
++Skype library
Tutorial

c© Ice Brains Software

St. Petersburg
2006

http://www.icebrains-soft.com/company/

CONTENTS 1

Contents

1 Introduction 2

2 ++Skype architecture 2
2.1 Utilities . 3

2.1.1 Loggers . 3
2.1.2 Runtime assertions . 4
2.1.3 String to numeric types conversion template 5

2.2 Exception hierarchy . 5
2.3 Low-level components . 5

2.3.1 RawSkypeConnection template 5
2.3.2 SkypeConnection class . 7

2.4 High-level components . 9
2.4.1 SkypeObject template and its descendants 9
2.4.2 SkypeObjManager template and its descendants 12
2.4.3 Application and AppStream classes 15

3 Additional ++Skype resources 15

c© Ice Brains Software

http://www.icebrains-soft.com/company/

2

1 Introduction

The ++Skype is a C++ library of thoroughly designed classes. It can help you
in several situations. Do you need to develop a platform independent Skype
add-on software? Try ++Skype! Do you want to become an expert in the
low-level Skype API implementations (D-BUS, Windows messages)? If no, try
++Skype!

Key library features:

• Platform independence (Linux and Windows are supported this time);

• Easy to use;

• Easy to extend because of a flexible library design inspired by modern
C++ design ideas;

• Performance was one of our goals — only compile-time polymorphism is
used;

• Open source, licensed under LGPL v. 2.1

The aim of this tutorial is to help you familiarize with the library. The
++Skype installation process is not covered by this document, you can find
installation instructions here.

2 ++Skype architecture

There are four parts of the library — low-level components, high-level compo-
nents, utilities and exceptions.

Low-level layer is the heart of the ++Skype. High-level components are
based on the low-level components. Howerever, it is possible to use low-level
components wholly on their own, without high-level components. Sometimes
this feature is very helpful.

Low-level components are:

RawSkypeConnection (Trivial) connection to Skype.

SkypeConnection Connection to Skype with support of error handling and
callback functors.

High-level components use SkypeConnection to interact with Skype. These
components represent various Skype objects, such as calls, chat, chat messages,
privileges, applications etc.

High-level components are:

SkypeObject and SkypeObjManager These classes are the basis for all
other high-level components. All core functionality is implemented in
these classes.

Call and CallManager Abstractions of Call and manager of calls.

Chat and ChatManager Abstractions of Chat and manager of chats.

ChatMsg and ChatMsgManager Abstractions of Chat message and man-
ager of chat messages.

AppStream and Application Abstractions of Application and application
data stream.

User and UserManager Abstractions of User and manager of users.

AudioSettings This class encapsulates Skype audio settings such as audio
devices, echo cancellation policy and so on.

Privileges This class encapsulates current Skype user privileges (SkypeIn,
SkypeOut, VoiceMail).

Profile This class encapsulates current Skype user profile.

c© Ice Brains Software

http://www.icebrains-soft.com/getting_started_with_the_skype_library
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classRawSkypeConnection.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classSkypeConnection.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObject.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObjManager.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1Call.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1CallManager.html
https://developer.skype.com/Docs/ApiDoc/CALL_object
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1Chat.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1ChatManager.html
https://developer.skype.com/Docs/ApiDoc/CHAT_object
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1ChatMsg.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1ChatMsgManager.html
https://developer.skype.com/Docs/ApiDoc/CHATMESSAGE_object
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1AppStream.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1Application.html
https://developer.skype.com/Docs/ApiDoc/APPLICATION_object
https://developer.skype.com/Docs/ApiDoc/Application_to_application_commands
https://developer.skype.com/Docs/ApiDoc/Application_to_application_commands
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1User.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1UserManager.html
https://developer.skype.com/Docs/ApiDoc/USER_object
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1AudioSettings.html
https://developer.skype.com/Docs/ApiDoc/SET_AGC_and_SET_AEC
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1Privileges.html
https://developer.skype.com/Docs/ApiDoc/GET_PRIVILEGE
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1Profile.html
https://developer.skype.com/Docs/ApiDoc/PROFILE_object
http://www.icebrains-soft.com/company/

2.1 Utilities 3

All high-level components are put into the namespace Ice.
In order to inform the application on critical errors, exceptions are used.

All ++Skype exceptions are declared in the SkypeExceptions.h header. The
exception hierarchy is simple enough.

Utilities are used by all the ++Skype library layers. This is the last but not
least part of the library.

The utilities are:

Loggers Different logging classes — file logging, syslog logging1 and loggers
chain are supported.

Runtime assertions C++ wrapper for well-known C-function assert.

String to numeric types conversion template Converts the string which
contains the number into numeric type.

We will start our discussion from the utilities because they are used by all the
++Skype classes. After this, we will look at the exception hierarchy, low-level
components and high-level components.

2.1 Utilities

2.1.1 Loggers

Logging is a very important aspect for any software project. Sometimes, log
files are the only source of information related to the software crash or critical
errors. ++Skype logging facilities are very flexible. Each ++Skype class which
is able to log inherits from LogAbility class. This class is declared in Loggers.h
library header:

typedef
enum { LlDbg = 0, LlInfo, LlWarning, LlError, LlCritical } LogLevel t;

typedef Loki::Functor<void,
LOKI TYPELIST 3(const LogLevel t, const char∗, va list)> LogFunc t;

class LogAbility {
public:

LogAbility(const LogFunc t& logger = DummyLogger);
void log(LogLevel t lvl , const char∗ fmt, ...) const;
const LogFunc t& GetLog() const;

};

LogLevel_t is the level of log-message. LogFunc_t is functor [1, ch. 5]
returning void with three arguments of types LogLevel_t, const char* and
va_list. LogAbility constructor gets the argument of type LogFunc_t. De-
fault value of this argument is DummyLogger, which does no logging at all. The
log member function of the LogAbility class calls functor of type LogFunc_t
(supplied in the constructor of the LogAbility) to log message. The signature
and format convention for log member function is exactly the same as for the
well-known printf function.

