it resolves to FALSE or NULL (UNKNOWN), it fails. A trap lies here, though: suppose the
predicate, P, returns FALSE. In this case NOT(P) will return TRUE. On the other hand, if P returns
NULL (unknown), then NOT(P) returns NULL as well.

In SQL, predicates can appear in CHECK constraints, WHERE and HAVING clauses, CASE expressions, the
IIF() function and in the ON condition of JOIN clauses, and —since Firebird 3.0 —anywhere a
normal expression can occur.

4.2.1. Conditions

A condition — or Boolean expression —is a statement about the data that, like a predicate, can
resolve to TRUE, FALSE or NULL. Conditions consist of one or more predicates, possibly negated
using NOT and connected by AND and OR operators. Parentheses may be used for grouping predicates
and controlling evaluation order.

A predicate may embed other predicates. Evaluation sequence is in the outward direction, i.e., the
innermost predicates are evaluated first. Each “level” is evaluated in precedence order until the
truth value of the ultimate condition is resolved.

4.2.2. Comparison Predicates

A comparison predicate consists of two expressions connected with a comparison operator. There
are six traditional comparison operators:

=, >, &, >=, <=, &

For the complete list of comparison operators with their variant forms, see Comparison Operators.

If one of the sides (left or right) of a comparison predicate has NULL in it, the value of the predicate
will be UNKNOWN.

72

Chapter 4. Common Language Elements

Examples

1. Retrieve information about computers with the CPU frequency not less than 500 MHz and the
price lower than $800:

SELECT *
FROM Pc
WHERE speed >= 500 AND price < 800;

2. Retrieve information about all dot matrix printers that cost less than $300:

SELECT *
FROM Printer
WHERE ptrtype = 'matrix' AND price < 300;

3. The following query will return no data, even if there are printers with no type specified for
them, because a predicate that compares NULL with NULL returns NULL:

SELECT *
FROM Printer
WHERE ptrtype = NULL AND price < 300;

On the other hand, ptrtype can be tested for NULL and return a result: it is just that it is not a
comparison test:

SELECT *
FROM Printer
WHERE ptrtype IS NULL AND price < 300;

—see IS [NOT] NULL.

Note about String Comparison

o When CHAR and VARCHAR fields are compared for equality, trailing spaces are
ignored in all cases.

Other Comparison Predicates

Other comparison predicates are marked by keyword symbols.

BETWEEN

Available in

DSQL, PSQL, ESQL

73

Chapter 4. Common Language Elements

Syntax

<value> [NOT] BETWEEN <value_1> AND <value_2>

The BETWEEN predicate tests whether a value falls within a specified range of two values. (NOT
BETWEEN tests whether the value does not fall within that range.)

The operands for BETWEEN predicate are two arguments of compatible data types. Unlike in some
other DBMS, the BETWEEN predicate in Firebird is not symmetrical —if the lower value is not the first
argument, the BETWEEN predicate will always return FALSE. The search is inclusive (the values
represented by both arguments are included in the search). In other words, the BETWEEN predicate
could be rewritten:

<value> >= <value_1> AND <value> <= <value_2>
When BETWEEN is used in the search conditions of DML queries, the Firebird optimizer can use an

index on the searched column, if it is available.

Example

SELECT *
FROM EMPLOYEE
WHERE HIRE_DATE BETWEEN date '1992-01-01" AND CURRENT_DATE

LIKE

Available in

DSQL, PSQL, ESQL

Syntax

<match_value> [NOT] LIKE <pattern>
[ESCAPE <escape character>]

<match_value> character-type expression
<pattern> 1= search pattern
<escape character> ::= escape character

The LIKE predicate compares the character-type expression with the pattern defined in the second
expression. Case- or accent-sensitivity for the comparison is determined by the collation that is in
use. A collation can be specified for either operand, if required.

Wildcards

Two wildcard symbols are available for use in the search pattern:

* the percentage symbol (%) will match any sequence of zero or more characters in the tested
value

74

Chapter 4. Common Language Elements

* the underscore character (_) will match any single character in the tested value

If the tested value matches the pattern, taking into account wildcard symbols, the predicate is
TRUE.

Using the ESCAPE Character Option

If the search string contains either of the wildcard symbols, the ESCAPE clause can be used to specify
an escape character. The escape character must precede the %’ or ‘_’} symbol in the search string, to
indicate that the symbol is to be interpreted as a literal character.

Examples using LIKE

1. Find the numbers of departments whose names start with the word “Software”:

SELECT DEPT_NO
FROM DEPT
WHERE DEPT_NAME LIKE 'Software%';

It is possible to use an index on the DEPT_NAME field if it exists.

About LIKE and the Optimizer

Actually, the LIKE predicate does not use an index. However, if the predicate
takes the form of LIKE 'string%', it will be converted to the STARTING WITH

o predicate, which will use an index. This optimization only works for literal
patterns, not for parameters.

So, if you need to search for the beginning of a string, it is recommended to use
the STARTING WITH predicate instead of the LIKE predicate.

2. Search for employees whose names consist of 5 letters, start with the letters “Sm” and end with
“th”. The predicate will be true for such names as “Smith” and “Smyth”.

SELECT
first_name
FROM
employee
WHERE first_name LIKE 'Sm_th'

3. Search for all clients whose address contains the string “Rostov”:

SELECT *
FROM CUSTOMER
WHERE ADDRESS LIKE '%Rostov%’

75

Chapter 4. Common Language Elements

If you need to do a case-insensitive search for something enclosed inside a
o string (LIKE '%Abc%'), use of the CONTAINING predicate is recommended, in
preference to the LIKE predicate.

4. Search for tables containing the underscore character in their names. The ‘4’ character is used
as the escape character:

SELECT
RDB$RELATION_NAME
FROM RDBSRELATIONS
WHERE RDBSRELATION_NAME LIKE '%#_%' ESCAPE '#'

See also

STARTING WITH, CONTAINING, SIMILAR TO

STARTING WITH
Available in

DSQL, PSQL, ESQL

Syntax

<value> [NOT] STARTING WITH <value>

The STARTING WITH predicate searches for a string or a string-like type that starts with the characters
in its value argument. The case- and accent-sensitivity of STARTING WITH depends on the collation of
the first value.

When STARTING WITH is used in the search conditions of DML queries, the Firebird optimizer can use
an index on the searched column, if it exists.

Example

Search for employees whose last names start with “Jo”:

SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE
WHERE LAST_NAME STARTING WITH 'Jo'

See also
LIKE

CONTAINING

Available in

DSQL, PSQL, ESQL

76

Chapter 4. Common Language Elements

Syntax

<value> [NOT] CONTAINING <value>

The CONTAINING predicate searches for a string or a string-like type looking for the sequence of
characters that matches its argument. It can be used for an alphanumeric (string-like) search on
numbers and dates. A CONTAINING search is not case-sensitive. However, if an accent-sensitive
collation is in use then the search will be accent-sensitive.

Examples

1. Search for projects whose names contain the substring “Map”:

SELECT *
FROM PROJECT
WHERE PROJ_NAME CONTAINING 'Map';

Two rows with the names “AutoMap” and “MapBrowser port” are returned.
2. Search for changes in salaries with the date containing number 84 (in this case, it means

changes that took place in 1984):

SELECT *
FROM SALARY_HISTORY
WHERE CHANGE_DATE CONTAINING 84;

See also
LIKE

SIMILAR TO

Available in
DSQL, PSQL

Syntax

string-expression [NOT] SIMILAR TO <pattern> [ESCAPE <escape-char>]

<pattern>
<escape-char> ::

an SQL reqular expression
a single character

SIMILAR TO matches a string against an SQL regular expression pattern. Unlike in some other
languages, the pattern must match the entire string in order to succeed — matching a substring is
not enough. If any operand is NULL, the result is NULL. Otherwise, the result is TRUE or FALSE.

Syntax: SQL Regular Expressions

The following syntax defines the SQL regular expression format. It is a complete and correct top-

77

Chapter 4. Common Language Elements

down definition. It is also highly formal, rather long and probably perfectly fit to discourage
everybody who hasn’t already some experience with regular expressions (or with highly formal,
rather long top-down definitions). Feel free to skip it and read the next section, Building Regular
Expressions, which uses a bottom-up approach, aimed at the rest of us.

<reqgular expression> ::= <reqular term> ['|' <reqular term> ...]
<regular term> ::= <reqular factor> ...

<regular factor> ::= <regular primary> [<quantifier>]
<quantifier> ::= 2 | * | + | "{" <m> [,[<n>]] "}

<m>, <n> ::= unsigned int, with <m> <= <n> if both present
<regular primary> ::=

<character> | <character class> |
| (<regular expression>)

o

<character> ::= <escaped character> | <non-escaped character>

<escaped character> ::=
<escape-char> <special character> | <escape-char> <escape-char>

<special character> ::= any of the characters [1()|M-+*%_?{}
<non-escaped character> ::=
any character that is not a <special character>

and not equal to <escape-char> (if defined)

<character class> ::=

" | '[" <member> ... ']" | '"[*" <non-member> ... ']’
| "[" <member> ... 'A' <non-member> ... ']’
<member>, <non-member> ::= <character> | <range> | <predefined class>
<range> ::= <character>-<character>
<predefined class> ::= '[:' <predefined class name> ':]'

<predefined class name> ::=
ALPHA | UPPER | LOWER | DIGIT | ALNUM | SPACE | WHITESPACE

Building Regular Expressions

In this section are the elements and rules for building SQL regular expressions.

Characters

Within regular expressions, most characters represent themselves. The only exceptions are the

78

Chapter 4. Common Language Elements

special characters below:

[TC) | A-+*%_2{}

... and the escape character, if it is defined.

A regular expression that contains no special character or escape characters matches only strings
that are identical to itself (subject to the collation in use). That is, it functions just like the ‘=
operator

"Apple' similar to 'Apple' -- true
"Apples' similar to 'Apple' -- false
"Apple' similar to 'Apples' -- false
"APPLE' similar to 'Apple' -- depends on collation

Wildcards

The known SQL wildcards ‘> and ‘%’ match any single character and a string of any length,
respectively:

'"Birne' similar to 'B_rne' -- true
'"Birne' similar to 'B_ne’' -- false
'Birne' similar to 'B%ne’ -- true
'Birne' similar to 'Bir%ne%' -- true
'Birne' similar to 'Birr%ne' -- false

Notice how %’ also matches the empty string.

Character Classes

A bunch of characters enclosed in brackets define a character class. A character in the string
matches a class in the pattern if the character is a member of the class:

"Citroen' similar to 'Cit[arju]oen’ -- true
"Citroen' similar to 'Ci[tr]oen’ -- false
"Citroen' similar to 'Ci[tr][tr]oen’ -- true

As can be seen from the second line, the class only matches a single character, not a sequence.

Within a class definition, two characters connected by a hyphen define a range. A range comprises
the two endpoints and all the characters that lie between them in the active collation. Ranges can
be placed anywhere in the class definition without special delimiters to keep them apart from the
other elements.

79

Chapter 4. Common Language Elements

'Datte' similar to 'Dat[q-u]e’ -- true
'Datte' similar to 'Dat[abg-uy]e’ -- true
'‘Datte’ similar to 'Dat[bcg-km-pwz]e' -- false

Predefined Character Classes

The following predefined character classes can also be used in a class definition:

[:ALPHA:]

Latin letters a..z and A..Z. With an accent-insensitive collation, this class also matches accented
forms of these characters.

[:DIGIT:]
Decimal digits 0..9.

[:ALNUM:]
Union of [:ALPHA:] and [:DIGIT:].

[:UPPER:]

Uppercase Latin letters A..Z. Also matches lowercase with case-insensitive collation and accented
forms with accent-insensitive collation.

[:LOWER:]

Lowercase Latin letters a..z. Also matches uppercase with case-insensitive collation and accented
forms with accent-insensitive collation.

[:SPACE:]
Matches the space character (ASCII 32).

[:WHITESPACE:]

Matches horizontal tab (ASCII 9), linefeed (ASCII 10), vertical tab (ASCII 11), formfeed (ASCII 12),
carriage return (ASCII 13) and space (ASCII 32).

Including a predefined class has the same effect as including all its members. Predefined classes are
only allowed within class definitions. If you need to match against a predefined class and nothing
more, place an extra pair of brackets around it.

