
Cyclone

User’s Manual

20 November 2001

The current version of this manual should be available at
http://www.cs.cornell.edu/projects/cyclone/ and
http://www.research.att.com/projects/cyclone/ . The version
here describes Cyclone Version 0.2, although minor changes may have oc-
curred before the release.

1

Contents

1 Introduction 5
1.1 Acknowledgements . 6

2 Cyclone for C Programmers 6
2.1 Getting Started . 6
2.2 Pointers . 8
2.3 Regions . 12
2.4 Tagged Unions and Pattern Matching 21
2.5 Exceptions . 24
2.6 Additional Features of Cyclone 26
2.7 GCC and C99 Additions . 26
2.8 Tuples . 27
2.9 Creating Arrays . 27
2.10 Subtyping . 28
2.11 Let Declarations . 29
2.12 Polymorphic Functions . 30
2.13 Polymorphic Data Structures 32
2.14 Abstract and Existential Types 32
2.15 Restrictions . 33

3 Pointers 36

4 Tagged Unions 43
4.1 tunion . 43
4.2 xtunion . 50

5 Pattern Matching 51
5.1 Let Declarations . 51
5.2 Pattern Forms . 53
5.3 Switch Statements . 56

6 Type Inference 62

7 Polymorphism 65

2

8 Memory Management Via Regions 65
8.1 Introduction . 65
8.2 Allocation . 67
8.3 Common Uses . 69
8.4 Type-Checking Regions . 73

8.4.1 Region Names . 74
8.4.2 Capabilities . 75
8.4.3 Assignment and Outlives 75
8.4.4 Type Declarations . 76
8.4.5 Function Calls . 77
8.4.6 Explicit and Default Effects 77

9 Namespaces 78

10 Varargs 80

A Porting C code to Cyclone 82
A.1 Translating C to Cyclone . 82
A.2 Interfacing to C . 91

B Frequently Asked Questions 96

C Libraries 114
C.1 C Libraries . 114
C.2 <array.h> . 115
C.3 <bitvec.h> . 119
C.4 <buffer.h> . 120
C.5 <core.h> . 122
C.6 <dict.h> . 122
C.7 <filename.h> . 128
C.8 <fn.h> . 129
C.9 <hashtable.h> . 130
C.10 <list.h> . 132
C.11 <pp.h> . 141
C.12 <queue.h> . 144
C.13 <rope.h> . 146
C.14 <set.h> . 147
C.15 <slowdict.h> . 150

3

C.16 <xarray.h> . 152

D Grammar 155

E Installing Cyclone 166

F Tools 167
F.1 The compiler . 167
F.2 The lexer generator . 170
F.3 The parser generator . 170
F.4 The allocation profiler, aprof 170

4

1 Introduction

Cyclone is a language for C programmers who want to write secure, ro-
bust programs. It’s a dialect of C designed to be safe: free of crashes, buffer
overflows, format string attacks, and so on. Careful C programmers can
produce safe C programs, but, in practice, many C programs are unsafe.
Our goal is to make all Cyclone programs safe, regardless of how care-
fully they were written. All Cyclone programs must pass a combination
of compile-time, link-time, and run-time checks designed to ensure safety.

There are other safe programming languages, including Java, ML, and
Scheme. Cyclone is novel because its syntax, types, and semantics are
based closely on C. This makes it easier to interface Cyclone with legacy
C code, or port C programs to Cyclone. And writing a new program in
Cyclone “feels” like programming in C: Cyclone tries to give program-
mers the same control over data representations, memory management,
and performance that C has.

Cyclone’s combination of performance, control, and safety make it a
good language for writing systems and security software. Writing such
software in Cyclone will, in turn, motivate new research into safe, low-
level languages. For instance, originally, all heap-allocated data in Cyclone
were reclaimed via a conservative garbage collector. Though the garbage
collector ensures safety by preventing programs from accessing deallo-
cated objects, it also kept Cyclone from being used in latency-critical or
space-sensitive applications such as network protocols or device drivers.
To address this shortcoming, we have added a region-based memory man-
agement system based on the work of Tofte and Talpin. The region-based
memory manager allows you some real-time control over memory man-
agement and can significantly reduce space overheads when compared to
a conventional garbage collector. Furthermore, the region type system en-
sures the same safety properties as a collector: objects cannot be accessed
outside of their lifetimes.

This manual is meant to provide an informal introduction to Cyclone.
We have tried to write the manual from the perspective of a C programmer
who wishes either to port code from C to Cyclone, or develop a new sys-
tem using Cyclone. Therefore, we assume a fairly complete understanding
of C.

Obviously, Cyclone is a work in progress and we expect to make sub-
stantial changes to the design and implementation. Your feedback (and

5

patience) is greatly appreciated.

1.1 Acknowledgements

The people involved in the development of Cyclone are at Cornell and
AT&T. Dan Grossman, Trevor Jim, and Greg Morrisett worked out the
initial design and implementation, basing the language to some degree on
Popcorn, a safe-C-like language that was developed at Cornell as part of
the Typed Assembly Language (TAL) project. Mathieu Baudet contributed
the bulk of the code for the link-checker. Matthew Harris did much of the
hard work needed to wrap and import the necessary libraries. Yanling
Wang ported bison to Cyclone. All of these people have also contributed
by finding and fixing various bugs. A number of other people have also
helped to find bugs and/or contributed key design ideas including James
Cheney, Fred Smith, Nathan Lutchansky, Jeff Vinocur, and David Walker.

2 Cyclone for C Programmers

We begin with a quick overview of Cyclone, suitable for those who already
know how to program in C. We’ll explain some of the ways that Cyclone
differs from C, and some of the reasons why; you should come away with
enough knowledge to start writing, compiling, and running your own Cy-
clone programs. We assume that the Cyclone compiler is already installed
on your system (see Appendix E or http://www.cs.cornell.edu/projects/cyclone
if you need to install the compiler).

2.1 Getting Started

Here’s a Cyclone program that prints the string “hello, world .”

#include <stdio.h>

int main() {
printf("hello, world\n");
return 0;

}

6

http://www.cs.cornell.edu/talc
http://www.cs.cornell.edu/projects/cyclone

It looks rather like a C program—in fact, a C compiler will happily
compile it. The program uses #include to tell the preprocessor to import
some standard definitions, it defines a distinguished function main that
serves as the entry point of the program, and it uses the familiar printf
function to handle the printing; all of this is just as in C.

To compile the program, put it into a file hello.cyc , and run the
command

cyclone hello.cyc -o hello

This tells the Cyclone compiler (cyclone) to compile the file hello.cyc ;
the -o flag tells the compiler to leave the executable output in the file
hello (or, in Windows, hello.exe). If all goes well you can execute
the program by typing

hello

and it will print

hello, world

It’s interesting to compare our program with a version that omits the
return statement:

#include <stdio.h>

int main() {
printf("hello, world\n");

}

A C compiler will compile and run this version. However, it’s not valid
Cyclone code: it will be rejected by the Cyclone compiler. Cyclone requires
a definite return: any function with a return type other than void must
explicitly return a value of the correct type. Since main is declared with
return type int , Cyclone requires that it explicitly return an integer.

Definite return reflects Cyclone’s concern with safety. The caller of
the function expects to receive a value of the return type; if the function
does not execute a return statement, the caller will receive some incor-
rect value instead. If the returned value is supposed to be a pointer, the
caller might try to dereference it, and dereferencing an arbitrary address
can cause the program to crash. So, Cyclone requires a return statement
(even if the return type is not a pointer type).

7

2.2 Pointers

Programs that use pointers properly in C can be both fast and elegant.
But when pointers are used improperly in C, they cause core dumps and
buffer overflows. To prevent this, Cyclone introduces different kinds of
pointers and either (a) puts some restrictions on how you can use pointers
of a given kind or (b) places no restrictions but may insert additional run-
time checks.

Nullable Pointers

The first kind of pointer is indicated with a * , as in C. For example, if we
declare

int x = 3;
int *y = &x;

then y is a pointer to the integer 3 (the contents of x). The pointer, y ,
is represented by a memory address, namely, the address of x . To refer to
the contents of y , you use *y , so, for example, you can increment the value
of x with an assignment like

*y = *y + 1;

This much is just as in C. However, there are some differences in Cy-
clone:

• You can’t cast an integer to a pointer. Cyclone prevents this because
it would let you overwrite arbitrary memory locations. In fact, you
can’t use (void *)0 as a pointer in Cyclone, even though this is
how C typically defines NULL. Instead, Cyclone provides NULLas a
keyword.

• You can’t do pointer arithmetic on a * pointer. Pointer arithmetic in
C can take a pointer out of bounds, so that when the pointer is even-
tually dereferenced, it corrupts memory or causes a crash. (However,
pointer arithmetic is possible using ? pointers.)

• There is one other way to crash a C program using pointers: you
can dereference the null pointer or try to update the null location.

8

Cyclone prevents this by inserting a null check whenever you deref-
erence a * pointer (that is, whenever you use the * , -> , or subscript
operation on a pointer.)

These are drastic differences from C, particularly the restriction on pointer
arithmetic. The benefit is that you can’t cause a crash using * pointers in
Cyclone.

Fat Pointers

If you need to do pointer arithmetic in Cyclone, you must use a second
kind of pointer, called a fat pointer and indicated by ? (the question mark).
For example, here is a program that echoes its command-line arguments:

#include <stdio.h>

int main(int argc, char ??argv) {
argc--; argv++; /* skip command name */
if (argc > 0) {

/* print first arg without a preceding space */
printf("%s",*argv);
argc--; argv++;

}
while (argc > 0) {

/* print other args with a preceding space */
printf(" %s",*argv);
argc--; argv++;

}
printf("\n");
return 0;

}

Except for the declaration of argv , which holds the command-line ar-
guments, the program looks just like you would write it in C: pointer arith-
metic (argv++) is used to move argv to point to each argument in turn,
so it can be printed.

In C, argv would typically be declared with type char ** , a pointer
to a pointer to a character, which is thought of as an array of an array
of characters. In Cyclone, argv is instead declared with type char ?? ,

9

which is thought of in the same way: it is a (fat) pointer to a (fat) pointer
to characters. The difference between a * pointer and a ? pointer is that
a ? pointer comes with bounds information and is thus “fatter” than a
traditional pointer. Each time a fat pointer is dereferenced or its contents
are assigned to, Cyclone inserts not only a null check but a bounds check.
This guarantees that a ? pointer can never cause a buffer overflow.

Because of the bounds information contained in ? pointers, argc is
superfluous: you can get the size of argv by writing argv.size . We’ve
kept argc as an argument of main for backwards compatibility.

It’s worth remarking that you can always cast a * pointer to a ? pointer
(and vice-versa). So, it is possible to do pointer arithmetic on a value of
type * , but only when you insert the appropriate casts to convert from
one pointer type to another. Note that some of these casts can fail at run-
time. For instance, if you try to cast a fat pointer that points to an empty
sequence of characters to char * , then the cast will fail since the sequence
doesn’t contain at least one character.

Never-null pointers

There is one other kind of pointer in Cyclone: the never-null pointer. A
never-null pointer is indicated by @(the at sign). An @pointer is like a
* pointer, except that it is guaranteed not to be NULL. This means that
when you dereference an @pointer or assign to its contents, a null check is
unnecessary.

@pointers are useful in Cyclone both for efficiency and as documenta-
tion. This can be seen at work in the standard library, where many func-
tions take @pointers as arguments, or return @pointers as results. For
example, the getc function that reads a character from a file is declared,

int getc(FILE @);

This says that getc expects to be called with a non-null pointer to a FILE .
Cyclone guarantees that, in fact, when the getc function is entered, its
argument is not null. This means that getc does not have to test whether
it is null, or decide what to do if it is in fact NULL.

In C, the argument of getc is declared to have type FILE * , and pro-
grammers can call getc with NULL. So for safety, C’s getc ought to
check for NULL. In practice, many C implementations omit the check;
getc(NULL) is an easy way to crash a C program.

10

In Cyclone, you can still call getc with a possibly-null FILE pointer
(a FILE *). However, Cyclone insists that you insert a check before the
actual call:

FILE *f = fopen("/etc/passwd","r");
int c = getc((FILE @)f);

Here f will be NULL if the file /etc/passwd doesn’t exist or can’t be
read. So, in Cyclone f must be cast to FILE @before the call to getc . The
cast causes a null check. If you try to call getc without the cast, Cyclone
will insert one for you automatically, and warn you that it is doing so.

If you call getc with a FILE @, of course, no check is required. For ex-
ample, stdin is a FILE @in Cyclone, so you can simply call getc(stdin) .
In Cyclone you will find that many functions return @pointers, so many
of the pointers you deal with will already be @pointers, and neither the
caller nor the called function needs to do null checks—and this is perfectly
safe.

Initializing Pointers

Pointers must be initialized before they are used to ensure that random
stack garbage does not get used as a pointer. This requirement goes for
variables that have pointer type, as well for arrays, elements of arrays,
and for fields in structures. Conversely, data that does not have pointer
type need not be initialized before it is used, since doing so cannot result
in a violation of safety. This decision adheres to the philosophy of C, but
diverges from that of traditional type-safe languages like Java and ML.

Other features of pointers

There’s much more to Cyclone pointers than we’ve described here.
In particular, a pointer type can also specify that it points to a sequence

of a particular (statically known) length. For instance, we can write:

void foo(int @{4} arr);

Here, the parameter arr is a pointer to a sequence of four integer val-
ues. Both the never-null and nullable pointers support explicit sequence
bounds that are tracked statically. Indeed, both pointer kinds always have

11

length information and when you write “int * ” this is just short-hand
for “int * {1}”.

We explain pointers in more detail in Section 3.

2.3 Regions

Another potential way to crash a program or violate security is to deref-
erence a dangling pointer—a pointer to storage that has been deallocated.
These are particularly insidious bugs because the error might not manifest
itself immediately. For example, consider the following C code:

struct Point {int x; int y;};

struct Point *newPoint(int x,int y) {
struct Point result = {x,y};
return &result;

}

void foo(struct Point *p) {
p->y = 1234;
return;

}

void bar() {
struct Point *p = newPoint(1,2);
foo(p);

}

The code has an obvious bug: the function newPoint returns a pointer to
a locally-defined variable (result), even though the storage for that vari-
able is deallocated upon exit from the function. That storage may be re-
used (e.g., by a subsequent procedure call) leading to subtle bugs or secu-
rity problems. For instance, in the code above, after bar calls newPoint ,
the storage for the point is re-used to store information for the activation
record of the call to foo . This includes a copy of the pointer p and the
return address of foo . Therefore, it may be that p->y actually points to
the return address of foo . The assignment of the integer 1234 to that loca-
tion could then result in foo “returning” to an arbitrary hunk of code in
memory. Nevertheless, the C type-checker readily admits the code.

12

In Cyclone, this code would be rejected by the type-checker to avoid
the kind of problems mentioned above. The reason the code is rejected is
that Cyclone tracks the lifetime of every object and ensures that a pointer
to an object can only be dereferenced if that object has not been deallo-
cated.

The way that Cyclone achieves this is by assigning each object a sym-
bolic region that corresponds to the lexical block in which the object is
declared, and each pointer type reflects the region into which a pointer
points. For instance, the variable result lives within a region that corre-
sponds to the invocation of the function newPoint . We write the name of
the region explicitly using a back-quote as in ‘newPoint .

Because result lives in region ‘newPoint , the expression &result
is a pointer into region ‘newPoint . If we like, we can write the type of
&result with the explicit region as “struct Point * ‘newPoint ”.
Note that the region name comes after the * (or ? or @).

When control flow exits a block, the storage (i.e., the region) for that
block is deallocated. Cyclone keeps track of the set of regions that are
allocated and deallocated at every control-flow point and ensures that you
only dereference pointers to allocated regions. For example, consider the
following fragment of (bad) Cyclone code:

1 int f() {
2 int x = 0;
3 int *‘f y = &x;
4 L:{ int a = 0;
5 y = &a;
6 }
7 return *y;
8 }

In the function f above, the variables x and y live within the region ‘f be-
cause they are declared in the outermost block of the function. The storage
for those variables will live as long as the invocation of the function. Note
that since y is a pointer to x , the type of y is int * ‘f reflecting that y
points into region ‘f .

The variable a does not live in region ‘f because it is declared in an in-
ner block, which we have labeled with L. The storage for the inner block L
may be deallocated upon exit of the block. To be more precise, the storage

13

for a is deallocated at line 7 in the code. Thus, it is an error to try to access
this storage in the rest of the computation, as is done on line 7.

Cyclone detects the error because it gives the expression &a the type
int * ‘L reflecting the fact that the value is a pointer into region ‘L .
So, the assignment y = &a fails to type-check because y expects to hold
a pointer into region ‘f , not region ‘L . The restriction, compared to C, is
that a pointer’s type indicates one region instead of all regions.

Region Inference

As we will see, Cyclone often figures out the region of a pointer without
the programmer providing the information. This is called region inference.
For instance, we can re-write the function f above without any region an-
notations, and without labelling the blocks:

1 int f() {
2 int x = 0;
3 int *y = &x;
4 { int a = 0;
5 y = &a;
6 }
7 return *y;
8 }

and Cyclone can still figure out that y is a pointer into region ‘f , and &a
is a pointer into a different (now anonymous) region, so the code should
be rejected.

As we will show below, occasionally you will need to put explicit re-
gion annotations into the code to convince the type-checker that some-
thing points into a particular region, or that two things point into the same
region. In addition, it is sometimes useful to put in the region annotations
for documentation purposes, or to make type errors a little less cryptic.

You need to understand at least four more details about regions to be an
effective Cyclone programmer: the heap region, dynamic regions, region
polymorphism, and default region annotations for function parameters.
The following sections give a brief overview of these details.

14

The Heap Region

There is a special region for the heap, written ‘H , that holds all of the
storage for top-level variables, and for data allocated via new or malloc .
For instance, if we write the following declarations at the top-level:

struct Point p = {0,1};
struct Point *ptr = &p;

then Cyclone figures out that ptr points into the heap region. To reflect
this explicitly, we can put the region in the type of ptr if we like:

struct Point p = {0,1};
struct Point *‘H ptr = &p;

As another example, the following function heap-allocates a point and
returns it to the caller. We put the regions in here to be explicit:

struct Point *‘H good_newPoint(int x,int y) {
struct Point *‘H p = malloc(sizeof(struct Point));
p->x = x;
p->y = y;
return p;

}

Alternatively, we can use new to heap-allocate and initialize the result:

struct Point *‘H good_newPoint(int x,int y) {
return new Point{x,y};

}

Dynamic Regions

Storage on the stack is implicitly allocated and recycled when you enter
and leave a block. Storage in the heap is explicitly allocated via new or
malloc , but there is no support in Cyclone for explicitly freeing an ob-
ject in the heap. The reason is that Cyclone cannot accurately track the
lifetimes of individual objects within the heap, so it can’t be sure whether
dereferencing a pointer into the heap would cause problems. Instead, a
conservative garbage collector reclaims the data allocated in the heap.

15

Using a garbage collector to recycle memory is the right thing to do for
most applications. For instance, the Cyclone compiler uses heap-allocated
data and relies upon the collector to recycle most objects it creates when
compiling a program. But a garbage collector can introduce pauses in
the program, and as a general purpose memory manager, might not be
as space- or time-efficient as routines tailored to an application.

To address these applications, Cyclone provides support for dynamic
regions. A dynamic region is similar to the region associated with a code
block. In particular, when you execute:

region<‘r> h {
...

}

this declares a new region ‘r along with a region handle h. The handle can
be used for dynamically allocating objects within the region. All of the
storage for the region is deallocated at the point of the closing brace. Un-
like block regions, the number (and size) of objects that you allocate into
the region is not fixed at compile time. In this respect, dynamic regions are
more like the heap. You can use the rnew(h) and rmalloc(h,...) op-
erations to allocate objects within a dynamic region, where h is the handle
for the region.

For instance, the following code takes an integer n, creates a new dy-
namic region and allocates an array of size n within the region using rnew .

int k(int n) {
int result;
region<‘r> h {

int ?arr = rnew(h) {for i < n : i};
result = process(h, arr);

}
return result;

}

It then passes the handle for the region and the array to some processing
function. Note that the processing function is free to allocate objects into
the region ‘r using the supplied handle. After processing the array, we
exit the region which deallocates the array, and then return the calculated
result.

16

It is worth remarking that the heap is really just a dynamic region with
global scope, and you can use the global variable heap_region as a han-
dle on the heap. Indeed, new and malloc(...) are just abbreviations for
rnew(heap_region) and rmalloc(heap_region,...) respectively.

Region Polymorphism

Another key concept you need to understand about regions is called re-
gion polymorphism. This is just a fancy way of saying that you can write
functions in Cyclone that don’t care which specific region a given object
lives in, as long as it’s still alive. For example, the function foo from the
beginning of this section is a region-polymorphic function. To make this
clear, let us re-write the function making the regions explicit:

void foo(struct Point *‘r p) {
p->y = 1234;
return;

}

The function is parameterized by a region variable ‘r and accepts a pointer
to a Point that lives in region ‘r . Note that ‘r can be instantiated with
any region you like, including the heap, or a region local to a function. So,
for instance, we can write the following:

void g() {
struct Point p = {0,1};
struct Point *‘g ptr1 = &p;
struct Point *‘H ptr2 = new Point{2,3};
foo(ptr1);
foo(ptr2);

}

Note that in the first call to foo , we are passing a pointer into region ‘g ,
and in the second call to foo , we are passing in a pointer into the heap. In
the first call, ‘r is implicitly instantiated with ‘g and in the second call,
with ‘H .

Cyclone automatically inserts region parameters for function arguments,
so you rarely have to write them. For instance, foo can be written simply
as:

17

void foo(struct Point * p) {
p->y = 1234;
return;

}

As another example, if you write the following:

void h(struct Point * p1, struct Point * p2) {
p1->x += p2->x;
p2->x += p2->y;

}

then Cyclone fills in the region parameters for you by assuming that the
points p1 and p2 can live in any two regions ‘r1 and ‘r2 . To make this
explicit, we would write:

void h(struct Point *‘r1 p1, struct Point *‘r2 p2) {
p1->x += p2->x;
p2->x += p2->y;

}

Now we can call h with pointers into any two regions, or even two point-
ers into the same region. This is because the code is type-correct for all
regions ‘r1 and ‘r2

Occasionally, you will have to put region parameters in explicitly. This
happens when you need to assert that two pointers point into the same
region. Consider for instance the following function:

void j(struct Point * p1, struct Point * p2) {
p1 = p2;

}

Cyclone will reject the code because it assumes that in general, p1 and
p2 might point into different regions. That is, Cyclone fills in the missing
regions as follows:

void j(struct Point *‘r1 p1, struct Point *‘r2 p2) {
p1 = p2;

}

18

Now it is clear that the assignment does not type-check because the types
of p1 and p2 differ. In other words, ‘r1 and ‘r2 might be instantiated
with different regions, in which case the code would be incorrect. But you
can make them the same by putting in the same explicit region for each
pointer. Thus, the following code does type-check:

void j(struct Point *‘r1 p1, struct Point *‘r1 p2) {
p1 = p2;

}

So, Cyclone assumes that each pointer argument to a function is in a
(potentially) different region unless you specify otherwise. The reason we
chose this as the default is that (a) it is often the right choice for code, (b)
it is the most general type in the sense that if it does work out, clients will
have the most lattitude in passing arguments from different regions or the
same region to the function.

What about the results? Here, there is no good answer because the
region of the result of a function cannot be easily determined without
looking at the body of the function, which defeats separate compilation of
function definitions from their prototypes. Therefore, we have arbitrarily
chosen the heap as the default region for function results. Consequently,
the following code:

struct Point * good_newPoint(int x,int y) {
return new Point{x,y};

}

type-checks since the new operator returns a pointer to the heap, and the
default region for the return type is the heap.

This explains why the original bad code for allocating a new point does
not type-check:

struct Point *newPoint(int x,int y) {
struct Point result = {x,y};
return &result;

}

The value &result is a pointer into region ‘newPoint but the result type
of the function needs to be a pointer into the heap (region ‘H).

If you want to return a pointer that is not in the heap region, then you
need to put the region in explicitly. For instance, the following code:

19

int * id(int *x) {
return x;

}

will not type-check immediately. To see why, let us rewrite the code with
the default region annotations filled in. The argument is assumed to be
in a region ‘r , and the result is assumed to be in the heap, so the fully
elaborated code is:

int *‘H id(int *‘r x) {
return x;

}

Now the type-error is manifest. To fix the code, we must put in explicit
regions to connect the argument type with the result type. For instance,
we might write:

int *‘r id(int *‘r x) {
return x;

}

Region Summary

In summary, each pointer in Cyclone points into a given region and this
region is reflected in the type of the pointer. Cyclone won’t let you deref-
erence a pointer into a deallocated region. The lexical blocks declared in
functions correspond to one type of region, and simply declaring a vari-
able within that block allocates storage within the region. The storage is
deallocated upon exit of the block. Dynamic regions are similar, except
that a dynamic number of objects can be allocated within the region using
the region’s handle. The heap is a special region that is garbage collected.

Region polymorphism makes it possible to omit many region annota-
tions on types. Cyclone assumes that pointers passed to functions may live
in distinct regions, and assumes that result pointers are in the heap. These
assumptions are not perfect, but (a) programmers can fix the assumptions
by providing explicit region annotations, (b) it permits Cyclone files to be
separately compiled.

The region-based type system of Cyclone is perhaps the most compli-
cated aspect of the language. In large part, this is because memory man-
agement is a difficult and tricky business. We have attempted to make

20

stack allocation and region polymorphic functions simple to use without
sacrificing programmer control over the lifetimes of objects and without
having to resort to garbage collection.

For more information about regions, see Section 8.

2.4 Tagged Unions and Pattern Matching

It’s often necessary to write a function that accepts an argument with more
than one possible type. For example, in

printf("%d",x);

x should be an integer, but in

printf("%s",x);

x should be a pointer to a sequence of characters.
If we call printf("%s",x) with an integer x , instead of a pointer

x , the program will likely crash. To prevent this, most C compilers treat
printf specially: they examine the first argument and require that the
remaining arguments have the appropriate types. However, a compiler
can’t check this if printf isn’t called with a literal string:

printf(s,x);

where s is a string variable. This means that in C, programs that use
printf (or scanf , or a number of related functions) are vulnerable to
crashes and corrupted memory. In fact, it’s possible for someone else to
crash your program by causing it to call printf with arguments that
don’t match the format string. This is called a format string attack, and
it’s an increasingly common exploit.

Cyclone provides tagged unions so that you can safely write functions
that accept an argument with more than one possible type. Like a C
union , a Cyclone tunion is a type that has several possible cases. Here’s
a simple example:

tunion t {
Integer(int);
String(const char ?);

};
tunion t x = new Integer(3);
tunion t y = new String("hello, world");

21

This declares a new type, tunion t , that can hold either an integer or a
string (remember, a string is a char ? in Cyclone). Integer and String
are tags for the two possibilities. The tags are used to build values of type
tunion t , as in the declarations of x and y .

Pattern matching is used to determine the tag of a value of type tunion
t , and to extract the underlying value. For example, here is a function that
will print either an integer or a string:

void print(tunion t a) {
switch (a) {
case &Integer(i): printf("%d",i); return;
case &String(s): printf("%s",s); return;
}

}

The argument a has type tunion t , so it is either built with tag Integer
or tag String . Cyclone extends switch statements with patterns that dis-
tinguish between the cases. The first case,

case &Integer(i): printf("%d",i); return;

contains a pattern, &Integer(i) , that will only match values that have
been built with the Integer tag. The variable i is bound to the under-
lying integer, and it can be used in the body of the case. For example,
print(x) will print 3, since x was initialized by new Integer(3) , and
print(y) will print hello, world .

The cases of a tunion can carry any number of values, including none,
and they can be recursive. For example, we can define a tree datatype as
follows.

tunion tree {
Empty;
Leaf(int);
Node(tunion tree, tunion tree);

};

A tree can be empty, or it can be a single (leaf) node holding an integer,
or it can be an internal node with a left and a right subtree. In other
words, tunion tree is the type of possibly empty binary trees with in-
teger leaves.

Here’s a function, sum, that calculates the sum of the leaves of a tree:

22

int sum(tunion tree x) {
switch (x) {
case Empty: return 0;
case &Leaf(i): return i;
case &Node(y,z): return sum(y)+sum(z);
}

}

It’s written in a straightforward way, with a case for each possible tag
in the type tunion tree . The Empty case is noticeably different than
the other two cases: the pattern does not use the & character. The reason
has to do with how tunion is implemented. Every value of tunion type
must have the same size; for example, the Node case recursively calls sum
on the subtrees y and z , without knowing whether they are empty, leaves,
or internal nodes. The only way that it can extract y and z from x without
knowing this is if all possible cases of tunion tree have the same size.

At the same time, each tag of a tunion can carry a different number
of values, so obviously each can require a different amount of space. To
make it all work, the value-carrying cases of a tunion are represented
as pointers to structures containing a distinguishing integer plus the val-
ues, and the non-value-carrying cases of a tunion are represented just as
distinguishing integers. Since integers and pointers have the same size in
Cyclone, this achieves the goal.

The data representation is reflected both in how tunion values are
constructed and in the patterns used to take them apart. Value-carrying
cases are built using the new keyword, which performs a heap allocation
and results in a pointer to the new storage. Non-value-carrying cases don’t
require any allocation, and so they don’t use new. For example,

new Node(Empty,new Leaf(5))

builds a tree consisting of an internal node with an empty left subtree, and
a right subtree consisting of a single leaf, 5. We use new for the value-
carrying cases, Node and Leaf , but not for Empty .

In pattern matching, we use the & character to match a pointer. So in
the function sum, since Leaf and Node are constructed as pointers, the &
is required to match them. Since Empty is not built as a pointer, the & must
not appear.

23

You might be wondering, “how does Cyclone tell whether a tunion
comes from a value-carrying case or a non-value-carrying case?” In partic-
ular, how can Cyclone tell the integers used for non-value-carrying cases
apart from the pointers used for the other cases? Here’s how we do it in
our current implementation: We reserve a space in the low part of mem-
ory where we will never allocate Cyclone objects using new. If a value of
a tunion is an address in this space, then it represents a tag without val-
ues, and if it is an address outside of this space, it represents a pointer to a
structure containing a tag plus the values that it carries.

