The PPR Hacker's Guide

The PPR Hacker's Guide

David Chappell
Copyright © 1995--2003 Trinity College Computing Center

7 November 2003

Table of Contents

Configuration File Formats
Format of a Printer Configuration File
Format of a Group Configuration File
PPR's Directories and Files
The /var/spool/ppr/ Directory
The /etc/ppr/ Directory
The /usr/lib/ppr/ Directory
The /usr/share/ppr/ Directory
Printer Interface Programs
The Command Line Parameters

Help in Parsing the Command Line
The Return Codes

Posting Alerts

Robust Bidirectional Operation
Special Messages

Probe Mode

Input Filters
Eonts
Font Substitution Configuration File
MetaFont Modes Configuration File
Protocol for Comunicating with pprd
Accepting Jobs
Reloading Configuration Files
Yielding Information to ppop
How Continuous Queue and Printer Status Display Works
Requirements for a Responder
Custom Hooks

Plugin Raster Image Processors

Abstract

This document provides information of interest to those wishing to modify the PPR source code or to add
plugin modules such as printer interface programs and programs that send messages to users.

Configuration File Formats

Configuration files which the system administrator is expected to modify directly are described within the
reference manual. The files described in this section are modified automatically by programs such as ppad.
That is why they are described here in the Hacker's Guide.

The PPR Hacker's Guide 1

The PPR Hacker's Guide

Format of a Printer Configuration File

Each file in the directory /etc/ppr/printers/ represents one printer. It is permissible to create and edit
these files manually, however the command ppad has been provided to do this automatically.

A new printer configuration file is created by the ppad interface command. The new configuration file is
created by turning the arguments of the ppad interface command into a Interface: and an Address:

line and appending the file /etc/ppr/newprn.conf. The newprn.conf file is normally created by the

ppad new alerts command.

Any lines begining with ; or # are comments. Blank lines are ignored. All other lines should begin with a
keyword which is followed by one or more values. Only the Bin: and PPDOpt: lines should occur more
than once. If any other line occurs multiple times, all but the last instance are ignored.

Any line that begins with an unrecognized keyword is ignored. This is so that you can add lines of your own
which will be understood and acted on by other programs. The program ppr2samba works on this principle.

Comment: string
This line contains a comment which describes the printer. The comment is displayed when the ppad
show command is used to display the printer configuration. This line is optional.

Interface: interface
This line is required. It gives the name of the program which the spooler should invoke in order to
make contact with the printer. If thterface does not begin with a slash, then it refers to a
subdirectory of the /usr/lib/ppr/interfaces/ directory. Common values for this line are
atalk, tcpip, and serial.

Address: address_string
The address string is passed to the interface program as its second parameter. The proper format fo
this string depends on the interface. Reasonable values for use with the interfaces named in the abo
paragraph are Mac Laser Printer: LaserWriter@MYZONE,
smith.prn.myorg.org:9100, and /dev/ttys05. If the address contains leading or trailing
spaces it should be enclosed in double quotes. Technically, this line is not required, but the default
address is the name of the printer which is unlikely to be useful.

Options: string
This line is optional. The valugring is passed to the interface as its third parameter.

PPDFile: filename
This line specifies the path and name of an Adobe Post Script Printer Description file which describe
the printer. If the name does not begin with a slash, it referes to a file in the directory
lusr/lib/ppr/PPDFiles. This line may not be required but it really ought to be present.

Alert: interval method address
This line is optional. If it is present, then messages will be sent to the designated person when faults
occur on the printer.

The integeinterval indicates how often these messages will be sent. For instance, if the value is
5, then a message will be sent for every 5th fault.

Format of a Printer Configuration File 2

The PPR Hacker's Guide

Themethod parameter indicates the method by which the message should be sent. Currently, this
parameter is ignored. Set it to mail.

Theaddress indicates the person to whom the message should be sent. Since mail is currently the
only supported method, this should be a e-mail address.

FlagPages: integer integer
This line is optional. The first integer refers to banner pages, the second to trailer pages. Four differe
values are allowed. They are 0 for 'never', 1 for 'preferably not', 2 for 'preferably yes', and 3 for
‘always'.

Feedback: boolean
This line is optional. It indicates whether or not the connexion to the printer allows it to send
messages back to the spooler. There is a list of default values for all the interfaces supplied with PPI
compiled into pprdrv. (This list is defined in include/interfaces.h.) If this line is not present
and the interface is not in the list, it is assumed to be false. Any instances of this line which occur
before the Interface: line are ignored.

JobBreak: integer
This line is optional. The integer is the code number of a job break method. This line is only
necessary if a job break method other than the default for the interface is desired. Default job break
numbers for the interfaces which come with PPR are defined in the source file
include/interfaces.h. The meaning of the values in interfaces.h can be understood by
reading the ppad jobbreak section of the ppad(8) man page. Any instances of this line which occur
before the Interface: line are ignored.