You’ll tell me: ”Oh, no! It looks too difficult. I should always define my
own logger functor to use the library!”. Don’t worry. You don’t have to do this
yourself. Loggers are already implemented in the ++Skype. But if you want to
implement your own logger, it is no problem to use it with any ++Skype class.
This is exactly what the word ”flexibility” means. The following loggers are
implemented in the library: FileLogger, StreamLogger and LoggersChain.
Logging through syslog is available in the linux distribution of the ++Skype.
The corresponding logger is called SysLogger. And of course, don’t forget
about the DummyLogger!

FileLogger, StreamLogger and SysLogger are templates with the only
template parameter Prefix, ”prefix policy”. What is the meaning of this pa-
rameter? Every log-message is prefixed. The prefix contains a lot of helpful
information related to the message such as log level, date and time etc. The
following public operator should be defined in the implementation of the prefix
policy:

1Only in linux version of the ++Skype.

c© Ice Brains Software

http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classLogAbility.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classFileLogger.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classStreamLogger.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classLoggersChain.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classSysLogger.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/Loggers_8h.html#05ccb8c808bda09e871d03e177732881
http://www.icebrains-soft.com/company/

2.1 Utilities 4

std :: string& operator()(const LogLevel t& lvl);

This operator is called by the logger to produce prefix for the message. There
are three prefix policies implemented in ++Skype — NoLogPrefix, LvlLogPre-
fix and LvlTimeLogPrefix. You can implement your own prefix policy. It’s easy!
The default prefix policy is NoLogPrefix.

FileLogger, StreamLogger, SysLogger and LoggersChain have the fol-
lowing member function:

void Do(const LogLevel t lvl, const char∗ fmt, va list args);

The signature of this member function is the same as required by LogFunc_t
definition. That’s why you can use these loggers as ++Skype logger functors.
Look at the following StreamLogger usage example:

typedef StreamLogger<LvlTimeLogPrefix> MyLogger t;
MyLogger t logger(std::cout);

LogFunc t lf(&logger, &MyLogger t::Do);

FileLogger, StreamLogger and SysLogger inherit from the BaseLogger
template. The most useful feature of this template is its SetMinLogLvl public
member function. Use it to implement ”distributed logging” – different loggers
log messages with different severity.

The last class we’ve not discussed yet is LoggersChain. This class is used
to represent the chain of loggers. You can add loggers or functors of type
LogFunc_t to the chain and remove them from the chain. Do–function of the
chain executes all the log-functors stored in the chain. LoggersChain is declared
in Loggers.h library header:

class LoggersChain : public LogAbility {
public:

LoggersChain() throw();
template <typename L> void AddLogger(L& logger);
void AddLogFunc(const LogFunc t& logger);
void PopBackLogger(void);
void Do(const LogLevel t lvl, const char∗ fmt, va list args);

};

To add a ++Skype logger into the chain, call AddLogger member function.
To add a logger functor of type LogFunc_t, call AddLogFunc member function.
To remove the last logger from the chain, call PopBackLogger member function.
To represent the chain as functor of type LogFunc_t, use pointer to the Do–
function, as shown below:

LoggersChain loggers;

LogFunc t lf(&loggers, &LoggersChain::Do);

It is a good design practice to declare LoggersChain as a singleton [1, ch. 6]
and to store references to the loggers used by the application inside this object.
Note, LoggersChain doesn’t store the loggers itself, it stores only functors!

2.1.2 Runtime assertions

Assert macro is defined in utils.h library header:

#define Assert(tst) AssertFunc<DbgMode>(tst,
”AssertionViolation was thrown at ” FILELINE);

There are two modes of ++Skype compilation and usage – debug and release.
To switch between these modes you have to define/undefine the NDEBUG prepro-
cessor variable. If NDEBUG is defined, ++Skype mode is ’release’, otherwise it is
’debug’.

AssertFunc tests the logical expression tst if and only if ++Skype is in
debug mode. If tst is true or ++Skype is in the release mode, nothing hap-
pens. If tst is false and ++Skype is in the debug mode, AssertionViolation
exception is thrown.

c© Ice Brains Software

http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classNoLogPrefix.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classLvlLogPrefix.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classLvlLogPrefix.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classLvlTimeLogPrefix.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classBaseLogger.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classBaseLogger.html#90a4b04db730c0f804bc6fc36f981ec5
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classLoggersChain.html
http://www.icebrains-soft.com/company/

2.2 Exception hierarchy 5

2.1.3 String to numeric types conversion template

This template is declared in utils.h library header:

template <class C> C GetFromString(const std::string& value);

The usage is obvious. Just call GetFromString with the template parameter
set to required numeric type to convert the string value into numeric type C.
If conversion is impossible, exception std::range_error is thrown. Complete
reference to this function is available here.

2.2 Exception hierarchy

++Skype exception hierarchy is shown in fig. 1.

Figure 1: ++Skype exception hierarchy

Exceptions are used by various ++Skype classes to report on critical errors.
More details about the ++Skype exception classes are given herebelow:

SkypeError This class is a parent of all ++Skype exception classes (with
the only notable exception — class AssertionViolation). To catch any
runtime error caused by Skype use the reference of type SkypeError&.

SkypeAccessDenied, SkypeDisconnect Exceptions of this type are thrown
by SkypeConnection and RawSkypeConnection classes if it was impossible
to connect to Skype or if the connection to Skype was broken.

SkypeInvalidAttr Exceptions of this type are thrown by high-level ++Skype
components if it was impossible to parse Skype event.

SkypeAPIError This class is a parent of all ++Skype exception classes con-
structed from Skype API error response (there is only one such class in
the current version of ++Skype — SkypeInvalidSearch).

SkypeInvalidSearch Exceptions of this type are thrown by high-level com-
ponents of the library (actually, object managers) if it has got the skype
error in response to search query.

AssertionViolation Exceptions of this type are thrown by Assert macros.
The Assert behavior is described here in section 2.1.2.