You can find out more about patterns in Section 5; for more about
tunion and memory management, see Section 8.

2.5 Exceptions

So far we’ve glossed over what happens when you try to dereference a null
pointer, or assign to an out-of-bounds ? pointer. We’ve said that Cyclone
inserts checks to make sure the operation is safe, but what if the checks
fail? For safety, it would be sufficient to halt the program and print an error
message—a big improvement over a core dump, or, worse, a program with
corrupted data that keeps running.

In fact, Cyclone does something a bit more general than halting with an
error message: it throws an exception. The advantage of exceptions is that
they can be caught by the programmer, who can then take corrective action
and perhaps continue with the program. If the exception is not caught, the
program halts and prints an error message. Consider our earlier example:

FILE *f = fopen("/etc/passwd","r");
int c = getc((FILE @)f);

Suppose that there is no file /etc/passwd ; then fopen will return NULL,
and when f is cast to FILE @, the implied null check will fail. The pro-
gram will halt with an error message,

Uncaught exception Null_Exception

Null_Exception is one of a handful of standard exceptions used in Cy-
clone. Each exception is like a case of a tunion : it can carry along some
values with it. For example, the standard exception InvalidArg carries a
string. Exceptions can be handled in try -catch statements, using pattern
matching:

24

FILE *f = fopen("/etc/passwd","r");
int c;
try {

c = getc((FILE @)f);
}
catch {
case Null_Exception:

printf("Error: can’t open /etc/passwd\n");
exit(1);

case &InvalidArg(s):
printf("Error: InvalidArg(%s)\n",s);
exit(1);

}

Here we’ve “wrapped” the call to getc in a try -catch statement. If f
isn’t NULL and the getc succeeds, then execution just continues, ignoring
the catch . But if f is NULL, then the null check will fail and the exception
Null_Exception will be thrown; execution immediately continues with
the catch (the call to getc never happens). In the catch , the thrown
exception is pattern matched against the cases. Since the thrown exception
is Null_Exception , the first case is executed here.

There is one important difference between an exception and a case of a
tunion : with tunion , all of the cases have to be declared at once, while a
new exception can be declared at any time. So, exceptions are an extensible
tunion , or xtunion . Here’s how to declare a new exception:

xtunion exn {
My_Exception(char ?);

};

The type xtunion exn is the type of exceptions, and this declaration in-
troduces a new case for the xtunion exn type: My_Exception , which
carries a single value (a string). Exception values are created just like
tunion values—using new for value-carrying tags only—and are thrown
with a throw statement. For example,

throw new My_Exception("some kind of error");

or

throw Null_Exception;

25

2.6 Additional Features of Cyclone

Thus far, we have mentioned a number of advanced features of Cyclone
that provide facilities needed to avoid common bugs or security holes in
C. But there are many other features in Cyclone that are aimed at making
it easier to write code, ranging from convenient expression forms, to ad-
vanced typing constructs. For instance, like GCC and C99, Cyclone allows
you declare variables just about anywhere, instead of at the top of a block.
As another example, like Java, Cyclone lets you declare variables within
the initializer of a for -statement.

In addition, Cyclone adds advanced typing support in the form of (a)
parametric polymorphism, (b) structural subtyping, (c) some unification-
based, local-type inference. These features are necessary to type-check or
port a number of (potentially) unsafe C idioms, usually involving “void* ”
or the like. Similarly, tunion types can be used to code around many of
the uses for C’s union types – another potential source of unsoundness.
In what follows, we give a brief overview of these added features.

2.7 GCC and C99 Additions

GCC and the ISO C99 standard have some useful new features that we
have adopted for Cyclone. Some of the ones that we currently support
are:

• Statement expressions: There is a new expression form, ({ statement
expression }) . The statement is executed first, then the expression,
and the value of the entire expression is the value of the expression

• Struct expressions: If you’ve declared struct point {int x; int
y; }; then you can write point {.x= expression , .y= expression }
to allocate and initialize a struct point

• // comments as in Java or C++

• Declarations can appear in any statement position. It is not necessary
to wrap braces around the declaration of a local variable.

• For-statements can include a declaration. For instance:

26

http://web.onetelnet.ch/~twolf/tw/c/c9x_changes.html

for (int x=0; x < n; x++) {
...

}

We expect to follow the C99 standard fairly closely.

2.8 Tuples

Tuples are like lightweight structs. They need not be declared in advance,
and have member or field names that are implicitly 0, 1, 2, 3, etc. For
example, the following code declares x to be a 3-tuple of an integer, a
character, and a boolean, initialized with the values 42, ’z’ , and true
respectively. It then checks to see whether the third component in the
tuple is true (it is) and if so, increments the first component in the tuple.

$(int,char,bool) x = $(42,’z’,true)

if (x[2])
x[0]++;

The above code would be roughly equivalent to writing:

struct {int f0; char f1; bool f2;} x = {42,’z’,true};
if (x.f2)

x.f1++;

Thus, tuple types are written $(type1,...,typen) , tuple construc-
tor expressions are written $(exp1,...,expn) , and extracting the ith
component of a tuple is written using subscript notation exp[i-1] . Note
that, consistent with the rest of C, the members start with 0, not 1.

Unlike structs, tuple types are treated equivalent as long as they are
structurally equivalent. As in C, struct types are equivalent only if they
have the same tag or name. (Note that in C, all struct declarations have a
tag, even if the compiler has to gensym one.)

2.9 Creating Arrays

There are about four ways to create arrays in Cyclone. One can always
declare an array and provide an initializer as in C. For instance:

27

int foo[8] = {1,2,3,4,5,6,7,8};
char s[4] = "bar";

are both examples from C for creating arrays. Note that Cyclone follows
C’s conventions here, so that if you declare arrays as above within a func-
tion, then the lifetime of the array coincides with the activation record of
the enclosing scope. In other words, such arrays will be stack allocated.

To create heap-allocated arrays (or strings) within a Cyclone function,
you should either use “new” operator with either an array initializer or an
array comprehension. The following code demonstrates this:

// foo is a pointer to a heap-allocated array
int *{8}foo = new {1,2,3,4,5,6,7,8};

// s is a checked pointer to a heap-allocated string
char ?s = new "bar";

// a non-null pointer to the first 100 even numbers
int @{100}evens = new {for i < 100 : 2*i};

2.10 Subtyping

Cyclone supports “extension on the right” and “covariant depth on const ”
subtyping for pointers. This simply means that you can cast a value x from
having a type “pointer to a struct with 10 fields,” to “pointer to a struct
having only the first 5 fields.” For example, if we have the following defi-
nitions:

typedef struct Point {float x,y;} *point;

typedef struct CPoint {float x,y; int color;} *cpoint;

float xcoord(point p) {
return p->x;

}

then you can call xcoord with either a point or cpoint object. You can
also cast a pointer to a tuple having 3 fields (e.g., $(int,bool,double)*)
to a pointer to a tuple having only 2 fields (e.g., $(int,bool)*). In other

28

words, you can forget about the “tail” of the object. This allows a degree of
polymorphism that is useful when porting C code. In addition, you can do
“deep” casts on pointer fields that are const . (It is unsafe to allow deep
casts on non-const fields.) Also, you can cast a field from being non-const
to being const. You can also cast a constant-sized array to an equivalent
pointer to a struct or tuple. In short, Cyclone attempts to allow you to cast
one type to another as long as it is safe. Note, however, that these casts
must be explicit.

We expect to add more support for subtyping in the future (e.g., sub-
typing on function pointers, bounded subtyping, etc.)

2.11 Let Declarations

Sometimes, it’s painful to declare a variable because you have to write
down its type, and Cyclone types can be big when compared to their
C counterparts since they may include bounds information, regions, etc.
Therefore, Cyclone includes additional support for type inference using
let declarations. In particular, you can write:

int foo(int x) {
let y = x+3;
let z = 3.14159;
return (int)(y*z);

}

Here, we declared two variables y and z using “let .” When you use
let , you don’t have to write down the type of the variable. Rather, the
compiler infers the type from the expression that initializes the variable.
More generally, you can write “let pattern = exp; ” to destructure
a value into a bunch of variables. For instance, if you pass a tuple to a
function, then you can extract the components as follows:

int sum($(int,int,int) args) {
let $(x,y,z) = args;
return (x+y+z);

}

29

2.12 Polymorphic Functions

As mentioned above, Cyclone supports a limited amount of subtyping
polymorphism. It also supports a fairly powerful form of parametric poly-
morphism. Those of you coming from ML or Haskell will find this famil-
iar. Those of you coming from C++ will also find it somewhat familiar.
The basic idea is that you can write one function that abstracts the types
of some of the values it manipulates. For instance, consider the following
two functions:

$(string_t,int) swap1($(int,string_t) x) {
return $(x[1], x[0]);

}
$(int,int) swap2($(int,int) x) {

return $(x[1], x[0]);
}

The two functions are quite similar: They both take in a pair (i.e., a
2-tuple) and return a pair with the components swapped. At the machine-
level, the code for these two functions will be exactly the same, assuming
that int s and string_t s (char *) are represented the same way. So
it seems silly to write the code twice. Normally, a C programmer would
replace the definition with simply:

$(void *,void *) swap1($(void *,void *) x) {
return $(x[1], x[0]);

}

(assuming you added tuples to C). But of course, this isn’t type-safe be-
cause once I cast the values to void * , then I can’t be sure what type I’m
getting out. In Cyclone, you can instead write something like this:

$(‘b,‘a) swap($(‘a,‘b) x) {
return $(x[1],x[0]);

}

The code is the same, but it abstracts what the types are. The types ‘a
and ‘b are type variables that can be instantiated with any word-sized,
general-purpose register type. So, for instance, you can call swap on pairs
of integers, pairs of pointers, pairs of an integer and a pointer, etc.:

30

let $(x,y) = swap($("hello",3)); // x is 3, y is hello
let $(w,z) = swap($(4,3)); // w is 3, z is 4

Note that when calling a polymorphic function, you need not tell it
what types you’re using to instantiate the type variables. Rather, Cyclone
figures this out through unification.

C++ supports similar functionality with templates. However, C++ and
Cyclone differ considerably in their implementation strategies. First, Cy-
clone only produces one copy of the code, whereas a C++ template is
specialized and duplicated at each type that it is used. This approach
requires that you include definitions of templates in interfaces and thus
defeats separate compilation. However, the approach used by Cyclone
does have its drawbacks: in particular, the only types that can instantiate
type variables are those that can be treated uniformly. This ensures that
we can use the same code for different types. The general rule is that val-
ues of the types that instantiate a type variable must fit into a machine
word and must be passed in general-purpose (as opposed to floating-
point) registers. Examples of such types include int , pointers, tunion ,
and xtunion types. Other types, including char , short , long long ,
float , double , struct , and tuple types violate this rule and thus val-
ues of these types cannot be passed to a function like swap in place of the
type variables. In practice, this means that you tend to manipulate a lot of
pointers in Cyclone code.

The combination of parametric polymorphism and sub-typing means
that you can cover a lot of C idioms where void* or unsafe casts were
used without sacrificing type-safety. We use polymorphism a lot when
coding in Cyclone. For instance, the standard library includes many con-
tainer abstractions (lists, sets, queues, etc.) that are all polymorphic in the
element type. This allows us to re-use a lot of code. In addition, unlike
C++, those libraries can be compiled once and need not be specialized. On
the downside, this style of polymorphism does not allow you to do any
type-specific things (e.g., overloading or ad-hoc polymorphism.) Some-
day, we may add support for this, but in the short run, we’re happy not to
have it.

31

2.13 Polymorphic Data Structures

Just as function definitions can be parameterized by types, so can struct
definitions, tunion definitions, and even typedef s. For instance, the
following struct definition is similar to the one used in the standard
library for lists:

struct List<‘a> {‘a hd; struct List<‘a> * tl; };
typedef struct List<‘a> *list_t<‘a>;

Here, we’ve declared a struct List parameterized by a type ‘a .
The hd field contains an element of type ‘a and the tl field contains a
possibly-null pointer to a struct List with elements of type ‘a . We
then define list_t<‘a> as an abbreviation for struct List<‘a>* . So,
for instance, we can declare both integer and string lists like this:

list_t<int> ilist = new List{1,new List{2,null}};
list_t<string_t> slist = new List{.hd = "foo",

.tl = new List{"bar",null}};

Note that we use “new” as in C++ to allocate a new struct List
on the heap and return a pointer to the resulting (initialized) List object.
Note also that the field designator (“.hd ”, “.tl ”) are optional.

Once you have polymorphic data structures, you can write lots of use-
ful polymorphic code and use it over and over again. For instance, the
standard list library (see lib/list.h) includes functions for mapping over a
list, looking up items in a list, concatenating two lists, copying lists, sorting
lists, etc.

2.14 Abstract and Existential Types

Suppose you want to declare an abstract type for implementing stacks. In
Cyclone, the way this is accomplished is by declaring a struct that encap-
sulates the implementation type, and by adding the “abstract ” qualifier
to the struct definition. For instance, if we write:

abstract struct Queue<‘a> { list_t<‘a> front, rear; };

then this declares a polymorphic Queue implementation that is abstract.
The definition of the struct is available within the unit that declares the

32

Queue, but will not be made available to the outside world. (This will
be enforced by a link-time type-checker that we are currently putting to-
gether.) Typically, the provider of the Queue abstraction would write in
an interface file:

extern struct Queue<‘a>;

The abstract keyword in the implementation ensures that the definition
does not leak to a client.

Typedef s cannot be made abstract. As in C, typedefs are type abbre-
viations and are expanded at compile time. If we chose to make them
(potentially) abstract, then we’d have to enforce a “boxedness” restriction,
similar to the restrictions on type variables. To simplify the language, we
chose to make structs abstract.

It’s also possible to code up “first-class” abstract data types using tunion s
or xtunion s. Individual [x]tunion constructors can be parameterized by
additional type variables that are local to the type-constructor. (From a
type-theoretic point of view, these are existentially-quantified variables.)
Our current approach is quite similar to the treatment of existential types
in Haskell. Existential types are described in Section 4.

For an example of the use of existential types, see the fn.h and fn.cyc
files in the standard library, which implement first-class closures.

2.15 Restrictions

Though Cyclone adds many new features to C, there are also a number of
restrictions that it must enforce to ensure code does not crash. Here is a
list of the major restrictions:

• Cyclone requires every function to declare a return type (the implicit
int for the return type of a function is removed).

• Cyclone does not permit some of the casts that are allowed in C be-
cause incorrect casts can lead to crashes, and it is not always possible
for us to determine what is safe. In general, you should be able to cast
something from one type to another as long as the underlying rep-
resentations are compatible. Note that Cyclone is very conservative
about “compatible” because it does not know the size or alignment
constraints of your C compiler.

33

• Cyclone does not support pointer arithmetic on * or @pointers. Pointer
arithmetic is not unsafe in itself, but it can lead to unsafe code when
the resulting pointer is assigned or dereferenced. You can cast the *
or @value to a ? value and then do the pointer arithmetic instead.

• Cyclone inserts a NULL check when a * pointer is dereferenced and
it cannot determine statically that the pointer is not NULL.

• Cyclone requires any function that is supposed to return a non-void
value to execute a return statement (or throw an exception) on every
possible execution path. This is needed to ensure that the value re-
turned from the function has the right type, and is not just a random
value left in a register or on the stack.

• Unions in Cyclone can only hold “bits.” In particular, they can hold
combinations of chars, ints, shorts, longs, floats, doubles, structs of
bits, or tuples of bits. Pointer types are not supported. This avoids
the situation where an arbitrary bit pattern is cast to a pointer and
then dereferenced. If you want to use multiple types, then use tagged
unions (tunion s).

• Cyclone only supports a limited form of malloc which is baked in.
Tuples and structs can be allocated via malloc but this requires writ-
ing explicitly: malloc(sizeof(t)) where t is the type of the value
that you are allocating. You cannot use malloc to allocate an array.

• Cyclone performs a static analysis to ensure that every variable and
every struct field is initialized before it is used. This prevents a
random stack value from being used improperly. The analysis is
somewhat conservative so you may need to initialize things earlier
than you would do in C. For instance, currently, Cyclone does not
support initializing a struct in a procedure separate from the one that
does the allocation.

• Cyclone does not permit goto s from one scope into another. C warns
against this practice, as it can cause crashes; Cyclone rules it out en-
tirely.

• Cyclone places some limitations on the form of switch statements
that rule out crashes like those caused by unrestricted goto . Fur-
thermore, Cyclone prevents you from accidentally falling through

34

from one case to another. To fall through, you must explicitly use
the fallthru keyword. Otherwise, you must explicitly break ,
goto , continue , return , or throw an exception. However, ad-
jacent cases for a switch statement (with no intervening statement)
do not require an explicit fallthru .

• In the near future, Cyclone will place some restrictions on linking
for safety reasons. In particular, if you import a variable or function
with one type, then it must be exported by another file with that type.
In addition, access to C code will be restricted based on a notion of
security roles.

• Cyclone has some new keywords (let , abstract , region , etc.)
that can no longer be used as identifiers.

• Cyclone prevents you from using pointers to stack-allocated objects
as freely as in C to avoid security holes. The reason is that each dec-
laration block is placed in a conceptual “region” and the type system
tracks the region into which a pointer points.

• Cyclone does not allow you to explicitly free a heap-allocated object.
Instead, you can either use the region mechanism or rely upon the
conservative garbage collector to reclaim the space.

In addition, there are a number of shortcomings of the current imple-
mentation that we hope to correct in the near future. For instance:

• Cyclone currently does not support nested type declarations within a
function. All struct , union , enum, tunion , xtunion , and typedef
definitions must be at the top-level.

• Cyclone does not allow you to use a struct , tunion , union , xtunion ,
or enum type without first declaring it. We do support one special
case of this where you embed a declaration within a typedef as in:

typedef struct Point {int x,y} *point_t;

• Cyclone does not allow a typedef declaration to be shadowed by an-
other declaration.

• In some cases, Cyclone does not allow 0 (zero) to be treated as the
NULL pointer.

35

3 Pointers

As in C, Cyclone pointers are just addresses. Operations on pointers, such
as *x , x->f , and x[e] , behave the same as in C, with the exception that
run-time checks sometimes precede memory accesses. (Exactly when and
where these checks occur is described below.) However, Cyclone prevents
memory errors such as dereferencing dangling pointers, so it may reject
legal C operations on pointers.

In order to enforce memory safety, Cyclone pointer types contain more
information than their C counterparts. In addition to the type of the object
pointed to, pointer types indicate:

• Whether a value of the type may be NULL

• The number of objects pointed to

• The region into which the pointer points

For example, the type int *{7}‘H is for possibly-null pointers to
seven int objects in the heap. The syntax and semantics of all this ad-
ditional pointer information is now explained. Then we introduce a new
type for arrays of unknown size. Pointer arithmetic is allowed only on this
last collection of types. Throughout, we mention planned improvements.
We end with a summary.

Whether a value of the type may be NULL

Cyclone’s type system distinguishes between pointers that may be NULL
and those that may not.

Syntax and Semantics The syntax is straightforward: The * character is
for pointers that may be NULL(as in C), and the @character is for pointers
that may not be NULL. So “int * x = NULL; ” is accepted, but “int @
x = NULL; ” is not.

Subtyping For any type t , the type t@ is a subtype of t* . The type of
malloc(sizeof(t)) is t@, as is new e where e has type t . Hence in the
declaration, “int *x = malloc(sizeof(int)) ”, there is an implicit

36

legal cast from t@ to t* . Note that even when t1 is a subtype of t2 ,
the type t1* is not necessarily a subtype of t2* , nor is t1@ necessarily
a subtype of t2@. For example, int@@ is not a subtype of int*@ . This
illegal code shows why:

void f(int @@ x) {
int *@ y = x; // would be legal were int *@ a subtype of int @@
*y = NULL; // legal because *y has type int *
**x; // seg faults even though the type of *x is int @

}

You can explicitly cast a value of type t* to t@. Doing so will perform a
run-time check. The cast can be omitted, but the compiler emits a warning
and performs the run-time check. Because the current implementation
does not consider tests to change a t* to t@, such casts are sometimes
necessary to avoid spurious warnings, such as in this code:

extern void f(int @);

void g(int * x) {
if (x != NULL)

f((int @)x);
}

Implementation A run-time null check is a simple comparison. If it fails
(i.e., the value is NULL), the exception Null_Exception is thrown. A
check is inserted whenever a t* is (explicitly or implicitly) cast to a t@.
Casting t@ to t* has no run-time effect.

Safety demands that if x may be NULL, then *e , e.f , e->f , and e[e2]
are translated such that we first check that e is not NULL. e is only eval-
uated once. The only way to guarantee there is no check at run-time is
to use @instead of * . For example, the function on the left performs one
check whereas the one on the right performs three (both throw Null_-
Exception if passed NULL):

int sum3(int *{3} x) { int sum3(int *{3} x) {
int @{3} y = x; return x[0]+x[1]+x[2];
return y[0]+y[1]+y[2]; }

}

37

Note that &e->f and &e[e2] check (if necessary) that e is not NULL
even though these constructs do not read through e.

Future

• We may use dataflow information to avoid spurious warning about
implicit casts from t* to t@and to avoid inserting unnecessary checks.
However, the analysis is non-trivial (due to the address-of operator,
unstructured control flow, and undefined evaluation order), and the
C compiler may be able to eliminate unnecessary checks for us.

• For debugging purposes, we may have Null_Exception carry source-
position information.

The number of objects pointed to

Syntax and Semantics The type t@{37} (similarly t*{37}) describes
pointers to 37 t values. In other words, if x has type t@{37} , then x[e]
is safe so long as e is between 0 and 36, inclusive. If the {n} is omitted, it is
implicitly {1} . Currently, the number must be a compile-time constant—
see below for arrays of unknown size.

We are taking pains not to say t@{37} describes an array of 37 t values
because C (and therefore Cyclone) distinguishes arrays and pointers in
certain contexts. For example, a local declaration “t@{37} x; ” allocates
space on the stack for a pointer (which must hold a pointer to 37 t values)
whereas “t x[37]; ” allocates space on the stack for 37 t values.

Subtyping Pointers to more objects are subtypes of pointers to fewer ob-
jects (of the same type). An explicit cast is not necessary. Put another way,
we could say t@{37} describes pointers to at least 37 t values.

Implementation The length information is not present at run-time, ex-
cept implicitly in run-time checks. That is, if e has type t @{37} , the
compiler translates e[e2] to check that e2 is less than 37. e2 is evaluated
only once. If e2 is a constant expression, there is no run-time check. If e2
is a constant expression not less than 37, it is a compile-time error.

38

Future In the future, the bounds information on a pointer will not have
to be a compile-time constant. For example, you will be able to write

void f(int n) {}
int *{n} arr = new {for i < n : 37};
...

}

This addition is non-trivial because, in terms of the above example,
the variable n may be mutated later in the function. In general, we are
developing a general system where the sizes of pointer bounds may be
expressed in terms of expressions, yet the compiler can always insert the
correct bounds check or verify that the check is unnecessary.

Currently, pointer arithmetic is only allowed on types of the form t? .
Soon we will allow adding a compile-time constant c to t@{n} (for exam-
ple), with the type of the result being t@{n-c} . It will be a compile-time
error if c > n .

The region into which the pointer points

Syntax and Semantics The type t@‘r describes pointers into region ‘r .
All regions start with the ‘ character so that they are not confused with
identifiers. If the region is omitted, the compiler inserts one. The region
inserted depends on where the type occurs, as described below.

The heap region (written ‘H) conceptually lives forever; in practice, it
is garbage-collected.

Every block (i.e., local scope) is a region. If you label a block with L: ,
then the region’s name is ‘L . Similarly, the parameters to a function f
are in a region named ‘f . Thanks to region inference, you can point into
regions without explicit names. For example, you can say int *x = &y
if y is a local variable in an unlabeled block. Conceptually, the compiler
creates a label for the block and fills in the corresponding region name for
you. (The output need not actually have a label.)

Because every pointer has a type and every pointer type has a region,
a pointer cannot be mutated so that it points into a different region than it
did before the assignment. Often subtyping (see below) is sufficient, but
in some cases it is necessary to rewrite C code to use different variables

39

for pointers into different regions. Note that there is no way for a global
variable to hold a stack pointer.

Functions are implicitly polymorphic over the regions of their argu-
ments. For example, void f(int *‘r); is a prototype that can be passed
a pointer into any accessible region. That is, it can be passed a stack pointer
or a heap pointer, so long as it is not passed a dangling pointer. Note
that our example function f could not possibly assign its argument to a
global, whereas void g(int *‘H); could. On the other hand, g cannot
be passed a stack pointer.

The rules the compiler uses for filling in regions when they are omitted
from pointer types are numerous, but they are designed to avoid clutter in
the common case:

• In function-argument types, a fresh region name is used.

• In function-return types, ‘H is used.

• In type definitions, including typedef , ‘H is used.

• In function bodies, unification is used to infer the region based on
how the location assigned the pointer type is used in the function.

In the future, we intend to change the rule for typedef so that the mean-
ing can be different at each use of the typedef , as dictated by the other
rules. Until then, be warned that

typedef int * foo_t;
void g(foo_t);

is different than

void g(int *);

Also, note that these rules are exactly the same as the rules for omitted
regions in instantiations of parameterized types.

Subtyping t *‘r1 is a subtype of t *‘r2 if ‘r1 is known to outlive
‘r2 . In particular, you can always cast a heap pointer to a pointer into
another region.

40

Implementation A pointer’s region is not stored with the pointer at run-
time. So there is no way to ask for the region into which a pointer points.
For stack regions there is no region object at run-time per se, just the stack
space for the objects. As is normal with region-based systems, Cyclone
does not prevent dangling pointers. Rather, it prevents dereferencing dan-
gling pointers. But this is a subtle point.

Pointers to an Unknown Number of Objects—The t ? Types

So far, we have not provided a way to point to a number of objects when
the number is not known at compile-time.

Syntax and Semantics The type t ? describes such pointers to objects
of type t . Such types may be assigned NULL. They may be annotated with
a region, which (as with other pointer types) is the region into which the
pointer points. Omitted region annotations are filled in by the compiler.
Clearly, explicit bounds information makes no sense for these types. If
e has type t ? , then e.size has type int and is the number of objects
pointed to by type t . (Actually, e.size is allowed for any pointer type,
but for other pointers it is evaluated at compile-time.) The meaning of op-
erations on t ? objects is best explained in terms of the implementation.

Implementation Unlike with types like t*{37} , the implementation stores
bounds information with objects of type t ? . Currently, a t ? object
occupies three machine words. Conceptually, the object maintains the
starting address of the collection of objects pointed to, the length of the
collection, and the current value of the pointer used for accessing mem-
ory. Pointer arithmetic may cause the access pointer to be out-of-bounds;
no error occurs at this point. On the other hand, a subscript operation
e1[e2] where e1 has type t? checks that the access-pointer of e1 plus
e2 is within bounds of e1 . Both e1 and e2 are evaluated once. If the
bound is violated the exception Null_Exception is thrown.

When an object of type t? is assigned to, it gets the bounds informa-
tion from the “right-hand side” of the assignment. So x=y copies all of
y ’s fields to the fields of x . Similarly x = y + 17 , copies y ’s fields and
then adds 17 to x ’s access pointer. Finally, x++ just increments x ’s access
pointer. As in C, pointer arithmetic is limited to addition of constants and

41

subtraction. The result of pointer subtraction has type unsigned int , so
there is no bounds information.

Even though, t ? types are implemented as multi-word values, com-
parison operations (e.g., ==) are defined on them—the comparison is per-
formed on the access pointers.

Conversions to/from t ? ‘r types from/to t*{n}‘r and t@{n}‘r
types exist. Converting to a t? type just uses the t* or t@’s static type in-
formation to initialize the bounds information. The cast may be implicit;
no warning is given. Converting to a t* or t@ type incurs a run-time check
that the access pointer has a value such that the target type’s bounds in-
formation is sound. If so, the access pointer is returned, else the exception
Null_Exception is thrown. Implicit casts of this form cause the com-
piler to give a warning.

Future We may add a “cannot be NULL” version of these types for sake
of completeness. More significantly, we intend to allow user-defined types
to have certain fields describe the bounds information for other fields,
rather than relying on types built into the language.

Summary and Discussion

A pointer type has one of the following forms, where t is a type and n is a
constant unsigned expression:

• t *{n}‘r , a possibly NULLpointer to n elements of type t in region
‘r

• t @{n}‘r , a non-NULLpointer to n elements of type t in region ‘r

• t ? ‘r , a pointer to an unknown number of elements of type t in
region ‘r . Implemented as a multi-word object.

If {n} is omitted, it is {1} . If the region is omitted, the compiler inserts
one. The region inserted depends on where the type is written.

The easiest way to port code is to replace uses of t * with t ? . Of
course, this technique does not address region annotations. Functions that
can take only heap pointers (because the pointers escape into data struc-
tures, for example) will need to add ‘H annotations for the relevant pa-
rameters.

42

Of course, using t? delays errors until run-time and is less efficient.
Using t@ is the most efficient and guarantees that Null_Exception will
not be thrown.

Currently, code performing pointer arithmetic must use t? .

4 Tagged Unions

In addition to struct , enum, and union , Cyclone has tunion (for “tagged
union”) and xtunion (for “extensible tagged union”) as ways to construct
new aggregate types. Like a union type, each tunion and xtunion has
a number of variants (or members). Unlike with union , an object of a
tunion or xtunion type is exactly one variant, we can detect (or dis-
criminate) that variant at run-time, and the language prevents using an
object as though it had a different variant.

The difference between tunion and xtunion is that tunion is closed—
a definition lists all possible variants. It is like the algebraic datatypes in
ML. With xtunion , separately compiled files can add variants, so no code
can be sure that it knows all the variants. There is a rough analogy with
not knowing all the subclasses of a class in an object-oriented language.

For sake of specificity, we first explain how to create and use tunion
types. We then explain xtunion by way of contrast with tunion . Be-
cause the only way to read parts of tunion and xtunion types is pattern-
matching, it is hard to understand tunion without pattern-matching, but
for sake of motivation and completeness, some of the examples in the ex-
planation of pattern-matching use tunion ! To resolve this circular depen-
dency, we will informally explain pattern-matching as we use it here and
we stick to its simplest uses.