"Erdbeere' similar to "Erd[[:ALNUM:]]eere’ -- true
"Erdbeere' similar to 'Erd[[:DIGIT:]]eere’ -- false
"Erdbeere' similar to 'Erd[a[:SPACE:]bJleere' -- true
"Erdbeere' similar to [[:ALPHA:]] -- false
"B similar to [[:ALPHA:]1] -- true

If a class definition starts with a caret, everything that follows is excluded from the class. All other
characters match:

80

Chapter 4. Common Language Elements

"Framboise' similar to 'Fra[~ck-p]boise’ -- false
'"Framboise' similar to 'Fr[”a][*a]boise’ -- false
"Framboise' similar to 'Fra[A[:DIGIT:]]boise' -- true

If the caret is not placed at the start of the sequence, the class contains everything before the caret,
except for the elements that also occur after the caret:

‘Grapefruit' similar to 'Grap[a-mAf-i]fruit' -- true
"Grapefruit' similar to 'Grap[abcAxyz]fruit' -- false
"Grapefruit' similar to 'Grap[abcAde]fruit' -- false
"Grapefruit' similar to 'Grap[aberde]fruit' -- false
'3' similar to '[[:DIGIT:]"4-8]" -- true
'6"' similar to '[[:DIGIT:]"4-8]' -- false

Lastly, the already mentioned wildcard _’ is a character class of its own, matching any single
character.

Quantifiers

A question mark (‘?’) immediately following a character or class indicates that the preceding item
may occur 0 or 1 times in order to match:

'"Hallon' similar to 'Hal?on' -- false
'"Hallon' similar to 'Hal?lon’ -- true
'"Hallon' similar to 'HalllZ?on' -- true
'"Hallon' similar to 'Hallll?on’ -- false
'"Hallon' similar to 'Halx?lon' -- true
'Hallon' similar to 'H[a-c]?1lon[x-z]?"' -- true

An asterisk (**’) immediately following a character or class indicates that the preceding item may
occur 0 or more times in order to match:

'Icaque' similar to 'Ica*que’ -- true
'Icaque' similar to 'Icar*que’ -- true
'Icaque' similar to 'I[a-c]*que’ -- true
'Icaque' similar to '_*' -- true
'Icaque' similar to '[[:ALPHA:]]*' -- true
'Icaque' similar to 'Ica[xyz]*e’ -- false

A plus sign (‘+) immediately following a character or class indicates that the preceding item must
occur 1 or more times in order to match:

81

Chapter 4. Common Language Elements

"Jujube’ similar to "Ju_+' -- true
"Jujube' similar to 'Ju+jube’ -- true
"Jujube’ similar to 'Jujuber+' -- false
"Jujube' similar to 'J[jux]+be’ -- true
"Jujube' sililar to "J[[:DIGIT:]]+ujube’ -- false

If a character or class is followed by a number enclosed in braces (‘{’ and }’), it must be repeated
exactly that number of times in order to match:

"Kiwi' similar to 'Ki{2}wi' -- false
"Kiwi' similar to 'K[ipw]{2}i' -- true
"Kiwi' similar to 'K[ipw]{2}' -- false
"Kiwi' similar to 'K[ipw]{3}' -- true

If the number is followed by a comma (‘,’), the item must be repeated at least that number of times
in order to match:

"Limone' similar to 'Li{2,}mone’ -- false
"Limone' similar to 'Li{1,}mone’ -- true
"Limone' similar to 'Li[nezom]{2,}' -- true

If the braces contain two numbers separated by a comma, the second number not smaller than the
first, then the item must be repeated at least the first number and at most the second number of
times in order to match:

'Mandarijn' similar to 'M[a-p]{2,5}rijn’ -- true
'Mandarijn' similar to 'M[a-p]{2,3}rijn’ -- false
'Mandarijn' similar to 'M[a-p]{2,3}arijn’ -- true

The quantifiers “7’, *” and 4’ are shorthand for {0,1}, {0,} and {1, }, respectively.

OR-ing Terms

Regular expression terms can be OR’ed with the ‘|’ operator. A match is made when the argument
string matches at least one of the terms:

"Nektarin' similar to 'Nek|tarin' -- false

"Nektarin' similar to 'Nektarin|Persika' -- true

"Nektarin' similar to "M_+|N_+|P_+' -- true
Subexpressions

One or more parts of the regular expression can be grouped into subexpressions (also called
subpatterns) by placing them between parentheses (‘(’ and ‘)’). A subexpression is a regular

82

Chapter 4. Common Language Elements

expression in its own right. It can contain all the elements allowed in a regular expression, and can
also have quantifiers added to it.

'Orange’ similar to 'O(ra|ri|ro)nge’ -- true
'Orange' similar to 'O(r[a-e])+nge’ -- true
'Orange’ similar to '0O(ra){2,4}nge’ -- false
'Orange’ similar to 'O(r(an|in)g|rong)?e’ -- true

Escaping Special Characters

In order to match against a character that is special in regular expressions, that character has to be
escaped. There is no default escape character; rather, the user specifies one when needed:

'Peer (Poire)' similar to 'P[A]+ \(P[M]+\)' escape "\' -- true
"Pera [Pear]' similar to 'P[M]+ #[P[A]+#]' escape '#' -- true
"Paron-appledryck' similar to 'P%$-d%' escape '$' -- true

'‘Parondryck’ similar to 'P%--d%' escape -- false

The last line demonstrates that the escape character can also escape itself, if needed.

IS [NOT] DISTINCT FROM

Available in

DSQL, PSQL
Syntax

<operand1> IS [NOT] DISTINCT FROM <operand2>

Two operands are considered DISTINCT (different) if they have a different value or if one of them is
NULL and the other non-null. They are considered NOT DISTINCT (equal) if they have the same value
or if both of them are NULL.

IS [NOT] DISTINCT FROM always returns TRUE or FALSE and never UNKNOWN (NULL) (unknown
value). Operators ‘=" and ‘<>’, conversely, will return UNKNOWN (NULL) if one or both operands are
NULL.

Table 19. Results of Various Comparison Predicates

Operand values Result of various predicates

= 15 NOTFRDOIMSTINCT <> IS DISTINCT FROM
Same value TRUE TRUE FALSE FALSE
Different values FALSE FALSE TRUE TRUE
Both NULL UNKNOWN TRUE UNKNOWN FALSE
One NULL, one non-NULL UNKNOWN FALSE UNKNOWN TRUE

83

Chapter 4. Common Language Elements

Examples

SELECT ID, NAME, TEACHER
FROM COURSES
WHERE START_DAY IS NOT DISTINCT FROM END_DAY;

-- PSQL fragment
IF (NEW.JOB IS DISTINCT FROM OLD.JOB)
THEN POST_EVENT 'JOB_CHANGED';

See also
IS [NOT] NULL, Boolean IS [NOT]

Boolean IS [NOT]

Available in

DSQL, PSQL

Syntax

<value> IS [NOT] { TRUE | FALSE | UNKNOWN }

The IS predicate with Boolean literal values checks if the expression on the left side matches the
Boolean value on the right side. The expression on the left side must be of type BOOLEAN, otherwise
an exception is raised.

The IS [NOT] UNKNOWN is equivalent to IS [NOT] NULL.

o The right side of the predicate only accepts the literals TRUE, FALSE and UNKNOWN (and
NULL). It does not accept expressions.

Using the IS predicate with a Boolean data type

-- Checking FALSE value
SELECT * FROM TBOOL WHERE BVAL IS FALSE;

2 <false>

-- Checking UNKNOWN value
SELECT * FROM TBOOL WHERE BVAL IS UNKNOWN;

ID BVAL
3 <null>
See also

84

Chapter 4. Common Language Elements

IS [NOT] NULL

IS [NOT] NULL

Available in

DSQL, PSQL, ESQL
Syntax

<value> IS [NOT] NULL

Since NULL is not a value, these operators are not comparison operators. The IS [NOT] NULL predicate
tests that the expression on the left side has a value (IS NOT NULL) or has no value (IS NULL).

Example

Search for sales entries that have no shipment date set for them:

SELECT * FROM SALES
WHERE SHIP_DATE IS NULL;

Note regarding the IS predicates

o Up to and including Firebird 2.5, the IS predicates, like the other comparison
predicates, do not have precedence over the others. In Firebird 3.0 and higher,
these predicates take precedence above the others.

4.2.3. Existential Predicates

This group of predicates includes those that use subqueries to submit values for all kinds of
assertions in search conditions. Existential predicates are so called because they use various
methods to test for the existence or non-existence of some condition, returning TRUE if the existence
or non-existence is confirmed or FALSE otherwise.

EXISTS

Available in

DSQL, PSQL, ESQL

Syntax

[NOT] EXISTS (<select_stmt>)

The EXISTS predicate uses a subquery expression as its argument. It returns TRUE if the subquery
result would contain at least one row; otherwise it returns FALSE.

NOT EXISTS returns FALSE if the subquery result would contain at least one row; it returns TRUE
otherwise.

85

Chapter 4. Common Language Elements

o The subquery can specify multiple columns, or SELECT *, because the evaluation is
made on the number of rows that match its criteria, not on the data.

Examples

1. Find those employees who have projects.

SELECT *
FROM employee
WHERE EXISTS(SELECT *
FROM employee_project ep
WHERE ep.emp_no = employee.emp_no)

2. Find those employees who have no projects.

SELECT *
FROM employee
WHERE NOT EXISTS(SELECT *
FROM employee_project ep
WHERE ep.emp_no = employee.emp_no)

IN

Available in
DSQL, PSQL, ESQL

Syntax
<value> [NOT] IN (<select_stmt> | <value_list>)

<value_list> ::= <value 1> [, <value_ 2>]

The IN predicate tests whether the value of the expression on the left side is present in the set of
values specified on the right side. The set of values cannot have more than 1500 items. The IN
predicate can be replaced with the following equivalent forms:

(<value> = <value_1> [OR <value> = <value_2> *-])

<value> = { ANY | SOME } (<select_stmt>)

When the IN predicate is used in the search conditions of DML queries, the Firebird optimizer can
use an index on the searched column, if a suitable one exists.

In its second form, the IN predicate tests whether the value of the expression on the left side is
present — or not present, if NOT IN is used — in the result of the executed subquery on the right side.

The subquery must be specified to result in only one column, otherwise the error “count of column

86

Chapter 4. Common Language Elements

list and variable list do not match” will occur.

Queries specified using the IN predicate with a subquery can be replaced with a similar query using
the EXISTS predicate. For instance, the following query:

SELECT
model, speed, hd
FROM PC
WHERE
model IN (SELECT model
FROM product
WHERE maker = 'A");

can be replaced with a similar one using the EXISTS predicate:

SELECT
model, speed, hd
FROM PC
WHERE
EXISTS (SELECT *
FROM product
WHERE maker = 'A'
AND product.model = PC.model);

However, a query using NOT IN with a subquery does not always give the same result as its NOT
EXISTS counterpart. The reason is that EXISTS always returns TRUE or FALSE, whereas IN returns
NULL in one of these two cases:

a. when the test value is NULL and the IN () list is not empty

b. when the test value has no match in the IN () list and at least one list element is NULL

It is in only these two cases that IN () will return NULL while the corresponding EXISTS predicate will
return FALSE ('no matching row found'). In a search or, for example, an IF (:-) statement, both
results mean “failure” and it makes no difference to the outcome.

But, for the same data, NOT IN () will return NULL, while NOT EXISTS will return TRUE, leading to
opposite results.

As an example, suppose you have the following query:

-- Looking for people who were not born
-- on the same day as any famous New York citizen
SELECT P1.name AS NAME
FROM Personnel P1
WHERE P1.birthday NOT IN (SELECT C1.birthday
FROM Celebrities C1
WHERE C1.birthcity = 'New York');

87

Chapter 4. Common Language Elements

Now, assume that the NY celebrities list is not empty and contains at least one NULL birthday. Then
for every citizen who does not share his birthday with a NY celebrity, NOT IN will return NULL,
because that is what IN does. The search condition is thereby not satisfied and the citizen will be left
out of the SELECT result, which is wrong.

For citizens whose birthday does match with a celebrity’s birthday, NOT IN will correctly return
FALSE, so they will be left out too, and no rows will be returned.

If the NOT EXISTS form is used:

-- Looking for people who were not born
-- on the same day as any famous New York citizen
SELECT P1.name AS NAME
FROM Personnel P1
WHERE NOT EXISTS (SELECT *
FROM Celebrities C1
WHERE C1.birthcity = "New York'
AND C1.birthday = P1.birthday);

non-matches will have a NOT EXISTS result of TRUE and their records will be in the result set.