2.3 Low-level components

2.3.1 RawSkypeConnection template

RawSkypeConnection is a template with the only parameter of type OS t —
operation system type. OS_t is declared in Cfg.h library header:

typedef enum { os win, os nix } OS t;

c© Ice Brains Software

http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/utils_8h.html#add0d1e21e3529bcb827d202aaa1a3b8
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classSkypeError.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classSkypeAccessDenied.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classSkypeDisconnect.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classSkypeConnection.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classRawSkypeConnection.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classSkypeInvalidAttr.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classSkypeAPIError.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classSkypeInvalidSearch.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classAssertionViolation.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classRawSkypeConnection.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/Cfg_8h.html#960561135389db76bb56b53c5cfc285a
http://www.icebrains-soft.com/company/

2.3 Low-level components 6

Generic definition of RawSkypeConnection leads to a compilation error.
There are two RawSkypeConnection specializations — for template parame-
ter value os_win and for template parameter value os_nix. The interfaces of
these specializations are very similar. Look at the specialization for os_win tem-
plate parameter value (MS WindowsTM version of the RawSkypeConnection).
Its public member functions are:

RawSkypeConnection(const RawNotify t& cbk,
const std:: string& app name,
LogFunc t log func = DummyLogger);

void Attach(int timeout = 3000);
bool IsAttached(void);
void Detach();
bool operator()();
void EnableIds();
void DisableIds();
bool IsIdsEnabled() const;
int LastNum() const;

To connect to Skype, call Attach function, to disconnect from it, call Detach
function. To check the connection status, use IsAttached function. The
most interesting argument of the constructor is _cbk of type RawNotify_t.
RawNotify_t is declared as functor [1, ch. 5] returning void with the only
argument of type const std::string&:

typedef
Loki ::Functor<void, LOKI TYPELIST 1(const std::string&)> RawNotify t;

The functor of this type (provided in the constructor) will be called by the
instance of the RawSkypeConnection upon receiving any message (notification,
error or response to the command) from Skype. The Skype message is the
argument of the functor. To initiate processing of incoming Skype messages,
call operator()() operator2.

Operators operator<< are defined in the RawSkypeConnection for integer
and boolean data types, STL C++ and null-terminated C-strings. To send
message (command) to Skype use these operators and flush member function or
flush manipulator. An example of sending a command is given below (suppose,
sk variable is of type RawSkypeConnection):

sk << ”PING”;
sk. flush ();
sk << ”SET AEC ” << true << flush;
bool r = GetAgcFromConfig();
sk << ”SET AGC ” << r << flush;

A useful feature of Skype API is the concept of command identifiers. This
concept is fully supported by RawSkypeConnection. To turn the command iden-
tifiers on, call EnableIds member function, to turn them off, call DisableIds
member function, to get the status of the command identifiers usage, call
IsIdsEnabled. In addition to these member functions, the corresponding ma-
nipulators EnableIds and DisableIds are provided. If the command identifiers
are turned on, each message sent to Skype is prefixed by the automatically gen-
erated command number. To get the number of the last command sent, call
LastNum. You can use this number as a key to associate an incoming Skype
message (response to the command) with the command which has been sent to
Skype. SkypeConnection class fulfils this task in this way. By default (upon
RawSkypeConnection instance creation) the command identifiers are turned on.

We have discussed the usage of MS WindowsTM RawSkypeConnection spe-
cialization. Linux specialization usage is the same, the signature of Attach
function differs only. The complete reference to the linux specialization is pre-
sented here.

Uff-ff. The last item in this section. To declare RawSkypeConnection in-
stance use type RawSkypeConnection<>. C++ compiler automatically detects

2This operator is implemented as an empty function in MS WindowsTM specialization of
RawSkypeConnection and performs the incoming message processing in the linux specialization
only. But it is a good platform-independent software design practice to call this operator
somewhere in the execution flow on a regular basis. Windows applications should contain the
message loop. Incoming Skype messages are processed there.

c© Ice Brains Software

http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classRawSkypeConnection.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classRawSkypeConnection_3_01os__win_01_4.html#d2a5aa2872ae02b483bf15053ad71f53
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classRawSkypeConnection_3_01os__win_01_4.html#689fe3a975c949615c23ea7e6c8f670b
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classRawSkypeConnection_3_01os__win_01_4.html#8b1e3e22246dd656caf3f9aa3b355c26
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classRawSkypeConnection_3_01os__win_01_4.html#a499166db565e7750e6c4f955a3ad7fc
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classSkypeCmdFormatter.html#fa5c56187121a41813e62b0074b34206
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/LowLevel_8h.html#70356b6229679eb8a464fce95065be63
https://developer.skype.com/Docs/ApiDoc/Command_identifiers
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classSkypeCmdFormatter.html#a255e9402b97e28a34c82f37ab6894f6
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classSkypeCmdFormatter.html#0d2668d89a9030823e1905955514d2db
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classSkypeCmdFormatter.html#0aa6d3ab430414dafa7d47d0d6d1a973
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classNumerator.html#a4cc47d9ea8701fff49dd1e41c40b270
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classSkypeConnection.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classRawSkypeConnection_3_01os__nix_01_4.html
http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/windowing/messagesandmessagequeues/aboutmessagesandmessagequeues.asp
http://www.icebrains-soft.com/company/

2.3 Low-level components 7

operation system it runs under and the correct RawSkypeConnection special-
ization is used.

2.3.2 SkypeConnection class

RawSkypeConnection template encapsulates all the low-level Skype connection
functionality. However, its interface is very limited. SkypeConnection in-
herits RawSkypeConnection<OS> where OS is a constant of type OS_t (look
at section 2.3.1). OS value is set by the compiler — it detects the opera-
tion system it runs under. In addition to the RawSkypeConnection interface,
SkypeConnection provides the following public member functions:

unsigned RegisterCallback(const std::string& regex,
const SimpleHandler t& f);

unsigned RegisterCallback(const std::string& regex,
const RegExNotify t& f);

void UnRegisterCallback(const std::string& regex,
const unsigned& id);

The following functor types [1, ch. 5] are declared in SkypeConnection.h
library header:

typedef Loki::Functor<void,
LOKI TYPELIST 1(const std::string&)> SimpleHandler t;

typedef Loki::Functor<void,
LOKI TYPELIST 1(const boost::cmatch&)> RegExNotify t;

typedef Loki::Functor<void,
LOKI TYPELIST 3(const int&,

const std:: string&,
const std:: string&)> ErrorHandler t;

The first two functor types — SimpleHandler t and RegExNotify t are used
with RegisterCallback member functions. The functor of type ErrorHandler t
is used as the argument of Flush manipulator (represented below).