4.1 tunion

Basic Type Declarations and Subtyping [Warning: For expository pur-
poses, this section contains a white lie that is exposed in the later section called
“regions for tunion”.]

A tunion type declaration lists all of its variants. At its simplest, it
looks just like an enum declaration. For example, we could say:

tunion Color { Red, Green, Blue };

43

As with enum, the declaration creates a type (called tunion Color)
and three constants Red, Green , and Blue . Unlike enum, these con-
stants do not have type tunion Color . Instead, each variant has its own
type, namely tunion Color.Red , tunion Color.Green , and tunion
Color.Blue . Fortunately these are all subtypes of tunion Color and
no explicit cast is necessary. So you can write, as expected:

tunion Color c = Red;

In this simple example, we are splitting hairs, but we will soon find all
these distinctions useful. Unlike enum, tunion variants may carry any
fixed number of values, as in this example:

tunion Shape {
Point,
Circle(float),
Ellipse(float,float),
Polygon(int,float),

};

A Point has no accompanying information, a Circle has a radius, an
Ellipse has two axis lengths, and a (regular) Polygon has a number of
sides and a radius. (The value fields do not have names, so it is often bet-
ter style to have a variant carry one value of a struct type, which of course
has named members.) This example creates five types: tunion Shape ,
tunion Shape.Point , tunion Shape.Circle , tunion Shape.Ellipse ,
and tunion Shape.Polygon . Like in our previous example, tunion
Shape.Point is a subtype of tunion Shape and Point is a constant of
type tunion Shape.Point .

Variants that carry one or more values are treated differently. Circle
becomes a constructor; given a float it produces an object of type tunion
Shape.Circle , for example Circle(3.0) . Similarly, Ellipse(0,0)
has type tunion Shape.Ellipse (thanks to implicit casts from int to
float for 0) and Polygon(7,4.0) has type tunion Shape.Polygon .
The arguments to a constructor can be arbitrary expressions of the correct
type, for example, Ellipse(rand(), sqrt(rand())) .

The second difference is that value-carrying variant types (e.g., tunion
Shape.Circle) are not subtypes of the tunion type (e.g., tunion Shape).

44

Rather non-null pointers to the value-carrying variant types are (e.g., tunion
Shape.Circle @‘H is a subtype of tunion Shape). So the following
are correct initializations that use implicit subtyping:

tunion Shape s1 = Point;
tunion Shape s2 = new Circle(3.0);

tunion types are particularly useful for building recursive structures.
For example, a small language of arithmetic expressions might look like
this:

enum Unops { Negate, Invert};
enum Binops { Add, Subtract, Multiply, Divide };
tunion Exp {

Int(int),
Float(float),
Unop(enum Unops, tunion Exp),
Binop(enum Binops, tunion Exp, tunion Exp)

};

A function returning an expression representing the multiplication of
its parameter by two could like this:

tunion Exp double_exp(tunion Exp e) {
return new Binop(Multiply, e, new Int(2));

}

Accessing tunion Variants Given a value of a tunion type, such as
tunion Shape , we do not know which variant it is.

For non-value variants, we can use a standard comparison. Continuing
the example from above, “s1 == Point ” would be true whereas “s2 ==
Point ” would be false.

Analogous comparisons would not work for value-carrying variants
because these variants are pointers. Rather than provide predicates (per-
haps of the form isCircle(s1)), Cyclone requires pattern-matching.
For example, here is how you could define isCircle :

bool isCircle(tunion Shape s) {
switch(s) {

45

case &Circle(r): return true;
default: return false;
}

}

When a switch statement’s argument has a tunion type, the cases
describe variants. One variant of tunion Shape is a pointer to a Circle ,
which carries one value. The corresponding pattern has & for the pointer,
Circle for the constructor name, and one identifier for each value car-
ried by Circle . The identifiers are binding occurrences (declarations, if
you will), and the initial values are the values of the fields of the Circle
at which s points. The scope is the extent of the case clause. Pattern-
matching works for non-value variants too, but there is no & because they
are not pointers.

Here is another example:
[The reader is asked to indulge compiler-writers who have forgotten basic ge-

ometry.]

extern area_of_ellipse(float,float);
extern area_of_poly(int,float);
float area(tunion Shape s) {

float ans;
switch(s) {
case Point:

ans = 0;
break;

case &Circle(r):
ans = 3.14*r*r;
break;

case &Ellipse(r1,r2):
ans = area_of_ellipse(r1,r2);
break;

case &Polygon(sides,r):
ans = area_of_poly(sides,r);
break;

}
return ans;

}

46

The cases are compared in order against s . The following are compile-
time errors:

• It is possible that a member of the tunion type matches none of the
cases. Note that default matches everything.

• A case is useless because it could only match if one of the earlier
cases match. For example, a default case at the end of the switch in
area would be an error.

We emphasize that Cyclone has much richer pattern-matching support
than we have used here.

Implementation Non-value variants are translated to distinct small in-
tegers. Because they are small, they cannot be confused with pointers to
value-carrying variants. Value-carrying variants have a distinct integer tag
field followed by fields for the values carried. Hence all values of a tunion
type occupy one word, either with a small number or with a pointer.

Regions for tunion We have seen that non-null pointers to value-carrying
variants are subtypes of the tunion type. For example, tunion Shape.Circle
@‘H is a subtype of tunion Shape . Because tunion Shape.Circle
@‘His a pointer into the heap, it would seem that all values of type tunion
Shape are either non-value variants or pointers into the heap. In fact, this
is true, but only because tunion Shape is itself shorthand for tunion
‘H Shape .

In other words, tunion types are region-polymorphic over the region
into which the value-carrying variants point. An explicit region annota-
tion goes after tunion , just like an explicit region annotation goes after *
or @. Here is an example using a stack region:

tunion Shape.Circle c = Circle(3.0);
tunion _ Shape s = &c;

The _ is necessary because we did not give an explicit name to the stack
region.

We can now correct the white lie from the “basic type declarations and
subtyping” section. A declaration tunion Foo {...} creates a type
constructor which given a region creates a type. For any region ‘r , tunion

47

‘r Foo is a subtype of tunion Foo.Bar @‘r if tunion Foo.Bar car-
ries values. If tunion Foo.Bar does not carry values, then it is a subtype
of tunion ‘r Foo for all ‘r .

In the future, we may make the implied region for tunion Foo de-
pend on context, as we do with pointer types. For now, tunion Foo is
always shorthand tunion ‘H Foo .

Polymorphism and tunion A tunion declaration may be polymorphic
over types and regions just like a struct definition (see the section on
polymorphism). For example, here is a declaration for binary trees where
the leaves can hold some BoxKind ‘a :

tunion <‘a> Tree {
Leaf(‘a);
Node(tunion Tree<‘a>, tunion Tree<‘a>);

};

In the above example, the root may be in any region, but all children
will be in the heap. This version allows the children to be in any region,
but they must all be in the same region. (The root can still be in a different
region.)

tunion <‘a,‘r::R> Tree {
Leaf(‘a);
Node(tunion ‘r Tree<‘a,‘r>, tunion ‘r Tree<‘a,‘r>);

};

Existential Types [This feature is independent of the rest of tunion’s features
and can be safely ignored when first learning Cyclone.]

In addition to polymorphic tunion types, it is also possible to param-
eterize individual variants by additional type variables. (From a type-
theoretic point of view, these are existentially-quantified variables.) Here
is a useless example:

tunion T { Foo<‘a>(‘a, ‘a, int), Bar<‘a,‘b>(‘a, ‘b), Baz(int) };

The constructors for variants with existential types are used the same
way, for example Foo("hi","mom",3) , Foo(8,9,3) , and Bar("hello",17)

48

are all well-typed. The compiler checks that the type variables are used
consistently—in our example, the first two arguments to Foo must have
the same type. There is no need (and currently no way) to explicitly spec-
ify the types being used.

Once a value of an existential variant is created, there is no way to de-
termine the types at which it was used. For example, Foo("hi","mom",3)
and Foo(8,9,3) both have type, “there exists some ‘a such that the type
is Foo<‘a> ”. When pattern-matching an existential variant, you must
give an explicit name to the type variables; the name can be different from
the name in the type definition. Continuing our useless example, we can
write:

void f(tunion T t) {
switch(t) {
case Foo<‘a>(x,y,z): return;
case Bar<‘b,‘c>(x,y): return;
case Baz(x): return;
}

}

The scope of the type variables is the body of the case clause. So in
the first clause we could create a local variable of type ‘a and assign x
or y to it. Our example is fairly “useless” because there is no way for
code to use the values of existentially quantified types. In other words,
given Foo("hi","mom",3) , no code will ever be able to use the strings
"hi" or "mom". Useful examples invariably use function pointers. For a
realistic library, see fn.cyc in the distribution. Here is a smaller (and sillier)
example; see the section on region and effects for an explanation of why
the ‘e stuff is necessary.

int f1(int x, int y) { return x+y; }
int f2(string x, int y) {printf("%s",x); return y; }
tunion T<‘e::E> { Foo<‘a>(‘a, int f(‘a, int; ‘e)); };
void g(bool b) {

tunion T<{}> t;
if(b)

t = Foo(37,f1);
else

t = Foo("hi",f2);

49

switch(t) {
case Foo<‘a>(arg,fun):

‘a x = arg;
int (*f)(‘a,int;{}) = fun;
f(arg,19);
break;

}
}

The case clause could have just been fun(arg) —the compiler would
figure out all the types for us. Similarly, all of the explicit types above
are for sake of explanation; in practice, we tend to rely heavily on type
inference when using these advanced typing constructs.

Future

• Currently, given a value of a variant type (e.g., tunion Shape.Circle),
the only way to access the fields is with pattern-matching even though
the variant is known. We may provide a tuple-like syntax in the fu-
ture.

• If a tunion has only one value-carrying variant, it does not need a
tag field in its implementation. We have not yet implemented this
straightforward optimization.

4.2 xtunion

We now explain how an xtunion type differs from a tunion type. The
main difference is that later declarations may continue to add variants. Ex-
tensible datatypes are useful for allowing clients to extend data structures
in unforeseen ways. For example:

xtunion Food;
xtunion Food { Banana; Grape; Pizza(list_t<xtunion Food>) };
xtunion Food { Candy; Broccoli };

After these declarations, Pizza(new List(Broccoli, null)) is
a well-typed expression.

50

If multiple declarations include the same variants, the variants must
have the same declaration (the number of values, types for the values, and
the same existential type variables).

Because different files may add different variants and Cyclone com-
piles files separately, no code can know (for sure) all the variants of an
xtunion . Hence all pattern-matches against a value of an xtunion type
must end with a case that matches everything, typically default .

There is one built-in xtunion type: xtunion exn is the type of ex-
ceptions. Therefore, you declare new xtunion exn types like this:

xtunion exn {BadFilename(string)};

The implementation of xtunion types is very similar to that of tunion
types, but non-value variants cannot be represented as small integers be-
cause of separate compilation. Instead, these variants are represented as
pointers to unique locations in static data. Creating a non-value variant
still does not cause allocation.

5 Pattern Matching

Pattern matching provides a concise, convenient way to bind parts of large
objects to new local variables. Two Cyclone constructs use pattern match-
ing, let declarations and switch statements. Although the latter are more
common, we first explain patterns with let declarations because they have
fewer complications. Then we describe all the pattern forms. Then we
describe switch statements.

You must use patterns to access values carried by tagged unions, in-
cluding exceptions. In other situations, patterns make code more readable
and less verbose.

5.1 Let Declarations

In Cyclone, you can write

let x = e;

as a local declaration. The meaning is the same as t x = e; where t is
the type of e. In other words, x is bound to the new variable. Patterns are

51

much more powerful because they can bind several variables to different
parts of an aggregate object. Here is an example:

struct Pair { int x; int y; };
void f(struct Pair pr) {

let Pair(fst,snd) = pr;
...

}

The pattern has the same structure as a struct Pair with parts being
variables. Hence the pattern is a match for pr and the variables are ini-
tialized with the appropriate parts of pr . Hence “let Pair(fst,snd)
= pr ” is equivalent to “int fst =pr.x; int snd = pr.y ”. A let-
declaration’s initializer is evaluated only once.

Patterns may be as structured as the expressions against which they
match. For example, given type

struct Quad { struct Pair p1; struct Pair p2; };

patterns for matching against an expression of type struct Quad could be
any of the following (and many more because of constants and wildcards—
see below):

• Quad(Pair(a,b),Pair(c,d))

• Quad(p1, Pair(c,d))

• Quad(Pair(a,b), p2)

• Quad(p1,p2)

• q

In general, a let-declaration has the form “let p = e;” where p is a pat-
tern and e is an expression. In our example, the match always succeeds,
but in general patterns can have compile-time errors or run-time errors.

At compile-time, the type-checker ensures that the pattern makes sense
for the expression. For example, it rejects “let Pair(fst,snd) = 0” because 0
has type int but the pattern only makes sense for type struct Pair .

Certain patterns are type-correct, but they may not match run-time val-
ues. For example, constants can appear in patterns, so “let Pair(17,snd) =

52

pr;” would match only when pr.x is 17. Otherwise the exception Match_-
Exception is thrown. Patterns that may fail are rarely useful and poor
style in let-declarations; the compiler emits a warning when you use them.
In switch statements, possibly-failing patterns are the norm—as we ex-
plain below, the whole point is that one of the cases’ patterns should match.

5.2 Pattern Forms

So far, we have seen three pattern forms: variables patterns, struct pat-
terns, and constant patterns. We now describe all the pattern forms. For
each form, you need to know:

• The syntax

• The types of expressions it can match against (to avoid a compile-
time error)

• The expressions the pattern matches against (other expressions cause
a match failure)

• The bindings the pattern introduces, if any.

There is one compile-time rule that is the same for all forms: All vari-
ables (and type variables) in a pattern must be distinct. For example, “let
Pair(fst,fst) = pr;” is not allowed.

You may want to read the descriptions for variable and struct patterns
first because we have already explained their use informally.

• Variable patterns

– Syntax: an identifer

– Types for match: all types

– Expressions matched: all expressions

– Bindings introduced: the identifier is bound to the expression
being matched

• Wildcard patterns

– Syntax: _ (underscore, note this use is completely independent
of _ for type inference)

53

– Type for match: all types

– Expressions matched: all expressions

– Bindings introduced: none. Hence it is like a variable pattern
that uses a fresh identifier. Using _ is better style because it
indicates the value matched is not used. Notice that “let _ =
e; ” is equivalent to e.

• Reference patterns

– Syntax: *x (i.e., the * character followed by an identifier)

– Types for match: all types

– Expressions matched: all expressions. (Very subtle notes: Cur-
rently, reference patterns may only appear inside of other pat-
terns so that the compiler can determine the region for the pointer
type assigned to x . They also may not occur under a tunion
pattern that has existential types unless there is a pointer pat-
tern in-between.)

– Bindings introduced: x is bound to the address of the expression
being matched. Hence if matched against a value of type t in
region ‘r , the type of x is t@‘r .

• Numeric constant patterns

– Syntax: An int , char , or float constant

– Types for match: numeric types

– Expressions matched: numeric values such that == applied to
the value and the pattern yields true. (Standard C numeric pro-
motions apply. Note that comparing floating point values for
equality is usually a bad idea.)

– Bindings introduced: none

• NULLconstant patterns

– Syntax: NULL

– Types for match: nullable pointer types, including ? types

– Expressions matched: NULL

54

– Bindings introduced: none

• enum patterns

– Syntax: an enum constant

– Types for match: the enum type containing the constant

– Expressions matched: the constant

– Bindings introduced: none

• Tuple patterns

– Syntax: $(p1,...,pn) where p1,...,pn are patterns

– Types for match: tuple types where pi matches the type of the
tuple’s ith field i between 1 and n.

– Expressions matched: tuples where the ith field matches pi for
i between 1 and n.

– Bindings introduced: bindings introduced by p1 , . . . , pn .

• Struct patterns

– Syntax: There are two forms:

∗ X(p1,...,pn) where X is the name of a struct with n fields
and p1,...,pn are patterns. This syntax is shorthand for X{.f1 = p1, ..., .fn = pn}
where fi is the ith field in X.

∗ X{.f1 = p1, ..., .fn = pn} where the fields of X are
f1, ..., fn but not necessarily in that order

– Types for match: struct X (or instantiations when struct X
is polymorphic) such that pi matches the type of fi for i between
1 and n.

– Expressions matched: structs where the value in fi matches pi
for i between 1 and n.

– Bindings introduced: bindings introduced by p1,...,pn

• Pointer patterns

– Syntax: &p where p is a pattern

55

– Types for match: pointer types, including ? types. Also tunion
Foo (or instantiations of it) when the pattern is &Bar(p1,...,pn)
and Bar is a value-carrying variant of tunion Foo and pi matches
the type of the ith value carried by Bar.

– Expressions matched: non-null pointers where the value pointed
to matches p. Note this explanation includes the case where the
expression has type tunion Foo and the pattern is &Bar(p1,...,pn)
and the current variant of the expression is “pointer to Bar ”.

– Bindings introduced: bindings introduced by p

• tunion and xtunion patterns

– Syntax: X if X is a variant that carries no values. Else X(p1,...,pn)
where X is the name of a variant (that has no existential type
parameters) and p1, ..., pn are patterns. If X has existential type
parameters, the syntax is X<‘t1,...,‘tm>(p1,...,pn) for
distinct ‘t1 , . . . , ‘tm .

– Types for match: If X is non-value-carrying variant of tunion
Foo , then types tunion Foo and tunion Foo.x (or instan-
tiations of them). If X carries values, then tunion Foo.X (or
instantiations of it) where the pi matches the type of ith field.
The number of existential type variables in the pattern must be
the number of existential type variables for tunion Foo.X .

– Expressions matched: If X is non-value-carrying, then X. If X is
value-carrying, then values created from the constructor X such
that pi matches the ith field.

– Bindings introduced: bindings introduced by p1,...,pn

5.3 Switch Statements

In Cyclone, you can switch on a value of any type and the case “labels”
(the part between case and the colon) are patterns. The switch expres-
sion is evaluated and then matched against each pattern in turn. The first
matching case statement is executed. Except for some restrictions, Cy-
clone’s switch statement is therefore a powerful extension of C’s switch
statement.

56

Restrictions

• You cannot implicitly “fall-through” to the next case. Instead, you must
use the fallthru; statement, which has the effect of transferring
control to the beginning of the next case. There are two exceptions
to this restriction: First, adjacent cases with no intervening statement
do not require a fall-through. Second, the last case of a switch does
not require a fall-through or break.

• The cases in a switch must be exhaustive; it is a compile-time error if
the compiler determines that it could be that no case matches. The
rules for what the compiler determines are described below.

• A case cannot be unreachable. It is a compile-time error if the compiler
determines that a later case may be subsumed by an earlier one. The
rules for what the compiler determines are described below. (C al-
most has this restriction because case labels cannot be repeated, but
Cyclone is more restrictive. For example, C allows cases after a de-
fault case.)

• The body of a switch statement must be a sequence of case statements
and case statements can appear only in such a sequence. So id-
ioms like Duff’s device (such as “switch(i%4) while(i-- >=0)
{ case 3: ... }”) are not supported.

• A constant case label must be a constant, not a constant expression.
That is, case 3+4: is allowed in C, but not in Cyclone. Cyclone sup-
ports this feature with a separate construct: switch "C" (e) {
case 3+4: ... }. This construct is much more like C’s switch :
The labels must be constant numeric expressions and fallthru is
never required.

An Extension of C Except for the above restrictions, we can see Cy-
clone’s switch is an extension of C’s switch. For example, consider this
code (which has the same meaning in C and Cyclone):

int f(int i) {
switch(i) {
case 0: f(34); return 17;

57

case 1: return 17;
default: return i;
}

}

In Cyclone terms, the code tries to match against the constant 0. If it
does not match (i is not 0), it tries to match against the pattern 1. Every-
thing matches against default; in fact, default is just alternate notation for
“case _ ”, i.e., a case with a wildcard pattern. For performance reasons,
switch statements that are legal C switch statements are translated to C
switch statements. Other switch statements are translated to, “a mess of
tests and gotos”.

We now discuss some of the restrictions in terms of the above example.
Because there is no “implicit fallthrough” in non-empty cases, the return
statement in case 0 cannot be omitted. However, we can replace the “re-
turn 17;” with “fallthru;” a special Cyclone statement that immediately
transfers control to the next case. fallthru does not have to appear at the
end of a case body, so it acts more like a goto than a fallthrough. As in our
example, any case that matches all values of the type switched upon (e.g.,
default: , case _: , case x:) must appear last, otherwise later cases
would be unreachable. (Note that other types may have even more such
patterns. For example Pair(x,y) matches all values of type struct Pair int x;
int y;).

Much More Powerful Because Cyclone case labels are patterns, a switch
statement can match against any expression and bind parts of the expres-
sion to variables. Also, fallthru can (in fact, must) bind values to the
next case’s pattern variables. This silly example demonstrates all of these
features:

extern int f(int);}
int g(int x, int y) {

// return f(x)*f(y), but try to avoid using multiplication
switch($(f(x),f(y))) {
case $(0,_): fallthru;
case $(_,0): return 0;
case $(1,b): fallthru(b+1-1);
case $(a,1): return a;

58

case $(a,b): return a*b;
}

}

The only part of this example using a still-unexplained feature is “fallthru(b)”,
but we explain the full example anyway. The switch expression has type
$(int,int) , so all of the cases must have patterns that match this type.
Legal case forms for this type not used in the example include “case
$(_,id) :”, “case $(id,_): ”, “case id: ”, “case _: ”, and “default:”.

The code does the following:

• It evaluates the pair $(f(x), f(y)) and stores the result on the
stack.

• If f(x) returned 0, the first case matches, control jumps to the second
case, and 0 is returned.

• Else if f(y) returned 0, the second case matches and 0 is returned.

• Else if f(x) returned 1, the third case matches, b is assigned the value
f(y) returned, control jumps to the fourth case after assigning b+1-1
to a, and a (i.e., b + 1 - 1, i.e., b, i.e., f(y)) is returned.

• Else if f(y) returned 1, the fourth case matches, a is assigned the value
f(x) returned, and a is returned.

• Else the last case matches, a is assigned the value f(x) returned, b is
assigned the value f(y) returned, and a*b is returned.

Note that the switch expression is evaluated only once. Implementation-
wise, the result is stored in a compiler-generated local variable and the
value of this variable is used for the ensuring pattern matches.

The general form of fallthrus is as follows: If the next case has no bind-
ings (i.e., identifiers in its pattern), then you must write fallthru; . If the
next case has n bindings, then you must write fallthru(e1,...,en)
where each ei is an expression with the appropriate type for the ith bind-
ing in the next case’s pattern, reading from left to right. (By appropriate
type, we mean the type of the expression that would be bound to the ith
binding were the next case to match.) The effect is to evaluate e1 through
en, bind them to the identifiers, and then goto the body of the next case.

59

fallthru is not allowed in the last case of a switch, not even if there is
an enclosing switch.

We repeat that fallthru may appear anywhere in a case body, but it is
usually used at the end, where its name makes the most sense. ML pro-
grammers may notice that fallthru with bindings is strictly more expres-
sive than or-patterns, but more verbose.

Case Guards We have withheld the full form of Cyclone case labels. In
addition to case p: where p is a pattern, you may write case p && e:
where p is a pattern and e is an expression of type int. (And since e1 &&
e2 is an expression, you can write case p && e1 && e2: and so on.)
Let’s call e the case’s guard.

The case matches if p matches the expression in the switch and e eval-
uates to a non-zero value. e is evaluated only if p matches and only after
the bindings caused by the match have been properly initialized. Here is
a silly example:

extern int f(int);
int g(int a, int b) {

switch ($(a,b-1)) {
case $(0,y) && y > 1: return 1;
case $(3,y) && f(x+y) == 7 : return 2;
case $(4,72): return 3;
default: return 3;
}

}

The function g returns 1 if a is 0 and b is greater than 2. Else if x is 3,
it calls the function f (which of course may do arbitrary things) with the
sum of a and b. If the result is 7, then 2 is returned. In all other cases (x is
not 3 or the call to f does not return 7), 3 is returned.

Case guards make constant patterns unnecessary (we can replace case
3: with case x && x==3: , for example), but constant patterns are better
style and easier to use.

Case guards are not interpreted by the compiler when doing exhaus-
tiveness and overlap checks, as explained below.

60

Exhaustiveness and Useless-Case Checking As mentioned before, it is
a compile-time error for the type of the switch expression to have values
that none of the case patterns match or for a pattern not to match any
values that earlier patterns do not already match. Rather than explain the
precise rules, we currently rely on your intuition. But there are two rules
to guide your intuition:

• In terms of exhaustiveness checking, the compiler acts as if any case
guard might evaluate to false.

• In terms of exhaustiveness checking, numeric constants cannot make
patterns exhaustive. Even if you list out all 256 characters, the com-
piler will act as though there is another possibility you have not
checked.

We emphasize that checking does not just involve the “top-level” of
patterns. For example, the compiler rejects the switch below because the
third case is redundant:

enum Color { Red, Green };
void f(enum Color c1, enum Color c2) {

switch ($(c1,c2)) {
case $(Red,x): return;
case $(x,Green): return;
case $(Red,Green): return;
default: return;
}

}

Rules for No Implicit Fall-Through As mentioned several times now,
Cyclone differs from C in that a case body may not implicitly fall-through
to the next case. It is a compile-time error if such a fall-through might
occur. Because the compiler cannot determine exactly if an implicit fall-
through could occur, it uses a precise set of rules, which we only sketch
here. The exact same rules are used to ensure that a function (with return
type other than void) does not “fall off the bottom.” The rules are very
similar to the rules for ensuring that Java methods do not “fall off the
bottom.”

61

The general intuition is that there must be a break, continue, goto, re-
turn, or throw along all control-flow paths. The value of expressions is not
considered except for numeric constants and logical combinations (using
&&, || , and ? :) of such constants. The statement try s catch . . . is checked
as though an exception might be thrown at any point while s executes.

6 Type Inference

Cyclone allows many explicit types to be elided. In short, you write _-
(underscore) where a type should be and the compiler tries to figure out
the type for you. Type inference can make C-like Cyclone code easier to
write and more readable. For example,

_ x = malloc(sizeof(sometype_t));

is a fine substitute for

sometype_t @ x = malloc(sizeof(sometype_t));

Of course, explicit types can make code more readable, so it is often better
style not to use inference.

Inference is even more useful because of Cyclone’s advanced typing
constructs. For example, it is much easier to write down _ than a type for
a function pointer.

We now give a rough idea of when you can elide types and how types
get inferred. In practice, you tend to develop a sense of which idioms
succeed, and, if there’s a strange compiler-error message about a variable’s
type, you give more explicit information about the variable’s type.

Syntax As far as the parser is concerned, _ is a legal type specifier. How-
ever, the type-checker will immediately reject _ in these places (or at least
it should):

• As part of a top-level variable or function’s type.

• As part of a struct , tunion , xtunion , or typedef declaration.

Note that _ can be used for part of a type. A silly example is $(_,int)
= $(3,4) ; a more useful example is an explicit cast to a non-nullable
pointer (to avoid a compiler warning). For example:

62

void f(some_big_type * x, some_big_type @ y) {
if(x != NULL) {

y = (_ @) x;
}

Semantics Except for the subtleties discussed below, using _ should not
change the meaning of programs. However, it may cause a program not
to type-check because the compiler no longer has the type information it
needs at some point in the program. For example, the compiler rejects
x->f if it does not know the type of x because the different struct types
can have members named f .

The compiler infers the types of expressions based on uses. For exam-
ple, consider:

_ x = NULL;
x = g();
x->f;

This code will type-check provided the return type of g is a pointer to
a struct with a field named f . If the two statements were in the other
order, the code would not type-check. Also, if g returned an int , the code
would not type-check, even without the x->f expression, because the _ x
= NULLconstrains x to have a pointer type.

However, the above discussion assumes that sequences of statements
are type-checked in order. This is true, but in general the type-checker’s order
is unspecified.

Subtleties In general, inference has subtle interactions with implicit casts
(such as from t@ to t*) and constants that have multiple types (such as
numeric constants).

The following is a desirable property: If a program is modified by re-
placing some explicit types with _ and the program still type-checks, then
its meaning is the same. This property does not hold! Here are two examples:

Numeric Types This program prints -24 1000:

int f() {
char c = 1000;

63

return c;
}
int g() {
_ c = 1000; // compiler infers int
return c;
}
int main() {
printf("%d %d", f(), g());
return 0;
}

Order Matters Here is an example where the function’s meaning de-
pends on the order the type-checker examines the function:

void h1(int @ c, int maybe) {
_ a;
if(maybe)

a = c;
else

a = NULL;
}

At first, the type of a is completely unconstrained. If we next consider a =
c , we will give a the type of c , namely int @ , an int pointer that cannot
be NULL. Clearly that makes the assignment a = NULL problematic, but
Cyclone allows assignment from nullable pointers to non-nullable point-
ers; it gives a compile-time warning and inserts a run-time check that the
value is not NULL. Here the check will fail and an exception will be raised.
That is, h1(p,0) is guaranteed to raise an exception.

But what if the type-checker examines a = NULL first? Then the type-
checker will constrain a’s type to be a nullable pointer to an unconstrained
type. Then the assignment a = c will constrain that type to be int , so the
type of a is int * . An assignment from int @ to int * is safe, so there is
no warning. Moreover, the assignment a = NULL is not a run-time error.

The order of type-checking is left unspecified. In the future, we intend to move
to a system that is order-independent.

64

7 Polymorphism

Use ‘a instead of void * .

8 Memory Management Via Regions

8.1 Introduction

C gives programmers complete control over how memory is managed. An
expert programmer can exploit this to write very fast programs. However,
bugs that creep into memory-management code can cause crashes and are
notoriously hard to debug.

Languages like Java and ML use garbage collectors instead of leaving
memory management in the hands of ordinary programmers. This makes
memory management much safer, since the garbage collector is written by
experts, and it is used, and, therefore, debugged, by every program. How-
ever, removing memory management from the control of the applications
programmer can make for slower programs.

Safety is the main goal of Cyclone, so we provide a garbage collector.
But, like C, we also want to give programmers as much control over mem-
ory management as possible, without sacrificing safety. Cyclone’s region
system is a way to give programmers more explicit control over memory
management.