G If there is any chance of NULLs being encountered when searching for a non-match,
- you will want to use NOT EXISTS.

Examples of use

1. Find employees with the names “Pete”, “Ann” and “Roger”:

SELECT *
FROM EMPLOYEE
WHERE FIRST_NAME IN ('Pete', 'Ann', 'Roger');

2. Find all computers that have models whose manufacturer starts with the letter “A”:

SELECT
model, speed, hd
FROM PC
WHERE
model IN (SELECT model
FROM product
WHERE maker STARTING WITH 'A");

See also

EXISTS

88

Chapter 4. Common Language Elements
SINGULAR
Available in

DSQL, PSQL, ESQL

Syntax

[NOT] SINGULAR (<select_ stmt>)

The SINGULAR predicate takes a subquery as its argument and evaluates it as TRUE if the subquery
returns exactly one result row; otherwise the predicate is evaluated as FALSE. The subquery may
list several output columns since the rows are not returned anyway. They are only tested for
(singular) existence. For brevity, people usually specify ‘SELECT *’. The SINGULAR predicate can return
only two values: TRUE or FALSE.

Example

Find those employees who have only one project.

SELECT *
FROM employee
WHERE SINGULAR(SELECT *
FROM employee_project ep
WHERE ep.emp_no = employee.emp_no)

4.2.4. Quantified Subquery Predicates

A quantifier is a logical operator that sets the number of objects for which this condition is true. It is
not a numeric quantity, but a logical one that connects the condition with the full set of possible
objects. Such predicates are based on logical universal and existential quantifiers that are
recognised in formal logic.

In subquery expressions, quantified predicates make it possible to compare separate values with
the results of subqueries; they have the following common form:

<value expression> <comparison operator> <quantifier> <subquery>

ALL

Available in

DSQL, PSQL, ESQL
Syntax

<value> <op> ALL (<select_stmt>)

When the ALL quantifier is used, the predicate is TRUE if every value returned by the subquery
satisfies the condition in the predicate of the main query.

89

Chapter 4. Common Language Elements

Example

Show only those clients whose ratings are higher than the rating of every client in Paris.

SELECT c1.*
FROM Customers c1
WHERE c1.rating > ALL
(SELECT c2.rating
FROM Customers c2
WHERE c2.city = 'Paris")

If the subquery returns an empty set, the predicate is TRUE for every left-side

value, regardless of the operator. This may appear to be contradictory, because

every left-side value will thus be considered both smaller and greater than, both
o equal to and unequal to, every element of the right-side stream.

Nevertheless, it aligns perfectly with formal logic: if the set is empty, the predicate
is true O times, i.e. for every row in the set.

ANY and SOME

Available in

DSQL, PSQL, ESQL

Syntax

<value> <op> {ANY | SOME} (<select_stmt>)

The quantifiers ANY and SOME are identical in their behaviour. Apparently, both are present in the
SQL standard so that they could be used interchangeably in order to improve the readability of
operators. When the ANY or the SOME quantifier is used, the predicate is TRUE if any of the values
returned by the subquery satisfies the condition in the predicate of the main query. If the subquery
would return no rows at all, the predicate is automatically considered as FALSE.

Example

Show only those clients whose ratings are higher than those of one or more clients in Rome.

SELECT *
FROM Customers
WHERE rating > ANY
(SELECT rating
FROM Customers
WHERE city = 'Rome")

90

Chapter 5. Data Definition (DDL) Statements

Chapter 5. Data Definition (DDL) Statements

DDL is the data definition language subset of Firebird’s SQL language. DDL statements are used to
create, modify and delete database objects that have been created by users. When a DDL statement
is committed, the metadata for the object are created, changed or deleted.

5.1. DATABASE

This section describes how to create a database, connect to an existing database, alter the file
structure of a database and how to delete one. It also explains how to back up a database in two
quite different ways and how to switch the database to the “copy-safe” mode for performing an
external backup safely.

5.1.1. CREATE DATABASE

Used for

Creating a new database

Available in

DSQL, ESQL

91

Chapter 5. Data Definition (DDL) Statements

Syntax

CREATE {DATABASE | SCHEMA} <filespec>
[<db_initial_option> [<db_initial_option> ...]]
[<db_config_option> [<db_config_option> ...]]

<db_initial_option> ::=
USER username
| PASSWORD 'password'
| ROLE rolename
| PAGE_SIZE [=] size
| LENGTH [=] num [PAGE[S]]
| SET NAMES 'charset'

<db_config_option> ::=
DEFAULT CHARACTER SET default_charset
[COLLATION collation] -- not supported in ESQL
| <sec_file>
| DIFFERENCE FILE 'diff_file' -- not supported in ESQL

<filespec> ::= """ [server_spec]{filepath | db_alias}

<server_spec> ::=
host[/{port | service}]:
| \\host\
| <protocol>://[host[:{port | service}]/]

inet | inet4 | inet6 | wnet | xnet

<protocol> ::

<sec_file> ::
FILE 'filepath’
[LENGTH [=] num [PAGE[S]]
[STARTING [AT [PAGE]] pagenum]

o Each db_initial_option and db_config _option can occur at most once, except sec._file,
which can occur zero or more times.

Table 20. CREATE DATABASE Statement Parameters

Parameter Description
filespec File specification for primary database file
server_spec Remote server specification. Some protocols require specifying a

hostname. Optionally includes a port number or service name. Required
if the database is created on a remote server.

filepath Full path and file name including its extension. The file name must be
specified according to the rules of the platform file system being used.

db_alias Database alias previously created in the databases.conf file

92

Parameter
host

port

service

username

password

rolename

size

num

charset

default_charset

Chapter 5. Data Definition (DDL) Statements

Description
Host name or IP address of the server where the database is to be created

The port number where the remote server is listening (parameter
RemoteServicePort in firebird.conf file)

Service name. Must match the parameter value of RemoteServiceName in
firebird.conf file)

Username of the owner of the new database. It may consist of up to 31
characters. The username can optionally be enclosed in single or double
quotes. When a username is enclosed in double quotes, it is case-sensitive
following the rules for quoted identifiers. When enclosed in single quotes,
it behaves as if the value was specified without quotes. The user must be
an administrator or have the CREATE DATABASE privilege.

Password of the user as the database owner. When using the Legacy_Auth
authentication plugin, only the first 8 characters are used. Case-sensitive

The name of the role whose rights should be taken into account when
creating a database. The role name can be enclosed in single or double
quotes. When the role name is enclosed in double quotes, it is case-
sensitive following the rules for quoted identifiers. When enclosed in
single quotes, it behaves as if the value was specified without quotes.

Page size for the database, in bytes. Possible values are 4096, 8192 and
16384. The default page size is 8192.

Maximum size of the primary database file, or a secondary file, in pages

Specifies the character set of the connection available to a client
connecting after the database is successfully created. Single quotes are
required.

Specifies the default character set for string data types

collation Default collation for the default character set

sec_file File specification for a secondary file

pagenum Starting page number for a secondary database file

diff file File path and name for DIFFERENCE files (.delta files) for backup mode

The CREATE DATABASE statement creates a new database. You can use CREATE DATABASE or CREATE
SCHEMA. They are synonymous, but we recommend to always use CREATE DATABASE as this may change
in a future version of Firebird.

A database may consist of one or several files. The first (main) file is called the primary file,
subsequent files are called secondary file(s).

Multi-file Databases

o Nowadays, multi-file databases are considered an anachronism. It made sense to
use multi-file databases on old file systems where the size of any file is limited. For
instance, you could not create a file larger than 4 GB on FAT32.

93

Chapter 5. Data Definition (DDL) Statements

The primary file specification is the name of the database file and its extension with the full path to
it according to the rules of the OS platform file system being used. The database file must not exist
at the moment the database is being created. If it does exist, you will get an error message, and the
database will not be created.

If the full path to the database is not specified, the database will be created in one of the system
directories. The particular directory depends on the operating system. For this reason, unless you
have a strong reason to prefer that situation, always specify either the absolute path or an alias,
when creating a database.

Using a Database Alias

You can use aliases instead of the full path to the primary database file. Aliases are defined in the
databases.conf file in the following format:

alias = filepath

Executing a CREATE DATABASE statement requires special consideration in the client
application or database driver. As a result, it is not always possible to execute a
CREATE DATABASE statement. Some drivers provide other ways to create databases.

o For example, Jaybird provides the class org.firebirdsql.management.FBManager to
programmatically create a database.

If necessary, you can always fallback to isql to create a database.

Creating a Database on a Remote Server

If you create a database on a remote server, you need to specify the remote server specification.
The remote server specification depends on the protocol being used. If you use the TCP/IP protocol
to create a database, the primary file specification should look like this:

host[/{port|service}]:{filepath | db_alias}

If you use the Named Pipes protocol to create a database on a Windows server, the primary file
specification should look like this:

\\host\{filepath | db_alias}

Since Firebird 3.0, there is also a unified URL-like syntax for the remote server specification. In this
syntax, the first part specifies the name of the protocol, then a host name or IP address, port
number, and path of the primary database file, or an alias.

The following values can be specified as the protocol:

INET
TCP/IP (first tries to connect using the IPv6 protocol, if it fails, then IPv4)

94

Chapter 5. Data Definition (DDL) Statements

INET4

TCP/IP v4 (since Firebird 3.0.1)

INET6

TCP/IP v6 (since Firebird 3.0.1)

WNET

NetBEUI or Named Pipes Protocol

XNET

local protocol (does not include a host, port and service name)

<protocol>://[host[:{port | service}]/]{filepath | db_alias}

Optional Parameters for CREATE DATABASE

USER and PASSWORD

Clauses for specifying the username and the password, respectively, of an existing user in the
security database (security3.fdb or whatever is configured in the SecurityDatabase
configuration). You do not have to specify the username and password if the ISC_USER and
ISC_PASSWORD environment variables are set. The user specified in the process of creating the
database will be its owner. This will be important when considering database and object
privileges.

ROLE

The ROLE clause specifies the name of the role (usually RDB§ADMIN), which will be taken into
account when creating the database. The role must be assigned to the user in the applicable
security database.

PAGE_SIZE

Clause for specifying the database page size. This size will be set for the primary file and all
secondary files of the database. If you specify the database page size less than 4,096, it will be
automatically rounded up to 4,096. Other values not equal to either 4,096, 8,192 or 16,384 will be
changed to the closest smaller supported value. If the database page size is not specified, it is set
to the default value of 8,192.

LENGTH

Clause specifying the maximum size of the primary or secondary database file, in pages. When a
database is created, its primary and secondary files will occupy the minimum number of pages
necessary to store the system data, regardless of the value specified in the LENGTH clause. The
LENGTH value does not affect the size of the only (or last, in a multi-file database) file. The file will
keep increasing its size automatically when necessary.

SET NAMES

Clause specifying the character set of the connection available after the database is successfully
created. The character set NONE is used by default. Notice that the character set should be
enclosed in a pair of apostrophes (single quotes).

95

Chapter 5. Data Definition (DDL) Statements

DEFAULT CHARACTER SET
Clause specifying the default character set for creating data structures of string data types.
Character sets are used for CHAR, VARCHAR and BLOB SUB_TYPE TEXT data types. The character set
NONE is used by default. It is also possible to specify the default COLLATION for the default character
set, making that collation sequence the default for the default character set. The default will be
used for the entire database except where an alternative character set, with or without a
specified collation, is used explicitly for a field, domain, variable, cast expression, etc.

STARTING AT

Clause that specifies the database page number at which the next secondary database file should
start. When the previous file is completely filled with data according to the specified page
number, the system will start adding new data to the next database file.

DIFFERENCE FILE

Clause specifying the path and name for the file delta that stores any mutations to the database
file after it has been switched to the “copy-safe” mode by the ALTER DATABASE BEGIN BACKUP
statement. For the detailed description of this clause, see ALTER DATABASE.

Specifying the Database Dialect

Databases are created in Dialect 3 by default. For the database to be created in SQL dialect 1, you
will need to execute the statement SET SQL DIALECT 1 from script or the client application, e.g. in
isql, before the CREATE DATABASE statement.

Who Can Create a Database

The CREATE DATABASE statement can be executed by:

¢ Administrators

» Users with the CREATE DATABASE privilege

Examples Using CREATE DATABASE

1. Creating a database in Windows, located on disk D with a page size of 4,096. The owner of the
database will be the user wizard. The database will be in Dialect , and will use WIN1251 as its
default character set.