The object of type SkypeConnection is listening to the incoming Skype API
messages. Upon receipt of a Skype message (notification or command response)
it is tested for any registered regular expression [2]. To register a regular ex-
pression, call one of the RegisterCallback member functions. These functions
return the unsigned integer identifier of the registered expression. To cancel
the registration, call UnRegisterCallback member function. If the incoming
message matches the regular expression, the corresponding callback functor (of
type SimpleHandler_t or RegExNotify_t) is called. This procedure is repeated
with every registered regular expression. If the incoming message matches no
registered regular expression, the default handler is called. This handler is pro-
vided for the object of type SkypeConnection as the second argument of the
constructor.

Boost.Regex is used for all regular expression operations. Which version of
RegisterCallback function is better? It depends on your purposes. If there
is no need to extract any data from the message, prefer callback functor of
type SimpleHandler_t, otherwise choose RegExNotify_t. The argument of
SimpleHandler_t is filled with the incoming message text, the RegExNotify_t
argument is filled with match results of the regular expression.

Examples of RegisterCallback usage are given below (suppose, sk is of
type SkypeConnection):

void SimpleHandler(const std::string& msg)
{ std :: cout << ”SimpleHandler: ’” << msg << ”’” << std::endl; };

void RegExHandler(const boost::cmatch& m) {
std :: cout << ”RegExHandler: ’” << m[0] << ”’” << std::endl;
for(int i=0;i<m.size();i++) {

std :: cout << ” match[” << i << ”] = ’” << m[i] << ”’”;
std :: cout << std::endl;

}
};

c© Ice Brains Software

http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classSkypeConnection.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/SkypeConnection_8h.html#def58ddb5fe7aa4497f4bd742d4af5a7
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/SkypeConnection_8h.html#e167a709531bacca373a7aebb2c9df07
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classSkypeConnection.html#5c46875fde7a8ff329ee00d2c0fee267
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/SkypeConnection_8h.html#a170f2b5f0d2cb65d6511efeda9c61ec
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/structFlush.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classSkypeConnection.html#2488915cde5c13c61160d4595decc1e7
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classSkypeConnection.html#677007c48ec9df7e8636e720e373fae2
http://www.boost.org/libs/regex/doc/index.html
http://www.boost.org/libs/regex/doc/match_results.html
http://www.icebrains-soft.com/company/

2.3 Low-level components 8

sk.RegisterCallback(”ˆ\\s∗CONNSTATUS\\s+ONLINE\\s∗$”,
SimpleHandler t(SimpleHandler));

sk.RegisterCallback(”ˆ\\s∗CURRENTUSERHANDLE\\s+([ˆ\\s]+)\\s∗$”,
RegExNotify t(RegExHandler));

SimpleHandler function will be called upon receipt of the ”CONNSTATUS
ONLINE” notification from Skype. RegExHandler function will be called upon
receipt of the notification with the name of the currently logged Skype user.

As you have already seen, ErrorHandler t functor type is declared in the
library. What is it? Where is this type used? There are two types of incoming
Skype API messages — notifications and command responses. The only way to
distinguish between these message types is the usage of command identifiers. If
the command identifiers are used, each response to a command is provided with
the identifier of the corresponding command. If Skype was unable to process
the command, it responds with an error message. If no command identifiers are
used, it is impossible to discover the command resulted in error. On the contrary,
if they are used, this is not a problem. SkypeConnection turn the command
identifiers on by default. To turn them off, call DisableIds public member
function of SkypeConnection class. To turn them on, call EnableIds member
function, to get the status of command identifiers usage, call IsIdsEnabled.
In addition to these member functions, corresponding manipulators EnableIds
and DisableIds are provided. Flush manipulator is defined to associate the
command with the response to it. This manipulator is implemented as a struc-
ture with the following constructor:

Flush(const SimpleHandler t& sh,
const ErrorHandler t& eh,
bool send event = true);

The first argument is a response handler of type SimpleHandler t. This
handler will be called upon receiving the response to the command sent with
this Flush manipulator. The second argument is an error handler of type
ErrorHandler t. It will be called if the command has resulted in error. If the
third argument of the Flush manipulator is set to true (the default value), after
the response handler executing event processing mechanism (described above)
is activated — the response is tested for all the registered regular expressions
and corresponding functors are called if the response matches the regular ex-
pression. If this behavior is not what you need, set the last parameter of Flush
manipulator to false — in which case the response (or error) handler is called
only.

Flush usage example (suppose, sk is of type SkypeConnection):

void RespHandler(const std::string& msg)
{ std :: cout << ”RespHandler: ’” << msg << ”’” << std::endl; };

void ErrHandler(const int& err code,
const std:: string& err msg,
const std:: string& full err msg)

{
std :: cout << ”Error code: ” << err code << std::endl;
std :: cout << ”Error message: ” << err msg << std::endl;
std :: cout << ”Full error message: ” << full err msg << std::endl;

};

. . .

sk << ”PING” << Flush(RespHandler, ErrHandler);
sk << ”INCORRECT COMMAND” << Flush(RespHandler, ErrHandler);

Upon receipt of ”PONG” (response to the ”PING” command) RespHandler
will be called. ”INCORRECT COMMAND” is not a Skype API command,
therefore ErrHandler will be executed after sending this command to Skype.

c© Ice Brains Software

http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/SkypeConnection_8h.html#a170f2b5f0d2cb65d6511efeda9c61ec
https://developer.skype.com/Docs/ApiDoc/Command_identifiers
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classSkypeCmdFormatter.html#0d2668d89a9030823e1905955514d2db
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classSkypeCmdFormatter.html#a255e9402b97e28a34c82f37ab6894f6
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classSkypeCmdFormatter.html#0aa6d3ab430414dafa7d47d0d6d1a973
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/structFlush.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/SkypeConnection_8h.html#def58ddb5fe7aa4497f4bd742d4af5a7
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/SkypeConnection_8h.html#a170f2b5f0d2cb65d6511efeda9c61ec
http://www.icebrains-soft.com/company/

2.4 High-level components 9

2.4 High-level components

2.4.1 SkypeObject template and its descendants

SkypeObject template is a basis for a variety of high-level ++Skype compo-
nents. All these components (see table 1) inherit public interface of SkypeObject.
A typical inheritance diagram for the descendant of SkypeObject is shown in
the fig. 2.