In Cyclone, objects are placed into regions. A region is simply an area
of memory that is allocated and deallocated all at once. So to deallocate
an object, you deallocate its region, and when you deallocate a region, you
deallocate all of the objects in the region. Regions are sometimes called
“arenas” or “zones.”

Cyclone has three sorts of region:

Stack regions As in C, local variables are allocated on the runtime stack;
the stack grows when a block is entered, and it shrinks when the
block exits. We call the area on the stack allocated for the local vari-
ables of a block the stack region of the block. A stack region has a
fixed size—it is just large enough to hold the locals of the block, and
no more objects can be placed into it. The region is deallocated when
the block containing the declarations of the local variables finishes
executing. With respect to regions, the parameters of a function are

65

considered locals—when a function is called, its actual parameters
are placed in the same stack region as the variables declared at the
start of the function.

Dynamic regions Cyclone also has dynamic regions, which are regions that
you can add objects to over time. You create a dynamic region in
Cyclone with a statement,

region identifier statement

This declares and allocates a new dynamic region, named identifier,
and executes statement. After statement finishes executing, the region
is deallocated. Within statement, objects can be added to the region,
as we will explain below.

Typically, statement is a compound statement:

region identifier {
statement1
...
statementn

}

The heap Cyclone has a special region called the heap. There is only one
heap, and it is never deallocated. New objects can be added to the
heap at any time (the heap can grow). Cyclone uses a garbage collec-
tor to automatically remove objects from the heap when they are no
longer needed. You can think of garbage collection as an optimiza-
tion that tries to keep the size of the heap small.

Objects outside of the heap live until their region is deallocated; there
is no way to free such an object earlier. Objects in the heap can be garbage
collected once they are unreachable (i.e., they cannot be reached by travers-
ing pointers) from the program’s variables. Objects in live non-heap re-
gions always appear reachable to the garbage collector (so everything reach-
able from them appears reachable as well).

Cyclone forbids following dangling pointers. This restriction is part of
the type system: it’s a compile-time error if a dangling pointer (a pointer
into a deallocated region) might be followed. There are no run-time checks

66

of the form, “is this pointing into a live region?” As explained below, each
pointer type has a region and objects of the type may only point into that
region.

8.2 Allocation

You can create a new object on the heap using one of three kinds of expres-
sion:

• new expr evaluates expr, places the result into the heap, and returns
a pointer to the result. It is roughly equivalent to

t @ temp = malloc(sizeof(t)); // where t is the type of expr
*temp = expr;

For example, new 17 allocates space for an integer on the heap, ini-
tializes it to 17, and returns a pointer to the space. For another exam-
ple, if we have declared

struct Pair { int x; int y; };

then new Pair(7,9) allocates space for two integers on the heap,
initializes the first to 7 and the second to 9, and returns a pointer to
the first.

• new array-initializer allocates space for an array, initializes it accord-
ing to array-initializer, and returns a pointer to the first element. For
example,

let x = new { 3, 4, 5 };

declares a new array containing 3, 4, and 5, and initializes x to point
to the first element. More interestingly,

new { for identifier < expr1 : expr2 }

is roughly equivalent to

67

unsigned int sz = expr1;
t @ temp = malloc(sz * sizeof(t 2)); // where t is the type of expr
for (int identifier = 0; identifier < sz; identifier++)

temp[identifier] = expr2;

That is, expr1 is evaluated first to get the size of the new array, the
array is allocated, and each element of the array is initialized by the
result of evaluating expr2. expr2 may use identifier, which holds the
index of the element currently being initialized.

For example, this function returns an array containing the first n pos-
itive even numbers:

int ? n_evens(int n) {
return new {for next < n : 2*(next+1)};

}

Note that:

– expr1 is evaluated exactly once, while expr2 is evaluated expr1

times.

– expr1 might evaluate to 0.

– expr1 might evaluate to a negative number. If so, it is implic-
itly converted to a very large unsigned integer; the allocation
is likely to fail due to insufficient memory. Currently, this will
cause a crash!!

– Currently, for array initializers are the only way to create an
object whose size depends on run-time data.

• malloc(sizeof(type)) . This is the only use of malloc allowed in
Cyclone; to enforce this, we have made malloc a keyword. This is
much more restricted than in C, where malloc is just an identifier
bound to a library function consuming an int and returning a char
* .

In Cyclone, you cannot even write malloc(8) if sizeof(type) is
8! So, malloc can’t be used to create an array whose size depends
on run-time data.

68

On the plus side, the type of malloc(sizeof(type)) is type @(a
subtype of type *), so there is no need to cast the result from char
* .

Objects can be created in a dynamic region using the following analo-
gous expressions.

• rnew(identifier) expr

• rnew(identifier) array-initializer

• rmalloc(identifier,sizeof(type))

rnew and rmalloc are keywords.
The Cyclone library has a global variable Core::heap_region which

contains a handle for the heap region, so, for example, new expr is just
rnew(heap_region, expr) .

The only way to create an object in a stack region is declaring it as a
local variable. Cyclone does not currently support salloc ; use a dynamic
region instead.

8.3 Common Uses

Although the type system associated with regions is complicated, there are
some simple common idioms. If you understand these idioms, you should
be able to easily write programs using regions, and port many legacy C
programs to Cyclone.

Remember that every pointer points into a region, and although the
pointer can be updated, it must always point into that same region (or a
region known to outlive that region). The region that the pointer points
to is indicated in its type, but omitted regions are filled in by the compiler
according to context.

When regions are omitted from pointer types in function bodies, the
compiler tries to infer the region. However, it can sometimes be too “ea-
ger” and end up rejecting code. For example, in

void f1(int x) {
int @ y = new 42;
y = &x;

}

69

the compiler uses y’s initializer to decide that y’s type is int @ ‘H . Hence
the assignment is illegal, the parameter’s region (called ‘f1) does not out-
live the heap. On the other hand, this function type-checks:

void f2(int x) {
int @ y = &x;
y = new 42;

}

because y’s types is inferred to be int @ ‘f2 and the assignment makes
y point into a region that outlives ‘f2 . We can fix our first function by
being more explicit:

void f1(int x) {
int @‘f1 y = new 42;
y = &x;

}

Function bodies are the only places where the compiler tries to infer the
region by how a pointer is used. In function prototypes, type declarations,
and top-level global declarations, the rules for the meaning of omitted re-
gion annotations are fixed. This is necessary for separate compilation: we
often have no information other than the prototype or declaration.

In the absence of region annotations, function-parameter pointers are
assumed to point into any possible region. Hence, given

void f(int * x, int * y);

we could call f with two stack pointers, a dynamic-region pointer and
a heap-pointer, etc. Hence this type is the “most useful” type from the
caller’s perspective. But the callee’s body (f) may not type-check with this
type. For example, x cannot be assigned to a heap pointer because we do
not know that x points into the heap. If this is necessary, we must give x
the type int *‘H . Other times, we may not care what region x and y are
in so long as they are the same region. Again, our prototype for f does not
indicate this, but we could rewrite it as

void f(int *‘r x, int *‘r y);

70

Finally, we may need to refer to the region for x or y in the function body.
If we omit the names (relying on the compiler to make up names), then we
obviously won’t be able to do so.

Formally, omitted regions in function parameters are filled in by fresh
region names and the function is “region polymorphic” over these names
(as well as all explicit regions).

In the absence of region annotations, function-return pointers are as-
sumed to point into the heap. Hence the following function will not type-
check:

int * f(int * x) { return x; }

Both of these functions will type-check; the second one is more useful:

int * f(int *‘H x) { return x; }
int *‘r f(int *‘r x) {return x; }

In type declarations (including typedef for now) and top-level vari-
ables, omitted region annotations are assumed to point into the heap. In
the future, the meaning of typedef may depend on where the typedef
is used. In the meantime, this code will type-check because it is equivalent
to the first function in the previous example:

typedef int * foo_t;
foo_t f(foo_t x) { return x; }

If you want to write a function that creates new objects in a region
determined by the caller, your function should take a region handle as one
of its arguments. The type of a handle is region_t<‘r> , where ‘r is the
region information associated with pointers into the region. For example,
this function allocates a pair of integers into the region whose handle is r :

$(int,int)@‘r f(region_t<‘r> r, int x, int y) {
return rnew(r) $(x,y);

}

Notice that we used the same ‘r for the handle and the return type. We
could have also passed the object back through a pointer parameter like
this:

71

void f2(region_t<‘r> r,int x,int y,$(int,int)*‘r *‘s p){
*p = rnew(r) $(7,9);

}

Notice that we have been careful to indicate that the region where *p
lives (corresponding to ‘s) may be different from the region for which r
is the handle (corresponding to ‘r). Here’s how to use f2 :

region rgn {
$(int,int) *‘rgn x = NULL;
f2(rgn,3,4,&x);

}

The ‘s and ‘rgn in our example are unnecessary because they would be
inferred.

typedef , struct , tunion , and xtunion declarations can all be pa-
rameterized by regions, just as they can be parameterized by types. For
example, here is part of the list library. Note that the “::R ” is necessary.

struct List<‘a,‘r::R>{‘a hd; struct List<‘a,‘r> *‘r tl;};
typedef struct List<‘a,‘r> *‘r list_t<‘a,‘r>;

// return a fresh copy of the list in r2
list_t<‘a,‘r2> rcopy(region_t<‘r2> r2, list_t<‘a> x) {

list_t result, prev;

if (x == NULL) return NULL;
result = rnew(r2) List{.hd=x->hd,.tl=NULL};
prev = result;
for (x=x->tl; x != NULL; x=x->tl) {

prev->tl = rnew(r2) List(x->hd,NULL);
prev = prev->tl;

}
return result;

}
list_t<‘a> copy(list_t<‘a> x) {

return rcopy(heap_region, x);
}

72

// Return the length of a list.
int length(list_t x) {

int i = 0;
while (x != NULL) {

++i;
x = x->tl;

}
return i;

}

The type list_t< type , rgn > describes pointers to lists whose elements
have type type and whose “spines” are in rgn.

The functions are interesting for what they don’t say. Specifically, when
types and regions are omitted from a type instantiation, the compiler uses
rules similar to those used for omitted regions on pointer types. More
explicit versions of the functions would look like this:

list_t<‘a,‘r2> rcopy(region_t<‘r2> r2, list_t<‘a,‘r1> x) {
list_t<‘a,‘r2> result, prev;
...

}
list_t<‘a,‘H> copy(list_t<‘a,‘r> x) { ... }
int length(list_t<‘a,‘r> x) { ... }

8.4 Type-Checking Regions

Because of recursive functions, there can be any number of live regions at
run time. The compiler the following general strategy to ensure that only
pointers into live regions are dereferenced:

• Use compile-time region names. Syntactically these are just type vari-
ables, but they are used differently.

• Decorate each pointer type and handle type with one region name.

• Decorate each program point with a (finite) set of region names. We
call the set the point’s capability.

• To dereference a pointer (via * , -> , or subscript), the pointer’s type’s
region name must be in the program point’s capability. Similarly, to

73

use a handle for allocation, the handle type’s region name must be
in the capability.

• Enforce a type system such that the following is impossible: A pro-
gram point P’s capability contains a region name ‘r that decorates
a pointer (or handle) expression expr that, at run time, points into a
region that has been deallocated and the operation at P dereferences
expr.

This strategy is probably too vague to make sense at this point, but
it may help to refer back to it as we explain specific aspects of the type
system.

Note that in the rest of the documentation (and in common parlance)
we abuse the word “region” to refer both to region names and to run-time
collections of objects. Similarly, we confuse a block of declarations, its
region-name, and the run-time space allocated for the block. (With loops
and recursive functions, “the space allocated” for the block is really any
number of distinct regions.) But in the rest of this section, we painstak-
ingly distinguish region names, regions, etc.

8.4.1 Region Names

Given a function, we associate a distinct region name with each program
point that creates a region, as follows:

• If a block (blocks create stack regions) has label L, then the region-
name for the block is ‘L .

• If a block has no label, the compiler makes up a unique region-name
for the block.

• In region r <‘foo> s , the region-name for the construct is ‘foo .

• In region r s , the region-name for the construct is ‘r .

The region name for the heap is ‘H . Region names associated with pro-
gram points within a function should be distinct from each other, distinct
from any region names appearing in the function’s prototype, and should
not be ‘H . (So you cannot use H as a label name.) Because the function’s

74

return type cannot mention a region name for a block or region-construct
in the function, it is impossible to return a pointer to deallocated storage.

In region r <‘r> s and region r s , the type of r is region_t<‘r> .
In other words, the handle is decorated with the region name for the con-
struct. Pointer types’ region names are explicit, although you generally
rely on inference to put in the correct one for you.

8.4.2 Capabilities

In the absence of explicit effects (see below), the capability for a program
point includes exactly:

• ‘H

• The effect corresponding to the function’s prototype. Briefly, any
region name in the prototype (or inserted by the compiler due to
an omission) is in the corresponding effect. Furthermore, for each
type variable ‘a that appears (or is inserted), “regions(‘a) ” is in
the corresponding effect. This latter effect roughly means, “I don’t
know what ‘a is, but if you instantiate with a type mentioning some
regions, then add those regions to the effect of the instantiated pro-
totype.” This is necessary for safely type-checking calls that include
function pointers.

• The region names for the blocks and “region r s ” statements that
contain the program point

For each dereference or allocation operation, we simply check that the
region name for the type of the object is in the capability. It takes extremely
trickly code (such as existential region names) to make the check fail.

8.4.3 Assignment and Outlives

A pointer type’s region name is part of the type. If e1 and e2 are pointers,
then e1 = e2 is well-typed only if the region name for e2 ’s type “out-
lives” the region name for e1 ’s type. By outlives, we intuitively mean the
region corresponding to one region name will be deallocated after the re-
gion corresponding to the other region name. The rules for outlives are as
follows:

75

• Every region outlives itself.

• ‘H outlives every region name.

• Region names for inner blocks outlive region names for outer blocks.

• For regions in function prototypes, you can provide explicit “out-
lives” as in this example:

void f(int *‘r1*‘r2 x,int *‘r3 y; ‘r2 < ‘r1, ‘r3 < ‘r2);

This says that ‘r1 outlives ‘r2 and ‘r2 outlives ‘r3 . The body will
be checked under these assumptions. Calls to f will type-check only
if the compiler knows that the region names of the actual arguments
obey the outlives assumptions.

For handlers, if ‘r is a region name, there is at most one value of type
region_t<‘r> (there are 0 if ‘r is a block’s name), so there is little use
in creating variables of type region_t<‘r> .

8.4.4 Type Declarations

A struct , typedef , tunion , or xtunion declaration may be parame-
terized by any number of region names. The region names are placed in
the list of type parameters. They must be followed by “::R ”, except for
typedef declarations (where the region name appears in the underlying
type). For example, given

struct List<‘a,‘r::R>{‘a hd; struct List<‘a,‘r> *‘r tl;};

the type struct List<int,‘H> is for a list of ints in the heap. Notice
that all of the “cons cells” of the List will be in the same region (the type
of the tl field uses the same region name ‘r that is used to instantiate
the recursive instance of struct List<‘a,‘r>). However, we could
instantiate ‘a with a pointer type that has a different region name.

tunion and xtunion declarations must also be instantiated with an
additional region name. If an object of type tunion ‘r Foo turns out to
be a value-carrying variant, then the object is treated (capability-wise) as a
pointer with region name ‘r . If the region name is omitted from a use of
a tunion declaration, it is implicitly ‘H .

76

8.4.5 Function Calls

If a function parameter or result has type int *‘r or region_t<‘r> ,
the function is polymorphic over the region name ‘r . That is, the caller
can instantiate ‘r with any region in the caller’s current capability. This
instantiation is usually implicit, so the caller just calls the function and the
compiler uses the types of the actual arguments to infer the instantiation
of the region names (just like it infers the instantiation of type variables).

The callee is checked knowing nothing about ‘r except that it is in
its capability (plus whatever can be determined from explicit outlives as-
sumptions). For example, it will be impossible to assign a parameter of
type int*‘r to a global variable. Why? Because the global would have to
have a type that allowed it to point into any region. There is no such type
because we could never safely follow such a pointer (since it could point
into a deallocated region).

8.4.6 Explicit and Default Effects

If you are not using existential types, you now know everything you need
to know about Cyclone regions and memory management. Even if you are
using these types and functions over them (such as the closure library in
the Cyclone library), you probably don’t need to know more than “ignore
those funny type variables of kind E”.

The problem with existential types is that when you “unpack” the type,
you no longer know that the regions into which the fields point are allo-
cated. We are sound because the corresponding region names are not in
the capability, but this makes the fields unusable. To make them usable,
we do not hide the capability needed to use them. Instead, we use an ef-
fect variable that is not existentially bound. An effect variable stands for a
capability, that is, a set of region names.

If the contents of existential packages contain only heap pointers, this
effect variable is unnecessary; it can just be the “empty effect”.

We will provide more documentation for existential packages that con-
tain region pointers in the near future.

77

9 Namespaces

As in C++, namespaces are used to avoid name clashes in code. For exam-
ple:

namespace Foo {
int x = 0;
int f() { return x; }

}

declares an integer named Foo::x and a function named Foo::f . Note
that within the namespace, you don’t need to use the qualified name. For
instance, Foo::f refers to Foo::x as simply x . We could also simply
write “namespace Foo; ” (note the trailing semi-colon) and leave out
the enclosing braces. Every declaration (variables, functions, types, type-
defs) following this namespace declaration would be placed in the Foo
namespace.

As noted before, you can refer to elements of a namespace using the
“:: ” notation. Alternatively, you can open up a namespace with a “using ”
declaration. For example, we could follow the above code with:

namespace Bar {
using Foo {

int g() { return f(); }
}
int h() { return Foo::f(); }

}

Here, we opened the Foo namespace within the definition of Bar::g .
One can also write “using Foo; ” to open a namespace for the remaining
definitions in the current block.

Namespaces can nest as in C++.
Currently, namespaces are only supported at the top-level and you

can’t declare a qualified variable directly. Rather, you have to write a
namespace declaration to encapsulate it. For example, you cannot write
“int Foo::x = 3; .”

The following subtle issues and implementation bugs may leave you
scratching your head:

78

• The current implementation translates qualified Cyclone variables
to C identifiers very naively: each :: is translated to _ (underscore).
This translation is wrong because it can introduce clashes that are
not clashes in Cyclone, such as in the following:

namespace Foo { int x = 7; }
int Foo_x = 9;

So avoid prefixing your identifiers with namespaces in your pro-
gram. We intend to fix this bug in a future release.

• Because #include is defined as textual substitution, the following
are usually very bad ideas: Having “namespace Foo; ” or “using
Foo; ” at the top level of a header file. After all, you will be chang-
ing the identifiers produced or the identifiers available in every file
that includes the header file. Having #include directives within
the scope of namespace declarations. After all, you are changing
the names of the identifiers in the header file by (further) qualifying
them. Unfortunately, the current system uses the C pre-processor
before looking at the code, so it cannot warn you of these probable
errors.

In short, you are advised to not use the “semicolon syntax” in header
files and you are advised to put all #include directives at the top
of files, before any namespace or using declarations.

• The translation of identifiers declared extern "C" is different. Given

namespace Foo { extern "C" int x; }

the Cyclone code refers to the global variable as Foo::x , but the
translation to C will convert all uses to just x . The following code
will therefore get compiled incorrectly (f will return 4):

namespace Foo { extern "C" int x; }
int f() {

int x = 2;
return x + Foo::x;

}

79

10 Varargs

C functions that take a variable number of arguments (vararg functions)
are syntactically convenient for the caller, but C makes it very difficult to
ensure safety. The callee has no fool-proof way to determine the number
of arguments or even their types. Also, there is no type information for
the compiler to use at call-sites to reject bad calls.

Cyclone provides three styles of vararg functions that provide different
trade-offs for safety, efficiency, and convenience.

First, you can call C vararg functions just as you would in C:

extern "C" void foo(int x, ...);
void g() {

foo(3, 7, "hi", ’x’);
}

However, for the reasons described above, foo is almost surely unsafe.
All the Cyclone compiler will do is ensure that the vararg arguments at
the call site have some legal Cyclone type.

Actually, you can declare a Cyclone function to take C-style varargs,
but Cyclone provides no way to access the vararg arguments for this style.
That is why the example refers to a C function. (In the future, function sub-
typing could make this style less than completely silly for Cyclone func-
tions.)

The second style is for a variable number of arguments of one type:

void foo(int x, ...string_t args);
void g() {

foo(17, "hi", "mom");
}

The syntax is a type and identifer after the “... ”. (The identifier is op-
tional in prototypes, as with other parameters.) You can use any identifier;
args is not special. At the call-site, Cyclone will ensure that each vararg
has the correct type, in this case string_t .

Accessing the varargs is simpler than in C. Continuing our example,
args has type string_t ? ‘foo in the body of foo . You retrieve the
first argument ("hi") with args[0] , the second argument ("mom") with
args[1] , and so on. Of course, args.size tells you how many argu-
ments there are.

80

This style is implemented as follows: At the call-site, the compiler gen-
erates a stack-allocated array with the array elements. It then passes a “fat
pointer” to the callee with bounds indicating the number of elements in
the array. Compared to C-style varargs, this style is less efficient because
there is a bounds-check and an extra level of indirection for each vararg
access. But we get safety and using vararg functions is just as convenient.

A very useful example of this style is in the list library:

list_t<‘a> list(... ‘a argv) {
list_t result = NULL;
for (int i = argv.size - 1; i >= 0; i--)

result = new List{argv[i],result};
return result;

}

Callers can now write list(1,2,3,4,5) and get a list of 5 elements.
The third style addresses the problem that it’s often desirable to have

a function take a variable number of arguments of different types. For ex-
ample, printf works this way. In Cyclone, we could use a tunion in
conjunction with the second style. The callee then uses an array subscript
to access a vararg and a switch statement to determine its tunion variant.
But this would not be very convenient for the caller—it would have to ex-
plicitly “wrap” each vararg in the tunion type. The third style makes this
wrapping implicit. For example, the type of printf in Cyclone is:

extern tunion PrintArg<‘r::R> {
String_pa(const char ?‘r);
Int_pa(unsigned long);
Double_pa(double);
ShortPtr_pa(short @‘r);
IntPtr_pa(unsigned long @‘r);

};
typedef tunion ‘r PrintArg<‘r> parg_t<‘r>;
printf(const char ?‘r fmt, ... inject parg_t<‘r2>);

The special syntax “inject ” is the syntactic distinction for the third
style. The type must be a tunion type. In the body of the vararg func-
tion, the array holding the vararg elements has this tunion type, with

81

the function’s region. (That is, the wrappers are stack-allocated just as the
vararg array is.)

At the call-site, the compiler implicitly wraps each vararg by finding
a tunion variant that has the expression’s type and using it. The exact
rules for finding the variant are as follows: Look in order for a variant
that carries exactly the type of the expression. Use the first variant that
matches. If none, make a second pass and find the first variant that carries
a type to which the expression can be coerced. If none, it is a compile-time
error.

In practice, the tunion types used for this style of vararg tend to be
quite specialized and used only for vararg purposes.

Compared to the other styles, the third style is less efficient because the
caller must wrap and the callee unwrap each argument. But everything is
allocated on the stack and call sites do everything implicitly. A testament
to the style’s power is the library’s implementation of printf and scanf
entirely in Cyclone (except for the actual I/O system calls, of course).

A Porting C code to Cyclone

Though Cyclone resembles and shares a lot with C, porting is not always
straightforward. Furthermore, it’s rare that you actually port an entire ap-
plication to Cyclone. You may decide to leave certain libraries or modules
in C and port the rest to Cyclone. In this Chapter, we want to share with
you the tips and tricks that we have developed for porting C code to Cy-
clone and interfacing Cyclone code against legacy C code.

A.1 Translating C to Cyclone

To a first approximation, you can port a simple program from C to Cyclone
by following these steps which are detailed below:

• Change pointer types to fat pointer types where necessary.

• Use comprehensions to heap-allocate arrays.

• Use tunions for unions with pointers.

• Initialize variables.

82

• Put breaks or fallthrus in switch cases.

• Replace one temporary with multiple temporaries.

• Connect argument and result pointers with the same region.

• Insert type information to direct the type-checker.

• Copy “const” code or values to make it non-const.

• Get rid of calls to free, calloc, etc.

• Use polymorphism or tunions to get rid of void*.

• Rewrite the bodies of vararg functions.

• Use exceptions instead of setjmp.

Even when you follow these suggestions, you’ll still need to test and
debug your code carefully. By far, the most common run-time errors you
will get are uncaught exceptions for null-pointer dereference or array out-
of-bounds. Under Linux, you should get a stack backtrace when you have
an uncaught exception which will help narrow down where and why the
exception occurred. On other architectures, you can use gdb to find the
problem. The most effective way to do this is to set a breakpoint on the
routines _throw_null() and _throw_arraybounds() which are de-
fined in the runtime and used whenever a null-check or array-bounds-
check fails. Then you can use gdb ’s backtrace facility to see where the
problem occurred. Of course, you’ll be debugging at the C level, so you’ll
want to use the -save-c and -g options when compiling your code.

Change pointer types to fat pointer types where necessary. Ideally, you should
examine the code and use thin pointers (e.g., int* or better int@)
wherever possible as these require fewer run-time checks and less
storage. However, recall that thin pointers do not support pointer
arithmetic. In those situations, you’ll need to use fat pointers (e.g.,
int?). A particularly simple strategy when porting C code is to just
change all pointers to fat pointers. The code is then more likely to
compile, but will have greater overhead. After changing to use all
fat pointers, you may wish to profile or reexamine your code and
figure out where you can profitably use thin pointers.

83

Use comprehensions to heap-allocate arrays. Cyclone provides limited sup-
port for malloc and separated initialization but this really only works
for struct s or tuples. To heap- or region-allocate and initialize an
array, use new or rnew in conjunction with array comprehensions.
For example, to copy a string s , one might write:

char ?t = new {for i < s.size : s[i]};

Use tunions for unions with pointers. Cyclone only accepts unions that
contain “bits” (i.e., ints; chars; shorts; floats; doubles; or tuples, structs,
unions, or arrays of bits.) So if you have a C union with a pointer
type in it, you’ll have to code around it. One way is to simply use
a tagged union (tunion). Note that this adds a level of indirection
and requires pattern matching to ensure type-safety.

Initialize variables. Top-level variables must be initialized in Cyclone,
and in many situations, local variables must be initialized. Some-
times, this will force you to change the type of the variable so that
you can construct an appropriate initial value. For instance, suppose
you have the following declarations at top-level:

struct DICT;
struct DICT @new_dict();
struct DICT @d;
void init() {

d = new_dict();
}

Here, we have an abstract type for dictionaries (struct Dict), a
constructor function (new_dict()) which returns a pointer to a new
dictionary, and a top-level variable (d) which is meant to hold a
pointer to a dictionary. The init function ensures that d is initial-
ized. However, Cyclone would complain that d is not initialized be-
cause init may not be called, or it may only be called after d is
already used. Furthermore, the only way to initialize d is to call the
constructor, and such an expression is not a valid top-level initial-
izer. The solution is to declare d as a “possibly-null” pointer to a
dictionary and initialize it with NULL:

84

struct DICT;
struct DICT @new_dict();
struct DICT *d;
void init() {

d = new_dict();
}

Of course, now whenever you use d, either you or the compiler will
have to check that it is not NULL.

Put breaks or fallthrus in switch cases. Cyclone requires that you either
break, return, continue, throw an exception, or explicitly fallthru in
each case of a switch.

Replace one temporary with multiple temporaries. Consider the follow-
ing code:

void foo(char ? x, char ? y) {
char ? temp;
temp = x;
bar(temp);
temp = y;
bar(temp);

}

When compiled, Cyclone generates an error message like this:

type mismatch: const unsigned char ?#0 != unsigned char ?#1

The problem is that Cyclone thinks that x and y might point into
different regions (which it named #0 and #1 respectively), and the
variable temp is assigned both the value of x and the value of y .
Thus, there is no single region that we can say temp points into. The
solution in this case is to use two different temporaries for the two
different purposes:

void foo(char ? x, char ? y) {
char ? temp1;

85

char ? temp2;
temp1 = x;
bar(temp1);
temp2 = y;
bar(temp2);

}

Now Cyclone can figure out that temp1 is a pointer into the region
#0 whereas temp2 is a pointer into region #1 .

Connect argument and result pointers with the same region. Remember
that Cyclone assumes that pointer inputs to a function might point
into distinct regions, and that output pointers, by default point into
the heap. Obviously, this won’t always be the case. Consider the
following code:

int @foo(int @x, int @y, int b) {
if (b)

return x;
else

return y;
}

Cyclone complains when we compile this code:

returns value of type int @#0 but requires int @
#0 and ‘H failed to unify.

returns value of type int @#1 but requires int @
#1 and ‘H failed to unify.

reflecting the fact that neither x nor y is a pointer into the heap. You
can fix this problem by putting in explicit regions to connect the ar-
guments and the result. For instance, we might write:

int @‘r foo(int @‘r x, int @‘r y, int b) {
if (b)

return x;
else

return y;
}

86

and then the code will compile. Of course, any caller to this function
must now ensure that the arguments are in the same region.

Insert type information to direct the type-checker. Cyclone is usually good
about inferring types. But sometimes, it has too many options and
picks the wrong type. A good example is the following:

void foo(int b) {
printf("b is %s", b ? "true" : "false");

}

When compiled, Cyclone warns:

(2:39-2:40): implicit cast to shorter array

The problem is that the string "true" is assigned the type const
char ? {5} whereas the string "false" is assigned the type const
char ? {6}. (Remember that string constants have an implicit 0 at
the end.) The type-checker needs to find a single type for both since
we don’t know whether b will come out true or false and conditional
expressions require the same type for either case. There are at least
two ways that the types of the strings can be promoted to a uni-
fying type. One way is to promote both to char? which would
be ideal. Unfortunately, Cyclone has chosen another way, and pro-
moted the longer string ("false") to a shorter string type, namely
const char ? {5}. This makes the two types the same, but is not
at all what we want, for when the procedure is called with false, the
routine will print

b is fals

Fortunately, the warning indicates that there might be a problem.
The solution in this case is to explicitly cast at least one of the two
values to const char ? :

void foo(int b) {
printf("b is %s", b ? ((const char ?)"true") : "false");

}

87

Alternatively, you can declare a temp with the right type and use it:

void foo(int b) {
const char ? t = b ? "true" : "false"
printf("b is %s", t);

}

The point is that by giving Cyclone more type information, you can
get it to do the right sorts of promotions.