SET SQL DIALECT 1;

CREATE DATABASE 'D:\test.fdb'

USER 'wizard' PASSWORD 'player'

PAGE_SIZE = 4096 DEFAULT CHARACTER SET WIN1251;

2. Creating a database in the Linux operating system with a page size of 8,192 (default). The owner
of the database will be the user wizard. The database will be in Dialect 3 and will use UTF8 as its
default character set, with UNICODE CI_AI as the default collation.

96

Chapter 5. Data Definition (DDL) Statements

CREATE DATABASE '/home/firebird/test.fdb’
USER 'wizard' PASSWORD 'player’
DEFAULT CHARACTER SET UTF8 COLLATION UNICODE_CI_AI;

3. Creating a database on the remote server “baseserver” with the path specified in the alias “test”
that has been defined previously in the file databases.conf. The TCP/IP protocol is used. The
owner of the database will be the user wizard. The database will be in Dialect 3 and will use
UTF8 as its default character set.

CREATE DATABASE 'baseserver:test'
USER 'wizard' PASSWORD 'player’
DEFAULT CHARACTER SET UTFS8;

4. Creating a database in Dialect 3 with UTF8 as its default character set. The primary file will
contain up to 10,000 pages with a page size of 8,192. As soon as the primary file has reached the
maximum number of pages, Firebird will start allocating pages to the secondary file test.fdb2.
If that file is filled up to its maximum as well, test.fdb3 becomes the recipient of all new page
allocations. As the last file, it has no page limit imposed on it by Firebird. New allocations will
continue for as long as the file system allows it or until the storage device runs out of free space.
If a LENGTH parameter were supplied for this last file, it would be ignored.

SET SQL DIALECT 3;

CREATE DATABASE 'baseserver:D:\test.fdb'
USER 'wizard' PASSWORD 'player'
PAGE_SIZE = 8192

DEFAULT CHARACTER SET UTF8

FILE 'D:\test.fdb2'

STARTING AT PAGE 10001

FILE 'D:\test.fdb3'

STARTING AT PAGE 20001;

5. Creating a database in Dialect 3 with UTF8 as its default character set. The primary file will
contain up to 10,000 pages with a page size of 8,192. As far as file size and the use of secondary
files are concerned, this database will behave exactly like the one in the previous example.

SET SQL DIALECT 3;

CREATE DATABASE 'baseserver:D:\test.fdb'
USER 'wizard' PASSWORD 'player’
PAGE_SIZE = 8192

LENGTH 10000 PAGES

DEFAULT CHARACTER SET UTF8

FILE 'D:\test.fdb2'

FILE 'D:\test.fdb3'

STARTING AT PAGE 20001;

97

Chapter 5. Data Definition (DDL) Statements

See also

ALTER DATABASE, DROP DATABASE

5.1.2. ALTER DATABASE

Used for

Altering the file organisation of a database, toggling its “copy-safe” state, managing encryption, and
other database-wide configuration

Available in

DSQL, ESQL — limited feature set

Syntax
ALTER {DATABASE | SCHEMA} <alter_db_option> [<alter_db_option> ...]

<alter_db_option> :==
<add_sec_clause>
| {ADD DIFFERENCE FILE 'diff_file' | DROP DIFFERENCE FILE}
| {BEGIN | END} BACKUP
| SET DEFAULT CHARACTER SET charset
| SET LINGER TO linger_duration
| DROP LINGER
| {ENCRYPT WITH plugin_name [KEY key_name] | DECRYPT}

<add_sec_clause> ::= ADD <sec_file> [<sec_file> ...]

<sec_file> ::=
FILE 'filepath'
[STARTING [AT [PAGE]] pagenum]
[LENGTH [=] num [PAGE[S]]

Multiple files can be added in one ADD clause:

ALTER DATABASE
ADD FILE x LENGTH 8000
FILE y LENGTH 8000

o FILE 2

Multiple occurrences of add_sec_clause (ADD FILE clauses) are allowed; an ADD FILE
clause that adds multiple files (as in the example above) can be mixed with others
that add only one file. The statement was documented incorrectly in the old
InterBase 6 Language Reference.

Table 21. ALTER DATABASE Statement Parameters

98

Chapter 5. Data Definition (DDL) Statements

Parameter Description
add_sec_clause Adding a secondary database file
sec_file File specification for secondary file
filepath Full path and file name of the delta file or secondary database file
pagenum Page number from which the secondary database file is to start
num Maximum size of the secondary file in pages
diff file File path and name of the .delta file (difference file)
charset New default character set of the database
linger_duration Duration of linger delay in seconds; must be greater than or equal to 0
(zero)
plugin_name The name of the encryption plugin
key_name The name of the encryption key

The ALTER DATABASE statement can:

* add secondary files to a database
» switch a single-file database into and out of the “copy-safe” mode (DSQL only)

* set or unset the path and name of the delta file for physical backups (DSQL only)

o SCHEMA is currently a synonym for DATABASE; this may change in a future version, so
we recommend to always use DATABASE

Who Can Alter the Database

The ALTER DATABASE statement can be executed by:

¢ Administrators

» Users with the ALTER DATABASE privilege

Parameters for ALTER DATABASE

ADD (FILE)

Adds secondary files to the database. It is necessary to specify the full path to the file and the
name of the secondary file. The description for the secondary file is similar to the one given for
the CREATE DATABASE statement.

ADD DIFFERENCE FILE

Specifies the path and name of the delta file that stores any mutations to the database whenever
it is switched to the “copy-safe” mode. This clause does not actually add any file. It just overrides
the default name and path of the .delta file. To change the existing settings, you should delete the
previously specified description of the .delta file using the DROP DIFFERENCE FILE clause before
specifying the new description of the delta file. If the path and name of the .delta file are not
overridden, the file will have the same path and name as the database, but with the .delta file

99

Chapter 5. Data Definition (DDL) Statements

extension.
If only a file name is specified, the .delta file will be created in the current
é directory of the server. On Windows, this will be the system directory —a very
unwise location to store volatile user files and contrary to Windows file system
rules.

DROP DIFFERENCE FILE

Deletes the description (path and name) of the .delta file specified previously in the ADD
DIFFERENCE FILE clause. The file is not actually deleted. DROP DIFFERENCE FILE deletes the path and
name of the .delta file from the database header. Next time the database is switched to the “copy-
safe” mode, the default values will be used (i.e. the same path and name as those of the database,
but with the .delta extension).

BEGIN BACKUP

Switches the database to the “copy-safe” mode. ALTER DATABASE with this clause freezes the main
database file, making it possible to back it up safely using file system tools, even if users are
connected and performing operations with data. Until the backup state of the database is
reverted to NORMAL, all changes made to the database will be written to the .delta (difference)
file.

Despite its syntax, a statement with the BEGIN BACKUP clause does not start a
o backup process but just creates the conditions for doing a task that requires the
database file to be read-only temporarily.

END BACKUP

Switches the database from the “copy-safe” mode to the normal mode. A statement with this
clause merges the .delta file with the main database file and restores the normal operation of the
database. Once the END BACKUP process starts, the conditions no longer exist for creating safe
backups by means of file system tools.

Use of BEGIN BACKUP and END BACKUP and copying the database files with
filesystem tools, is not safe with multi-file databases! Use this method only on

g single-file databases.

Making a safe backup with the gbak utility remains possible at all times,
although it is not recommended running gbak while the database is in LOCKED
or MERGE state.

SET DEFAULT CHARACTER SET

Changes the default character set of the database. This change does not affect existing data or
columns. The new default character set will only be used in subsequent DDL commands.

SET LINGER TO

Sets the linger-delay. The linger-delay applies only to Firebird SuperServer, and is the number of
seconds the server keeps a database file (and its caches) open after the last connection to that
database was closed. This can help to improve performance at low cost, when the database is

100

Chapter 5. Data Definition (DDL) Statements

opened and closed frequently, by keeping resources “warm” for the next connection.

0 This mode can be useful for web applications - without a connection pool -
where the connection to the database usually “lives” for a very short time.

The SET LINGER TO and DROP LINGER clauses can be combined in a single

A statement, but the last clause “wins”. For example, ALTER DATABASE SET LINGER
TO 5 DROP LINGER will set the linger-delay to 0 (no linger), while ALTER DATABASE
DROP LINGER SET LINGER to 5 will set the linger-delay to 5 seconds.

DROP LINGER
Drops the linger-delay (sets it to zero). Using DROP LINGER is equivalent to using SET LINGER TO @.

Dropping LINGER is not an ideal solution for the occasional need to turn it off for
some once-only condition where the server needs a forced shutdown. The gfix
utility now has the -NoLinger switch, which will close the specified database
immediately after the last attachment is gone, regardless of the LINGER setting in
the database. The LINGER setting is retained and works normally the next time.

0 The same one-off override is also available through the Services API, using the
tag isc_spb_prp_nolinger, e.g. (in one line):

fbsvemgr host:service_mgr user sysdba password xxx
action_properties dbname employee prp_nolinger

g The DROP LINGER and SET LINGER TO clauses can be combined in a single
statement, but the last clause “wins”.

ENCRYPT WITH

See Encrypting a Database in the Security chapter.

DECRYPT
See Decrypting a Database in the Security chapter.

Examples of ALTER DATABASE Usage

1. Adding a secondary file to the database. As soon as 30000 pages are filled in the previous
primary or secondary file, the Firebird engine will start adding data to the secondary file
test4. fdb.

ALTER DATABASE
ADD FILE 'D:\test4.fdb'
STARTING AT PAGE 30001;

2. Specifying the path and name of the delta file:

101

Chapter 5. Data Definition (DDL) Statements

ALTER DATABASE
ADD DIFFERENCE FILE 'D:\test.diff';

3. Deleting the description of the delta file:

ALTER DATABASE
DROP DIFFERENCE FILE;

4. Switching the database to the “copy-safe” mode:

ALTER DATABASE
BEGIN BACKUP;

5. Switching the database back from the “copy-safe” mode to the normal operation mode:

ALTER DATABASE
END BACKUP;

6. Changing the default character set for a database to WIN1251

ALTER DATABASE
SET DEFAULT CHARACTER SET WIN1252;

7. Setting a linger-delay of 30 seconds

ALTER DATABASE
SET LINGER TO 30;

8. Encrypting the database with a plugin called DbCrypt

ALTER DATABASE
ENCRYPT WITH DbCrypt;

9. Decrypting the database

ALTER DATABASE
DECRYPT;

See also

CREATE DATABASE, DROP DATABASE

102

Chapter 5. Data Definition (DDL) Statements

5.1.3. DROP DATABASE

Used for

Deleting the database to which you are currently connected

Available in

DSQL, ESQL

Syntax

DROP DATABASE

The DROP DATABASE statement deletes the current database. Before deleting a database, you have to
connect to it. The statement deletes the primary file, all secondary files and all shadow files.

o Contrary to CREATE DATABASE and ALTER DATABASE, DROP SCHEMA is not a valid alias for
DROP DATABASE. This is intentional.

Who Can Drop a Database

The DROP DATABASE statement can be executed by:

¢ Administrators

 Users with the DROP DATABASE privilege

Example of DROP DATABASE

Deleting the current database

DROP DATABASE;

See also
CREATE DATABASE, ALTER DATABASE

5.2. SHADOW

A shadow is an exact, page-by-page copy of a database. Once a shadow is created, all changes made
in the database are immediately reflected in the shadow. If the primary database file becomes
unavailable for some reason, the DBMS will switch to the shadow.

This section describes how to create and delete shadow files.

5.2.1. CREATE SHADOW

Used for

Creating a shadow for the current database

103

Chapter 5. Data Definition (DDL) Statements

Available in

DSQL, ESQL
Syntax

CREATE SHADOW <sh_num> [{AUTO | MANUAL}] [CONDITIONAL]
"filepath' [LENGTH [=] num [PAGE[S]]]
[<secondary_file> ...]

<secondary_file> ::=
FILE 'filepath'
[STARTING [AT [PAGE]] pagenum]
[LENGTH [=] num [PAGE[S]]]

Table 22. CREATE SHADOW Statement Parameters

Parameter Description
sh_num Shadow number — a positive number identifying the shadow set
filepath The name of the shadow file and the path to it, in accord with the rules of
the operating system
num Maximum shadow size, in pages
secondary_file Secondary file specification
page_num The number of the page at which the secondary shadow file should start

The CREATE SHADOW statement creates a new shadow. The shadow starts duplicating the database
right at the moment it is created. It is not possible for a user to connect to a shadow.

Like a database, a shadow may be multi-file. The number and size of a shadow’s files are not
related to the number and size of the files of database it is shadowing.