Attributes Each Skype object has its attributes. For example, Skype object
of type Privileges has the following attributes: plSkypeOut, plSkypeIn and
plVoiceMail. The attribute names are of enumeration type. Such types are
called ”attribute types”. A special attribute type is defined for each descendant
of SkypeObject. To map attribute type values to strings (names of the at-
tributes in Skype API notation) specializations of AttrsDescription template
are used. Descendants of SkypeObject, their attribute and attribute descrip-
tion types are listed in the table 1.

Class Attributes Attributes
type description type

Application ApplicationAttrs t ApplicationAttrsDesc t
AudioSettings AudioAttrs t AudioAttrsDesc t

Call CallAttrs t CallAttrsDesc t
Chat ChatAttrs t ChatAttrsDesc t

ChatMsg ChatMsgAttrs t ChatMsgAttrsDesc t
Privileges PrivAttrs t PrivAttrsDesc t
Profile ProfileAttrs t ProfileAttrsDesc t
User UserAttrs t UserAttrsDesc t

Table 1: Descendants of SkypeObject template

Figure 2: Inheritance diagram for class Profile

The following public members of SkypeObject interface are defined to man-
age attributes (Attrs is the attribute type):

typedef Loki::Functor<void,
LOKI TYPELIST 5(Host&, const Attrs&, const int&, const std::string&,

const std:: string&)> ObjErrHandler t;
typedef std::map<Attrs, std::string>::const iterator const iterator ;
typedef AttrsDescription<Attrs> AttrsDescription t;

const std:: string& operator[](const Attrs& attr) const;

const iterator find(const Attrs& attr) const;

const iterator begin() const;
const iterator end() const;

c© Ice Brains Software

http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObject.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1AttrsDescription.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1Application.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/namespaceIce.html#2a5b001fb8f77cbb2148a83abb30e3f4
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1AttrsDescription_3_01ApplicationAttrs__t_01_4.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1AudioSettings.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/namespaceIce.html#765e1e1e760f27ecbc48ff4413d9fb1e
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1AttrsDescription_3_01AudioAttrs__t_01_4.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1Call.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/namespaceIce.html#7041b85b3858094742a744270d142d4b
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1AttrsDescription_3_01CallAttrs__t_01_4.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1Chat.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/namespaceIce.html#04d297979b3c24b15edb3d394b22599f
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1AttrsDescription_3_01ChatAttrs__t_01_4.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1ChatMsg.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/namespaceIce.html#32d8f2e35ace79580a356159b7c5db0f
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1AttrsDescription_3_01ChatMsgAttrs__t_01_4.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1Privileges.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/namespaceIce.html#eaf7bd26a6713849107eecd11fb3f587
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1AttrsDescription_3_01PrivAttrs__t_01_4.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1Profile.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/namespaceIce.html#9bf8128176c2d39d847925bcb6808652
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1AttrsDescription_3_01ProfileAttrs__t_01_4.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1User.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/namespaceIce.html#43460b60fde29667e60b352c8da41633
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1AttrsDescription_3_01UserAttrs__t_01_4.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObject.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1Profile.html
http://www.icebrains-soft.com/company/

2.4 High-level components 10

void AskAttr(const Attrs& attr);
void AskAttr(const Attrs& attr, const ObjErrHandler t& eh);

template <typename T>
void AskForSetAttr(const Attrs& attr, const T& value);
template <typename T>
void AskForSetAttr(const Attrs& attr, const T& value,

const ObjErrHandler t& eh);

Attribute is stored as std::pair<Attrs, std::string>. To get the at-
tribute value, use indexing operator. Call this operator if you are absolutely
sure that the attribute value is stored in the object! To iterate through all
the attributes stored in the object, use const_iterator type. The behavior of
begin(), end() and find member functions is the same as of the corresponding
member functions of STL containers.

The value of the attribute is stored as std::string. It is easy to convert the
string value to other type — use GetFromString template function, described
in the section 2.1.3.

To get all the attributes stored in the object, iterators can be used in the
following way (suppose, so is of type SO_t and SO_t is the descendant of the
SkypeObject):

typedef typename SO t::const iterator CI;
const typename SO t::AttrsDescription t desc;

for(CI p = so.begin(); p != so.end(); ++p) {
std :: cout << ”Obj[’” << desc[p−>first] << ”’] = ’”;
std :: cout << p−>second << ”’” << std::endl;

};
What is the AttrsDescription type? Object of this type maps string names

of the attributes into enumeration type and vise versa. Two indexing operators
are declared in the public interface of AttrsDescription (suppose, Attrs is
the attribute type) to do this task:

const Attrs& operator[](const std::string& idx) const;
const std:: string& operator[](const Attrs& idx) const;

Attributes description types are listed in the table 1. Attribute descrip-
tion type is declared in the public section of each descendant of SkypeObject
template also — it is called AttrsDescription_t there. For example, names
Profile::AttrsDescription_t and ProfileAttrsDesc_t refer to the same
type — attributes description type for the ProfileAttrs_t.

The descendant of SkypeObject stores only the attributes it has received
from the Skype via API (with the help of SkypeConnection instance). If the
attribute value has not been reported (by Skype) to the application, it is not
stored in the object. To request the attribute value from the Skype, AskAttr
member functions (one of them) should be called. Note, the behavior of these
member functions is asynchronous — they send requests to Skype and don’t wait
for the answer. That’s why it is a wrong expectation to request the attribute
value (with the help of indexing operator, for example) immediately after calling
AskAttr function. But don’t worry, there is a special concept in the library to
make such things easier — watchers. We will discuss them later in this section.

