EasyBMP User Manual Version 0.61

EasyBMP User Manual (Version 0.61)
Paul Macklin

email: pmacklin@math.uci.edu
WWW: http://easybmp.sourceforge.net

May 23, 2005

Abstract

We define and document a simple, easy-to-use, cross-platform BMP library for the little-endian ar-
chitectures (most notably x86) written in C+4. (We eventually plan to extend EasyBMP to big-endian
architectures.) The EasyBMP library will work for input and output on 1-bit, 4-bit, 8-bit, 24-bit, and
32-bit Windows BMP files in Linux, Unix, and Windows.

EasyBMP is licensed under the GNU Library General Public (LGPL) license version 2.1. If you use
this library in your application, it is the author’s request that you notify him.

Contents
1 What’s New in this Release (Version 0.61) 2
2 Introduction to the EasyBMP Library 2
2.1 Sample Application: Converting a Color Image to Greyscale 2
3 Installing and Using the EasyBMP Library 3
4 Basic Bitmap Operations 4
5 Advanced Usage: Modifying the Color Table 6
6 Extra Goodies: Various Bitmap Utilities 7
7 Known Bugs and Quirks 8
8 Future Changes 9
A Classes and BMP Data Types 9
A1l Miscellany oL e 9
A2 RGBApixel 10
A3 BMP . . . e 10

EasyBMP User Manual Version 0.61

1 What’s New in this Release (Version 0.61)

New since Version 0.57 is support for 1-bit BMP files. EasyBMP now supports all known valid bit
depths for BMP files: 1, 4, 8, 24, and 32 bits per pixel.

Version 0.61 has a few modifications to increase write speed for 1-bit, 4-bit, and 8-bit files, and
there’s a slight tweak in CreateGreyscaleColorTable() to improve the range of colors for a 4-bit
greyscale color table.

After extensive testing, the BMP class has proven robust and relatively error-free in both Windows
and Linux, and so the legacy library files have been deprecated (and physically removed).

Lastly, since Version 0.57, continued improvements have been made to make EasyBMP stricter (and
accordingly more stable) and more robust: it won’t allow the user to set a negative width/height or
an unknown bit depth in any function. It does a better job of dealing with truncated and otherwise
corrupted files.

2 Introduction to the EasyBMP Library

In the course of my studies at the University of Minnesota and the University of California, I came
to need a simple method to create and modify images. Because the Windows BMP file is nearly
universally readable, flexible, and simple, I decided to work with this format. (No compression to
worry about, potential for 8 bits per color channel or just 16 colors per pixel, etc.)

There are many excellent open- and closed-source BMP and image libraries available, and I in no
way claim that anything here is even equal to those libraries. However, as I looked about I noticed
that quite a few existing libraries had one or more of the following properties:

e too feature-rich (and accordingly more difficult to learn);

e required extensive installation;

e relied upon Linux or Windows libraries for simple functions;

e were too poorly documented for the novice programmer:;

e required programming changes when moving code from one platform to another.

At that point, I decided to create my EasyBMP library. My goals included easy inclusion in C++
projects, ease of use, no dependence upon other libraries (totally self-contained), and cross-platform
compatibility.

2.1 Sample Application: Converting a Color Image to Greyscale

Here, we give a first sample application using the EasyBMP library. Notice that inclusion of the library
is simple: we include the EasyBMP.h file. In this application, we see a simple example of opening an
existing BMP file, reading its RGB information, and manipulating and writing that information to
another BMP file. The commands are pretty straightforward. This example should illustrate how
easy the library is for even the novice programmer.

#include <iostream.h>

Page 2

EasyBMP User Manual Version 0.61

#include <fstream.h>
#include "EasyBMP.h"

int main(int argc, char* argv[])

{
if(argec '= 3)
{
cout << "Usage: ColorBMPtoGreyscale <input_filename> <output_filename>\n\n";
return 1;
}

// declare and read the bitmap
BMP Input;
Input.ReadFromFile(argv[1]);

// convert each pixel to greyscale
for(int i=0 ; i < Input.TellWidth() ; i++)
{
for(int j=0 ; j < Input.TellHeight() ; j++)
{
double Temp = pow(Input(i,j)->Red ,2.0) +
pow(Input(i,j)->Green,2.0) +
pow(Input(i,j)->Blue ,2.0);
Temp = sqrt(Temp / 3.0);
Input(i,j)->Red (BYTE) Temp;
Input(i,j)->Green = (BYTE) Temp;
Input (i, j)->Blue (BYTE) Temp;

// Create a greyscale color table if necessary
if (Input.TellBitDepth() < 24)
{ CreateGreyscaleColorTable(&Input.Colors , Input.TellBitDepth()); }

// write the output file
Input.WriteToFile(argv[2]);

return O;