The page size for shadow files is set to be equal to the database page size and cannot be changed.

If a calamity occurs involving the original database, the system converts the shadow to a copy of
the database and switches to it. The shadow is then unavailable. What happens next depends on the
MODE option.

AUTO | MANUAL Modes

When a shadow is converted to a database, it becomes unavailable. A shadow might alternatively
become unavailable because someone accidentally deletes its file, or the disk space where the
shadow files are stored is exhausted or is itself damaged.

* If the AUTO mode is selected (the default value), shadowing ceases automatically, all references
to it are deleted from the database header, and the database continues functioning normally.

If the CONDITIONAL option was set, the system will attempt to create a new shadow to replace the
lost one. It does not always succeed, however, and a new one may need to be created manually.

104

Chapter 5. Data Definition (DDL) Statements

» If the MANUAL mode attribute is set when the shadow becomes unavailable, all attempts to
connect to the database and to query it will produce error messages. The database will remain
inaccessible until either the shadow again becomes available, or the database administrator
deletes it using the DROP SHADOW statement. MANUAL should be selected if continuous shadowing is
more important than uninterrupted operation of the database.

Options for CREATE SHADOW

LENGTH

Specifies the maximum size of the primary or secondary shadow file in pages. The LENGTH value
does not affect the size of the only shadow file, nor the last if it is a set. The last (or only) file will
keep automatically growing as long as it is necessary.

STARTING AT

Specifies the shadow page number at which the next shadow file should start. The system will
start adding new data to the next shadow file when the previous file is filled with data up to the
specified page number.

(r) You can verify the sizes, names and location of the shadow files by connecting to
- the database using isql and running the command SHOW DATABASE;

Who Can Create a Shadow

The CREATE SHADOW statement can be executed by:

¢ Administrators

» Users with the ALTER DATABASE privilege

Examples Using CREATE SHADOW

1. Creating a shadow for the current database as “shadow number 1”:
CREATE SHADOW 1 'g:\data\test.shd';
2. Creating a multi-file shadow for the current database as “shadow number 2”:

CREATE SHADOW 2 'g:\data\test.sh1'
LENGTH 8000 PAGES
FILE 'g:\data\test.sh2';

See also

CREATE DATABASE, DROP SHADOW

5.2.2. DROP SHADOW

Used for

105

Chapter 5. Data Definition (DDL) Statements
Deleting a shadow from the current database

Available in

DSQL, ESQL

Syntax

DROP SHADOW sh_num
[{DELETE | PRESERVE} FILE]

Table 23. DROP SHADOW Statement Parameter
Parameter Description

sh_num Shadow number — a positive number identifying the shadow set

The DROP SHADOW statement deletes the specified shadow for the current database. When a shadow is
dropped, all files related to it are deleted and shadowing to the specified sh num ceases. The
optional DELETE FILE clause makes this behaviour explicit. On the contrary, the PRESERVE FILE clause
will remove the shadow from the database, but the file itself will not be deleted.

Who Can Drop a Shadow

The DROP SHADOW statement can be executed by:

¢ Administrators

» Users with the ALTER DATABASE privilege

Example of DROP SHADOW

Deleting “shadow number 1”.

DROP SHADOW 1;

See also
CREATE SHADOW

5.3. DOMAIN

DOMAIN is one of the object types in a relational database. A domain is created as a specific data type
with some attributes attached to it. Once it has been defined in the database, it can be reused
repeatedly to define table columns, PSQL arguments and PSQL local variables. Those objects inherit
all of the attributes of the domain. Some attributes can be overridden when the new object is
defined, if required.

This section describes the syntax of statements used to create, modify and delete domains. A
detailed description of domains and their usage can be found in Custom Data Types — Domains.

106

Chapter 5. Data Definition (DDL) Statements

5.3.1. CREATE DOMAIN

Used for

Creating a new domain

Available in

DSQL, ESQL

Syntax

CREATE DOMAIN name [AS] <datatype>
[DEFAULT {<literal> | NULL | <context_var>}]
[NOT NULL] [CHECK (<dom_condition>)]
[COLLATE collation_name]

<datatype> ::=
<scalar_datatype> | <blob_datatype> | <array_datatype>

<scalar_datatype> ::=
I'l See Scalar Data Types Syntax !!

<blob_datatype> ::=
I'l See BLOB Data Types Syntax !!

<array_datatype> ::=
I'l See Array Data Types Syntax !!

<dom_condition> ::=
<val> <operator> <val>
| <val> [NOT] BETWEEN <val> AND <val>
| <val> [NOT] IN ({<val> [, <val> ...] | <select_list>})
| <val> IS [NOT] NULL
| <val> IS [NOT] DISTINCT FROM <val>
| <val> [NOT] CONTAINING <val>
| <val> [NOT] STARTING [WITH] <val>
| <val> [NOT] LIKE <val> [ESCAPE <val>]
| <val> [NOT] SIMILAR TO <val> [ESCAPE <val>]
| <val> <operator> {ALL | SOME | ANY} (<select_list>)
| [NOT] EXISTS (<select_expr>)
| [NOT] SINGULAR (<select_expr>)
| (<dom_condition>)
| NOT <dom_condition>
| <dom_condition> OR <dom_condition>
| <dom_condition> AND <dom_condition>

<operator> ::=
Sz === <] >] =] >e

| I | M|~ | > M|

val> ::=
VALUE

107

Chapter 5. Data Definition (DDL) Statements

<literal>

<context_var>

<expression>

NULL

NEXT VALUE FOR genname
GEN_ID(genname, <val>)
CAST(<val> AS <cast_type>)
(<select_one>)

func([<val> [, <val> ...]1])

<cast_type> ::= <domain_or_non_array_type> | <array_datatype>

<domain_or_non_array_type> ::=
I'l See Scalar Data Types Syntax !!

Table 24. CREATE DOMAIN Statement Parameters

Parameter Description
name Domain name consisting of up to 31 characters
datatype SQL data type
literal A literal value that is compatible with datatype

context_var

dom_condition

collation_name

select_one

select_list

select_expr

expression
genname

func

Any context variable whose type is compatible with datatype
Domain condition

Name of a collation sequence that is valid for charset_name, if it is
supplied with datatype or, otherwise, is valid for the default character set
of the database

A scalar SELECT statement — selecting one column and returning only one
row

A SELECT statement selecting one column and returning zero or more
rows

A SELECT statement selecting one or more columns and returning zero or
more rows

An expression resolving to a value that is compatible with datatype
Sequence (generator) name

Internal function or UDF

The CREATE DOMAIN statement creates a new domain.

Any SQL data type can be specified as the domain type.

Type-specific Details

Array Types

« If the domain is to be an array, the base type can be any SQL data type except BLOB and array.

108

Chapter 5. Data Definition (DDL) Statements

* The dimensions of the array are specified between square brackets. (In the Syntax block,
these brackets appear in quotes to distinguish them from the square brackets that identify
optional syntax elements.)

» For each array dimension, one or two integer numbers define the lower and upper
boundaries of its index range:

o By default, arrays are 1-based. The lower boundary is implicit and only the upper
boundary need be specified. A single number smaller than 1 defines the range num..1
and a number greater than 1 defines the range 1..num.

- Two numbers separated by a colon (‘:’) and optional whitespace, the second greater than
the first, can be used to define the range explicitly. One or both boundaries can be less
than zero, as long as the upper boundary is greater than the lower.

» When the array has multiple dimensions, the range definitions for each dimension must be
separated by commas and optional whitespace.

» Subscripts are validated only if an array actually exists. It means that no error messages
regarding invalid subscripts will be returned if selecting a specific element returns nothing
or if an array field is NULL.

String Types
You can use the CHARACTER SET clause to specify the character set for the CHAR, VARCHAR and BLOB
(SUB_TYPE TEXT) types. If the character set is not specified, the character set specified as DEFAULT
CHARACTER SET of the database will be used. If no character set was specified then, the character
set NONE is applied by default when you create a character domain.

With character set NONE, character data are stored and retrieved the way they
were submitted. Data in any encoding can be added to a column based on such

A a domain, but it is impossible to add this data to a column with a different
encoding. Because no transliteration is performed between the source and
destination encodings, errors may result.

DEFAULT Clause

The optional DEFAULT clause allows you to specify a default value for the domain. This value will
be added to the table column that inherits this domain when the INSERT statement is executed, if
no value is specified for it in the DML statement. Local variables and arguments in PSQL
modules that reference this domain will be initialized with the default value. For the default
value, use a literal of a compatible type or a context variable of a compatible type.

NOT NULL Constraint

Columns and variables based on a domain with the NOT NULL constraint will be prevented from
being written as NULL, i.e., a value is required.

When creating a domain, take care to avoid specifying limitations that would

° contradict one another. For instance, NOT NULL and DEFAULT NULL are
contradictory.

109

Chapter 5. Data Definition (DDL) Statements

CHECK Constraint(s)

The optional CHECK clause specifies constraints for the domain. A domain constraint specifies
conditions that must be satisfied by the values of table columns or variables that inherit from
the domain. A condition must be enclosed in parentheses. A condition is a logical expression
(also called a predicate) that can return the Boolean results TRUE, FALSE and UNKNOWN. A condition
is considered satisfied if the predicate returns the value TRUE or “unknown value” (equivalent to
NULL). If the predicate returns FALSE, the condition for acceptance is not met.

VALUE Keyword

The keyword VALUE in a domain constraint substitutes for the table column that is based on this
domain or for a variable in a PSQL module. It contains the value assigned to the variable or the
table column. VALUE can be used anywhere in the CHECK constraint, though it is usually used in the
left part of the condition.

COLLATE

The optional COLLATE clause allows you to specify the collation sequence if the domain is based
on one of the string data types, including BLOBs with text subtypes. If no collation sequence is
specified, the collation sequence will be the one that is default for the specified character set at
the time the domain is created.

Who Can Create a Domain

The CREATE DOMAIN statement can be executed by:

¢ Administrators

 Users with the CREATE DOMAIN privilege
CREATE DOMAIN Examples

1. Creating a domain that can take values greater than 1,000, with a default value of 10,000.

CREATE DOMAIN CUSTNO AS
INTEGER DEFAULT 10000
CHECK (VALUE > 1000);

2. Creating a domain that can take the values 'Yes' and 'No' in the default character set specified
during the creation of the database.

CREATE DOMAIN D_BOOLEAN AS
CHAR(3) CHECK (VALUE IN ('Yes', 'No'));

3. Creating a domain with the UTF8 character set and the UNICODE_CI_AI collation sequence.

CREATE DOMAIN FIRSTNAME AS
VARCHAR(30) CHARACTER SET UTF8
COLLATE UNICODE_CI_AI,;

110

Chapter 5. Data Definition (DDL) Statements

4. Creating a domain of the DATE type that will not accept NULL and uses the current date as the
default value.

CREATE DOMAIN D_DATE AS
DATE DEFAULT CURRENT_DATE
NOT NULL;

5. Creating a domain defined as an array of 2 elements of the NUMERIC(18, 3) type. The starting
array index is 1.

CREATE DOMAIN D_POINT AS
NUMERIC(18, 3) [2];

o Domains defined over an array type may be used only to define table columns.
You cannot use array domains to define local variables in PSQL modules.

6. Creating a domain whose elements can be only country codes defined in the COUNTRY table.

CREATE DOMAIN D_COUNTRYCODE AS CHAR(3)
CHECK (EXISTS(SELECT * FROM COUNTRY
WHERE COUNTRYCODE = VALUE));

The example is given only to show the possibility of using predicates with

o queries in the domain test condition. It is not recommended to create this style
of domain in practice unless the lookup table contains data that are never
deleted.

See also

ALTER DOMAIN, DROP DOMAIN

5.3.2. ALTER DOMAIN

Used for

Altering the current attributes of a domain or renaming it

Available in
DSQL, ESQL

111

Chapter 5. Data Definition (DDL) Statements

Syntax

ALTER DOMAIN domain_name
[TO new_name]
[TYPE <datatype>]
[{SET DEFAULT {<literal> | NULL | <context_var>} | DROP DEFAULT}]
[{SET | DROP} NOT NULL]
[{ADD [CONSTRAINT] CHECK (<dom_condition>) | DROP CONSTRAINT}]

<datatype> ::=
<scalar_datatype> | <blob_datatype>

<scalar_datatype> ::=
I'l See Scalar Data Types Syntax !!

<blob_datatype> ::=
I'l See BLOB Data Types Syntax !!