There is a couple of AskAttr member functions — simple (one argument)
and advanced (two arguments). Both functions request the attribute value
from the Skype. The only difference is the error handling behavior. Skype can
return an error message in response to the request. Such errors are handled by
the functors of type ObjErrHandler t (see p. 9) which is declared as functor
type [1, ch. 5] returning void with five arguments. The First argument is
the reference to the object which has received the error response, the second
argument is the attribute name (of enumeration type) the value of which was
requested from the Skype, the third argument is an integer Skype error code,
the fourth argument is a human-readable description of the error and the last
argument is the unmodified error message received from the Skype. If an error
occurs, the simple version of AskAttr calls the functor of type ObjErrHandler_t
provided in the object’s constructor (see below) while the advanced version calls
the functor provided in its second argument.

c© Ice Brains Software

http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObject.html#2b688115a876a7d03565562905e0885c
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObject.html#6baaa2cbd6d82294c87b2c6170a526cd
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObject.html#624dcdd8c36a2224a597a1bed3db801f
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObject.html#5530be6989965c0fb212eaf824e10099
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/utils_8h.html#add0d1e21e3529bcb827d202aaa1a3b8
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1AttrsDescription.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObject.html#5259d837c91ee41073204732b19ca505
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObject.html#1094c644c1f93eed081e9cd79f3de86f
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObject.html#4045b474b5d28d5fddab81c42fad64af
https://developer.skype.com/Docs/ApiDoc/Error_codes
http://www.icebrains-soft.com/company/

2.4 High-level components 11

To set the attribute value (send it to Skype), call one of AskForSetAttr
member functions. There are two functions with this name — simple (two
arguments) and advanced (three arguments). The difference between them is
the same as the difference between the pair of AskAttr functions, discussed
above.

Watchers Values of the attributes are not static. They are changed during the
object’s lifetime. How to track these changes? How to track the value changes
for a specific set of attributes only? Watchers is the answer. StateWatchers
template is defined in SkypeObj.h library header. It introduces the following
public members (Host is the type of SkypeObject descendant, Attrs is corre-
sponding attribute type):

template <class Host, typename Attrs>
class StateWatchers {
public:

typedef std::set<Attrs> AttrSet t;

typedef Loki::Functor<void,
LOKI TYPELIST 3(Host&, const Attrs&,

const std:: string&)> ObjChanged t;

unsigned RegisterWatcher(const AttrSet t& attrs,
const ObjChanged t& cbk,
const bool& not in = false);

void UnRegisterWatcher(const unsigned& id);

void clear ();
};

Each descendant of SkypeObject contains the instance of corresponding
StateWatchers. It can be obtained via GetWatchers member function:

typedef StateWatchers<Host, Attrs> Watchers t;
Watchers t& GetWatchers();

To turn watchers mechanism off or on call IgnoreWatchers member function
of SkypeObject template:

void IgnoreWatchers(bool ignore = true);

By default (upon the object creation), the watchers mechanism is turned on.
Let’s discuss StateWatchers template in-depth. StateWatchers contains

watchers. To register a watcher, call RegisterWatcher member function. It
returns the identifier of the registered watcher of unsigned integer type. To
cancel the registration of a specific watcher call UnRegisterWatcher member
function. To cancel the registration of all previously registered watchers, call
clear member function.

What is watcher? The watcher is a special object which looks for the changes
of attribute values. And if a change happens, it signals about this event with
the help of functor of type ObjChanged t. The functor of this type is called
(by the watcher) with three arguments — reference to the object which stores
the attribute, the name of the changed attribute (of enumeration type) and
the new value of the attribute. To define a watcher, call RegisterWatcher
function. This function accepts three parameters. The first parameter is the
set of attribute names. The watcher only looks for the changes of the attribute
values the names of which are included (if last parameter is set to false) or not
included (if last parameter is set to true) in this set. The second parameter is
a functor which is used for signaling.

Looks unclear? OK, doing is better than saying. Just an example (suppose,
au is of type AudioSettings):

void ObjChanged(AudioSettings& au, const AudioAttrs t& attr,
const std:: string& value)

{
const AudioSettings::AttrsDescription t desc;
std :: cout << ”New value of the attribute ’” << desc[attr];

c© Ice Brains Software

http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObject.html#825ed420042fd883d8f0864178415384
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObject.html#825ed420042fd883d8f0864178415384
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObject.html#1ce7c1896c4d7253ce74133eefbb5005
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1StateWatchers.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObject.html#6bd96b602f510195bfae89810b88f3b6
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObject.html#7525989e42ebc7b4304c2622b721c002
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1StateWatchers.html#2570062da55e167c7d66bde54a679635
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1StateWatchers.html#60803f1e1c183f31184a080bedeb5579
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1StateWatchers.html#17d221846a1029f2f6f234426e7582fb
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1StateWatchers.html#4a9a2dcc9cd0bb11cb8f9c214c6349e5
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1AudioSettings.html
http://www.icebrains-soft.com/company/

2.4 High-level components 12

std :: cout << ”’ is ’” << value << ”’” << std::endl;
};

typedef AudioSettings::Watchers t AWatchers t;
AWatchers t::AttrSet t attrs ;
attrs . insert (auAudioOut);
attrs . insert (auAudioIn);
au.GetWatchers().RegisterWatcher(attrs, ObjChanged);

Every time when input and output audio devices are changed, ObjChanged
function is called.

Constructors of SkypeObject descendants There are two types of descen-
dants. The descendants of first type have identifiers (integer or string) while
the descendants of second type do not. The descendants with identifier are:
Call, Chat, ChatMsg, User and Application. The descendants without iden-
tifier are: AudioSettings, Privileges and Profile. The only difference between
their constructors is the additional argument which the constructors of first
type descendants accept — identifier. To get the object’s identifier, call GetId
function.