Copy “const” code or values to make it non-const. Cyclone takes const
seriously. C does not. Occasionally, this will bite you, but more of-
ten than not, it will save you from a core dump. For instance, the
following code will seg fault on most machines:

void foo() {
char ?x = "howdy"
x[0] = ’a’;

}

The problem is that the string "howdy" will be placed in the read-
only text segment, and thus trying to write to it will cause a fault.
Fortunately, Cyclone complains that you’re trying to initialize a non-
const variable with a const value so this problem doesn’t occur in
Cyclone. If you really want to initialize x with this value, then you’ll
need to copy the string, say using the dup function from the string
library:

void foo() {
char ?x = dup("howdy");
x[0] = ’a’;

}

Now consider the following call to the strtoul code in the standard
library:

extern unsigned long strtoul(const char ?‘r n,
const char ?‘r*‘r2 endptr,

88

int base);

unsigned long foo() {
char ?x = dup("howdy");
char ?*e = NULL;
return strtoul(x,e,0);

}

Here, the problem is that we’re passing non-const values to the li-
brary function, even though it demands const values. Usually, that’s
okay, as const char ? is a super-type of char ? . But in this case,
we’re passing as the endptr a pointer to a char ? , and it is not
the case that const char ?* is a super-type of char ?* . In this
case, you have two options: Either make x and e const, or copy the
code for strtoul and make a version that doesn’t have const in the
prototype.

Get rid of calls to free, calloc etc. There are many standard functions that
Cyclone can’t support and still maintain type-safety. An obvious one
is free() which releases memory. Let the garbage collector free the
object for you, or use region-allocation if you’re scared of the collec-
tor. Other operations, such as memset, memcpy, and realloc are
supported, but in a limited fashion in order to preserve type safety.

Use polymorphism or tunions to get rid of void*. Often you’ll find C code
that uses void* to simulate polymorphism. A typical example is
something like swap:

void swap(void **x, void **y) {
void *t = x;
x = y;
y = t;

}

In Cyclone, this code should type-check but you won’t be able to use
it in many cases. The reason is that while void* is a super-type of
just about any pointer type, it’s not the case that void** is a super-
type of a pointer to a pointer type. In this case, the solution is to use
Cyclone’s polymorphism:

89

void swap(‘a @x, ‘a @y) {
‘a t = x;
x = y;
y = t;

}

Now the code can (safely) be called with any two (compatible) pointer
types. This trick works well as long as you only need to “cast up”
from a fixed type to an abstract one. It doesn’t work when you need
to “cast down” again. For example, consider the following:

int foo(int x, void *y) {
if (x)

return *((int *)y);
else {

printf("%s\n",(char *)y);
return -1;

}
}

The coder intends for y to either be an int pointer or a string, de-
pending upon the value of x . If x is true, then y is supposed to be
an int pointer, and otherwise, it’s supposed to be a string. In either
case, you have to put in a cast from void* to the appropriate type,
and obviously, there’s nothing preventing someone from passing in
bogus cominations of x and y . The solution in Cylcone is to use a
tagged union to represent the dependency and get rid of the variable
x :

tunion IntOrString { Int(int), String(char ?) };
typedef tunion IntOrString i_or_s;

int foo(i_or_s y) {
switch (y) {
case Int(i): return i;
case String(s):

printf("%s\n",s);
return -1;

90

}
}

Rewrite the bodies of vararg functions. See the section on varargs for more
details.

Use exceptions instead of setjmp. Many uses of setjmp /longjmp can
be replaced with a try -block and a throw . Of course, you can’t do
this for things like a user-level threads package, but rather, only for
those situations where you’re trying to “pop-out” of a deeply nested
set of function calls.

A.2 Interfacing to C

When porting any large code from C to Cyclone, or even when writing
a Cyclone program from scratch, you’ll want to be able to access legacy
libraries. To do so, you must understand how Cyclone represents data
structures, how it compiles certain features, and how to write wrappers to
make up for representation mismatches.

Sometimes, interfacing to C code is as simple as writing an appropriate
interface. For instance, if you want to call the acos function which is
defined in the C Math library, you can simply write the following:

extern "C" double acos(double);

The extern "C" scope declares that the function is defined externally by
C code. As such, it’s name is not prefixed with any namespace informa-
tion by the compiler. Note that you can still embed the function within
a Cyclone namespace, it’s just that the namespace is ignored by the time
you get down to C code.

If you have a whole group of functions then you can wrap them with a
single extern "C" { ... }, as in:

extern "C" {
double acos(double);
float acosf(float);
double acosh(double);
float acoshf(float);
double asin(double);

}

91

The extern C approach works well enough that it covers many of the
cases that you’ll encounter. However, the situation is not so easy or straight-
forward when you start to take advantage of Cyclone’s features. As a sim-
ple example, suppose you want to call a C function int_to_string that
takes in an integer and returns a string representation of that integer. The
C prototype for the function would be:

char *int_to_string(int i);

If we just “extern-C” it, then we can certainly call the function and pass
it an integer. But we can’t really use the string that we get out, because
we’ve asserted that the return type is not a string, but rather a (possibly-
null) pointer to a single character. So, when we call foo below:

extern "C" char *int_to_string(int i);

void foo() {
int i = 12345;
printf(int_to_string(i));

}

we’ll only get “1” for the output instead of “12345 ”.
If we know that the function always returns a pointer to a buffer of

some fixed constant size, say MAX_NUM_STRING, then we can change the
prototype to:

extern "C" char *{MAX_NUM_STRING} int_to_string(int i);

and we’ll get the right behavior. However, this obviously isn’t going to
work if the size of the buffer might be different for different calls.

Another solution is to somehow convert the “C string” to a “Cyclone
string” before handing it back to Cyclone. This is fundamentally an unsafe
operation because we must rely upon the “C string” being properly zero-
terminated. So, your best bet is to write a little wrapper function in C
which can convert the C string to a Cyclone string and then use that as
follows:

extern "C" char *int_to_string(int i);
extern "C" char ?Cstring_to_string(char *);

92

void foo() {
int i = 12345;
printf(Cstring_to_string(int_to_string(i)));

}

Fortunately, the Cyclone runtime (lib/runtime_cyc.c) provides the
needed routine which looks as follows:

// struct definition for fat pointers
struct _tagged_arr {

unsigned char *curr; // current pointer
unsigned char *base; // base address of buffer
unsigned char *last_plus_one; // last_plus_one - base = size

};

struct _tagged_arr Cstring_to_string(char *s) {
struct _tagged_arr str;
if (s == NULL) {

// return Cyclone fat NULL
str.base = str.curr = str.last_plus_one = NULL;

}
else {

int sz = strlen(s)+1; // calculate string length + 1 for 0
str.base = (char *)GC_malloc_atomic(sz); // malloc a new buffer
if (str.base == NULL) // check that mallloc succeeded

_throw_badalloc();
str.curr = str.base; // set current to base
str.last_plus_one = str.base + sz; // set the size

// Copy the string in case the C code frees it or mangles it
str.curr[--sz] = ’\0’;
while(--sz>=0)

str.curr[sz]=s[sz];
}
return str; // return the fat pointer

}

The _tagged_arr definition defines the struct type that Cyclone uses to
represent all fat pointers. (It’s actually defined in a header file that gets

93

included.) Fat pointers are represented using a “current pointer” which is
the real pointer, and two other pointers which represent the base address
and maximum address (plus one) for the buffer of objects.

The second definition defines our wrapper function which returns a fat
pointer (struct _tagged_arr) given a C string. You’ll notice that the
function is bullet-proofed to avoid a number of issues. For instance, we
first check to see if the C string is actually NULLand if so, return a fat NULL
(a struct where curr , base , and last_plus_one are all NULL.) If the C
string is not NULL, we allocate a new buffer and copy the string over to the
buffer. This ensures that if C re-uses the storage (or frees it), Cyclone won’t
get confused. Notice also that we call GC_malloc_atomic to allocate
the storage. In this case, we can use the atomic malloc because we know
the data do not contain pointers. After copying the string, we initialize a
struct _tagged_arr appropriately and then return the struct.

If we could ensure that the storage passed back to us wasn’t going to
get recycled, then we could avoid the copy and simplify the code greatly:

struct _tagged_arr Cstring_to_string(char *s) {
struct _tagged_arr str;
if (s == NULL) {

// return Cyclone fat NULL
str.base = str.curr = str.last_plus_one = NULL;

}
else {

int sz = strlen(s)+1; // calculate string length + 1 for 0
str.base = str.curr = s;
str.last_plus_one = str.base + sz; // set the size

}
return str; // return the fat pointer

}

Of course, using this is a bit more risky. It’s up to you to make sure that
you get the code right.

In porting various C libraries to Cyclone, we have had to write a num-
ber of wrappers. Doing so is fraught with peril and in the future, we hope
to provide tools that make this task easier and easier to get right. If you are
planning to interface to C code and need to write interfaces or wrappers,
we encourage you to look through the libraries to see how we have done
things.

94

A particularly good example is the standard I/O library. The inter-
face lib/stdio.h just includes lib/cstdio.h and opens up the Std
namespace. (This makes it easier to port C code, but if you want to keep
the namespace closed, you can directly include lib/cstdio.h .) The
cstdio.h file is adapted from the BSD and Gnu stdio.h files and shares
a lot in common with them. For instance, there is an abstract struct for files,
definitions for stdout, stdin, stderr, various macros, and various function
prototypes.

A typical example function is the one to remove a file which has the
following prototype:

extern int remove(const char ?);

You’ll notice that the function takes in a Cyclone string as an argument.
Obviously, the “real” remove takes in a C string. What is going on here
is that Cyclone defines a wrapper function which, when given a Cyclone
string, converts it to a C string, and then calls C’s remove.

The wrapper function is defined in the file stdio.cyc . Here are a few
excerpts from that file:

namespace Cstdio {
extern "C" {

extern struct __sFILE;
typedef struct Cstdio::__sFILE __sFILE;
int remove(char *);
int fclose(__sFILE);
...

}
}

namespace Std;

abstract struct __sFILE {
Cstdio::__sFILE *file;

};

int remove(const char ? filename) {
return Cstdio::remove(string_to_Cstring(filename));

}

95

int fclose(FILE @‘r f) {
if (f->file == NULL) return -1;
int r = Cstdio::fclose((Cstdio::__sFILE @) f->file);
if (r == 0) {

f->file = NULL;
}
return r;

}

...

At the top of the file, we have declared the external types and functions
that C uses. Notice that these definitions are wrapped in their own names-
pace (Cstdio) so that we can “redefine” them within the Std namespace.
Also notice that they are wrapped with an extern-C so that when com-
piled, their names won’t get mangled.

The Cyclone wrapper code starts after the namespace Std declara-
tion. The first thing we do is define a “wrapper” type for C files. The
wrapper includes a possibly null pointer to a C file. We use this level of
indirection to keep someone from closing a file twice, or from reading or
writing to a file that has been closed. Of course, any operations on files
will need wrappers to strip off the level of indirection and check that the
file has not been closed already.

The wrapper function for remove calls the string_to_Cstring func-
tion (defined in runtime_cyc.c) to conver the argument to a C string
and then passes the C string to the real remove function, returning the
error code.

The wrapper function for fclose checks to make sure that the file has
not already been closed. If so, it returns -1. Otherwise, it pulls out the real
C file and passes it to the real fclose function. It then checks the return
code (to ensure that the close actually happened) and if it’s 0, sets the C file
pointer to NULL, ensuring that we don’t call C’s fclose on the file again.

B Frequently Asked Questions

What does $(type1, type2) mean? What does $(expr1, expr2) mean? Cyclone
has tuples, which are anonymous structs with fields numbered 0, 1,

96

2, For example, $(int,string_t) is a pair of an int and a
string_t . An example value of this type is $(4,"cyclone") . To
extract a field from a tuple, you use array-like notation: you write
x[0] , not x.0 .

What does int @ mean? In Cyclone @is a pointer that is guaranteed not
to be NULL. The Cyclone compiler guarantees through static or dy-
namic checks. For example,

int *x = NULL;

is not an error, but

int @x = NULL;

is an error

What does int *{37} mean? This is the type of pointers to a sequence
of at least 37 integers. The extra length information is used by Cy-
clone to prevent buffer overflows. For example, Cyclone will com-
pile x[expr] into code that will evaluate expr, and check that the
result is less than 37 before accessing the element. Note that int
* is just shorthand for int *{1} . Currently, the expression in the
braces must be a compile-time constant.

What does int *‘r mean? This is the type of a pointer to an int in re-
gion ‘r . A region is just a group of objects with the same lifetime—
all objects in a region are freed at once. Cyclone uses this region in-
formation to prevent dereferencing a pointer into a previously freed
region. Regions can have a “nested” structure, for example, if the
region for a function parameter is a variable, then the function may
assume that the parameter points into a region whose lifetime in-
cludes the lifetime of the function.

What does ‘H mean? This is Cyclone’s heap region: objects in this region
cannot be explicitly freed, only garbage-collected. Effectively, this
means that pointers into the heap region can always be safely deref-
erenced; conceptually, objects in the heap last “forever,” since they
are always available if needed; garbage collection is like an optimiza-
tion that frees objects after they are no longer needed.

97

What does int @{37}‘r mean? A pointer can come with all or none of
the nullity, bound, and region annotation. This type is the type of
non-null pointers to at least 37 consecutive integers in region ‘r .
When the bound is omitted it default to 1.

What is a pointer type’s region when it’s omitted? Every pointer type has
a region; if you omit it, the compiler puts it in for you implicitly. The
region added depends on where the pointer type occurs. In function
arguments, a new region variable is used. In function results and
type definitions (inlcuding typedef), the heap region (‘H) is used.
In function bodies, the compiler looks at the uses (using unification)
to try to determine a region.

What does int ? mean? The ? a special kind of pointer that carries along
bounds information. It is a “questionable” pointer: it might be NULL
or pointing out of bounds. An int ? is a pointer to an integer,
along with some information that allows Cyclone to check whether
the pointer is in bounds at run-time. These are the only kinds of
pointers that you can use for pointer arithmetic in Cyclone.

What does ‘a mean? ‘a is a type variable. Type variables are typically
used in polymorphic functions. For example, if a function takes a
parameter of type ‘a , then the function can be called with a value
of any suitable type. If there are two arguments of type ‘a , then any
call will have to give values of the same type for those parameters.
And if the function returns a type ‘a , then it must return a result of
the same type as the the argument. Syntactically, a type variable is
any identifier beginning with ‘ (backquote).

What is a “suitable” type for a type variable? The last question said that
a type variable can stand for a “suitable” type. Unfortunately, not
all types are “suitable.” Briefly, the “suitable” types are those that
fit into a general-purpose machine register, typically including int ,
pointers, tunion types, and xtunion types. Non-suitable types
include float , struct types (which can be of arbitrary size), tu-
ples, and questionable pointers. Technically, the suitable types are
the types of “box kind,” described below.

98

How do I cast from void * ? You can’t do this in Cyclone. A void * in
C really does not point to void , it points to a value of some type.
However, when you cast from a void * in C, there is no guarantee
that the pointer actually points to a value of the expected type. This
can lead to crashes, so Cyclone doesn’t permit it. Cyclone’s polymor-
phism and tagged unions can often be used in places where C needs
to use void * , and they are safe.

What does _ (underscore) mean in types? Underscore is a “wildcard” type.
It stands for some type that the programmer doesn’t want to bother
writing out; the compiler is expected to fill in the type for the pro-
grammer. Sometimes, the compiler isn’t smart enough to figure out
the type (you will get an error message if so), but usually there is
enough contextual information for the compiler to succeed. For ex-
ample, if you write

_ x = new Pair(3,4);

the compiler can easily infer that the wildcard stands for struct
Pair @ . In fact, if x is later assigned NULL, the compiler will infer
that x has type struct Pair * instead.

Note that _ is not allowed as part of top-level declarations.

What do ‘a::B , ‘a::M , ‘a::A , ‘a::R , and ‘a::E mean? Types are di-
vided into different groups, which we call kinds. There are five dif-
ferent kinds: B (for Box), M (for Memory), A (for Any), R (for Re-
gion), and E (for Effect). The notation typevar:: kind says that a
type variable belongs to a kind. A type variable can only be instanti-
ated by types that belong to its kind.

Box types include int , pointers (except for questionable pointers)
tagged unions, and extensible tagged unions. Memory types include
all box types, tuples, tunion and xtunion variants, questionable
pointers, and non-abstract structs. Any types include all types that
don’t have kind Region or Effect. Region types are regions, i.e., the
heap and stack regions. Effect types are sets of regions (these are
explained elsewhere).

99

What does it mean when type variables don’t have explicit kinds? Every
type variable has a kind, but usually the programmer doesn’t have
to write it down. In function prototypes, the compiler will infer the
most permissive kind. For example,

void f(‘a *‘b x, ‘c * y, ‘a z);

is shorthand for

void f(‘a::B *‘b::R x, ‘c::M * y, ‘a::B z)

In type definitions, no inference is performed: an omitted kind is
shorthand for ::B . For example,

struct S<‘a,‘r::R> { ‘a *‘r x; };

is shorthand for

struct S<‘a::B,‘r::R> { ‘a *‘r x;};

but

struct S<‘a,‘r>{‘a *‘r x;};

is not.

What does struct List<‘a,‘r::R> mean? struct List takes a type
of box kind and a region and produces a type. For example, struct
List<int, ‘H> is a type, and struct List<struct List<int,‘H>@,
‘H> is a type. struct List<‘a,‘r::R> is a list whose elements
all have type ‘a and live in region ‘r .

What are tunion and xtunion ? These are Cyclone’s tagged union and
extensible tagged union types. In C, when a value has union type,
you know that in fact it has one of the types of the union’s fields,
but there is no guarantee which one. This can lead to crashes in
C. Cyclone’s tagged unions are like C unions with some additional
information that lets the Cyclone compiler determine what type the
underlying value actually has, thus helping to ensure safety.

100

What is abstract ? abstract is a storage-class specifier, like static
or extern . When attached to a top-level type declaration, it means
that other files can use the type but cannot look at the internals of
the type (e.g., other files cannot access the fields of an abstract struct).
Otherwise, abstract has the same meaning as the auto (default) stor-
age class. Hence abstract is a way to state within a Cyclone file
that a type’s representation cannot be exported.

What are the Cyclone keywords? In addition to the C keywords, the fol-
lowing have special meaning and cannot be used as identifiers: abstract ,
catch , codegen , cut , fallthru , fill , let , malloc , namespace ,
new, NULL, region_t , regions , rmalloc , rnew , splice , throw ,
try , tunion , using , xtunion . As in gcc, __attribute__ is re-
served as well.

What are namespace and using ? These constructs provide a convenient
way to help avoid name clashes. namespace X prepends X:: to the
declarations in its body (rest of file in case of namespace X;) and us-
ing X makes the identifiers prepended with X:: available without
having to write the X::.

What is fallthru ? In Cyclone, you cannot implicitly fall through from
one switch case to the next (a common source of bugs in C). Instead,
you must explicitly fall through with a fallthru statement. So, to
port C code, place fallthru; at the end of each case that implicitly
falls through; note that fallthru may not appear in the last case of
a switch .

fallthru is useful for more than just catching bugs. For instance,
it can appear anywhere in a case; its meaning is to immediately goto
the next case. Second, when the next case of the switch has pattern
variables, a fallthru can (and must) be used to specify expres-
sions that will be bound to those variables in the next case. Hence
fallthru is more powerful (but more verbose) than “or patterns”
in ML.

What is new? new expr allocates space in the heap region, initializes it
with the result of evaluating expr , and returns a pointer to the space.
It is roughly equivalent to

101

type @temp = malloc(sizeof(type));
*temp = expr ;

where type is the type of expr. You can also write

new { for i < expr 1 : expr 2 }

to heap-allocate an array of size expr1 with the i th element initialized
to expr2 (which may mention i).

How do I use tuples? A tuple type is written $(type 1, ..., type n) .
A value of the type is constructed by $(expr 1, ..., expr n) . where
expri has type typei. If expr has type $(type 1, ..., type n) , you
can extract the component i using expr[i] . The expression in the
brackets must be a compile-time constant. In short, tuples are like
anonymous structs where you use expr[i] to extract fields instead
of expr.i . There is no analogue of the -> syntax that can be used
with pointers of structs; if expr has type $(type 1, ..., type n)
* , you can extract component i by (* expr)[i] .

What is {for i < expr1 : expr2} ? This is an array initializer. It can
appear where array initializers appear in C, and it can appear as the
argument to new. i is an identifier. e1 is an unsigned int indicating
the size of the array. e2 is evaluated e1 times, with i having values 0,
1, ..., e1-1 and the result initializes the ith element of the array. The
form new {for i < e1 : e2 } allocates space for a new array
and initializes it as just described. This form is the only way to create
arrays whose size depends on run-time information. When {for i
< e1: e2 } is not an argument to new, e1 must be constant and e2
may not mention i. This restriction includes all uses at top-level (for
global variables).

How do I throw and catch exceptions? A new exception is declared as in

xtunion exn { MyExn };

The exception can be thrown with the statement

throw MyExn;

102

You can catch the expression with a try /catch statement:

try statement1 catch { case MyExn: statement2 }

If statement1 throws an MyExn and no inner catch handles it, control
transfers to statement2.

The catch body can have any number of case clauses. If none
match, the exception is re-thrown.

Exceptions can carry values with them. For example, here’s how to
declare an exception that carries an integer:

xtunion exn { MyIntExn(int) };

Values of such exceptions must be heap-allocated. For example, you
can create and throw a MyIntExn exception with

throw new MyIntExn(42);

To catch such an exception you must use an &-pattern:

try statement1
catch {

case &MyIntExn(x): statement2
}

When the exception is caught, the integer value is bound to x .

The exn type is just a pre-defined xtunion type. Therefore, all the
standard rules for extending, creating objects, and destructing ob-
jects of an xtunion type apply.

How efficient is exception handling? Entering a try block is implemented
using setjmp . Throwing an exception is implemented with longjmp .
Pattern-matching an xtunion against each case variant in the catch
clause is a pointer-comparsion. In short, exception handling is fairly
lightweight.

What does let mean? In Cyclone, let is used to declare variables. For
example,

103

let x,y,z;

declares the three variables x , y , and z . The types of the variables
do not need to be filled in by the programmer, they are filled in by
the compiler’s type inference algorithm. The let declaration above
is equivalent to

_ x;
_ y;
_ z;

There is a second kind of let declaration, with form

let pattern = expr;

It evaluates expr and matches it against pattern , initializing the pat-
tern variables of pattern with values drawn from expr . For example,

let x = 3;

declares a new variable x and initializes it to 3, and

let $(y,z) = $(3,4);

declares new variables y and z , and initializes y to 3 and z to 4.

What is a pattern and how do I use it? Cyclone’s patterns are a convenient
way to destructure aggregate objects, such as structs and tuples. They
are also the only way to destructure tagged unions. Patterns are used
in Cyclone’s let declarations, switch statements, and try /catch
statements.

What does _ mean in a pattern? It is a wildcard pattern, matching any
value. For example, if f is a function that returns a pair, then

let $(_,y) = f(5);

is a way to extract the second element of the pair and bind it to a new
variable y .

104

What does it mean when a function has an argument with type ‘a ? Any
type that looks like ‘ (backquote) followed (without whitespace) by
an identifier is a type variable. If a function parameter has a type
variable for its type, it means the function can be called with any
pointer or with an int. However, if two parameters have the same
type variable, they must be instantiated with the same type. If all
occurrences of ‘a appear directly under pointers (eg. ‘a *), then an
actual parameter can have any type, but the restrictions about using
the same type still apply. In general, Cyclone has parametric poly-
morphism as a safe alternative to casts and void *.

Do functions with type variables get duplicated like C++ template functions?Is there run-time overhead for using type variables?
No and no. Each Cyclone function gives rise to one function in the
output, and types are not present at run-time. When a function is
called, it does not need to know the types with which the caller is
instantiating the type variables, so no instantiation actually occurs—
the types are not present at run-time. We do not have to duplicate the
code because we either know the size of the type or the size does not
matter. This is why we don’t allow type variables of memory kind
as parameters—doing so would require code duplication or run-time
types.

Can I use varargs? Yes, Cyclone has a way of supporting variable-argument
functions. It is not quite the same as C’s, but it is safe. For instance,
we have written type-safe versions of printf and scanf all within Cy-
clone. See the documentation on varargs for more information.

Why can’t I declare types within functions? We just haven’t implemented
this support yet. For now, you need to hoist type declarations and
typedefs to the top-level.

What casts are allowed? Cyclone doesn’t support all of the casts that C
does, because incorrect casts can lead to crashes. Instead, Cyclone
supports a safe subset of C’s casts. Here are some examples.

All of C’s numeric casts, conversions, and promotions are unchanged.

You can always cast between type@{const} , type*{ const} , and type?.
A cast from type? to one of the other types includes a run-time check
that the pointer points to a sequence of at least const objects. A cast

105

to type@{const} from one of the other types includes a run-time check
that the pointer is not NULL. No other casts between these type have
run-time checks. A failed run-time check throws Null_Exception .
A pointer into the heap can be cast to a pointer into another region.
A pointer to a struct or tuple can be cast to a pointer to another
struct or tuple provided the “target type” is narrower (it has fewer
fields after “flattening out” nested structs and tuples) and each
(flattened out) field of the target type could be the target of a cast
from the corresponding field of the source type. A pointer can be cast
to int . The type type*{ const1} can be cast to type*{ const2} provided
const2 < const1, and similarly for type@{const1} and type@{const2} .

An object of type tunion T.A can be cast to tunion T if A does not
carry values. An object of type tunion T.A@ can be cast to tunion
T if A does carry values. The current implementation isn’t quite as
lenient as it should be. For example, it rejects a cast from int *{4}
to $(int,int)*{2} , but this cast is safe.

For all non-pointer-containing types type, you can cast from a type
? to a char ?. This allows you to make frequent use of memcpy,
memset, etc.

Why can’t I implicitly fall-through to the next switch case? We wanted
to add an explicit fallthru construct in conjunction with pattern
matching, and we decided to enforce use of fallthru in all cases
because this is a constant source of bugs in C code.

Do I have to initialize global variables? You currently must provide ex-
plicit initializers for global variables that may contain pointers, so
that the compiler can be sure that uninitialized memory containing
pointers is not read. In the future, we expect to provide some sup-
port for initializing globals in constructor functions.

Two techniques help with initializing global arrays. First, if an ar-
ray element could be 0 or NULL, the compiler will insert 0 for any
elements you do not specify. For example, you can write

int x[37] = {};

to declare a global array x initialized with 37 elements, all 0. Second,
you can use the comprehension form

106

int x[37] = { for i < expr 1 : expr 2 }

provided that expr1 and expr2 and constant expressions. Currently,
expr2 may not use the variable i , but in the future it will be able
to. Note that it is not possible to have a global variable of an abstract
type because it is impossible to know any constant expression of that
type.

Are there threads? Cyclone does not yet have a threads library and some
of the libraries are not re-entrant. In addition, because Cyclone uses
unboxed structs of three words to represent fat pointers, and updat-
ing them is not an atomic operation, it’s possible to introduce un-
soundnesses by adding concurrent threads. However, in the future,
we plan to provide support for threads and a static analysis for pre-
venting these and other forms of data races.

Can I use setjmp and longjmp ? No. However, Cyclone has exceptions,
which can be used for non-local control flow. The problem with
setjmp and longjmp is that safety demands we prohibit a longjmp
to a place no longer on the stack. A future release may have more
support for non-local control flow.

What types are allowed for union members? Currently, union members
cannot contain pointers. You can have numeric types (including
bit fields and enumerations), structs and tuples of allowable union-
member types, and other unions.

Why can’t I do anything with values of type void * ? Because we cannot
know the size of an object pointed to by a pointer of type void *, we
prohibit derefencing the pointer or casting it to a different pointer
type. To write code that works for all pointer types, use type vari-
ables and polymorphism. Tagged unions can also substitute in some
cases where void * is used in C.

What is aprintf ? The aprintf function is just like printf , but the
output is placed in a new string allocated on the heap.

How do I access command-line arguments? The type of main should be

107

int main(int argc, char ?? argv);

As in C, argc is the number of command-line arguments and argv[i]
is a string with the i th argument. Unlike C, argv and each element
of argv carry bounds information. Note that argc is redundant—it
is always equal to argv.size .

Why can’t I pass a stack pointer to certain functions? If the type of a func-
tion parameter is a pointer into the heap region, it cannot be passed a
stack parameter. Pointer types in typedef and struct definitions refer
to the heap region unless there is an explicit region annotation.

Why do I get an incomprehensible error when I assign a local’s address to a pointer variable?
If the pointer variable has a type indicating that it points into the
heap, then the assignment is illegal. Try initializng the pointer vari-
able with the local’s address, rather than delaying the assignment
until later.

How much pointer arithmetic can I do? On “questionable” pointers (point-
ers with type type?), you can add or subtract an int (including via
increment/decrement), as in C. It is okay for the result to be outside
the bounds of the object pointed to; it is a run-time error to derefer-
ence outside of the bounds. (The compiler inserts bounds informa-
tion and a run-time check; an exception is thrown if the check fails.)
Currently, we do not support pointer arithmetic on the other pointer
types. As in C, you can subtract two pointers of the same type; the
type of the result is unsigned int .

What is the type of a literal string? The type of the string constant "foo"
is char @{4} (remember the trailing null character). However, there
are implicit casts from char @{4} to char @{2} , char *{4} , and
char ? , so you shouldn’t have to think too much about this.

Are strings null-terminated? Cyclone follows C’s lead on this. String lit-
erals like "foo" are null-terminated. Many of the library functions
consider a null character to mark the end of a string. And library
functions that return strings often ensure that they are null termi-
nated. However, there is no guarantee that a string is null termi-
nated. For one thing, as in C, the terminating null may be overwrit-
ten by any character. In C this can be exploited to cause buffer over-
flows. To avoid this in Cyclone, strings generally have type char

108

?, that is, they carry bounds information. In Cyclone a string ends
when a null character is found, or when the bounds are exceeded.