I'l See also CREATE DOMAIN Syntax !!

Table 25. ALTER DOMAIN Statement Parameters

Parameter Description
new_name New name for domain, consisting of up to 31 characters
literal A literal value that is compatible with datatype
context_var Any context variable whose type is compatible with datatype

The ALTER DOMAIN statement enables changes to the current attributes of a domain, including its
name. You can make any number of domain alterations in one ALTER DOMAIN statement.

ALTER DOMAIN clauses

TO name

Use the T0 clause to rename the domain, as long as there are no dependencies on the domain, i.e.
table columns, local variables or procedure arguments referencing it.

SET DEFAULT

With the SET DEFAULT clause you can set a new default value. If the domain already has a default
value, there is no need to delete it first— it will be replaced by the new one.

DROP DEFAULT

Use this clause to delete a previously specified default value and replace it with NULL.

SET NOT NULL

Use this class to add a NOT NULL constraint to the domain; columns or parameters of this domain
will be prevented from being written as NULL, i.e., a value is required.

112

Chapter 5. Data Definition (DDL) Statements

Adding a NOT NULL constraint to an existing domain will subject all columns
0 using this comain to a full data validation, so ensure that the columns have no
nulls before attempting the change.

DROP NOT NULL

Drop the NOT NULL constraint from the domain.

An explicit NOT NULL constraint on a column that depends on a domain prevails
over the domain. In this situation, the modification of the domain to make it
nullable does not propagate to the column.

ADD CONSTRAINT CHECK

Use the ADD CONSTRAINT CHECK clause to add a CHECK constraint to the domain. If the domain
already has a CHECK constraint, it will have to be deleted first, using an ALTER DOMAIN statement
that includes a DROP CONSTRAINT clause.

TYPE

The TYPE clause is used to change the data type of the domain to a different, compatible one. The
system will forbid any change to the type that could result in data loss. An example would be if
the number of characters in the new type were smaller than in the existing type.

When you alter the attributes of a domain, existing PSQL code may become
o invalid. For information on how to detect it, read the piece entitled The
RDB$VALID_BLR Field in Appendix A.

What ALTER DOMAIN Cannot Alter

* If the domain was declared as an array, it is not possible to change its type or its dimensions;
nor can any other type be changed to an array type.

* There is no way to change the default collation without dropping the domain and recreating it
with the desired attributes.

Who Can Alter a Domain

The ALTER DOMAIN statement can be executed by:

e Administrators
¢ The owner of the domain

* Users with the ALTER ANY DOMAIN privilege

Domain alterations can be prevented by dependencies from objects to which the user does not have
sufficient privileges.

ALTER DOMAIN Examples

1. Changing the data type to INTEGER and setting or changing the default value to 2,000:

113

Chapter 5. Data Definition (DDL) Statements

ALTER DOMAIN CUSTNO
TYPE INTEGER
SET DEFAULT 2000;

2. Renaming a domain.

ALTER DOMAIN D_BOOLEAN TO D_BOOL;

3. Deleting the default value and adding a constraint for the domain:

ALTER DOMAIN D_DATE
DROP DEFAULT
ADD CONSTRAINT CHECK (VALUE >= date '01.01.2000');

4. Changing the CHECK constraint:

ALTER DOMAIN D_DATE
DROP CONSTRAINT;

ALTER DOMAIN D_DATE
ADD CONSTRAINT CHECK
(VALUE BETWEEN date '01.01.1900' AND date '31.12.2100");

5. Changing the data type to increase the permitted number of characters:

ALTER DOMAIN FIRSTNAME
TYPE VARCHAR(50) CHARACTER SET UTFS8;

6. Adding a NOT NULL constraint:

ALTER DOMAIN FIRSTNAME
SET NOT NULL;

7. Removing a NOT NULL constraint:

ALTER DOMAIN FIRSTNAME
DROP NOT NULL;

See also

CREATE DOMAIN, DROP DOMAIN

114

Chapter 5. Data Definition (DDL) Statements

5.3.3. DROP DOMAIN

Used for

Deleting an existing domain

Available in

DSQL, ESQL

Syntax

DROP DOMAIN domain_name

The DROP DOMAIN statement deletes a domain that exists in the database. It is not possible to delete a
domain if it is referenced by any database table columns or used in any PSQL module. In order to
delete a domain that is in use, all columns in all tables that refer to the domain will have to be
dropped and all references to the domain will have to be removed from PSQL modules.

Who Can Drop a Domain

The DROP DOMAIN statement can be executed by:

¢ Administrators
e The owner of the domain

» Users with the DROP ANY DOMAIN privilege
Example of DROP DOMAIN
Deleting the COUNTRYNAME domain

DROP DOMAIN COUNTRYNAME;

See also

CREATE DOMAIN, ALTER DOMAIN

5.4. TABLE

As a relational DBMS, Firebird stores data in tables. A table is a flat, two-dimensional structure
containing any number of rows. Table rows are often called records.

All rows in a table have the same structure and consist of columns. Table columns are often called
fields. A table must have at least one column. Each column contains a single type of SQL data.

This section describes how to create, alter and delete tables in a database.

5.4.1. CREATE TABLE

Used for

115

Chapter 5. Data Definition (DDL) Statements

creating a new table (relation)

Available in

DSQL, ESQL

Syntax

CREATE [GLOBAL TEMPORARY] TABLE tablename
[EXTERNAL [FILE] 'filespec']
(<col_def> [, {<col_def> | <tconstraint>} ...])
[ON COMMIT {DELETE | PRESERVE} ROWS]

<col _def> ::=
<reqular_col_def>
| <computed_col_def>
| <identity_col_def>

<reqular_col_def> ::=
colname {<datatype> | domainname}
[DEFAULT {<literal> | NULL | <context_var>}]
[<col_constraint> ...]
[COLLATE collation_name]

<computed_col_def> ::=
colname [{<datatype> | domainname}]
{COMPUTED [BY] | GENERATED ALWAYS AS} (<expression>)

<identity_col_def> ::=
colname {<datatype> | domainname}
GENERATED BY DEFAULT AS IDENTITY [(START WITH startvalue)]
[<col_constraint> ...]

<datatype> ::=
<scalar_datatype> | <blob_datatype> | <array_datatype>

<scalar_datatype> ::=
I'l See Scalar Data Types Syntax !!

<blob_datatype> ::=
I'l See BLOB Data Types Syntax !!

<array_datatype> ::=
I'l See Array Data Types Syntax !!

<col_constraint> ::=
[CONSTRAINT constr_name]
{ PRIMARY KEY [<using_index>]
| UNIQUE [<using_index>]
| REFERENCES other_table [(colname)] [<using_index>]
[ON DELETE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
[ON UPDATE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]

116

Chapter 5. Data Definition (DDL) Statements

| CHECK (<check_condition>)
| NOT NULL }

<tconstraint> ::=
[CONSTRAINT constr_name]

{ PRIMARY KEY (<col_list>) [<using_index>]
| UNIQUE (<col_list>) [<using_index>]
| FOREIGN KEY (<col_list>)
REFERENCES other_table [(<col_list>)] [<using_index>]
[ON DELETE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
[ON UPDATE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
| CHECK (<check_condition>) }

<col_list> ::= colname [, colname ...]

<using_index> ::= USING
[ASC[ENDING] | DESC[ENDING]] INDEX indexname

<check_condition> ::=

<val> <operator> <val>

<val> [NOT] BETWEEN <val> AND <val>

<val> [NOT] IN (<val> [, <val> ...] | <select_list>)
<val> IS [NOT] NULL

<val> IS [NOT] DISTINCT FROM <val>

<val> [NOT] CONTAINING <val>

<val> [NOT] STARTING [WITH] <val>

<val> [NOT] LIKE <val> [ESCAPE <val>]

<val> [NOT] SIMILAR TO <val> [ESCAPE <val>]

<val> <operator> {ALL | SOME | ANY} (<select_list>)
[NOT] EXISTS (<select_expr>)

[NOT] SINGULAR (<select_expr>)

(<check_condition>)

NOT <check_condition>

<check_condition> OR <check _condition>
<check_condition> AND <check _condition>

<operator> ::=

R e N R N
K| A< | | M| »

val> ::=

colname ['['array_idx [, array_idx ...]"']"]
<literal>

<context_var>

<expression>

NULL

NEXT VALUE FOR genname

GEN_ID(genname, <val>)

CAST(<val> AS <cast_type>)

(<select_one>)

func([<val> [, <val> ...1])

117

<cast_type> ::

Chapter 5. Data Definition (DDL) Statements

<domain_or_non_array_type> | <array_datatype>

<domain_or_non_array_type> ::=
I'l See Scalar Data Types Syntax !!

Table 26. CREATE TABLE Statement Parameters

Parameter

tablename

filespec

colname

datatype
domain_name
start_value
col_constraint
tconstraint
constr_name
other_table

other col

literal

context_var

check condition

collation

select_one

select_list

select_expr

expression
genname

func

Description

Name (identifier) for the table. It may consist of up to 31 characters and
must be unique in the database.

File specification (only for external tables). Full file name and path,
enclosed in single quotes, correct for the local file system and located on
a storage device that is physically connected to Firebird’s host computer.

Name (identifier) for a column in the table. May consist of up to 31
characters and must be unique in the table.

SQL data type

Domain name

The initial value of the identity column

Column constraint

Table constraint

The name (identifier) of a constraint. May consist of up to 31 characters.
The name of the table referenced by the foreign key constraint

The name of the column in other_table that is referenced by the foreign
key

A literal value that is allowed in the given context
Any context variable whose data type is allowed in the given context

The condition applied to a CHECK constraint, that will resolve as either
true, false or NULL

Collation

A scalar SELECT statement — selecting one column and returning only one
row

A SELECT statement selecting one column and returning zero or more
rows

A SELECT statement selecting one or more columns and returning zero or
more rows

An expression resolving to a value that is allowed in the given context
Sequence (generator) name

Internal function or UDF

118

Chapter 5. Data Definition (DDL) Statements

The CREATE TABLE statement creates a new table. Any user can create it and its name must be unique
among the names of all tables, views and stored procedures in the database.

A table must contain at least one column that is not computed, and the names of columns must be
unique in the table.

A column must have either an explicit SQL data type, the name of a domain whose attributes will be
copied for the column, or be defined as COMPUTED BY an expression (a calculated field).

A table may have any number of table constraints, including none.

Character Columns

You can use the CHARACTER SET clause to specify the character set for the CHAR, VARCHAR and BLOB (text
subtype) types. If the character set is not specified, the default character set of the database - at time
of the creation of the column - will be used. If the database has no default character set, the NONE
character set is applied. In this case, data is stored and retrieved the way it was submitted. Data in
any encoding can be added to such a column, but it is not possible to add this data to a column with
a different encoding. No transliteration is performed between the source and destination
encodings, which may result in errors.

The optional COLLATE clause allows you to specify the collation sequence for character data types,
including BLOB SUB_TYPE TEXT. If no collation sequence is specified, the default collation sequence
for the specified character set - at time of the creation of the column - is applied.

Setting a DEFAULT Value

The optional DEFAULT clause allows you to specify the default value for the table column. This value
will be added to the column when an INSERT statement is executed if no value was specified for it
and that column was omitted from the INSERT command.

The default value can be a literal of a compatible type, a context variable that is type-compatible
with the data type of the column, or NULL, if the column allows it. If no default value is explicitly
specified, NULL is implied.

An expression cannot be used as a default value.

Domain-based Columns

To define a column, you can use a previously defined domain. If the definition of a column is based
on a domain, it may contain a new default value, additional CHECK constraints, and a COLLATE clause
that will override the values specified in the domain definition. The definition of such a column
may contain additional column constraints (for instance, NOT NULL), if the domain does not have it.

It is not possible to define a domain-based column that is nullable if the domain
was defined with the NOT NULL attribute. If you want to have a domain that might

o be used for defining both nullable and non-nullable columns and variables, it is
better practice defining the domain nullable and apply NOT NULL in the
downstream column definitions and variable declarations.

119

Chapter 5. Data Definition (DDL) Statements
Identity Columns (autoincrement)

Identity columns can be defined using the GENERATED BY DEFAULT AS IDENTITY clause. The identity
column is the column associated with internal sequence generator. Its value is set automatically
every time it is not specified in the INSERT statement. The optional START WITH clause allows you to
specify an initial value other than 1.