Every SkypeObject descendant has two constructors. Look at the construc-
tors of Privileges class, for example:

Privileges (SkypeConnection& sc,
const LogFunc t& log func = DummyLogger);

Privileges (SkypeConnection& sc, const ObjErrHandler t& eh,
const LogFunc t& log func = DummyLogger);

The only difference between these constructors is _eh argument. This is
the error handler for simple versions of AskAttr and AskForSetAttr member
functions (see p. 10). If constructor without _eh parameter is used, dummy
(empty) error handler is used in these functions.

Miscellaneous To get the object’s identifier, call GetId member function. To
get the reference to SkypeConnection used by the object, call GetSkype member
function. To get Skype (API) name of the object, use GetName member function.

2.4.2 SkypeObjManager template and its descendants

SkypeObjManager is a basis for several managers of Skype objects. The following
managers are defined in the library:

• Object of type CallManager manages objects of type Call

• Object of type ChatManager manages objects of type Chat

• Object of type ChatMsgManager manages objects of type ChatMsg

• Object of type UserManager manages objects of type User

The most important functions of the managers are:

Storage of the objects Managed objects (all objects of managed type) are
stored in the manager. The manager acts as container of these objects.
The objects are automatically put into the manager upon receiving the
Skype API notification which contains the new object identifier.

Management of objects lifetime Objects are removed from the container
(and memory) if they are no more needed. This behavior prevents the
memory leaks.

Notifications on objects creation The conception of listeners is introduced
in the managers. The listeners are callback functors [1, ch. 5] which are
called upon creation of the new object. All object attributes required
for the listener’s owner are requested from the Skype before the callback
functor has been called.

c© Ice Brains Software

http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObject.html#387d6281afc11afe5119354d93f06f71
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1Privileges.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObject.html#5259d837c91ee41073204732b19ca505
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObject.html#825ed420042fd883d8f0864178415384
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObject.html#387d6281afc11afe5119354d93f06f71
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObject.html#4313829fd04a643fa112afa69c7430ab
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObject.html#a385bf8fa15fcd02a6ded64a050685dc
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObjManager.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1CallManager.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1Call.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1ChatManager.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1Chat.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1ChatMsgManager.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1ChatMsg.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1UserManager.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1User.html
http://www.icebrains-soft.com/company/

2.4 High-level components 13

Object search A search interface is provided. It is possible to search objects
which are stored in the manager as well as to send search query to the
Skype via Skype API search commands.

We will discuss all these features of managers in detail later in this section.

Listeners Listeners are supported through the ObjCreated t functor type
and two member functions — RegisterListener and UnRegisterListener They
are declared in the public interface of the SkypeObjManager (ObjHost is the
type of managed objects, AttrSet_t type is the set of corresponding object
attributes):

typedef
Loki ::Functor<bool, LOKI TYPELIST 1(ObjHost&)> ObjCreated t;

unsigned RegisterListener(const AttrSet t& attrs,
const ObjCreated t& cbk);

void UnRegisterListener(unsigned id);

To register a listener, call RegisterListener member function. It returns
an unsigned identifier of the listener. To cancel the listener’s registration, call
UnRegisterListener function supplied with this identifier. Each time when a
new object is created, the manager checks existence of the attributes required by
all the registered listeners (these attributes are provided to the manager via the
first argument of the RegisterListener function). If all attributes exist in the
object, the corresponding listener is called. Otherwise, the missing attributes
are requested from the Skype.

The functors of type ObjCreated_t return a boolean value. This value is
very important! If your program (or program component) does not need the
created object (this object will not be used in the program further), it returns
false. Otherwise, it returns true. See object’s lifetime management below for
details.

Listeners usage example (cm is of type CallManager):

bool NewCallWatcher(Call& call) {
bool t = !call [clType].compare(”OUTGOING P2P”);
t = t || (! call [clType].compare(”OUTGOING PSTN”));
if (t) {

std :: cout << ”Outgoing call to: ’”;
std :: cout << call[clPartnerHandle] << ”’” << std::endl;

};
return t;

};
. . .
// The same as: std::set<CallAttrs t> attrs;
CallManager::AttrSet t attrs ;
attrs . insert (clType);
attrs . insert (clPartnerHandle);
cm.RegisterListener(attrs , NewCallWatcher);

This example handles outgoing (PSTN or P2P) calls only. Upon execution of
the callback functor NewCallWatcher, the values of clType and clPartnerHandle
attributes of the call are set.

Search interface There are two search interfaces. The first search interface
is used to search though objects which are already stored in the manager. This
interface is simple and obvious (ObjHost is the type of managed objects, Id_t
is the type of their identifiers):

typedef Loki::SmartPtr<ObjHost,
Loki ::RefCounted, Loki::AllowConversion> ObjPtr t;

ObjPtr t find(const Id t& id, bool want to own = false);

find member function returns a smart pointer [1, ch. 7] of type ObjPtr t.
To use this interface, the caller has to know the value of the object’s identifier
and the object should be stored in the manager.

c© Ice Brains Software

https://developer.skype.com/Docs/ApiDoc/Search_commands
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObjManager.html#712a7306a62cf26aa581857d287f6f82
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObjManager.html#81a2d7b5cfb34b7d8e0bf520a92b2802
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObjManager.html#98cbffc29c53638a57319a1ab1c7f50f
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObjManager.html#71b717c6e04196c34ec4e7fba42b80b8
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObjManager.html#9549ad0e12363417367075c66ffd75c1
http://www.icebrains-soft.com/company/

2.4 High-level components 14

OK. But what about more complex Skype search queries? There is yet
another search interface. Yes, more complex but more powerful!

To initiate the search procedure, Search member function should be called:

typedef Loki::Functor<bool,
LOKI TYPELIST 1(const std::vector<ObjType t∗>&)> SearchResult t;

void Search(const SearchTypes& what, const SearchResult t& cbk,
const AttrSet t& attrs, const std:: string& param = ””);

Upon completion of the search, a callback functor of type SearchResult t is
executed by the manager. But what are these strange new types — ObjType_t
and SearchTypes? ObjType_t is the type of managed objects. For example,
for CallManager this type equals to Call. SearchTypes is the type of search
query. The following types of search queries are defined:

• CallSearchTypes t to be used in the CallManager search interface. Pos-
sible values are srCalls, srActiveCalls and srMissedCalls.