How do I use malloc ? malloc is a Cyclone primitive, not a library func-
tion. Currently it has an extremely restricted syntax: You must write
malloc(sizeof(type)) . The result has type type@, so usually
there is no need to explicitly cast the result (but doing so is harm-
less). Usually the construct new expr is more convenient than malloc
followed by initialization, but malloc can be useful for certain id-
ioms and when porting C code.

Notice that you cannot (yet) use malloc to allocate space for arrays
(as in the common idiom, malloc(n*sizeof(type)) . Also, the
type-checker uses a conservative analysis to ensure that the fields
of the allocated space are written before they are used.

Can I call free? Yes and no. Individual memory objects may not be freed.
In future versions, we may support freeing objects for which you
can prove that there are no other pointers to the object. Until then,
you must rely on a garbage collector to reclaim heap objects or use
regions (similar to “arenas” or “zones”) for managing collections of
objects.

For porting code, we have defined a free function that behaves as a
no-op, having type

void free(‘a::A ?);

Is there a garbage collector? Yes, we use the Boehm-Demers-Weiser con-
servative collector. If you don’t want to use the garbage collector
(e.g., because you know that your program does little or no heap al-
location), you can use the -nogc flag when linking your executable.
This will make the executable smaller.

If you link against additional C code, that code must obey the usual
rules for conservative garbage collection: no wild pointers and no
calling malloc behind the collector’s back. Instead, you should call
GC_malloc . See the collector’s documentation for more informa-
tion.

109

Note that if you allocate all objects on the stack, garbage collection
will never occur. If you allocate all objects on the stack or in regions,
it is very unlikely collection will occur and nothing will actually get
collected.

How can I make a stack-allocated array? As in C, you declare a local vari-
able with an array type. Also as in C, all uses of the variable, except
as an argument to sizeof and &, are promoted to a pointer. If your
declaration is

int x[256];

then uses of x have type int @‘L{256} where L is the name of
the block in which x is declared. (Most blocks are unnamed and the
compiler just makes up a name.)

Stack-allocated arrays must be initialized when they are declared
(unlike other local variables). Use an array-initializer, as in

int y[] = { 0, 1, 2, 3 };
int z[] = { for i < 256 : i };

To pass (a pointer to) the array to another function, the function must
have a type indicating it can accept stack pointers, as explained else-
where.

Can I use salloc or realloc ? Currently, we don’t provide support for
salloc . For realloc , we do provide support, but only on heap-
allocated char? buffers.

Why do I have to cast from * to @if I’ve already tested for NULL? Our com-
piler is not as smart as you are. It does not realize that you have
tested for NULL, and it insists on a check (the cast) just to be sure.
You can leave the cast implicit, but the compiler will emit a warn-
ing. We are currently working to incorporate a flow analysis to omit
spurious warning. Because of aliasing, threads, and undefined eval-
uation order, a sound analysis is non-trivial.

110

Why can’t a function parameter or struct field have type ‘a::M ? Type vari-
ables of memory kind can be instantiated with types of any size.
There is no straightforward way to compile a function with an ar-
gument of arbitrary size. The obvious way to write such a function
is to manipulate a pointer to the arbitrary size value instead. So your
parameter should have type ‘a::M* or ‘a::M@ .

Can I see how Cyclone compiles the code? The easiest way to do this is
to pass the flags -save-c and -pp to the compiler. This instructs
the compiler to save the C code that it builds and passes to GCC, and
print it out using the pretty-printer. You will have to work to make
some sense out of the C code, though. It will likely contain many
extern declarations (because the code has already gone through
the preprocessor) and generated type definitions (because of tuples,
tagged unions, and questionable pointers). Pattern-matching code
gets translated to a mess of temporary variables and goto state-
ments. Array-bounds checks and NULL checks can clutter array-
intensive and pointer-intensive code. And all typedef s are expanded
away before printing the output.

Can I use gdb on the output? You can run gdb , but debugging support
is not all the way there yet. By default, source-level debugging op-
erations within gdb will reference the C code generated by the Cy-
clone compiler, not the Cyclone source itself. In this case, you need
to be aware of three things. First, you have to know how Cyclone
translates top-level identifiers to C identifiers (it prepends Cyc and
separates namespaces by instead of ::) so you can set breakpoints at
functions. Second, it can be hard to print values because many Cy-
clone types get translated to void *. Third, we do not yet have source
correlation, so if you step through code, you’re stepping through C
code, not Cyclone code.

To improve this situation somehwat, you can compile your files with
the option --lineno . This will insert line directives in the gener-
ated C code that refer to the original Cyclone code. This will allow
you to step through the program and view the Cyclone source rather
than the generated C. However, doing this has two drawbacks. First,
it may occlude some operation in the generated C code that is caus-
ing your bug. Second, compilation with --lineno is significantly

111

slower than without. Finally, the result is not bug-free; sometimes
the debugger will fall behind the actual program point and print the
wrong source lines; we hope to fix this problem soon.

Two more hints: First, on some architectures, the first memory alloca-
tion appears to seg fault in GC_findlimit . This is correct and doc-
umented garbage-collector behavior (it handles the signal but gdb
doesn’t know that); simply continue execution. Second, a common
use of gdb is to find the location of an uncaught exception. To do
this, set a breakpoint at throw (a function in the Cyclone runtime).

Can I use gprof on the output? Yes, just use the -pg flag. You should
also rebuild the Cyclone libraries and the garbage collector with the
-pg flag. The results of gprof make sense because a Cyclone func-
tion is compiled to a C function.

Notes for Cygwin users: First, the versions of libgmon.a we have
downloaded from cygnus are wrong (every call gets counted as a
self-call). We have modified libgmon.a to fix this bug, so download
our version and put it in your cygwin/lib directory. Second, tim-
ing information should be ignored because gprof is only sampling
100 or 1000 times a second (because it is launching threads instead
of using native Windows profiling). Neither of these problems are
Cyclone-specific.

Is there an Emacs mode for Cyclone? Sort of. In the doc/ directory of
the distribution you will find a font-lock.el file and elisp code
(in cyclone_dot_emacs.el) suitable for inclusion in your .emacs
file. However, these files change C++ mode and use it for Cyclone
rather than creating a new Cyclone mode. Of course, we intend to
make our own mode rather than destroy C++-mode’s ability to be
good for C++. Note that we have not changed the C++ indentation
rules at all; our elisp code is useful only for syntax highlighting.

Does Cyclone have something to do with runtime code generation? Cyclone
has its roots in Popcorn, a language which was safe but not as com-
patible with C. An offshoot of Popcorn added safe runtime code
generation, and was called Cyclone. The current Cyclone language
is a merger of the two, refocused on safety and C compatibility. Cur-
rently, the language does not have support for runtime code gener-

112

ation, but we have reserved the keywords codegen , splice , cut ,
and fill in case we get a chance to add it.

What platforms are supported? You need a platform that has gcc 2.9, GNU
make, ar, sed, either bash or ksh, and the ability to build the Boehm-
Demers-Weiser garbage collector. Furthermore, the size of int and
all C pointers must be the same. We have actively develop Cyclone
on cygwin (Windows 98, NT, 2K), and Linux. We have code for ver-
sions on Solaris, OpenBSD, FreeBSD, and Mac OS X. The platform-
specific parts of these non-development distributions, particularly
system call interfaces, may not be correct. We are in the process of
developing a tool to automatically generate system-dependent code
that should be part of future releases.

Why aren’t there more libraries? We are eager to have a wider code base,
but we are compiler writers with limited resources. Let us know of
useful code you write.

Why doesn’t List::imp_rev(l) change l to its reverse? The library func-
tion List::imp_rev mutates its argument by reversing the tl fields.
It returns a pointer to the new first (old last) cell, but l still points to
the old first (new last) cell.

Can I inline functions? Functions can be declared inline as in ISO C99.
You can get additional inlining by compiling the Cyclone output
with the -O2 flag. Whether a function is inlined or not has no ef-
fect on Cyclone type-checking.

If Cyclone is safe, why does my program crash? There are certain classes
of errors that Cyclone does not attempt to prevent. Two examples are
stack overflow and various numeric traps, such as division-by-zero.
It is also possible to run out of memory. Other crashes could be due
to compiler bugs or linking against buggy C code (or linking incor-
rectly against C code).

Note that when using gdb , it may appear there is a seg fault in GC -
findlimit(). This behavior is correct; simply continue execution.

113

What are compile-time constants? Compile-time constants are NULL, in-
teger and character constants, and arithmetic operations over compile-
time constants. Constructs requiring compile-time constants are: tuple-
subscript (e.g., x[3] for tuple x), case argument for switch "C"
argument has a numeric type (e.g., case 3+4 :), sizes in array dec-
larations (e.g., int y[37] , and sizes in pointer bounds (e.g., int
* x{124}). Unlike in C, sizeof(t) is not an integral constant ex-
pression because the Cyclone compiler does not know the actual size
of aggregate types.

How can I get the size of an array? If expr is an array, then expr.size re-
turns the array’s size. Note that for ? types, the size is retrieved at
runtime from the object. For other array types, the size is determined
at compile-time.

C Libraries

C.1 C Libraries

Cyclone provides partial support for the following C library headers:

<arpa/inet.h> <assert.h> <ctype.h> <dirent.h> <errno.h>
<fcntl.h> <getopt.h> <grp.h> <math.h> <netdb.h>
<netinet/in.h> <netinet/tcp.h> <pwd.h> <signal.h>
<stddef.h> <stdio.h> <stdlib.h> <string.h> <strings.h>
<sys/mman.h> <sys/resource.h> <sys/select.h> <sys/socket.h>
<sys/stat.h> <sys/time.h> <sys/types.h> <sys/wait.h>
<time.h> <unistd.h>

For each supported C library header <XXX.h> , we also provide a header
<cXXX.h> , which has the same declarations as <XXX.h> , except that they
are all contained in namespace Std. For example, <cstdio.h> declares
Std::printf . Each file <XXX.h> is equivalent to

#include <cXXX.h>
using Std;

114

C.2 <array.h>

Defines namespace Array, implementing utility functions on arrays.
void qsort (cmpfn_t<‘a, ‘r, ‘r>, ‘a ?‘r x, int len);

qsort(cmp,x,len) sorts the first len elements of array x into as-
cending order (according to the comparison function cmp) by the Quick-
Sort algorithm. cmp(a,b) should return a number less than, equal to,
or greater than 0 according to whether a is less than, equal to, or greater
than b. qsort throws Core::InvalidArg("Array::qsort") if
len is negative or specifies a segment outside the bounds of x .

qsort is not a stable sort.

void msort (cmpfn_t<‘a, , >, ‘a ?‘H x, int len);

msort(cmp,x,len) sorts the first len elements of array x into as-
cending order (according to the comparison function cmp), by the Merge-
Sort algorithm. msort throws Core::InvalidArg("Array::msort")
if len is negative or specifies a segment outside the bounds of x .

msort is a stable sort.

‘a ? from_list (List::list_t<‘a> l);

from_list(l) returns a heap-allocated array with the same elements
as the list l .

List::list_t<‘a> to_list (‘a ?x);

to_list(x) returns a new heap-allocated list with the same elements
as the array x .

‘a ? copy (‘a ?x);

copy(x) returns a fresh copy of array x , allocated on the heap.

‘b ? map(‘b(@‘H f)(‘a), ‘a ?x);

map(f,x) applies f to each element of x , returning the results in a
new heap-allocated array.

‘b ? map_c(‘b(@‘H f)(‘c, ‘a), ‘c env, ‘a ?x);

map_c(f,env,x) is like map(f,x) except that f requires a closure
env as its first argument.

115

void imp_map(‘a(@‘H f)(‘a), ‘a ?x);

imp_map(f,x) replaces each element xi of x with f(xi) .

void imp_map_c (‘a(@‘H f)(‘b, ‘a), ‘b env, ‘a ?x);

imp_map_c is a version of imp_map where the function argument re-
quires a closure as its first argument.

xtunion exn {
Array_mismatch

};

Array_mismatch is thrown when two arrays don’t have the same
length.

‘c ? map2(‘c(@‘H f)(‘a, ‘b), ‘a ?x, ‘b ?y);

If x has elements x1 through xn , and y has elements y1 through yn ,
then map2(f,x,y) returns a new heap-allocated array with elements
f(x1,y1) through f(xn,yn) . If x and y don’t have the same number
of elements, Array_mismatch is thrown.

void app (‘b(@‘H f)(‘a), ‘a ?‘r x);

app(f,x) applies f to each element of x , discarding the results. Note
that f must not return void .

void app_c (‘c(@‘H f)(‘a, ‘b), ‘a env, ‘b ?x);

app_c(f,env,x) is like app(f,x) , except that f requires a closure
env as its first argument.

void iter (void(@‘H f)(‘a), ‘a ?x);

iter(f,x) is like app(f,x) , except that f returns void .

void iter_c (void(@‘H f)(‘b, ‘a), ‘b env, ‘a ?x);

iter_c(f,env,x) is like app_c(f,env,x) except that f returns
void .

void app2 (‘c(@‘H f)(‘a, ‘b), ‘a ?x, ‘b ?y);

If x has elements x1 through xn , and y has elements y1 through yn ,
then app2(f,x,y) performs f(x1,y1) through f(xn,yn) and dis-
cards the results. If x and y don’t have the same number of elements,
Array_mismatch is thrown.

116

void app2_c (‘d(@‘H f)(‘a, ‘b, ‘c), ‘a env, ‘b ?x, ‘c ?y);

app2_c is a version of app where the function argument requires a clo-
sure as its first argument.

void iter2 (void(@‘H f)(‘a, ‘b), ‘a ?x, ‘b ?y);

iter2 is a version of app2 where the function returns void .

void iter2_c (void(@‘H f)(‘a, ‘b, ‘c), ‘a env, ‘b ?x, ‘c ?y);

iter2_c is a version of app2_c where the function returns void .

‘a fold_left (‘a(@‘H f)(‘a, ‘b), ‘a accum, ‘b ?x);

If x has elements x1 through xn , then fold_left(f,accum,x) re-
turns f(f(...(f(x2,f(x1,accum))),xn-1),xn) .

‘a fold_left_c (‘a(@‘H f)(‘c, ‘a, ‘b), ‘c env, ‘a accum, ‘b ?x);

fold_left_c is a version of fold_left where the function argu-
ment requires a closure as its first argument.

‘b fold_right (‘b(@‘H f)(‘a, ‘b), ‘a ?x, ‘b accum);

If x has elements x1 through xn , then fold_left(f,accum,x) re-
turns f(x1,f(x2,...,f(xn-1,f(xn,a))...)) .

‘b fold_right_c (‘b(@‘H f)(‘c, ‘a, ‘b), ‘c env, ‘a ?x, ‘b accum);

fold_right_c is a version of fold_right where the function argu-
ment requires a closure as its first argument.

‘a ? rev_copy (‘a ?x);

rev_copy(x) returns a new heap-allocated array whose elements are
the elements of x in reverse order.

void imp_rev (‘a ?x);

imp_rev(x) reverses the elements of array x .

bool forall (bool (@‘H pred)(‘a), ‘a ?x);

forall(pred,x) returns true if pred returns true when applied to
every element of x , and returns false otherwise.

117

bool forall_c (bool (@‘H pred)(‘a, ‘b), ‘a env, ‘b ?x);

forall_c is a version of forall where the predicate argument re-
quires a closure as its first argument.

bool exists (bool (@‘H pred)(‘a), ‘a ?x);

exists(pred,x) returns true if pred returns true when applied to
some element of x , and returns false otherwise.

bool exists_c (bool (@‘H pred)(‘a, ‘b), ‘a env, ‘b ?x);

exists_c is a version of exists where the predicate argument re-
quires a closure as its first argument.

$(‘a, ‘b)? zip (‘a ?‘r1 x, ‘b ?y);

If x has elements x1 through xn , and y has elements y1 through yn ,
then zip(x,y) returns a new heap-allocated array with elements $(x1,y1)
through $(xn,yn) . If x and y don’t have the same number of ele-
ments, Array_mismatch is thrown.

$(‘a ?, ‘b ?) split ($(‘a, ‘b)?x);

If x has elements $(a1,b1) through $(an,bn) , then split(x) re-
turns a pair of new heap-allocated arrays with elements a1 through
an , and b1 through bn .

bool memq(‘a ?l, ‘a x);

memq(l,x) returns true if x is == an element of array l , and returns
false otherwise.

bool mem(int(@‘H cmp)(‘a, ‘a), ‘a ?l, ‘a x);

mem(cmp,l,x) is like memq(l,x) except that the comparison func-
tion cmp is used to determine if x is an element of l . cmp(a,b) should
return 0 if a is equal to b, and return a non-zero number otherwise.

‘a ? extract (‘a ?x, int start, int *len_opt);

extract(x,start,len_opt) returns a new array whose elements
are the elements of x beginning at index start , and continuing to the
end of x if len_opt is NULL; if len_opt points to an integer n, then
n elements are extracted. If n<0 or there are less than n elements in x
starting at start , then Core::InvalidArg("Array::extract")
is thrown.

118

C.3 <bitvec.h>

Defines namespace Bitvec, which implements bit vectors. Bit vectors are
useful for representing sets of numbers from 0 to n, where n is not too
large.
typedef int ?‘r bitvec_t <‘r>;

bitvec_t is the type of bit vectors.

bitvec_t new_empty (int);

new_empty(n) returns a bit vector containing n bits, all set to 0.

bitvec_t new_full (int);

new_full(n) returns a bit vector containing n bits, all set to 1.

bitvec_t new_copy (bitvec_t);

new_copy(v) returns a copy of bit vector v .

bool get (bitvec_t , int);

get(v,n) returns the nth bit of v .

void set (bitvec_t , int);

set(v,n) sets the nth bit of v to 1.

void clear (bitvec_t , int);

clear(v,n) sets the nth bit of v to 0.

bool get_and_set (bitvec_t , int);

get_and_set(v,n) sets the nth bit of v to 1, and returns its value
before the set.

void clear_all (bitvec_t);

clear_all(v) sets every bit in v to 0.

void set_all (bitvec_t);

set_all(v) sets every bit in v to 1.

119

bool all_set (bitvec_t bvec, int sz);

all_set(v) returns true if every bit in v is set to 1, and returns false
otherwise.

void union_two (bitvec_t dest, bitvec_t src1, bitvec_t src2);

union_two(dest,src1,src2) sets dest to be the union of src1
and src2 : a bit of dest is 1 if either of the corresponding bits of src1
or src2 is 1, and is 0 otherwise.

void intersect_two (bitvec_t dest, bitvec_t src1, bitvec_t src2);

intersect_two(dest,src1,src2) sets dest to be the intersec-
tion of src1 and src2 : a bit of dest is 1 if both of the corresponding
bits of src1 and src2 are 1, and is 0 otherwise.

void diff_two (bitvec_t dest, bitvec_t src1, bitvec_t src2);

diff_two(dest,src1,src2) sets dest to be the difference of src1
and src2 : a bit of dest is 1 if the corresponding bit of src1 is 1, and
the corresponding bit of src2 is 0; and is 0 otherwise.

bool compare_two (bitvec_t src1, bitvec_t src2);

compare_two(src1,src2) returns true if src1 and src2 are equal,
and returns false otherwise.

C.4 <buffer.h>

Defines namespace Buffer, which implements extensible character arrays.
It was ported from Objective Caml.
typedef struct t @ T ;

T is the type of buffers.

T create (unsigned int n);

create(n) returns a fresh buffer, initially empty. n is the initial size
of an internal character array that holds the buffer’s contents. The in-
ternal array grows when more than n character have been stored in
the buffer; it shrinks back to the initial size when reset is called. If
n is negative, no exception is thrown; a buffer with a small amount of
internal storage is returned instead.

120

mstring_t contents (T);

contents(b) heap allocates and returns a string whose contents are
the contents of buffer b.

size_t length (T);

length(b) returns the number of characters in buffer b.

void clear (T);

clear(b) makes b have zero characters. Internal storage is not re-
leased.

void reset (T);

reset(b) sets the number of characters in b to zero, and sets the in-
ternal storage to the initial string. This means that any storage used to
grow the buffer since the last create or reset can be reclaimed by the
garbage collector.

void add_char (T , unsigned char);

add_char(b,c) appends character c to the end of b.

void add_substring (T , string_t , int offset, int len);

add_substring(b,s,ofs,len) takes len characters starting at off-
set ofs in string s and appends them to the end of b. If ofs and
len do not specify a valid substring of s , then the function throws
InvalidArg("Buffer::add_substring") . Note, the substring spec-
ified by offset and len may contain NUL (0) characters; in any case,
the entire substring is appended to b, not just the substring up to the
first NUL character.

void add_string (T , string_t);

add_string(b,s) appends the string s to the end of b.

void add_buffer (T buf_dest, T buf_source);

add_buffer(b1,b2) appends the current contents of b2 to the end
of b1 . b2 is not modified.

121

C.5 <core.h>

The file <core.h> defines some types and functions outside of any names-
pace, and also defines a namespace Core. These declarations are made
outside of any namespace.
typedef const unsigned char ?‘r string_t <‘r>;

A string_t<‘r> is a constant array of characters allocated in region
‘r .

typedef unsigned char ?‘r mstring_t <‘r>;

An mstring_t<‘r> is a non-const (mutable) array of characters allo-
cated in region ‘r .

typedef string_t<‘r1> @‘r2 stringptr_t <‘r1,‘r2>;

A stringptr_t<‘r1,‘r2> is used when a “boxed” string is needed,
for example, you can have a list of string pointers, but not a list of
strings.

typedef mstring_t<‘r1> @‘r2 mstringptr_t <‘r1,‘r2>;

mstringptr is the mutable version of stringptr_t .

typedef int bool ;

In Cyclone, we use bool as a synonym for int . We also define macros
true and false , which are 1 and 0, respectively.

C.6 <dict.h>

Defines namespace Dict, which implements dictionaries: mappings from
keys to values. The dictionaries are implemented functionally: adding
a mapping to an existing dictionary produces a new dictionary, without
affecting the existing dictionary. To enable an efficient implementation,
you are required to provide a total order on keys (a comparison function).

We follow the conventions of the Objective Caml Dict library as much
as possible.

Namespace Dict implements a superset of namespace SlowDict, except
that delete_present is not supported.

122

typedef struct Dict<‘a, ‘b, ‘r> @‘r dict_t <‘a,‘b,‘r>;

A value of type dict_t<‘a,‘b,‘r> is a dictionary that maps keys of
type ‘a to values of type ‘b ; the dictionary datatypes live in region ‘r .

xtunion exn {
Present

};

Present is thrown when a key is present but not expected.

xtunion exn {
Absent

};

Absent is thrown when a key is absent but should be present.

dict_t<‘a, ‘b> empty (int(@‘H cmp)(‘a, ‘a));

empty(cmp) returns an empty dictionary, allocated on the heap. cmp
should be a comparison function on keys: cmp(k1,k2) should return
a number less than, equal to, or greater than 0 according to whether k1
is less than, equal to, or greater than k2 in the ordering on keys.

dict_t<‘a, ‘b, ‘r> rempty (‘r, int(@‘H cmp)(‘a, ‘a));

rempty(r,cmp) is like empty(cmp) except that the dictionary is al-
located in the region with handle r .

bool is_empty (dict_t d);

is_empty(d) returns true if d is empty, and returns false otherwise.

bool member(dict_t<‘a> d, ‘a k);

member(d,k) returns true if k is mapped to some value in d, and
returns false otherwise.

dict_t<‘a, ‘b, ‘r> insert (dict_t<‘a, ‘b, ‘r> d, ‘a k, ‘b v);

insert(d,k,v) returns a dictionary with the same mappings as d,
except that k is mapped to v . The dictionary d is not modified.

dict_t<‘a, ‘b, ‘r> insert_new (dict_t<‘a, ‘b, ‘r> d, ‘a k, ‘b v);

insert_new(d,k,v) is like insert(d,k,v) , except that it throws
Present if k is already mapped to some value in d.

123

dict_t<‘a, ‘b, ‘r> inserts (dict_t<‘a, ‘b, ‘r> d, list_t<$(‘a, ‘b)@> l);

inserts(d,l) inserts each key, value pair into d, returning the result-
ing dictionary.

dict_t<‘a, ‘b> singleton (int(@‘H cmp)(‘a, ‘a), ‘a k, ‘b v);

singleton(cmp,k,v) returns a new heap-allocated dictionary with
a single mapping, from k to v .

dict_t<‘a, ‘b, ‘r> rsingleton (‘r, int(@‘H cmp)(‘a, ‘a), ‘a k, ‘b v);

rsingleton(r,cmp,k,v) is like singleton(cmp,k,v) , except the
resulting dictionary is allocated in the region with handle r .

‘b lookup (dict_t<‘a, ‘b> d, ‘a k);

lookup(d,k) returns the value associated with key k in d, or throws
Absent if k is not mapped to any value.

Core::opt_t<‘b> lookup_opt (dict_t<‘a, ‘b> d, ‘a k);

lookup_opt(d,k) returns NULLif k is not mapped to any value in d,
and returns a non-NULL, heap-allocated option containing the value k
is mapped to in d otherwise.

‘b *‘r rlookup_opt (‘r, dict_t<‘a, ‘b> d, ‘a k);

rlookup_opt(r,d,k) is like lookup_opt(d,k) except that any op-
tion returned will be allocated in the region with handle r .

bool lookup_bool (dict_t<‘a, ‘b> d, ‘a k, ‘b @ans);

If d maps k to a value, then lookup_bool(d,k,ans) assigns that
value to *ans and returns true; otherwise, it returns false.

‘c fold (‘c(@‘H f)(‘a, ‘b, ‘c), dict_t<‘a, ‘b> d, ‘c accum);

If d has keys k1 through kn mapping to values v1 through vn , then
fold(f,d,accum) returns f(k1,v1,...f(kn,vn,accum)...) .

‘c fold_c (‘c(@‘H f)(‘d, ‘a, ‘b, ‘c), ‘d env, dict_t<‘a, ‘b> d, ‘c accum);

fold_c(f,env,d,accum) is like fold(f,d,accum) except that f
takes closure env as its first argument.

124

void app (‘c(@‘H f)(‘a, ‘b), dict_t<‘a, ‘b> d);

app(f,d) applies f to every key/value pair in d; the results of the
applications are discarded. Note that f cannot return void .

void app_c (‘c(@‘H f)(‘d, ‘a, ‘b), ‘d env, dict_t<‘a, ‘b> d);

app_c(f,env,d) is like app(f,d) except that f takes closure env as
its first argument.

void iter (void(@‘H f)(‘a, ‘b), dict_t<‘a, ‘b> d);

iter(f,d) is like app(f,d) except that f returns void .

void iter_c (void(@‘H f)(‘c, ‘a, ‘b), ‘c env, dict_t<‘a, ‘b> d);

iter_c(f,env,d) is like app_c(f,env,d) except that f returns
void .

void iter2 (void(@f)(‘b, ‘b), dict_t<‘a, ‘b> d1, dict_t<‘a, ‘b> d2);

For every key k in the domain of both d1 and d2 , iter2(f,d1,d2)
performs f(lookup(d1,k), lookup(d2,k)) . If there is any key
present in d1 but not d2 , then Absent is thrown.

void iter2_c (void(@f)(‘c, ‘b, ‘b), ‘c env, dict_t<‘a, ‘b> d1, dict_t<‘a, ‘b> d2);

iter2_c is like iter except that f takes a closure as its first argument.

‘c fold2_c (‘c(@f)(‘d, ‘a, ‘b1, ‘b2, ‘c), ‘d env, dict_t<‘a, ‘b1> d1, dict_t<‘a, ‘b2> d2, ‘c accum);

If k1 through kn are the keys of d1 , then fold2_c(f,env,d1,d2,accum)
returns f(env,k1,lookup(k1,d1),lookup(k1,d2), ... f(env,kn,lookup(kn,d1),lookup(kn,d2),accum)...) .
If there is any key present in d1 but not d2 , then Absent is thrown.

dict_t<‘a, ‘b, ‘r> rcopy (‘r, dict_t<‘a, ‘b>);

rcopy(r,d) returns a copy of d, newly allocated in the region with
handle r .

dict_t<‘a, ‘b> copy (dict_t<‘a, ‘b>);

copy(r,d) returns a copy of d, newly allocated on the heap.

125

dict_t<‘a, ‘c> map(‘c(@‘H f)(‘b), dict_t<‘a, ‘b> d);

map(f,d) applies f to each value in d, and returns a new dictionary
with the results as values: for every binding of a key k to a value v in
d, the result binds k to f(v) . The returned dictionary is allocated on
the heap.

dict_t<‘a, ‘c, ‘r> rmap (‘r, ‘c(@‘H f)(‘b), dict_t<‘a, ‘b> d);

rmap(r,f,d) is like map(f,d) , except the resulting dictionary is al-
located in the region with handle r .

dict_t<‘a, ‘c> map_c(‘c(@‘H f)(‘d, ‘b), ‘d env, dict_t<‘a, ‘b> d);

map_c(f,env,d) is like map(f,d) except that f takes env as its first
argument.

dict_t<‘a, ‘c, ‘r> rmap_c (‘r, ‘c(@‘H f)(‘d, ‘b), ‘d env, dict_t<‘a, ‘b> d);

rmap_c(r,f,env,d) is like map_c(f,env,d) except that the re-
sulting dictionary is allocated in the region with handle r .

dict_t<‘a, ‘b, ‘r> union_two_c (‘b(@f)(‘c, ‘a, ‘b, ‘b), ‘c env, dict_t<‘a, ‘b, ‘r> d1, dict_t<‘a, ‘b> d2);

union_two(f,env,d1,d2) returns a new dictionary with a binding
for every key in d1 or d2 . If a key appears in both d1 and d2 , its value
in the result is obtained by applying f to the two values, the key, and
env. Note that the resulting dictionary is allocated in the same region as
d2 . (We don’t use union as the name of the function, because union
is a keyword in Cyclone.)

dict_t<‘a, ‘b, ‘r> intersect (‘b(@f)(‘a, ‘b, ‘b), dict_t<‘a, ‘b, ‘r> d1, dict_t<‘a, ‘b, ‘r> d2);

intersect(f,d1,d2) returns a new dictionary with a binding for
every key in both d1 and d2 . For every key appearing in both d1 and
d2 , its value in the result is obtained by applying f to the key and the
two values. Note that the input dictionaries and result must be allo-
cated in the same region.

dict_t<‘a, ‘b, ‘r> intersect_c (‘b(@f)(‘c, ‘a, ‘b, ‘b), ‘c env, dict_t<‘a, ‘b, ‘r> d1, dict_t<‘a, ‘b, ‘r> d2);

intersect_c(f,env,d1,d2) is like intersect(f,d1,d2) , except
that f takes env as its first argument.