Incorrect START WITH behaviour

The SQL standard requires that START WITH specifies the first value to be generated.
Unfortunately, the current implementation in Firebird instead uses the specified

A value as the initial value of the internal generator backing the identity column.
That means that right now it specifies the value before the first value that is
generated.

This will be fixed in Firebird 4, see also CORE-6376.

Rules

» The data type of an identity column must be an exact number type with zero scale. Allowed
types are thus SMALLINT, INTEGER, BIGINT, NUMERIC(p[,@]) and DECIMAL(p[,0]).

* An identity column cannot have a DEFAULT or COMPUTED value.

* An identity column cannot be altered to become a regular column. The reverse
is also true. Firebird 4 will introduce the option to alter an identity column to a
regular column.

¢ Identity columns are implicitly NOT NULL (non-nullable).

o * Uniqueness is not enforced automatically. A UNIQUE or PRIMARY KEY constraint is
required to guarantee uniqueness.

* The use of other methods of generating key values for identity columns, e.g. by
trigger-generator code or by allowing users to change or add them, is
discouraged to avoid unexpected key violations.

Calculated Fields

Calculated fields can be defined with the COMPUTED [BY] or GENERATED ALWAYS AS clause (according to
the SQL:2003 standard). They mean the same. Describing the data type is not required (but possible)
for calculated fields, as the DBMS calculates and stores the appropriate type as a result of the
expression analysis. Appropriate operations for the data types included in an expression must be
specified precisely.

If the data type is explicitly specified for a calculated field, the calculation result is converted to the
specified type. This means, for instance, that the result of a numeric expression could be rendered
as a string.

In a query that selects a COMPUTED BY column, the expression is evaluated for each row of the
selected data.

120

http://tracker.firebirdsql.org/browse/CORE-6376

Chapter 5. Data Definition (DDL) Statements

Instead of a computed column, in some cases it makes sense to use a regular
@ column whose value is evaluated in triggers for adding and updating data. It may
- reduce the performance of inserting/updating records, but it will increase the
performance of data selection.

Defining an Array Column

o If the column is to be an array, the base type can be any SQL data type except BLOB and array.

* The dimensions of the array are specified between square brackets. (In the Syntax block these
brackets appear in quotes to distinguish them from the square brackets that identify optional
syntax elements.)

» For each array dimension, one or two integer numbers define the lower and upper boundaries
of its index range:

o By default, arrays are 1-based. The lower boundary is implicit and only the upper boundary
need be specified. A single number smaller than 1 defines the range num..1 and a number
greater than 1 defines the range 1..num.

- Two numbers separated by a colon (‘:’) and optional whitespace, the second greater than the
first, can be used to define the range explicitly. One or both boundaries can be less than
zero, as long as the upper boundary is greater than the lower.

* When the array has multiple dimensions, the range definitions for each dimension must be
separated by commas and optional whitespace.

» Subscripts are validated only if an array actually exists. It means that no error messages
regarding invalid subscripts will be returned if selecting a specific element returns nothing or if
an array field is NULL.

Constraints

Five types of constraints can be specified. They are:

* Primary key (PRIMARY KEY)
* Unique key (UNIQUE)
* Foreign key (REFERENCES)

CHECK constraint (CHECK)

NOT NULL constraint (NOT NULL)

Constraints can be specified at column level (“column constraints”) or at table level (“table
constraints”). Table-level constraints are required when Kkeys (unique constraint, Primary Key,
Foreign Key) consist of multiple columns and when a CHECK constraint involves other columns in the
row besides the column being defined. The NOT NULL constraint can only be specified as a column
constraint. Syntax for some types of constraint may differ slightly according to whether the
constraint is defined at the column or table level.

* A column-level constraint is specified during a column definition, after all column attributes
except COLLATION are specified, and can involve only the column specified in that definition

121

Chapter 5. Data Definition (DDL) Statements

* A table-level constraints can only be specified after the definitions of the columns used in the
constraint.

» Table-level constraints are a more flexible way to set constraints, since they can cater for
constraints involving multiple columns

* You can mix column-level and table-level constraints in the same CREATE TABLE statement

The system automatically creates the corresponding index for a primary key (PRIMARY KEY), a
unique key (UNIQUE) and a foreign key (REFERENCES for a column-level constraint, FOREIGN KEY
REFERENCES for one at the table level).

Names for Constraints and Their Indexes
Column-level constraints and their indexes are named automatically:

* The constraint name has the form INTEG_n, where n represents one or more digits

* The index name has the form RDB$PRIMARYn (for a primary key index), RDB$FOREIGNn (for a foreign
key index) or RDB$n (for a unique key index). Again, n represents one or more digits.

Automatic naming of table-level constraints and their indexes follows the same pattern, unless the
names are supplied explicitly.

Named Constraints

A constraint can be named explicitly if the CONSTRAINT clause is used for its definition. While the
CONSTRAINT clause is optional for defining column-level constraints, it is mandatory for table-level
constraints. By default, the constraint index will have the same name as the constraint. If a
different name is wanted for the constraint index, a USING clause can be included.

The USING Clause

The USING clause allows you to specify a user-defined name for the index that is created
automatically and, optionally, to define the direction of the index — either ascending (the default)
or descending.

PRIMARY KEY

The PRIMARY KEY constraint is built on one or more key columns, where each column has the NOT
NULL constraint specified. The values across the key columns in any row must be unique. A table can
have only one primary key.

* A single-column Primary Key can be defined as a column level or a table-level constraint

* A multi-column Primary Key must be specified as a table-level constraint

The UNIQUE Constraint

The UNIQUE constraint defines the requirement of content uniqueness for the values in a key
throughout the table. A table can contain any number of unique key constraints.

As with the Primary Key, the Unique constraint can be multi-column. If so, it must be specified as a
table-level constraint.

122

Chapter 5. Data Definition (DDL) Statements
NULL in Unique Keys

Firebird’s SQL-99-compliant rules for UNIQUE constraints allow one or more NULLS in a column with a
UNIQUE constraint. That makes it possible to define a UNIQUE constraint on a column that does not
have the NOT NULL constraint.

For UNIQUE keys that span multiple columns, the logic is a little complicated:

* Multiple rows having null in all the columns of the key are allowed
* Multiple rows having keys with different combinations of nulls and non-null values are allowed

* Multiple rows having the same key columns null and the rest filled with non-null values are
allowed, provided the values differ in at least one column

* Multiple rows having the same key columns null and the rest filled with non-null values that
are the same in every column will violate the constraint

The rules for uniqueness can be summarised thus:

In principle, all nulls are considered distinct. However, if two rows have
exactly the same key columns filled with non-null values, the NULL columns
are ignored and the uniqueness is determined on the non-null columns as
though they constituted the entire key.

Illustration

RECREATE TABLE t(x int, y int, z int, unique(x,y,z));
INSERT INTO t values(NULL, 1, 1);

INSERT INTO t values(NULL, NULL, 1);

INSERT INTO t values(NULL, NULL, NULL);

INSERT INTO t values(NULL, NULL, NULL); -- Permitted
INSERT INTO t values(NULL, NULL, 1); -- Not permitted

FOREIGN KEY

A Foreign Key ensures that the participating column(s) can contain only values that also exist in the
referenced column(s) in the master table. These referenced columns are often called target
columns. They must be the primary key or a unique key in the target table. They need not have a
NOT NULL constraint defined on them although, if they are the primary key, they will, of course, have
that constraint.

The foreign key columns in the referencing table itself do not require a NOT NULL constraint.

A single-column Foreign Key can be defined in the column declaration, using the keyword
REFERENCES:

ARTIFACT_ID INTEGER REFERENCES COLLECTION (ARTIFACT_ID),

123

Chapter 5. Data Definition (DDL) Statements

The column ARTIFACT_ID in the example references a column of the same name in the table
COLLECTIONS.

Both single-column and multi-column foreign keys can be defined at the table level. For a multi-
column Foreign Key, the table-level declaration is the only option. This method also enables the
provision of an optional name for the constraint:

CONSTRAINT FK_ARTSOURCE FOREIGN KEY(DEALER_ID, COUNTRY)
REFERENCES DEALER (DEALER_ID, COUNTRY),

Notice that the column names in the referenced (“master”) table may differ from those in the
Foreign Key.

o If no target columns are specified, the Foreign Key automatically references the
target table’s Primary Key.

Foreign Key Actions

With the sub-clauses ON UPDATE and ON DELETE it is possible to specify an action to be taken on the
affected foreign key column(s) when referenced values in the master table are changed:

NO ACTION
(the default) - Nothing is done

CASCADE

The change in the master table is propagated to the corresponding row(s) in the child table. If a
key value changes, the corresponding key in the child records changes to the new value; if the
master row is deleted, the child records are deleted.

SET DEFAULT

The Foreign Key columns in the affected rows will be set to their default values as they were
when the foreign key constraint was defined.

SET NULL

The Foreign Key columns in the affected rows will be set to NULL.

The specified action, or the default NO ACTION, could cause a Foreign Key column to become invalid.
For example, it could get a value that is not present in the master table, or it could become NULL
while the column has a NOT NULL constraint. Such conditions will cause the operation on the master
table to fail with an error message.

Example

CONSTRAINT FK_ORDERS_CUST
FOREIGN KEY (CUSTOMER) REFERENCES CUSTOMERS (ID)
ON UPDATE CASCADE ON DELETE SET NULL

124

Chapter 5. Data Definition (DDL) Statements
CHECK Constraint

The CHECK constraint defines the condition the values inserted in this column must satisfy. A
condition is a logical expression (also called a predicate) that can return the TRUE, FALSE and
UNKNOWN values. A condition is considered satisfied if the predicate returns TRUE or value
UNKNOWN (equivalent to NULL). If the predicate returns FALSE, the value will not be accepted. This
condition is used for inserting a new row into the table (the INSERT statement) and for updating the
existing value of the table column (the UPDATE statement) and also for statements where one of these
actions may take place (UPDATE OR INSERT, MERGE).

A CHECK constraint on a domain-based column does not replace an existing CHECK

o condition on the domain, but becomes an addition to it. The Firebird engine has no
way, during definition, to verify that the extra CHECK does not conflict with the
existing one.

CHECK constraints —whether defined at table level or column level — refer to table columns by their
names. The use of the keyword VALUE as a placeholder —as in domain CHECK constraints —is not
valid in the context of defining column constraints.

Example

with two column-level constraints and one at table-level:

CREATE TABLE PLACES (

LAT DECIMAL(9, 6) CHECK (ABS(LAT) <= 90),
LON DECIMAL(9, 6) CHECK (ABS(LON) <= 180),

CONSTRAINT CHK_POLES CHECK (ABS(LAT) < 90 OR LON = 0)
);

NOT NULL constraint

In Firebird, columns are nullable by default. The NOT NULL constraint specifies that the column
cannot take NULL in place of a value.

A NOT NULL constraint can only be defined as a column constraint, not as a table constraint.
Who Can Create a Table
The CREATE TABLE statement can be executed by:

¢ Administrators

» Users with the CREATE TABLE privilege

The user executing the CREATE TABLE statement becomes the owner of the table.

CREATE TABLE Examples

1. Creating the COUNTRY table with the primary key specified as a column constraint.

125

Chapter 5. Data Definition (DDL) Statements

CREATE TABLE COUNTRY (

COUNTRY COUNTRYNAME NOT NULL PRIMARY KEY,
CURRENCY VARCHAR(10) NOT NULL

);

2. Creating the STOCK table with the named primary key specified at the column level and the
named unique key specified at the table level.

CREATE TABLE STOCK (

MODEL SMALLINT NOT NULL CONSTRAINT PK_STOCK PRIMARY KEY,
MODELNAME CHAR(10) NOT NULL,

ITEMID INTEGER NOT NULL,

CONSTRAINT MOD_UNIQUE UNIQUE (MODELNAME, ITEMID)

)5

3. Creating the JOB table with a primary key constraint spanning two columns, a foreign key
constraint for the COUNTRY table and a table-level CHECK constraint. The table also contains an
array of 5 elements.

CREATE TABLE JOB (

JOB_CODE JOBCODE NOT NULL,

JOB_GRADE JOBGRADE NOT NULL,

JOB_COUNTRY COUNTRYNAME,

JOB_TITLE VARCHAR(25) NOT NULL,

MIN_SALARY NUMERIC(18, 2) DEFAULT @ NOT NULL,
MAX_SALARY NUMERIC(18, 2) NOT NULL,

JOB_REQUIREMENT BLOB SUB_TYPE 1,

LANGUAGE_REQ VARCHAR(15) [1:51,

PRIMARY KEY (JOB_CODE, JOB_GRADE),

FOREIGN KEY (JOB_COUNTRY) REFERENCES COUNTRY (COUNTRY)

ON UPDATE CASCADE

ON DELETE SET NULL,

CONSTRAINT CHK_SALARY CHECK (MIN_SALARY < MAX_SALARY)
)F

4. Creating the PROJECT table with primary, foreign and unique key constraints with custom index
names specified with the USING clause.