• ChatSearchTypes t to be used in the ChatManager search interface. Pos-
sible values are srChats, srActiveChats, srBookmarkedChats, srMissed-
Chats and srRecentChats.

• ChatMsgSearchTypes t to be used in the ChatMsgManager search inter-
face. Possible values are scmChatMsgs and scmMissedChatMsgs.

• UserSearchTypes t to be used in the UserManager search interface. Pos-
sible values are srUsersWaitingMyAuthorization, srFriends and srUsers.

The third argument of the Search function is the set of attributes which are
required to be stored in the object (requested from Skype) before calling the
callback functor (_cbk argument of the Search function). The last argument of
the call to Search is Skype API search parameter. Its meaning depends on the
type of the search query. For example, for user search of type srUsers the last
parameter is a part of username or e-mail to match. And, of course, the search
behavior is asynchronous.

Search usage example (chm is of type ChatManager):

bool SearchResult(const std::vector<Chat∗>& resp) {
std :: cout << ”Active chat search result:” << std::endl;
typedef std::vector<Chat∗>::const iterator CI;
for(CI p = resp.begin(); p != resp.end(); ++p) {

Chat& ch = ∗∗p;
std :: cout << ”Chat ’” << ch[chName];
std :: cout << ”’ with the members: ’”;
std :: cout << ch[chMembers] << ”’” << std::endl;

};
return false;

};

// The same as: std::set<ChatAttrs t> attrs;
ChatManager::AttrSet t attrs;
attrs . insert (chMembers);
attrs . insert (chName);
chm.Search(srActiveChats, SearchResult, attrs);

This example searches for active chats. Upon completion, the names and
members of active chats are printed out. Note, SearchResult returns a boolean
value (false in the example above). If your program (or program component) is
not going to use the objects returned by the search query after callback functor
completion, this functor has to return false. Otherwise, return is true from it.
See object lifetime management below for details.

Object lifetime management Objects of managed types are stored in the
managers. These objects are created upon receiving Skype message with un-
known object’s identifier. But it is not a good idea to store all such Skype

c© Ice Brains Software

https://developer.skype.com/Docs/ApiDoc/Search_commands
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1Searcher.html#df0c0ed55bc7fbb94d20921cf4d5fd8e
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1Searcher.html#ec93ba8b117d5284aeb99d8100238c66
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/namespaceIce.html#5fbf6b03715447b0caccfe6acd29edd7
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1CallManager.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/namespaceIce.html#946efdde4f3b4768a1889e86a12d8478
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1ChatManager.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/namespaceIce.html#1e4cdc41dd58b7ccadd2a69ff0277744
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1ChatMsgManager.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/namespaceIce.html#a52fcb3d7032dbedf005d790e7c50a9c
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1UserManager.html
http://www.icebrains-soft.com/company/

15

objects in the memory because the computer memory is limited, even nowa-
days! If the object is not used by the program, the manager removes it from the
memory. How is the manager informed that object A is used by the program
while object B is not used? There are several ways to inform the manager. The
first way is the return value of the listener (see above). The second way is the
return value of the search callback function (see above). However, the usual
way is to call ReleaseObj member function (ObjHost is the type of managed
objects):

void ReleaseObj(const ObjHost& obj);

Let’s explain — you got a new object via listener or search callback mech-
anism. You returned true from the functors because you needed the object(s).
You worked with the object. And when everything has been done (for example,
the call you were monitoring, was finished) you do not need the object anymore.
OK, just call ReleaseObj member function!

This function performs reference counting for the object. If the object’s
usage counter runs up to zero, it marks the object as ”released” but does not
remove it from the manager. The real dirty work is implemented in the special
function Squeeze:

void Squeeze();

This function must not be called from any ++Skype callback functors. This
is very important! And it is very important to call this function on a regular
basis. Otherwise, memory leaks can occur.

To check the quantity of objects currently stored in the manager, call Size
member function:

unsigned Size() const;

2.4.3 Application and AppStream classes

We’ll discuss these classes in the future releases of this tutorial. They are used
to implement application to application communication.

Application reference is available here, AppStream reference is available
here.

3 Additional ++Skype resources

A very good source of ++Skype information is its documentation. It is available
online. You can discuss ++Skype with other users on web forums. And, of
course, don’t hesitate to contact us!

Up-to-date list of ++Skype resources can be found here.

References

[1] A. Alexandrescu. Modern C++ Design (Addison-Wesley, 2001)

[2] Jeffrey E. F. Friedl Mastering Regular Expressions, Second Edition
(O’Reilly, 2002)

c© Ice Brains Software

http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObjManager.html#7d87ce007a0419fe8c4cd47f08eb2bd6
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObjManager.html#eb05b89f2c535a58f8f40b0a74891bcc
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1SkypeObjManager.html#f55d7e83c34917c7e2ebc793f170fc11
https://developer.skype.com/Docs/ApiDoc/Application_to_application_commands
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1Application.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/classIce_1_1AppStream.html
http://www.icebrains-soft.com/files/distribs/libppskype/libppskype_html_manual/index.html
http://www.icebrains-soft.com/en/forums/_skype_library
http://www.icebrains-soft.com/en/company/
http://www.icebrains-soft.com/skype_library_0
http://www.awprofessional.com/title/0201704315
http://www.oreilly.com/catalog/regex2/
http://www.oreilly.com/catalog/regex2/
http://www.icebrains-soft.com/company/

	Introduction
	++Skype architecture
	Utilities
	Loggers
	Runtime assertions
	String to numeric types conversion template

	Exception hierarchy
	Low-level components
	RawSkypeConnection template
	SkypeConnection class

	High-level components
	SkypeObject template and its descendants
	SkypeObjManager template and its descendants
	Application and AppStream classes

	Additional ++Skype resources