126

bool forall_c (bool (@‘H f)(‘c, ‘a, ‘b), ‘c env, dict_t<‘a, ‘b> d);

forall_c(f,env,d) returns true if f(env,k,v) returns true for ev-
ery key k and associated value v in d, and returns false otherwise.

bool forall_intersect (bool (@‘H f)(‘a, ‘b, ‘b), dict_t<‘a, ‘b> d1, dict_t<‘a, ‘b> d2);

forall_intersect(f,d1,d2) returns true if f(k,v1,v2) returns
true for every key k appearing in both d1 and d2 , where v1 is the value
of k in d1 , and v2 is the value of k in d2 ; and it returns false otherwise.

$(‘a, ‘b)@ choose (dict_t<‘a, ‘b> d);

choose(d) returns a key/value pair from d; if d is empty, Absent is
thrown. The resulting pair is allocated on the heap.

$(‘a, ‘b)@‘r rchoose (‘r, dict_t<‘a, ‘b> d);

rchoose(r,d) is like choose(d) , except the resulting pair is allo-
cated in the region with handle r .

list_t<$(‘a, ‘b)@> to_list (dict_t<‘a, ‘b> d);

to_list(d) returns a list of the key/value pairs in d, allocated on the
heap.

list_t<$(‘a, ‘b)@‘r, ‘r> rto_list (‘r, dict_t<‘a, ‘b> d);

rto_list(r,d) is like to_list(d) , except that the resulting list is
allocated in the region with handle r .

dict_t<‘a, ‘b> filter (bool (@‘H f)(‘a, ‘b), dict_t<‘a, ‘b> d);

filter(f,d) returns a dictionary that has a binding of k to v for ev-
ery binding of k to v in d such that f(k,v) returns true. The resulting
dictionary is allocated on the heap.

dict_t<‘a, ‘b, ‘r> rfilter (‘r, bool (@‘H f)(‘a, ‘b), dict_t<‘a, ‘b> d);

rfilter(r,f,d) is like filter(f,d) , except that the resulting dic-
tionary is allocated in the region with handle r .

dict_t<‘a, ‘b> filter_c (bool (@‘H f)(‘c, ‘a, ‘b), ‘c env, dict_t<‘a, ‘b> d);

filter_c(f,env,d) is like filter(f,d) except that f takes a clo-
sure env as its first argument.

127

dict_t<‘a, ‘b, ‘r> rfilter_c (‘r, bool (@‘H f)(‘c, ‘a, ‘b), ‘c env, dict_t<‘a, ‘b> d);

rfilter_c(r,f,env,d) is like filter_c(f,env,d) , except that
the resulting dictionary is allocated in the region with handle r .

dict_t<‘a, ‘b> difference (dict_t<‘a, ‘b> d1, dict_t<‘a, ‘b> d2);

difference(d1,d2) returns a dictionary that has a binding of k to
v for every binding of k to v in d1 where k is not in d2 . (Note that the
values of d2 are not relevant to difference(d1,d2) .) The resulting
dictionary is allocated on the heap.

dict_t<‘a, ‘b, ‘r> rdifference (‘r, dict_t<‘a, ‘b> d1, dict_t<‘a, ‘b> d2);

rdifference(d1,d2) is like difference(d1,d2) , except that the
resulting dictionary is allocated in the region with handle r .

dict_t<‘a, ‘b> delete (dict_t<‘a, ‘b>, ‘a);

delete(d,k) returns a dictionary with the same bindings as d, except
that any binding of k is removed. The resulting dictionary is allocated
on the heap.

dict_t<‘a, ‘b, ‘r> rdelete (‘r, dict_t<‘a, ‘b>, ‘a);

rdelete(r,d,k) is like delete(d,k) except that the result is allo-
cated in the region with handle r .

dict_t<‘a, ‘b, ‘r> rdelete_same (dict_t<‘a, ‘b, ‘r>, ‘a);

rdelete_same(d,k) is like delete(d,k) , except that the resulting
dictionary is allocated in the same region as the input dictionary d.
This can be faster than delete(d,k) because it avoids a copy when k
is not a member of d.

C.7 <filename.h>

Defines a namespace Filename, which implements some useful operations
on file names that are represented as strings.
mstring_t concat (string_t , string_t);

Assuming that s1 is a directory name and s2 is a file name, concat(s1,s2)
returns a new (heap-allocated) file name for the child s2 of directory
s1 .

128

mstring_t chop_extension (string_t);

chop_extension(s) returns a copy of s with any file extension re-
moved. A file extension is a period (‘.’) followed by a sequence of
non-period characters. If s does not have a file extension, chop_-
extension(s) throws Core::Invalid_argument("chop_extension") .

mstring_t dirname (string_t);

dirname(s) returns the directory part of s . For example, if s is "foo/bar/baz" ,
dirname(s) returns "foo/bar" .

mstring_t basename (string_t);

basename(s) returns the file part of s . For example, if s is "foo/bar/baz" ,
basename(s) returns "baz" .

bool check_suffix (string_t , string_t);

check_suffix(filename,suffix) returns true if filename ends
in suffix , and returns false otherwise.

mstring_t gnuify (string_t);

gnuify(s) forces s to follow Unix file name conventions: any Win-
dows separator characters (backslashes) are converted to Unix separa-
tor characters (forward slashes).

C.8 <fn.h>

Defines namespace Fn, which implements closures: a way to package up
a function with some hidden data (an environment). Many of the library
functions taking function arguments have versions for functions that re-
quire an explicit environment; the closures of namespace Fn are different,
they combine the function and environment, and the environment is hid-
den. They are useful when two functions need environments of different
type, but you need them to have the same type; you can do this by hiding
the environment from the type of the pair.
typedef tunion

A value of type fn_t<‘arg,‘res,‘eff> is a function and its closure;
‘arg is the argument type of the function, ‘res is the result type, and
‘eff is the effect.

129

fn_t<‘arg, ‘res, ‘e1> make_fn (‘res(@‘H f)(‘env, ‘arg;‘e1+{}), ‘env x;‘e2+{});

make_fn(f,env) builds a closure out of a function and an environ-
ment.

fn_t<‘arg, ‘res, ‘e1> fp2fn (‘res(@‘H f)(‘arg;‘e1+{}));

fp2fn(f) converts a function pointer to a closure.

‘res apply (fn_t<‘arg, ‘res, ‘eff> f, ‘arg x;‘eff+{});

apply(f,x) applies closure f to argument x (taking care of the hid-
den environment in the process).

fn_t<‘a, ‘c, > compose <‘a::?,‘b::?,‘c::?,‘e1::?,‘e2::?,‘e3::?>(fn_t<‘a, ‘b, ‘e1> g, fn_t<‘b, ‘c, ‘e2> f;‘e1+‘e2+‘e3+{});

compose(g,f) returns the composition of closures f and g; apply(compose(g,f),x)
has the same effect as apply(f,apply(g,x)) .

fn_t<‘a, fn_t<‘b, ‘c, ‘e1>, > curry (fn_t<$(‘a, ‘b)@‘H, ‘c, ‘e1> f);

curry(f) curries a closure that takes a pair as argument: if x points to
a pair $(x1,x2) , then apply(f,x) has the same effect as apply(apply(curry(f),x1),x2) .

fn_t<$(‘a, ‘b)@, ‘c, > uncurry (fn_t<‘a, fn_t<‘b, ‘c, ‘e1>, ‘e2> f);

uncurry(f) converts a closure that takes two arguments in sequence
into a closure that takes the two arguments as a pair: if x points to a
pair $(x1,x2) , then apply(uncurry(f),x) has the same effect as
apply(apply(f,x1),x2) .

List::list_t<‘b> map_fn (fn_t<‘a, ‘b, ‘e> f, List::list_t<‘a> x);

map_fn(f,x) maps the closure f on the list x : if x has elements x1
through xn , then map_fn(f,x) returns a new heap-allocated list with
elements apply(f,x1) through apply(f,xn) .

C.9 <hashtable.h>

Defines namespace Hashtable, which implements mappings from keys to
values. These hashtables are imperative—values are added and deleted
destructively. (Use namespace Dict or SlowDict if you need functional
(non-destructive) mappings.) To enable an efficient implementation, you
are required to provide a total order on keys (a comparison function).

130

typedef struct Table<‘a, ‘b> @ table_t <‘a,‘b>;

A table_t<‘a,‘b> is a hash table with keys of type ‘a and values
of type ‘b .

table_t<‘a, ‘b> create (int sz, int(@‘H cmp)(‘a, ‘a), int(@‘H hash)(‘a));

create(sz,cmp,hash) returns a new hash table that starts out with
sz buckets. cmpshould be a comparison function on keys: cmp(k1,k2)
should return a number less than, equal to, or greater than 0 according
to whether k1 is less than, equal to, or greater than k2 . hash should
be a hash function on keys. cmp and hash should satisfy the following
property: if cmp(k1,k2) is 0, then hash(k1) must equal hash(k2) .

void insert (table_t<‘a, ‘b> t, ‘a key, ‘b val);

insert(t,key,val) binds key to value in t .

‘b lookup (table_t<‘a, ‘b> t, ‘a key);

lookup(t,key) returns the value associated with key in t , or throws
Not_found if there is no value associate with key in t .

void resize (table_t<‘a, ‘b> t);

resize(t) increases the size (number of buckets) in table t . resize
is called automatically by functions like insert when the buckets of a
hash table get large, however, it can also be called by the programmer
explicitly.

void remove (table_t<‘a, ‘b> t, ‘a key);

remove(t,key) removes the most recent binding of key from t ; the
next-most-recent binding of key (if any) is restored. If there is no value
associated with key in t , remove returns silently.

int hash_string (string_t s);

hash_string(s) returns a hash of a string s . It is provided as a con-
venience for making hash tables mapping strings to values.

int hash_stringptr (stringptr_t p);

hash_stringptr(p) returns a hash of a string pointer p.

131

void iter (void(@‘H f)(‘a, ‘b), table_t<‘a, ‘b> t);

iter(f,t) applies f to each key/value pair in t .

void iter_c (void(@‘H f)(‘a, ‘b, ‘c), table_t<‘a, ‘b> t, ‘c env);

iter_c(f,t,e) calls f(k,v,e) for each key/value pair (k,v) .

C.10 <list.h>

Defines namespace List, which implements generic lists and various op-
erations over them, following the conventions of the Objective Caml list
library as much as possible.
struct List <‘a,‘r> {

‘a hd;
struct List<‘a, ‘r> *‘r tl;

};

A struct List is a memory cell with a head field containing an ele-
ment and a tail field that points to the rest of the list. Such a structure is
traditionally called a cons cell. Note that every element of the list must
have the same type ‘a , and every cons cell in the list must be allocated
in the same region ‘r .

typedef struct List<‘a, ‘r> *‘r list_t <‘a,‘r>;

A list_t is a possibly-NULL pointer to a struct List . Most of the
functions in namespace List operate on values of type list_t rather
than struct List . Note that a list_t can be empty (NULL) but a
struct List cannot.

typedef struct List<‘a, ‘r> @ List_t <‘a,‘r>;

A List_t is a non-NULL pointer to a struct List . This is used
much less often than list_t , however it may be useful when you
want to emphasize that a list has at least one element.

list_t<‘a> list (...‘a);

list(x1,...,xn) builds a heap-allocated list with elements x1 through
xn .

132

list_t<‘a, ‘r> rlist (‘r, ...‘a);

rlist(r, x1,...,xn) builds a list with elements x1 through xn ,
allocated in the region with handle r .

int length (list_t x);

length(x) returns the number of elements in list x .

‘a hd(list_t<‘a> x);

hd(x) returns the first element of list x , if there is one, and throws
Failure("hd") if x is NULL.

list_t<‘a, ‘r> tl (list_t<‘a, ‘r> x);

tl(x) returns the tail of list x , if there is one, and throws Failure("tl")
if x is NULL.

list_t<‘a> copy (list_t<‘a> x);

copy(x) returns a new heap-allocated copy of list x .

list_t<‘a, ‘r> rcopy (‘r, list_t<‘a> x);

rcopy(r,x) returns a new copy of list x , allocated in the region with
handle r .

list_t<‘b> map(‘b(@‘H f)(‘a), list_t<‘a> x);

If x has elements x1 through xn , then map(f,x) returns list(f(x1),...,f(xn)) .

list_t<‘b, ‘r> rmap (‘r, ‘b(@‘H f)(‘a), list_t<‘a> x);

If x has elements x1 through xn , then rmap(r,f,x) returns rlist(r,f(x1),...,f(xn)) .

list_t<‘b> map_c(‘b(@‘H f)(‘c, ‘a), ‘c env, list_t<‘a> x);

map_c is a version of mapwhere the function argument requires a clo-
sure as its first argument.

list_t<‘b, ‘r> rmap_c (‘r, ‘b(@‘H f)(‘c, ‘a), ‘c env, list_t<‘a> x);

rmap_c is a version of rmap where the function argument requires a
closure as its first argument.

133

xtunion exn {
List_mismatch

};

List_mismatch is thrown when two lists don’t have the same length.

list_t<‘c> map2(‘c(@‘H f)(‘a, ‘b), list_t<‘a> x, list_t<‘b> y);

If x has elements x1 through xn , and y has elements y1 through yn ,
then map2(f,x,y) returns a new heap-allocated list with elements
f(x1,y1) through f(xn,yn) . If x and y don’t have the same num-
ber of elements, List_mismatch is thrown.

list_t<‘c, ‘r> rmap2 (‘r, ‘c(@‘H f)(‘a, ‘b), list_t<‘a> x, list_t<‘b> y);

rmap2(r,f,x,y) is like map2(f,x,y) , except that the resulting list
is allocated in the region with handle r .

void app (‘b(@‘H f)(‘a), list_t<‘a> x);

app(f,x) applies f to each element of x , discarding the results. Note
that f must not return void .

void app_c (‘c(@‘H f)(‘a, ‘b), ‘a, list_t<‘b> x);

app_c is a version of app where the function argument requires a clo-
sure as its first argument.

void app2 (‘c(@‘H f)(‘a, ‘b), list_t<‘a> x, list_t<‘b> y);

If x has elements x1 through xn , and y has elements y1 through yn ,
then app2(f,x,y) performs f(x1,y1) through f(xn,yn) and dis-
cards the results. If x and y don’t have the same number of elements,
List_mismatch is thrown.

void app2_c (‘d(@‘H f)(‘a, ‘b, ‘c), ‘a env, list_t<‘b> x, list_t<‘c> y);

app2_c is a version of app2 where the function argument requires a
closure as its first argument.

void iter (void(@‘H f)(‘a), list_t<‘a> x);

iter(f,x) is like app(f,x) , except that f returns void .

134

void iter_c (void(@‘H f)(‘b, ‘a), ‘b env, list_t<‘a> x);

iter_c is a version of iter where the function argument requires a
closure as its first argument.

void iter2 (void(@‘H f)(‘a, ‘b), list_t<‘a> x, list_t<‘b> y);

iter2 is a version of app2 where the function returns void .

void iter2_c (void(@‘H f)(‘a, ‘b, ‘c), ‘a env, list_t<‘b> x, list_t<‘c> y);

iter2_c is a version of iter2 where the function argument requires
a closure as its first argument.

‘a fold_left (‘a(@‘H f)(‘a, ‘b), ‘a accum, list_t<‘b> x);

If x has elements x1 through xn , then fold_left(f,accum,x) re-
turns f(f(...(f(x2,f(x1,accum))),xn-1),xn) .

‘a fold_left_c (‘a(@‘H f)(‘c, ‘a, ‘b), ‘c, ‘a accum, list_t<‘b> x);

fold_left_c is a version of fold_left where the function argu-
ment requires a closure as its first argument.

‘b fold_right (‘b(@‘H f)(‘a, ‘b), list_t<‘a> x, ‘b accum);

If x has elements x1 through xn , then fold_left(f,accum,x) re-
turns f(x1,f(x2,...,f(xn-1,f(xn,a))...)) .

‘b fold_right_c (‘b(@‘H f)(‘c, ‘a, ‘b), ‘c, list_t<‘a> x, ‘b accum);

fold_right_c is a version of fold_right where the function argu-
ment requires a closure as its first argument.

list_t<‘a> revappend (list_t<‘a, ‘r> x, list_t<‘a, > y);

If x has elements x1 through xn , revappend(x,y) returns a list that
starts with elements xn through x1 , then continues with y . Cons cells
for the first n elements are newly-allocated on the heap, and y must be
allocated on the heap.

list_t<‘a, ‘r> rrevappend (‘r, list_t<‘a> x, list_t<‘a, ‘r> y);

rrevappend(r,x,y) is like revappend(x,y) , except that y must
be allocated in the region with handle r , and the result is allocated in
the same region.

135

list_t<‘a> rev (list_t<‘a> x);

rev(x) returns a new heap-allocated list whose elements are the ele-
ments of x in reverse.

list_t<‘a, ‘r> rrev (‘r, list_t<‘a> x);

rrev(r,x) is like rev(x) , except that the result is allocated in the
region with handle r .

list_t<‘a, ‘r> imp_rev (list_t<‘a, ‘r> x);

imp_rev(x) imperatively reverses list x (the list is side-effected). Note
that imp_rev returns a list. This is because the first cons cell of the
result is the last cons cell of the input; a typical use is therefore x =
imp_rev(x) .

list_t<‘a> append (list_t<‘a> x, list_t<‘a, > y);

If x has elements x1 through xn , append(x,y) returns a list that starts
with elements x1 through xn , then continues with y . Cons cells for
the first n elements are newly-allocated on the heap, and y must be
allocated on the heap.

list_t<‘a, ‘r> rappend (‘r, list_t<‘a> x, list_t<‘a, ‘r> y);

rappend(r,x,y) is like append(x,y) , except that y must be allo-
cated in the region with handle r , and the result is allocated in the
same region.

list_t<‘a, ‘r> imp_append (list_t<‘a, ‘r> x, list_t<‘a, ‘r> y);

imp_append(x,y) modifies x to append y to it, destructively. Note
that imp_append returns a list. This is because x might be NULL, in
which case, imp_append(x,y) returns y ; so a typical use would be x
= imp_append(x,y) .

list_t<‘a> flatten (list_t<list_t<‘a, >> x);

In flatten(x) , x is a list of lists, and the result is a new heap-allocated
list with elements from each list in x , in sequence. Note that x must be
allocated on the heap.

136

list_t<‘a, ‘r> rflatten (‘r, list_t<list_t<‘a, ‘r>> x);

rflatten(r,x) is like flatten(x) , except that the result is allo-
cated in the region with handle r , and each element of x must be allo-
cated in r .

list_t<‘a> merge_sort (int(@‘H cmp)(‘a, ‘a), list_t<‘a> x);

merge_sort(cmp,x) returns a new heap-allocated list whose ele-
ments are the elements of x in ascending order (according to the com-
parison function cmp), by the MergeSort algorithm.

list_t<‘a, ‘r> rmerge_sort (‘r, int(@‘H cmp)(‘a, ‘a), list_t<‘a> x);

rmerge_sort(r,x) is like merge_sort(x) , except that the result is
allocated in the region with handle r .

list_t<‘a, ‘r> rimp_merge_sort (int(@‘H cmp)(‘a, ‘a), list_t<‘a, ‘r> x);

rimp_merge_sort is an imperative version of rmerge_sort : the list
is sorted in place. rimp_merge_sort returns a list because the first
cons cell of the sorted list might be different from the first cons cell of
the input list; a typical use is x = rimp_merge_sort(cmp,x) .

list_t<‘a> merge (int(@‘H cmp)(‘a, ‘a), list_t<‘a, > x, list_t<‘a, > y);

merge(cmp,x,y) returns the merge of two sorted lists, according to
the cmp function.

list_t<‘a, ‘r3> rmerge (‘r3, int(@‘H cmp)(‘a, ‘a), list_t<‘a> a, list_t<‘a> b);

rmerge(r,cmp,x,y) is like merge(cmp,x,y) , except that x , y , and
the result are allocated in the region with handle r .

list_t<‘a, ‘r> imp_merge (int(@‘H cmp)(‘a, ‘a), list_t<‘a, ‘r> a, list_t<‘a, ‘r> b);

imp_merge is an imperative version of merge .

xtunion exn {
Nth

};

Nth is thrown when nth doesn’t have enough elements in the list.

137

‘a nth (list_t<‘a> x, int n);

If x has elements x0 through xm, and 0<=n<=m, then nth(x,n) re-
turns xn . If n is out of range, Nth is thrown. Note that the indexing is
0-based.

list_t<‘a, ‘r> nth_tail (list_t<‘a, ‘r> x, int i);

If x has elements x0 through xm, and 0<=n<=m, then nth(x,n) re-
turns the list with elements xn through xm. If n is out of range, Nth is
thrown.

bool forall (bool (@‘H pred)(‘a), list_t<‘a> x);

forall(pred,x) returns true if pred returns true when applied to
every element of x , and returns false otherwise.

bool forall_c (bool (@‘H pred)(‘a, ‘b), ‘a env, list_t<‘b> x);

forall_c is a version of forall where the function argument re-
quires a closure as its first argument.

bool exists (bool (@‘H pred)(‘a), list_t<‘a> x);

exists(pred,x) returns true if pred returns true when applied to
some element of x , and returns false otherwise.

bool exists_c (bool (@‘H pred)(‘a, ‘b), ‘a env, list_t<‘b> x);

exists_c is a version of exists where the function argument re-
quires a closure as its first argument.

list_t<$(‘a, ‘b)@‘H, > zip (list_t<‘a> x, list_t<‘b> y);

If x has elements x1 through xn , and y has elements y1 through yn ,
then zip(x,y) returns a new heap-allocated array with elements &$(x1,y1)
through &$(xn,yn) . If x and y don’t have the same number of ele-
ments, List_mismatch is thrown.

list_t<$(‘a, ‘b)@‘r2, ‘r1> rzip (‘r1 r1, ‘r2 r2, list_t<‘a> x, list_t<‘b> y);

rzip(r1,r2,x,y) is like zip(x,y) , except that the list returned is
allocated in the region with handle r1 , and the pairs of that list are
allocated in the region with handle r2 .

138

$(list_t<‘a>, list_t<‘b>) split (list_t<$(‘a, ‘b)@> x);

If x has elements &$(a1,b1) through &$(an,bn) , then split(x)
returns a pair of new heap-allocated arrays with elements a1 through
an , and b1 through bn .

$(list_t<‘a>, list_t<‘b>, list_t<‘c>) split3 (list_t<$(‘a, ‘b, ‘c)@> x);

If x has elements &$(a1,b1,c1) through &$(an,bn,cn) , then split(x)
returns a triple of new heap-allocated arrays with elements a1 through
an , and b1 through bn , and c1 through cn .

$(list_t<‘a, ‘r1>, list_t<‘b, ‘r2>) rsplit (‘r1 r1, ‘r2 r2, list_t<$(‘a, ‘b)@> x);

rsplit(r1,r2,x) is like split(x) , except that the first list returned
is allocated in the region with handle r1 , and the second list returned
is allocated in the region with handle r2 .

$(list_t<‘a, ‘r3>, list_t<‘b, ‘r4>, list_t<‘c, ‘r5>) rsplit3 (‘r3 r3, ‘r4 r4, ‘r5 r5, list_t<$(‘a, ‘b, ‘c)@> x);

rsplit(r1,r2,r3,x) is like split3(x) , except that the first list
returned is allocated in the region with handle r1 , the second list re-
turned is allocated in the region with handle r2 , and the third list re-
turned is allocated in the region with handle r3 .

bool memq(list_t<‘a> l, ‘a x);

memq(l,x) returns true if x is == an element of list l , and returns false
otherwise.

bool mem(int(@‘H compare)(‘a, ‘a), list_t<‘a> l, ‘a x);

mem(cmp,l,x) is like memq(l,x) except that the comparison func-
tion cmp is used to determine if x is an element of l . cmp(a,b) should
return 0 if a is equal to b, and return a non-zero number otherwise.

‘b assoc (list_t<$(‘a, ‘b)@> l, ‘a k);

An association list is a list of pairs where the first element of each pair
is a key and the second element is a value; the association list is said to
map keys to values. assoc(l,k) returns the first value paired with
key k in association list l , or throws Core::Not_found if k is not
paired with any value in l . assoc uses == to decide if k is a key in l .

139

‘b assoc_cmp (int(@‘H cmp)(‘a, ‘c), list_t<$(‘a, ‘b)@> l, ‘c x);

assoc_cmp(cmp,l,k) is like assoc(l,k) except that the compari-
son function cmp is used to decide if k is a key in l . cmp should return
0 if two keys are equal, and non-zero otherwise.

bool mem_assoc(list_t<$(‘a, ‘b)@> l, ‘a x);

mem_assoc(l,k) returns true if k is a key in association list l (ac-
cording to ==).

list_t<‘a, ‘r> delete (list_t<‘a, ‘r> l, ‘a x);

delete(l,k) returns the list with the first occurence of x removed
from it, if x was in the list; otherwise raises Core::Not_found .

Core::opt_t<‘c> check_unique (int(@‘H cmp)(‘c, ‘c), list_t<‘c> x);

check_unique(cmp,x) checks whether the sorted list x has dupli-
cate elements, according to cmp. If there are any duplicates, one will be
returned; otherwise, NULL is returned.

‘a ?‘H to_array (list_t<‘a> x);

to_array(x) returns a new heap-allocated array with the same ele-
ments as list x .

‘a ?‘r rto_array (‘r r, list_t<‘a> x);

rto_array(r,x) is like to_array(x) , except that the resulting ar-
ray is allocated in the region with handle r .

list_t<‘a> from_array (‘a ?arr);

from_array(x) returns a new heap-allocated list with the same ele-
ments as array x .

list_t<‘a, ‘r2> rfrom_array (‘r2 r2, ‘a ?arr);

rfrom_array(r,x) is like from_array(x) , except that the result-
ing list is allocated in the region with handle r .

int list_cmp (int(@‘H cmp)(‘a, ‘a), list_t<‘a> l1, list_t<‘a> l2);

list_cmp(cmp,l1,l2) is a comparison function on lists, parameter-
ized by a comparison function cmp on list elements.

140

bool list_prefix (int(@‘H cmp)(‘a, ‘a), list_t<‘a> l1, list_t<‘a> l2);

list_prefix(cmp,l1,l2) returns true if l1 is a prefix of l2 , using
cmp to compare the elements of l1 and l2 .

list_t<‘a> filter (bool (@‘H f)(‘a), list_t<‘a> x);

filter(f,x) returns a new heap-allocated list whose elements are
the elements of x on which f returns true, in order.

list_t<‘a> filter_c (bool (@‘H f)(‘b, ‘a), ‘b env, list_t<‘a> x);

filter_c is a version of filter where the function argument re-
quires a closure as its first argument.

list_t<‘a, ‘r> rfilter (‘r r, bool (@‘H f)(‘a), list_t<‘a> x);

rfilter_c(r,f,x) is like filter_c(f,x) , except that the result-
ing list is allocated in the region with handle r .

list_t<‘a, ‘r> rfilter_c (‘r r, bool (@‘H f)(‘b, ‘a), ‘b env, list_t<‘a> x);

rfilter_c is a version of rfilter where the function argument re-
quires a closure as its first argument.

C.11 <pp.h>

Defines a namespace PP that has functions for implementing pretty print-
ers. Internally, PP is an implementation of Kamin’s version of Wadler’s
pretty printing combinators, with some extensions for doing hyperlinks
in Tk text widgets.

All of the internal data structures used by PP are allocated on the heap.
typedef struct Doc @ doc_t ;

A value of type doc_t is a “document” that can be combined with
other documents, formatted at different widths, converted to strings
or files.

void file_of_doc (doc_t d, int w, FILE @f);

file_of_doc(d,w,f) formats d to width w, and prints the formatted
output to f .

141

string_t string_of_doc (doc_t d, int w);

string_of_doc(d,w) formats d to width w, and returns the format-
ted output in a heap-allocated string.

$(string_t , list_t<$(int, int, int, string_t)@>)@ string_and_links (doc_t d, int w);

string_and_links(d,w) formats d to width w, returns the format-
ted output in a heap-allocated string, and returns in addition a list of
hyperlinks. Each hyperlink has the form $(line,char,length,contents) ,
where line and char give the line and character in the formatted out-
put where the hyperlink starts, length gives the number of characters
of the hyperlink, and contents is a string that the hyperlink should
point to. The line , char , and length are exactly what is needed to
create a hyperlink in a Tk text widget.

doc_t nil_doc ();

nil_doc() returns an empty document.

doc_t blank_doc ();

blank_doc() returns a document consisting of a single space charac-
ter.

doc_t line_doc ();

line_doc() returns a document consisting of a single line break.

doc_t oline_doc ();

oline_doc() returns a document consisting of an optional line break;
when the document is formatted, the pretty printer will decide whether
to break the line.

doc_t text (string_t<> s);

text(s) returns a document containing exactly the string s .

doc_t textptr (stringptr_t<> p);

textptr(p) returns a documents containing exactly the string pointed
to by p.

142

doc_t hyperlink (string_t<> shrt, string_t<> full);

hyperlink(shrt,full) returns a document that will be formatted
as the string shrt linked to the string full .

doc_t nest (int k, doc_t d);

nest(k,d) returns a document that will be formatted like document
d, but indented by k spaces.

doc_t cat (...doc_t);

cat(d1, d2, ..., dn) returns a document consisting of document
d1 followed by d2 , and so on up to dn .

doc_t cats (list_t<doc_t , > doclist);

cats(l) returns a document containing all of the documents in list l ,
in order.

doc_t cats_arr (doc_t ?‘H docs);

cats_arr(a) returns a document containing all of the documents in
array a, in order.

doc_t doc_union (doc_t d1, doc_t d2);

doc_union(d1,d2) does ?? FIX.

doc_t tab (doc_t d);

tab(d) returns a document formatted like d but indented by a tab
stop.

doc_t seq (string_t<> sep, list_t<doc_t , > l);

seq(sep,l) returns a document consisting of each document of l , in
sequence, with string sep between each adjacent element of l .

doc_t ppseq (doc_t (@‘H pp)(‘a), string_t<> sep, list_t<‘a, > l);

ppseq is a more general form of seq : in ppseq(pp,sep,l) , l is a list
of values to pretty print in sequence, pp is a function that knows how
to pretty print a value, and sep is a string to print between each value.