¥

Additional code samples are available for download at

http://easybmp.sourceforge.net

3 Installing and Using the EasyBMP Library

Installing the EasyBMP library is easy. Simply copy all the *.h files to the directory of your project.
Alternatively, copy all the header files anywhere in your compiler’s path. You should have the following

Page 3

EasyBMP User Manual Version 0.61

files:
1. EasyBMP.h
2. EasyBMP DataStructures.h
3. EasyBMP_StandardColorTables.h
4. EasyBMP_BMP.h
0. EasyBMP_VariousBMPutilities.h
To use the EasyBMP library, simply include the EasyBMP.h file via

#include "EasyBMP.h"

Note that if you have copied all the EasyBMP header files to your compiler path, you may not need
the quotes, but rather brackets:

#include <EasyBMP.h>

Compile your source code as you normally would; you don’t have to link to anything. For instance,
to compile the code example above with g++, use

g++ —-o ColorBMPtoGreyscale ColorBMPtoGreyscale.cpp

4 Basic Bitmap Operations

As of Version 0.55, EasyBMP has a unified interface for all bit depths. To initialize a new BMP object,
simply declare it:

Example:

// Declare a new bitmap object
BMP AnlImage;

When you declare a BMP image, you will have a 1 x 1 blank 24-bit bitmap image. Next, set the size
and bit depth of the image. You can do this either by reading an existing bitmap image or setting
this information manually, as below:

Example:

BMP AnImage;

// Set size to 640 x 480
AnImage.SetSize (640,480);

// Set its color depth to 8-bits
AnImage.SetBitDepth(8) ;

// Declare another BMP image

BMP AnotherImage;

// Read from a file
AnotherImage.ReadFromFile ("sample.bmp") ;

To check the bit depth, width, and height of a BMP object, use:

Page 4

EasyBMP User Manual Version 0.61

Example:

BMP AnImage;

AnTmage .ReadFromFile ("sample.bmp") ;

cout << "File info:\n";

cout << AnImage.TellWidth() << " x " << AnImage.TellHeight ()
<< " at " << AnImage.TellBitDepth() << " bits\n";

EasyBMP also provides a simple routine to compute and display the number of colors:

Example:

BMP AnImage;
AnTImage.ReadFromFile ("sample.bmp") ;
cout << "colors: " << AnImage.TellNumberOfColors() << "\n;

Note that for a 32-bit file, we don’t regard two colors that differ only in the alpha channel as
different colors; this function will state that 32-bit and 24-bit files have the same number of colors.

The bit depth and dimensions of a bitmap can be changed at any time:

Example:

BMP AnImage;

AnImage.ReadFromFile ("sample.bmp") ;
// Change the bit-depth
AnTImage.SetBitDepth(8) ;
AnImage.SetBitDepth(24);

// Change the size
AnTmage.SetSize(1024,768) ;

Note that whenever the bit depth is changed, any existing color table is erased. Likewise, whenever
the size is changed, all pixels are deleted.

To access pixels, use RGPApixel* operator() (int,int):

Example:

BMP AnImage;

AnTmage .ReadFromFile ("sample.bmp") ;

// show the color of pixel (14,18)

cout << "(" << (int) AnTImage(14,18)->Red << ","
<< (int) AnImage(14,18)->Green << ","
<< (int) AnImage(14,18)->Blue << ","
<< (int) AnImage(14,18)->Alpha << ")\n;"

// Change this pixel to a blue-greyish color

AnTmage(14,18)->Red = 50;

AnTmage (14,18)->Green = 50;

AnTImage(14,18)->Blue = 192;

AnImage(14,18)->Alpha = O;

Page 5

EasyBMP User Manual Version 0.61

Lastly, to save to a file, use:

Example:

BMP AnImage;
AnTmage .ReadFromFile ("sample.bmp") ;
AnImage.WriteToFile("copied.bmp");

5 Advanced Usage: Modifying the Color Table

In EasyBMP_StandardColorTables.h, we have included two routines for changing the color table of a
BMP object. If you want to set the color table to the “Windows standard” color table, use the following;:

Example:

BMP AnImage;

AnTmage .ReadFromFile ("sample.bmp") ;

AnImage.SetBitDepth(8) ;

CreateStandardColorTable(&(AnImage.Colors) , AnImage.TellBitDepth());

Notice that in the example, the first argument is a pointer to the color table, and the second is
the bit depth. Similarly, we can create a greyscale color table:

Example:

BMP AnlImage;

AnImage.ReadFromFile ("sample.bmp") ;

AnImage.SetBitDepth(4);

CreateGreyscaleColorTable(&(AnImage.Colors) , AnImage.TellBitDepth());

If you want to modify a color table for a BMP file, it is best to do so by passing the memory address
of the color table as well as the bit depth or number of colors. Be careful not to address more colors
(RGBApixel’s) than are expected for the given bit depth. In particular, any color table operation,
when applied to a 24-bit or 32-bit file, should do nothing. Consider this example:

Example:

void CreateRedColorTable(RGBApixel* pColorTable , int Depth) {
{
if (Depth > 8){ return; }
int Number0fColors = (int) pow(2,Depth); int i;
BYTE StepSize = 256/Number0fColors;
for(i=0 ; i < NumberOfColors ; i++)
{
(*pColorTable) [i] .Red i*StepSize;
(*pColorTable) [i] .Green = O;
(*pColorTable) [i] .Blue
(*pColorTable) [i] .Alpha =

}

Il
o O

}

Page 6

EasyBMP User Manual Version 0.61

To call this new function, you would do this:

Example:

BMP RedImage;
RedImage.ReadFromFile ("sample.bmp") ;
CreateRedColorTable(&(RedImage.Colors) , RedImage.TellBitDepth());

6 Extra Goodies: Various Bitmap Utilities

We have provided several sample utilities to make the library more immediately useful. We shall detail
some of these goodies here. :-).

The first several utilities deal with getting file information from existing files.

e void GetBitmapInfo(charx szFileNameIn): This routine gets the bitmap information from
an existing bitmap file and outputs it to cout. All information is given. (width and height of
image, bit depth, etc.)

e BMFH GetBMFH(char* szFileNameIn): This returns a BMFH based on the file. See Section A
for more information on the data structure.

e BMIH GetBMIH(char* szFileNameIn): This returns a BMIH based on the file. See Section A
for more information on the data structure.

e int GetBitmapColorDepth(char* szFileNameIn): This routine returns the bit depth of the
file.

The other provided functions are “cut ‘n’ paste” functions: they copy pixels from one BMP object
to another, with or without transparency.

e void PixelToPixelCopy(BMP& From, int FromX, int FromY,
BMP& To, int ToX, int ToY)
This function copies the (FromX,FromY) pixel of the BMP object From to pixel (ToX,ToY) of the
BMP object To.

e void PixelToPixelCopyTransparent(BMP& From, int FromX, int FromY,
BMP& To, int ToX, int ToY,
RGBApixel& Transparent)
This function copies the (FromX,FromY) pixel of the BMP object From to pixel (ToX,ToY) of the
BMP object To, and it treats the input pixel as transparent if its color is Transparent. Here’s an
example:

Page 7

EasyBMP User Manual Version 0.61

Example:

BMP Imagel;

BMP Image?2;

Imagel.ReadFromFile("Blah.bmp") ;

Image2.SetSize(10,10);

RGBApixel TransparentColor;

TransparentColor.Red = 255;

TransparentColor.Green = 255;

TransparentColor.Blue = 255;

PixelToPixelCopyTransparent (Imagel,3,5,Image2,0,0,TransparentColor) ;

Note that the alpha channel is ignored when considering transparency.

e void RangedPixelToPixelCopy(BMP& From, int FromL , int FromR, int FromB, int FromT,
BMP& To, int ToX, int ToY)

This function copies a range of pixels from one image to another. It copies the rectangle
[FromL , FromR] X [FromB , FromT] in image From to the rectangle whose top left corner
is (ToX , ToY) in image To. When using this function, don’t forget that the top left corner
of the image is (0,0) in the coordinate system! Also, FromB denotes the bottom edge of the
rectangle, so FromB > FromT. However, if the algorithm detects that you accidentally reversed
these numbers, it will automatically swap them for you. Lastly, if the rectangle you chose to
copy from image From overlaps the boundary of image To, it will truncate the the copy selection,
rather than give a nasty segmentation fault. :-)

e void RangedPixelToPixelCopyTransparent(
BMP& From, int FromL , int FromR, int FromB, int FromT,
BMP& To, int ToX, int ToY ,
RGBApixel& Transparent)

This function does the same thing as the previous function, but with support for transparency.
As in the example for the pixel-to-pixel copy above, you specify a transparent color of type
RGBApixel.

7 Known Bugs and Quirks

As of Version 0.61, there are no known bugs in EasyBMP. The most annoying quirk is that the
WriteToFile() function is somewhat slow on 8-bit files. This is the one place where the design
decision to unify all the previously separate BMP4, BMP8, etc. classes as a single BMP class has been
detrimental. All bitmaps are represented internally as 32-bits per pixel. This allows very simple and
effective writing of new extensions and utilities that work on all bitmap files. (And writing less re-
duces the possibility of error.) It also allows copying and pasting pixels between bitmaps of differing
bit depths. More importantly, it reduces the complexity for the end user. Alas, the price is that
when writing as a 1-bit, 4-bit, or 8-bit file, WriteToFile () must search for the best fitting color (in
a minimum ¢ norm sense) for each pixel as it writes the file. This adds some significant overhead for
8-bit files, where there are 256 potential colors to try for every pixel. (For 1-bit and 4-bit files, this
does not appear to be a problem.)