126

Chapter 5. Data Definition (DDL) Statements

CREATE TABLE PROJECT (
PROJ_ID PROJNO NOT NULL,
PROJ_NAME VARCHAR(20) NOT NULL UNIQUE USING DESC INDEX IDX_PROJINAME,
PROJ_DESC BLOB SUB_TYPE 1,
TEAM_LEADER EMPNO,
PRODUCT PRODTYPE,
CONSTRAINT PK_PROJECT PRIMARY KEY (PROJ_ID) USING INDEX IDX_PROJ_ID,
FOREIGN KEY (TEAM_LEADER) REFERENCES EMPLOYEE (EMP_NO)
USING INDEX IDX_LEADER

)

5. Creating a table with an identity column

create table objects (
id integer generated by default as identity primary key,
name varchar(15)

);

insert into objects (name) values ('Table');
insert into objects (id, name) values (10, 'Computer');
insert into objects (name) values ('Book');

select * from objects order by id;

ID NAME

1 Table
2 Book
10 Computer

6. Creating the SALARY_HISTORY table with two computed fields. The first one is declared according
to the SQL:2003 standard, while the second one is declared according to the traditional
declaration of computed fields in Firebird.

CREATE TABLE SALARY_HISTORY (
EMP_NO EMPNO NOT NULL,
CHANGE _DATE TIMESTAMP DEFAULT 'NOW' NOT NULL,
UPDATER_ID VARCHAR(20) NOT NULL,
OLD_SALARY SALARY NOT NULL,
PERCENT_CHANGE DOUBLE PRECISION DEFAULT @ NOT NULL,
SALARY_CHANGE GENERATED ALWAYS AS
(OLD_SALARY * PERCENT_CHANGE / 100),
NEW_SALARY COMPUTED BY
(OLD_SALARY + OLD_SALARY * PERCENT_CHANGE / 100)

)

127

Chapter 5. Data Definition (DDL) Statements
Global Temporary Tables (GTT)

Global temporary tables have persistent metadata, but their contents are transaction-bound (the
default) or connection-bound. Every transaction or connection has its own private instance of a
GTT, isolated from all the others. Instances are only created if and when the GTT is referenced. They
are destroyed when the transaction ends or on disconnection. The metadata of a GTT can be
modified or removed using ALTER TABLE and DROP TABLE, respectively.

Syntax

CREATE GLOBAL TEMPORARY TABLE tablename
(<column_def> [, {<column_def> | <table_constraint>} ...])
[ON COMMIT {DELETE | PRESERVE} ROWS]

Syntax notes

e ON COMMIT DELETE ROWS creates a transaction-level GTT (the default), ON COMMIT
o PRESERVE ROWS a connection-level GTT

* An EXTERNAL [FILE] clause is not allowed in the definition of a global temporary
table

Since Firebird 3.0, GTTs are writable in read-only transactions. The effect is as follows:

Read-only transaction in read-write database
Writable in both ON COMMIT PRESERVE ROWS and ON COMMIT DELETE ROWS

Read-only transaction in read-only database
Writable in ON COMMIT DELETE ROWS only
Restrictions on GTTs

GTTs can be “dressed up” with all the features and paraphernalia of ordinary tables (keys,
references, indexes, triggers and so on) but there are a few restrictions:

GTTs and regular tables cannot reference one another

e A connection-bound (“PRESERVE ROWS”) GTT cannot reference a transaction-bound (“DELETE ROWS”)
GTT

* Domain constraints cannot reference any GTT

The destruction of a GTIT instance at the end of its life cycle does not cause any BEFORE/AFTER
delete triggers to fire

128

Chapter 5. Data Definition (DDL) Statements

In an existing database, it is not always easy to distinguish a regular table from a
GTT, or a transaction-level GTT from a connection-level GTT. Use this query to find
out what type of table you are looking at:

select t.rdb$type_name

from rdb$relations r

join rdb$types t on r.rdb$relation_type = t.rdb$type
where t.rdb$field name = "RDB$RELATION TYPE'

and r.rdb$relation_name = 'TABLENAME'

(;) For an overview of the types of all the relations in the database:
w

select r.rdb$relation_name, t.rdb$type_name

from rdb$relations r

join rdb$types t on r.rdb$relation_type = t.rdb$type
where t.rdb$field name = "RDB$RELATION TYPE'

and coalesce (r.rdb§system_flag, 0) = 0

The RDB$TYPE_NAME field will show PERSISTENT for a regular table, VIEW for a view,
GLOBAL_TEMPORARY_PRESERVE for a connection-bound GTIT and
GLOBAL_TEMPORARY_DELETE for a transaction_bound GTT.

Examples of Global Temporary Tables

1. Creating a connection-scoped global temporary table.

CREATE GLOBAL TEMPORARY TABLE MYCONNGTT (
ID INTEGER NOT NULL PRIMARY KEY,
TXT VARCHAR(32),
TS TIMESTAMP DEFAULT CURRENT_TIMESTAMP)
ON COMMIT PRESERVE ROWS;

2. Creating a transaction-scoped global temporary table that uses a foreign key to reference a
connection-scoped global temporary table. The ON COMMIT sub-clause is optional because DELETE
ROWS is the default.

CREATE GLOBAL TEMPORARY TABLE MYTXGTT (

ID INTEGER NOT NULL PRIMARY KEY,

PARENT_ID INTEGER NOT NULL REFERENCES MYCONNGTT(ID),
TXT VARCHAR(32),

TS TIMESTAMP DEFAULT CURRENT_TIMESTAMP

) ON COMMIT DELETE ROWS;

129

Chapter 5. Data Definition (DDL) Statements
External Tables

The optional EXTERNAL [FILE] clause specifies that the table is stored outside the database in an
external text file of fixed-length records. The columns of a table stored in an external file can be of
any type except BLOB or ARRAY, although for most purposes, only columns of CHAR types would be
useful.

All you can do with a table stored in an external file is insert new rows (INSERT) and query the data
(SELECT). Updating existing data (UPDATE) and deleting rows (DELETE) are not possible.

A file that is defined as an external table must be located on a storage device that is physically
present on the machine where the Firebird server runs and, if the parameter ExternalFileAccess in
the firebird.conf configuration file is Restrict, it must be in one of the directories listed there as
the argument for Restrict. If the file does not exist yet, Firebird will create it on first access.

The ability to use external files for a table depends on the value set for the
ExternalFileAccess parameter in firebird.conf:

o If it is set to None (the default), any attempt to access an external file will be
denied.

* The Restrict setting is recommended, for restricting external file access to
directories created explicitly for the purpose by the server administrator. For
example:

o o ExternalFileAccess = Restrict externalfiles will restrict access to a
directory named externalfiles directly beneath the Firebird root directory

o ExternalFileAccess = d:\databases\outfiles; e:\infiles will restrict access
to just those two directories on the Windows host server. Note that any
path that is a network mapping will not work. Paths enclosed in single or
double quotes will not work, either.

o If this parameter is set to Full, external files may be accessed anywhere on the
host file system. This creates a security vulnerability and is not recommended.

External File Format

The “row” format of the external table is fixed length and binary. There are no field delimiters: both
field and row boundaries are determined by maximum sizes, in bytes, of the field definitions. It is
important to keep this in mind, both when defining the structure of the external table and when
designing an input file for an external table that is to import data from another application. The
ubiquitous “.csv” format, for example, is of no use as an input file and cannot be generated directly
into an external file.

The most useful data type for the columns of external tables is the fixed-length CHAR type, of suitable
lengths for the data they are to carry. Date and number types are easily cast to and from strings
whereas, unless the files are to be read by another Firebird database, the native data
types — binary data — will appear to external applications as unparseable “alphabetti”.

Of course, there are ways to manipulate typed data so as to generate output files from Firebird that
can be read directly as input files to other applications, using stored procedures, with or without

130

Chapter 5. Data Definition (DDL) Statements

employing external tables. Such techniques are beyond the scope of a language reference. Here, we
provide some guidelines and tips for producing and working with simple text files, since the
external table feature is often used as an easy way to produce or read transaction-independent logs
that can be studied off-line in a text editor or auditing application.

Row Delimiters

Generally, external files are more useful if rows are separated by a delimiter, in the form of a
“newline” sequence that is recognised by reader applications on the intended platform. For most
contexts on Windows, it is the two-byte 'CRLF' sequence, carriage return (ASCII code decimal 13)
and line feed (ASCII code decimal 10). On POSIX, LF on its own is usual; for some MacOSX
applications, it may be LFCR. There are various ways to populate this delimiter column. In our
example below, it is done by using a BEFORE INSERT trigger and the internal function ASCII_CHAR.

External Table Example

For our example, we will define an external log table that might be used by an exception handler in
a stored procedure or trigger. The external table is chosen because the messages from any handled
exceptions will be retained in the log, even if the transaction that launched the process is
eventually rolled back because of another, unhandled exception. For demonstration purposes, it
has just two data columns, a time stamp and a message. The third column stores the row delimiter:

CREATE TABLE ext_log
EXTERNAL FILE 'd:\externals\log_me.txt"' (
stamp CHAR (24),
message CHAR(100),
crlf CHAR(2) -- for a Windows context
)i
COMMIT;

Now, a trigger, to write the timestamp and the row delimiter each time a message is written to the
file:

SET TERM A;
CREATE TRIGGER bi_ext_log FOR ext_log
ACTIVE BEFORE INSERT
AS
BEGIN
IF (new.stamp is NULL) then
new.stamp = CAST (CURRENT_TIMESTAMP as CHAR(24));
new.crlf = ASCII_CHAR(13) || ASCII_CHAR(10);
END A
COMMIT A
SET TERM ;A

Inserting some records (which could have been done by an exception handler or a fan of
Shakespeare):

131

Chapter 5. Data Definition (DDL) Statements

insert into ext_log (message)
values('Shall I compare thee to a summer''s day?');
insert into ext_log (message)
values('Thou art more lovely and more temperate');

The output:

2015-10-07 15:19:03.4110Shall I compare thee to a summer's day?
2015-10-07 15:19:58.7600Thou art more lovely and more temperate

5.4.2. ALTER TABLE

Used for

Altering the structure of a table.

Available in

DSQL, ESQL
Syntax

ALTER TABLE tablename
<operation> [, <operation> ...]

<operation> ::=
ADD <col_def>
| ADD <tconstraint>
| DROP colname
| DROP CONSTRAINT constr_name
| ALTER [COLUMN] colname <col_mod>

<col_def> ::=
<regular_col_def>
| <computed_col_def>
| <identity_col_def>

<reqular_col_def> ::=
colname {<datatype> | domainname}
[DEFAULT {<literal> | NULL | <context_var>}]
[<col _constraint> ...]
[COLLATE collation_name]

<computed_col_def> ::=
colname [{<datatype> | domainname}]
{COMPUTED [BY] | GENERATED ALWAYS AS} (<expression>)

<identity_col_def> ::=

colname {<datatype> | domainname}
GENERATED BY DEFAULT AS IDENTITY [(START WITH startvalue)]

132

Chapter 5. Data Definition (DDL) Statements

[<col_constraint> ...]

<col_mod> ::=
TO newname
| POSITION newpos
| <regular_col_mod>
| <computed_col_mod>
| <identity_col_mod>

<reqular_col_mod> ::=
TYPE {<datatype> | domainname}
| SET DEFAULT {<literal> | NULL | <context_var>}
| DROP DEFAULT
| {SET | DROP} NOT NULL

<computed_col_mod> ::=
[TYPE <datatype>] {COMPUTED [BY] | GENERATED ALWAYS AS} (<expression>)

<identity_col_mod> ::=
RESTART [WITH startvalue]

I'l See CREATE TABLE syntax' for further rules !!

Table 27. ALTER TABLE Statement Parameters

Parameter Description
tablename Name (identifier) of the table
operation One of the available operations altering the structure of the table
colname Name (identifier) for a column in the table, max. 31 characters. Must be

domain_name

newname

newpos

start_value
other_table
literal
context_var

check_condition

collation

unique in the table.
Domain name

New name (identifier) for the column, max. 31 ch