143

doc_t seql (string_t<> sep, list_t<doc_t , > l0);

seql is like seq , except that the resulting document has line breaks
after each separator.

doc_t ppseql (doc_t (@‘H pp)(‘a), string_t<> sep, list_t<‘a, > l);

ppseql is like ppseq , except that the resulting document has line
breaks after each separator.

doc_t group (string_t<> start, string_t<> stop, string_t<> sep, list_t<doc_t , > l);

group(start,stop,sep,l) is like cat(text(start), seq(sep,l),
text(stop)) .

doc_t groupl (string_t<> start, string_t<> stop, string_t<> sep, list_t<doc_t , > l);

groupl is like group but a line break is inserted after each separator.

doc_t egroup (string_t<> start, string_t<> stop, string_t<> sep, list_t<doc_t , > l);

egroup is like group , except that the empty document is returned if
the list is empty.

C.12 <queue.h>

Defines namespace Queue, which implements generic imperative queues
and various operations following the conventions of the Objective Caml
queue library as much as possible.
typedef struct Queue<‘a, ‘r> @‘r queue_t <‘a,‘r>;

A value of type queue_t<‘a,‘r> is a first-in, first-out queue of el-
ements of type ‘a ; the queue data structures are allocated in region
‘r .

bool is_empty (queue_t);

is_empty(q) returns true if q contains no elements, and returns false
otherwise.

queue_t create ();

create() allocates a new, empty queue on the heap and returns it.

144

void add (queue_t<‘a, >, ‘a x);

add(q,x) adds x to the end of q (by side effect).

void radd (‘r, queue_t<‘a, ‘r>, ‘a x);

radd(r,q,x) is like add(q,x) except that the queue lives in the re-
gion with handle r .

xtunion exn {
Empty

};

Empty is an exception raised by take and peek .

‘a take (queue_t<‘a>);

take(q) removes the element from the front on q and returns it; if q
is empty, exception Empty is thrown.

‘a peek (queue_t<‘a>);

peek(q) returns the element at the front of q, without removing it
from q. If q is empty, exception Empty is thrown.

void clear (queue_t<‘a>);

clear(q) removes all elements from q.

int length (queue_t<‘a>);

length(q) returns the number of elements in q.

void iter (void(@‘H f)(‘a), queue_t<‘a>);

iter(f,q) applies f to each element of q, from first to last. Note that
f must return void .

void app (‘b(@‘H f)(‘a), queue_t<‘a>);

app(f,q) applies f to each element of q, from first to last. Note that
f must return a value of kind M.

145

C.13 <rope.h>

Defines namespace Rope, which implements character arrays that can be
concatenated in constant time.
typedef struct Rope_node @ rope_t ;

A value of type rope_t is a character array that can be efficiently con-
catenated.

rope_t from_string (string_t<>);

from_string(s) returns a rope that has the same characters as string
s . Note that s must be heap-allocated.

mstring_t to_string (rope_t);

to_string(r) returns a new, heap-allocated string with the same
characters as rope r .

rope_t concat (rope_t , rope_t);

concat(r1,r2) returns a rope whose characters are the characters of
r1 followed by the characters of r2 .

rope_t concata (rope_t ?‘H);

concata(a) returns a rope that contains the concatenation of the char-
acters in the array a of ropes.

rope_t concatl (List::list_t<rope_t >);

concata(l) returns a rope that contains the concatenation of the char-
acters in the list l of ropes.

unsigned int length (rope_t);

length(r) returns the number of characters in the rope r , up to but
not including the first NUL character.

int cmp(rope_t , rope_t);

cmp(r1,r2) is a comparison function on ropes: it returns a number
less than, equal to, or greater than 0 according to whether the character
array of r1 is lexicographically less than, equal to, or greater than the
character array of r2 .

146

C.14 <set.h>

Defines namespace Set, which implements polymorphic, functional, finite
sets over elements with a total order, following the conventions of the Ob-
jective Caml set library as much as possible.

typedef struct Set<‘a, ‘r> @‘r set_t <‘a,‘r>;

A value of type set_t<‘a,‘r> is a set with elements of type ‘a . The
data structures used to implement the set (not the elements of the set!)
are in region ‘r .

The set creation functions require a comparison function as an argument.
The comparison function should return a number less than, equal to, or
greater than 0 according to whether its first argument is less than, equal
to, or greater than its second argument.
set_t<‘a> empty (int(@‘H cmp)(‘a, ‘a));

empty(cmp) creates an empty set given comparison function cmp.
The set is heap-allocated.

set_t<‘a, ‘r> rempty (‘r r, int(@‘H cmp)(‘a, ‘a));

rempty(r,cmp) creates an empty set in the region with handle r .

set_t<‘a> singleton (int(@‘H cmp)(‘a, ‘a), ‘a x);

singleton(cmp,x) creates a set on the heap with a single element,
x .

set_t<‘a> from_list (int(@‘H cmp)(‘a, ‘a), list_t<‘a> l);

from_list(cmp,l) creates a set on the heap; the elements of the set
are the elements of the list l .

set_t<‘a> insert (set_t<‘a, > s, ‘a elt);

insert(s,elt) returns a set containing all the elements of s , plus
elt . The set s is not modified.

set_t<‘a, ‘r> rinsert (‘r r, set_t<‘a, ‘r> s, ‘a elt);

rinsert(r,s,elt) is like insert(s,elt) , except that it works on
sets allocated in the region with handle r .

147

set_t<‘a> union_two (set_t<‘a, > s1, set_t<‘a, > s2);

union_two(s1,s2) returns a set whose elements are the union of the
elements of s1 and s2 . (We use the name union_two because union
is a keyword in Cyclone.)

set_t<‘a> intersect (set_t<‘a, > s1, set_t<‘a, > s2);

intersect(s1,s2) returns a set whose elements are the intersection
of the elements of s1 and s2 .

set_t<‘a> diff (set_t<‘a, > s1, set_t<‘a, > s2);

diff(s1,s2) returns a set whose elements are the elements of s1 that
are not members of s2 .

set_t<‘a> delete (set_t<‘a, > s, ‘a elt);

delete(s,elt) returns a set whose elements are the elements of s ,
minus elt .

int cardinality (set_t s);

cardinality(s) returns the number of elements in the set s .

bool is_empty (set_t s);

is_empty(s) returns true if s has no members, and returns false oth-
erwise.

bool member(set_t<‘a> s, ‘a elt);

member(s,elt) returns true if elt is a member of s , and returns
false otherwise.

bool subset (set_t<‘a> s1, set_t<‘a> s2);

subset(s1,s2) returns true if s1 is a subset of s2 , and returns false
otherwise.

int setcmp (set_t<‘a> s1, set_t<‘a> s2);

setcmp(s1,s2) returns a number less than, equal to, or greater than
0 according to whether s1 is less than, equal to, or greater than s2 in
the subset order.

148

bool equals (set_t<‘a> s1, set_t<‘a> s2);

equals(s1,s2) returns true if s1 equals s2 have the same elements,
and returns false otherwise.

list_t<‘a, ‘r> elements (set_t<‘a, ‘r> s);

elements(s) returns a list of the elements of s , in no particular order.
Note that the returned list is allocated in the same region as the set s .

‘b fold (‘b(@‘H f)(‘a, ‘b), set_t<‘a> s, ‘b accum);

If s is a set with elements x1 through xn , then fold(f,s,accum)
returns f(x1,f(x2,f(...,f(xn,accum)...))) .

‘b fold_c (‘b(@‘H f)(‘c, ‘a, ‘b), ‘c env, set_t<‘a> s, ‘b accum);

fold_c(f,env,s,accum) is like fold , except that the function f
takes an extra (closure) argument, env .

void app (‘b(@‘H f)(‘a), set_t<‘a> s);

app(f,s) applies f to each element of s , in no particular order; the
result of the application is discared. Notice that f cannot return void ;
use iter instead of app for that.

void iter (void(@‘H f)(‘a), set_t<‘a> s);

iter(f,s) is like app(f,s) , except that f must return void .

void iter_c (void(@‘H f)(‘c, ‘a), ‘c env, set_t<‘a> s);

iter_c is a version of iter where the function argument f requires a
closure.

xtunion exn {
Absent

};

Absent is an exception thrown by the choose function.

‘a choose (set_t<‘a> s);

choose(s) returns some element of the set s ; if the set is empty,
choose throws Absent .

149

C.15 <slowdict.h>

Defines namespace SlowDict, which implements polymorphic, functional,
finite maps whose domain must have a total order. We follow the conven-
tions of the Objective Caml Dict library as much as possible.

The basic functionality is the same as Dict, except that SlowDict sup-
ports delete_present ; but region support still needs to be added, and
some functions are missing, as well.
typedef struct Dict<‘a, ‘b> @ dict_t <‘a,‘b>;

A value of type dict_t<‘a,‘b> is a dictionary that maps keys of type
‘a to values of type ‘b .

xtunion exn {
Present

};

Present is thrown when a key is present but not expected.

xtunion exn {
Absent

};

Absent is thrown when a key is absent but should be present.

dict_t<‘a, ‘b> empty (int(@‘H cmp)(‘a, ‘a));

empty(cmp) returns an empty dictionary, allocated on the heap. cmp
should be a comparison function on keys: cmp(k1,k2) should return
a number less than, equal to, or greater than 0 according to whether k1
is less than, equal to, or greater than k2 in the ordering on keys.

bool is_empty (dict_t d);

is_empty(d) returns true if d is empty, and returns false otherwise.

bool member(dict_t<‘a> d, ‘a k);

member(d,k) returns true if k is mapped to some value in d, and
returns false otherwise.

dict_t<‘a, ‘b> insert (dict_t<‘a, ‘b> d, ‘a k, ‘b v);

insert(d,k,v) returns a dictionary with the same mappings as d,
except that k is mapped to v . The dictionary d is not modified.

150

dict_t<‘a, ‘b> insert_new (dict_t<‘a, ‘b> d, ‘a k, ‘b v);

insert_new(d,k,v) is like insert(d,k,v) , except that it throws
Present if k is already mapped to some value in d.

dict_t<‘a, ‘b> inserts (dict_t<‘a, ‘b> d, list_t<$(‘a, ‘b)@> l);

inserts(d,l) inserts each key, value pair into d, returning the result-
ing dictionary.

dict_t<‘a, ‘b> singleton (int(@‘H cmp)(‘a, ‘a), ‘a k, ‘b v);

singleton(cmp,k,v) returns a new heap-allocated dictionary with
a single mapping, from k to v .

‘b lookup (dict_t<‘a, ‘b> d, ‘a k);

lookup(d,k) returns the value associated with key k in d, or throws
Absent if k is not mapped to any value.

Core::opt_t<‘b> lookup_opt (dict_t<‘a, ‘b> d, ‘a k);

lookup_opt(d,k) returns NULLif k is not mapped to any value in d,
and returns a non-NULL, heap-allocated option containing the value k
is mapped to in d otherwise.

dict_t<‘a, ‘b> delete (dict_t<‘a, ‘b> d, ‘a k);

delete(d,k) returns a dictionary with the same bindings as d, except
that any binding of k is removed. The resulting dictionary is allocated
on the heap.

dict_t<‘a, ‘b> delete_present (dict_t<‘a, ‘b> d, ‘a k);

delete_present(d,k) is like delete(d,k) , except that Absent is
thrown if k has no binding in d.

‘c fold (‘c(@‘H f)(‘a, ‘b, ‘c), dict_t<‘a, ‘b> d, ‘c accum);

If d has keys k1 through kn mapping to values v1 through vn , then
fold(f,d,accum) returns f(k1,v1,...f(kn,vn,accum)...) .

‘c fold_c (‘c(@‘H f)(‘d, ‘a, ‘b, ‘c), ‘d env, dict_t<‘a, ‘b> d, ‘c accum);

fold_c(f,env,d,accum) is like fold(f,d,accum) except that f
takes closure env as its first argument.

151

void app (‘c(@‘H f)(‘a, ‘b), dict_t<‘a, ‘b> d);

app(f,d) applies f to every key/value pair in d; the results of the
applications are discarded. Note that f cannot return void .

void app_c (‘c(@‘H f)(‘d, ‘a, ‘b), ‘d env, dict_t<‘a, ‘b> d);

app_c(f,env,d) is like app(f,d) except that f takes closure env as
its first argument.

void iter (void(@‘H f)(‘a, ‘b), dict_t<‘a, ‘b> d);

iter(f,d) is like app(f,d) except that f returns void .

void iter_c (void(@‘H f)(‘c, ‘a, ‘b), ‘c env, dict_t<‘a, ‘b> d);

iter_c(f,env,d) is like app_c(f,env,d) except that f returns
void .

dict_t<‘a, ‘c> map(‘c(@‘H f)(‘b), dict_t<‘a, ‘b> d);

map(f,d) applies f to each value in d, and returns a new dictionary
with the results as values: for every binding of a key k to a value v in
d, the result binds k to f(v) . The returned dictionary is allocated on
the heap.

dict_t<‘a, ‘c> map_c(‘c(@‘H f)(‘d, ‘b), ‘d env, dict_t<‘a, ‘b> d);

map_c(f,env,d) is like map(f,d) except that f takes a closure env
as its first argument.

$(‘a, ‘b)@ choose (dict_t<‘a, ‘b> d);

choose(d) returns a key/value pair from d; if d is empty, Absent is
thrown. The resulting pair is allocated on the heap.

list_t<$(‘a, ‘b)@> to_list (dict_t<‘a, ‘b> d);

to_list(d) returns a list of the key/value pairs in d, allocated on the
heap.

C.16 <xarray.h>

Defines namespace Xarray, which implements a datatype of extensible ar-
rays.

152

typedef struct Xarray<‘a> @ xarray_t <‘a>;

An xarray_t is an extensible array.

int length (xarray_t<‘a>);

length(a) returns the length of extensible array a.

‘a get (xarray_t<‘a>, int);

get(a,n) returns the nth element of a, or throws Invalid_argument
if n is out of range.

void set (xarray_t<‘a>, int, ‘a);

set(a,n,v) sets the nth element of a to v , or throws Invalid_-
argument if n is out of range.

xarray_t<‘a> create (int, ‘a);

create(n,v) returns a new extensible array with starting size n and
default value v .

xarray_t<‘a> create_empty ();

create_empty() returns a new extensible array with starting size 0.

xarray_t<‘a> singleton (int, ‘a);

singleton(n,v) returns a new extensible array with a single ele-
ment v .

void add (xarray_t<‘a>, ‘a);

add(a,v) makes the extensible array larger by adding v to the end.

int add_ind (xarray_t<‘a>, ‘a);

add_ind(a,v) makes a larger by adding v to the end, and returns v .

‘a ? to_array (xarray_t<‘a>);

to_array(a) returns a normal (non-extensible) array with the same
elements as a.

xarray_t<‘a> from_array (‘a ?arr);

from_array(a) returns an extensible array with the same elements
as the normal (non-extensible) array a.

153

xarray_t<‘a> append (xarray_t<‘a>, xarray_t<‘a>);

append(a1,a2) returns a new extensible array whose elements are
the elements of a1 followed by a2 . The inputs a1 and a2 are not mod-
ified.

void app (‘b(@‘H f)(‘a), xarray_t<‘a>);

app(f,a) applies f to each element of a, in order from lowest to high-
est. Note that f returns ‘a , unlike with iter .

void app_c (‘b(@‘H f)(‘c, ‘a), ‘c, xarray_t<‘a>);

app_c(f,e,a) applies f to e and each element of a, in order from
lowest to highest.

void iter (void(@‘H f)(‘a), xarray_t<‘a>);

iter(f,a) applies f to each element of a, in order from lowest to
highest. Note that f returns void , unlike with app .

void iter_c (void(@‘H f)(‘b, ‘a), ‘b, xarray_t<‘a>);

iter_c(f,e,a) applies f to e and each element of a, in order from
lowest to highest.

xarray_t<‘b> map(‘b(@‘H f)(‘a), xarray_t<‘a>);

map(f,a) returns a new extensible array whose elements are obtained
by applying f to each element of a.

xarray_t<‘b> map_c(‘b(@‘H f)(‘c, ‘a), ‘c, xarray_t<‘a>);

map_c(f,e,a) returns a new extensible array whose elements are ob-
tained by applying f to e and each element of a.

void reuse (xarray_t<‘a> xarr);

reuse(a) sets the number of elements of a to zero, but does not free
the underlying array.

void delete (xarray_t<‘a> xarr, int num);

delete(a,n) deletes the last n elements of a.

void remove (xarray_t<‘a> xarr, int i);

remove(a,i) removes the element at position i from a; elements at
positions greater than i are moved down one position.

154

D Grammar

The grammar of Cyclone is derived from ISO C99. It has the following ad-
ditional keywords: abstract , catch , codegen , cut , fallthru , fill ,
let , malloc , namespace , new, NULL, region_t , regions , rmalloc ,
rnew , splice , throw , try , tunion , using , xtunion . As in gcc, __-
attribute__ is reserved as well.

The non-terminals character-constant, floating-constant, identifier, integer-
constant, string, type-var, and typedef-name are defined lexically as in C.

The start symbol is translation-unit.

translation-unit:
(empty)
external-declaration translation-unitopt
using identifier ; translation-unit
namespace identifier ; translation-unit
using identifier { translation-unit } translation-unit
namespace identifier { translation-unit } translation-unit
extern string { translation-unit } translation-unit

external-declaration:
function-definition
declaration

function-definition:
declaration-specifiersopt declarator
declaration-listopt compound-statement

declaration:
declaration-specifiers init-declarator-listopt ;
let pattern = expression ;
let identifier-list ;

declaration-list:
declaration
declaration-list declaration

declaration-specifiers:
storage-class-specifier declaration-specifiersopt

155

type-specifier declaration-specifiersopt

type-qualifier declaration-specifiersopt

function-specifier declaration-specifiersopt

storage-class-specifier: one of
auto register static extern typedef abstract

type-specifier:
_
void
char
short
int
long
float
double
signed
unsigned
enum-specifier
struct-or-union-specifier
tunion-specifier
typedef-name type-paramsopt

type-var
type-var :: kind
$(parameter-list)
region_t < any-type-name >

kind:
identifier
typedef-name

type-qualifier: one of
const restrict volatile

enum-specifier:
enum identifier { enum-declaration-list }
enum identifier

156

enum-field:
identifier
identifier = constant-expression

enum-declaration-list:
enum-field
enum-field , enum-declaration-list

function-specifier:
inline

struct-or-union-specifier:
struct-or-union { struct-declaration-list }
struct-or-union identifier type-paramsopt { struct-declaration-list }
struct-or-union identifier type-paramsopt

type-params:
< type-name-list >

struct-or-union: one of
struct union

struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

struct-declaration:
specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list:
type-specifier specifier-qualifier-listopt
type-qualifier specifier-qualifier-listopt

157

struct-declarator-list:
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator:
declarator
declaratoropt : constant-expression

tunion-specifier:
tunion-or-xtunion identifier type-paramsopt { tunionfield-list }
tunion-or-xtunion regionopt identifier type-paramsopt

tunion-or-xtunion identifier . identifier type-paramsopt

tunion-or-xtunion: one of
tunion xtunion

tunionfield-list:
tunionfield
tunionfield ;
tunionfield , tunionfield-list
tunionfield ; tunionfield-list

tunionfield-scope: one of
extern static

tunionfield:
tunionfield-scope identifier
tunionfield-scope identifier type-paramsopt (parameter-list)

declarator:
pointeropt direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator [assignment-expressionopt]
direct-declarator (parameter-type-list)
direct-declarator (; effect-set)
direct-declarator (identifier-listopt)
direct-declarator < type-name-list >

158

pointer:
* rangeopt regionopt type-qualifier-listopt pointeropt

@rangeopt regionopt type-qualifier-listopt pointeropt

? regionopt type-qualifier-listopt pointeropt

range:
{ assignment-expression }

region:
_
’H
type-var
type-var :: kind

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

parameter-type-list:
parameter-list
parameter-list , ...

optional-effect:
(empty)
; effect-set

optional-inject:
(empty)
identifier

effect-set:
atomic-effect
atomic-effect + effect-set

atomic-effect:
{ }
{ region-set }
type-var
type-var :: kind

159

region-set:
type-var
type-var , region-set
type-var :: kind
type-var :: kind , region-set

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration:
specifier-qualifier-list declarator
specifier-qualifier-list abstract-declaratoropt

identifier-list:
identifier
identifier-list , identifier

initializer:
assignment-expression
array-initializer

array-initializer:
{ initializer-listopt }
{ initializer-list , }
{ for identifier < expression : expression }

initializer-list:
designationopt initializer
initializer-list , designationopt initializer

designation:
designator-list =

designator-list:
designator
designator-list designator

designator:
[constant-expression]
. identifier

160

type-name:
specifier-qualifier-list abstract-declaratoropt

any-type-name:
type-name
{ }
{ region-set }
any-type-name + atomic-effect

type-name-list:
type-name
type-name-list , type-name

abstract-declarator:
pointer
pointeropt direct-abstract-declarator

direct-abstract-declarator:
(abstract-declarator)
direct-abstract-declaratoropt [assignment-expressionopt]
direct-abstract-declaratoropt (parameter-type-listopt)
direct-abstract-declaratoropt (; effect-set)
direct-abstract-declaratoropt [?]
direct-abstract-declarator < type-name-list >

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
region identifier statement
region < type-var > identifier statement
cut statement
splice statement

labeled-statement:
identifier : statement

161

expression-statement:
expressionopt ;

compound-statement:
{ block-item-listopt }

block-item-list:
block-item
block-item block-item-list

block-item:
declaration
statement

selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) { switch-clauses }
try statement catch { switch-clauses }

switch-clauses:
(empty)
default : block-item-list
case pattern : block-item-listopt switch-clauses
case pattern &&expression : block-item-listopt switch-clauses

iteration-statement:
while (expression) statement
do statement while (expression) ;
for (expressionopt ; expressionopt ; expressionopt) statement
for (declaration expressionopt ; expressionopt) statement

jump-statement:
goto identifier ;
continue ;
break ;
return ;
return expression ;
fallthru ;
fallthru (argument-expression-listopt) ;

162

pattern:
_
(pattern)
integer-constant
- integer-constant
floating-constant
character-constant
NULL
identifier
identifier type-paramsopt (tuple-pattern-list)
$(tuple-pattern-list)
identifier type-paramsopt { }
identifier type-paramsopt { field-pattern-list }
& pattern
* identifier

tuple-pattern-list:
(empty)
pattern
tuple-pattern-list , pattern

field-pattern:
pattern
designation pattern

field-pattern-list:
field-pattern
field-pattern-list , field-pattern

expression:
assignment-expression
expression , assignment-expression

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= /= %= += -= <<= >>= &= ˆ= |=

163

conditional-expression:
logical-or-expression
logical-or-expression ? expression : conditional-expression
throw conditional-expression
new array-initializer
new logical-or-expression
rnew (expression) array-initializer
rnew (expression) logical-or-expression

constant-expression:
conditional-expression

logical-or-expression:
logical-and-expression
logical-or-expression || logical-and-expression

logical-and-expression:
inclusive-or-expression
logical-and-expression && inclusive-or-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

exclusive-or-expression:
and-expression
exclusive-or-expression ˆ and-expression

and-expression:
equality-expression
and-expression & equality-expression

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

relational-expression:
shift-expression

164

relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

multiplicative-expression:
cast-expression multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression %cast-expression

cast-expression:
unary-expression
(type-name) cast-expression

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)
expression . size

unary-operator: one of
& * + - ˜ !

postfix-expression:
primary-expression
postfix-expression [expression]

165

postfix-expression ()
postfix-expression (argument-expression-list)
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression --
(type-name) { initializer-list }
(type-name) { initializer-list , }
fill (expression)
codegen (function-definition)

primary-expression:
identifier
constant
string
(expression)
identifier <>
identifier @ <type-name-list >
$(argument-expression-list)
identifier { initializer-list }
({ block-item-list })

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

constant:
integer-constant
character-constant
floating-constant
NULL

E Installing Cyclone

Cyclone currently only runs on 32-bit machines, and has only been tested
on Win32 (Cygnus) and Linux (Red Hat 6.2) platforms. Other platforms
might or might not work. Right now, there are a few 32-bit dependencies

166

in the compiler, so the system will probably not work on a 64-bit machine
without some changes.

To install and use Cyclone, you’ll need to use the Gnu utilities, includ-
ing GCC (the Gnu C compiler) and Gnu-Make. For Win32, you should first
install the latest version of the Cygwin utilities to do the build, and make
sure that the Cygwin bin directory is on your path. We use some features
of GCC extensively, so Cyclone definitely will not build with another C
compiler.

Cyclone is distributed as a compressed archive (a .tar.gz file). Unpack
the distribution into a directory; if you are installing Cyclone on a Win-
dows system, we suggest you choose c:/cyclone .

From here, follow the instructions in the INSTALL file included in the
distribution.

F Tools

F.1 The compiler

General options

The Cyclone compiler has the following command-line options:

-help Print a short description of the command-line options.

-v Print compilation stages verbosely.

–version Print version number and exit.

-o file Set the output file name to file.

-Dname Define a macro named name for preprocessing.

-Dname=defn Give macro name the definition defn in preprocessing.

-Bdir Add dir to the list of directories to search for special compiler files.

-Idir Add dir to the list of directories to search for include files.

-Ldir Add dir to the list of directories to search for libraries.

-llib Link library lib into the final executable.

167

http://cygwin.com/

-c Produce an object (.o) file instead of an executable; do not link.

-x language Specify language for the following input files

-s Remove all symbol table and relocation information from the executable.

-O Optimize.

-O2 A higher level of optimization.

-O3 Even more optimization.

-p Compile for profiling with the prof tool.

-pg Compile for profiling with the gprof tool.

-pa Compile for profiling with the aprof tool.

-S Stop after producing assembly code.

-M Produce dependencies for inclusion in a makefile.

-MG When producing dependencies assume missing files are generated.
Must be used with -M.

-MT file Make file be the target of any dependencies generated using the
-M flag.

-E Stop after preprocessing.

-nogc Don’t link in the garbage collector.

Developer options

In addition, the compiler has some options that are primarily of use to its
developers:

-g Compile for debugging. This is bulletproof for compiler developers, as
the debugging information reflects the C code that the Cyclone code
is compiled to, and not the Cyclone code itself. To have a look at
Cyclone code during debugging (but not very cleanly as of yet), also
pass in –lineno (see below).

168

-stopafter-parse Stop after parsing.

-stopafter-tc Stop after type checking.

-stopafter-toc Stop after translation to C.

-ic Activate the link-checker.

-pp Pretty print.

-up Ugly print.

-tovc Avoid gcc extensions in the C output.

-save-temps Don’t delete temporary files.

-save-c Don’t delete temporary C files.

–lineno Insert line directives in generated C code. This slows down
compilation, but helps debugging. Works best when also using -pp .

–nochecks Disable all null and array bounds checks (still uses “fat” rep-
resentation of ? pointers).

–nonullchecks Disable null checks.

–noboundschecks Disable array bounds checks (still uses “fat” represen-
tation of ? pointers).

-use-cpppath Indicate which preprocessor to use.

-no-cpp-precomp Disable smart preprocessing (mac only).

-nocyc Don’t add the implicit namespace Cyc to variable names in the C
output.

-noremoveunused Don’t remove externed variables that aren’t used.

-noexpandtypedefs Don’t expand typedefs in pretty printing.

-printalltvars Print all type variables (even implicit default effects).

-printallkinds Always print kinds of type variables.

-printfullevars Print full information for evars (type debugging).

169

F.2 The lexer generator

F.3 The parser generator

F.4 The allocation profiler, aprof

To get a profile of the allocation behavior of a Cyclone program, follow
these steps:

1. Compile the program with the flag -pa . The resulting executable
will be compiled to record allocation behavior. It will also be linked
with a version of the standard library that records its allocation be-
havior. (If you get the message, “can’t find internal compiler file
libcyc_a.a ,” then ask your system administrator to install the spe-
cial version of the library.)

2. Execute the program as normal. As it executes, it will write to a file
amon.out in the current working directory; if the file exists before
execution, it will be overwritten.

3. Run the program aprof . This will examine amon.out and print a
report on the allocation behavior of the program.

170

	Introduction
	Acknowledgements

	Cyclone for C Programmers
	Getting Started
	Pointers
	Regions
	Tagged Unions and Pattern Matching
	Exceptions
	Additional Features of Cyclone
	GCC and C99 Additions
	Tuples
	Creating Arrays
	Subtyping
	Let Declarations
	Polymorphic Functions
	Polymorphic Data Structures
	Abstract and Existential Types
	Restrictions

	Pointers
	Tagged Unions
	tunion
	xtunion

	Pattern Matching
	Let Declarations
	Pattern Forms
	Switch Statements

	Type Inference
	Polymorphism
	Memory Management Via Regions
	Introduction
	Allocation
	Common Uses
	Type-Checking Regions
	Region Names
	Capabilities
	Assignment and Outlives
	Type Declarations
	Function Calls
	Explicit and Default Effects

	Namespaces
	Varargs
	Porting C code to Cyclone
	Translating C to Cyclone
	Interfacing to C

	Frequently Asked Questions
	Libraries
	C Libraries
	<array.h>
	<bitvec.h>
	<buffer.h>
	<core.h>
	<dict.h>
	<filename.h>
	<fn.h>
	<hashtable.h>
	<list.h>
	<pp.h>
	<queue.h>
	<rope.h>
	<set.h>
	<slowdict.h>
	<xarray.h>

	Grammar
	Installing Cyclone
	Tools
	The compiler
	The lexer generator
	The parser generator
	The allocation profiler, aprof