It is possible that one could create code with segmentation fault by attempting to call
Create{Standard,Greyscale}ColorTable (RGBApixel*,int) with the int larger than the actual

Page 8

EasyBMP User Manual Version 0.61

number of colors.

The remaining quirk in the library is that the alpha channel is largely unused. Almost all operations
completely ignore the alpha channel. However, it is there if you should choose to use it. Future releases
of EasyBMP may take advantage of it for blending pixels, etc.

8 Future Changes

The next several releases of EasyBMP will work to ensure that the library works well across operating
systems and processors with little-endian architectures. We may also add better support for pro-
tecting the color table and preventing potential segmentation faults if the user errantly addresses a
non-existent color. This, however, seems largely unnecessary for the time being and remains a low
priority.

Version 0.61 included extensive testing to try to improve file writing speeds in WriteToFile() for
8-bit files, with some limited success. (Changing floating point operations to integer operations helped
a great deal.) Further attempts to accelerate the process have largely been unsuccessful. (e.g., using
norm equivalence of /5 and ¢; norms) One approach that did help was reducing the color depth of the
pixels to the nearest multiple of 32 for the red and green channels and the nearest multiple of 64 for
the blue channel prior to writing. However, this permanently degrades the image quality and is not
viewed as a good solution. However, future releases may include such a function that the user may
decide to use prior to a file write.

Future releases may include some sort of GenerateOptimalColorTable () for writing images. How-
ever, such a function would probably be more appropriate as an add-on for the library.

Another extension of the library would be good interfaces to OpenGL for image mapping. I am
currently in the process of doing this, and when the core library is stable, I may provide such a
function.

A Classes and BMP Data Types

Here, we detail the various classes and data types and how to interface with them.

A.1 Miscellany

Some of the data types that are used in the construction of more complex data types are:

Type: Info:
BYTE an unsigned character of 8 bits
WORD an unsigned short of 16 bits
DWORD an unsigned long of 32 bits
BMFH a specific header format for a BMP file
BMIH | provides additional information on the BMP file

For additional information on the BMFH and BMIH classes, I highly recommend that you visit

http://www.fortunecity.com/skyscraper/windows/364/bmpffrmt.html.

Page 9

EasyBMP User Manual Version 0.61

A.2 RGBApixel

This data structure is exactly as their its suggests: a single pixel of (red,green,blue,alpha) data. This
data structure is used both for individual pixels within an image and the color table in the palette.
Here are the details on the data structure:

Member: Function:
Blue blue pixel info of type BYTE
Green green pixel info of type BYTE
Red red pixel info of type BYTE

Alpha alpha pixel info of type BYTE

A.3 BMP

The BMP class consists of all the necessary pixel information for a Windows bitmap file, along with file
I/O routines.

e int BitDepth: This gives the number of bits per pixel, i.e., the color depth. This data member
is private and can only be accessed through TellBitDepth and SetBitDepth.

e int Width: This gives the width of the bitmap in pixels. This data member is private and can
only be accessed through TellWidth and SetSize.

e int Height: This gives the height of the bitmap in pixels. This data member is private and can
only be accessed through TellHeight and SetSize.

e RGBApixel** Pixels: This is the actual Width x Height array of RGBApixel’s.

e RGBApixelx Colors: This is the table of colors, stored as RGBApixel’s. If the BMP object is
24-bits or 32-bits, then Colors = NULL.

e int TellBitDepth(void): This function outputs the bit depth of the BMP object.

e int TellWidth(void): This function outputs the width of the BMP object.

e int TellHeight(void): This function outputs the height of the BMP object.

e int TellNumberOfColors(void): This function outputs the number of colors of the BMP ob-
ject.

e BMP(): This constructor creates a 1 x 1, 24-bit BMP object.

e “BMP(): This is the destructor. You should never call this; it is automatically called when a BMP
object goes out of scope.

e RGBApixel* operator() (int i, int j): This returns a pointer to the (i,j) pixel.

Example:

BMP Sample;

Sample.SetSize(10,10);
Sample(3,4)->Red = 255;
Sample(3,4)->Alpha = 0;
Sample(3,4)->Blue = Sample(3,4)->Red;

e void SetSize(int NewWidth, int NewHeight): Use this to change the size of the object to
NewWidth x NewHeight. See the example above.

Page 10

EasyBMP User Manual Version 0.61

e void SetBitDepth(int NewDepth): This function changes the bit depth to NewDepth bits
per pixel. It also automatically creates and/or resizes the color table, if necessary.

e void WriteToFile(char* FileName): This function writes the current BMP object to the file
FileName.

e void ReadFromFile(char* FileName): This function reads the file FileName into the current
BMP object.

Page 11