Codes: integer
This line is optional. It indicates the range of character codes which the interface can transmit to the
printer. The acceptable values are 1 for Clean7Bit, 2 for Clean8Bit, 3 for Binary and 4 for Binary if
TBCP is used.

GrayOK: boolean
This line is optional. The default value is true. If this parameter is set to false, the printer will
refuse to print any job which does not have color in a %%Requirements: line in its header. A
GrayOK: line can be used to prevent black—and-white or grayscale jobs from begin printed on an
expensive colour printer.

Charge: money [money]
This line is optional. If this line is present, then the printer becomes a protected printer. Each
parametemoney will normally be a positive number with two decimal places. If both are 0.00,
then the printer is protected, but no actual charges are mode to the user's account. The first number
the amount that should be charged for each sheet of paper printed on both sides. The second is the
amount that should be charged for each sheet printed on only one side. If the second number is
missing it is assumed to be the same as the first.

OutputOrder: direction
This line is optional. If it is absent, it is assumed that direction is Normal. If direction is set to
Reverse, the spooler will cause the pages to be printed in reverse order, if possible. The value of
this line can be set with the command ppad outputorder printer Normal, ppad outputorder
printer Reverse, or ppad outputorder printer ppd. The command ppad outputorder printer ppd
deletes any OutputOrder: line which may exist.

Format of a Printer Configuration File 3

The PPR Hacker's Guide

Bin: binname
Thebinname parameter is the bin name as it appears in a *InputSlot line of the PPD file.
Common values are Upper, Lower, and Cassette. If automatic bin selection and media handling
are desired, there should be one Bin: line for each installed bin. Removing all the Bin: lines
disables automatic bin selection and media handling.

DefFiltOpts: options
This line is optional. If present, it contains input filter options in the form of name-value pairs. (If the
user employs one or more —o switches when submitting a job with ppr, then the argument of each —c
switch is appended to this list. Thus, —o switches can be used to override settings in this list.) This
line is automatically updated whenever the ppad ppd command is used to select a new PPD file or
the ppad ppdopts command is used to change the PPD options. An update may be forced at any tim
with the ppad deffiltopts command.

Switchset: switch_description
This line is optional. If present, it contains a compressed description of the switch settings which wer
saved with the ppad switchset command.

PassThru: typelist
This line is optional. If present, it contains a space separated list of file types which should be passe
directly through to the printer.

PagesLimit: integer
This line is optional. If present it indicates the maximum number of pages this printer is allowed to
print in a single job. Jobs with more pages than the number indicated are rejected. If the job was
submitted to a group, it may be printed on another member of the group. If no printer will print it,
then it is arrested.

This line may be edited with the ppad pageslimit command.

PageCountQuery: integer
This line can be used to enable pair of queries which fetch the printers lifetime page count before an
after the printing of the job (exclusive of banner and trailer pages).

The information obtained through these queries can be logged. See Section ???.
If this line is absent or thiateger is 0, then this feature is disabled.

If the value is 1, then then the PostScript code statusdict /pagecount get exec == is used to get the
page count. No attempt is made to make sure that the print engine has come to a stop and the printe
has updated the count before making the query. On some printers this does not cause a problem
because the page count is updated imediately. On others it may be solved by using the pjl or
signal/pjl jobbreak method which causes PPR to wait until all of the pages have hit the output

bin before considering the job complete.

In the future, additional values for this parameter may be defined. These additional values will use
different techniques to obtain the page count.

Commentator: number name address options
A printer configuration file may have zero or more of these lines. Their purpose is explained in
Appendix ???.

Format of a Printer Configuration File 4

The PPR Hacker's Guide

PPDOpt: option value (description)
A printer configuration file may have zero or more of these lines. Each line describes the setting of
the options listed in the PPD file. These settings generally describe optional equipment which may b
installed in or attatched to the printer such as additional paper trays or duplex attachements. The
option is the option name from the PPD file, without the translation string (the part which may
follow a slash). The@alue is one of the possible option values listed in the PPD file, again without
the translation string. The description is formed by combining the translation strings for the option
and the value. (Option settings and the related terminology are explained in Adobe's PostScript Print
Description File Format Specification.) These lines can be generated automatically with the ppad
ppdopts command.

ppr2samba: include prototype
Used by ppr2samba. See the man page ppr2samba(8).

ppr2samba-drivername: name
Used by ppr2samba. See the man page ppr2samba(8).

ms—driver-name: name
Formerly used by ppr2samba. See the man page ppr2samba(8).

Format of a Group Configuration File

Each file in the /etc/ppr/groups/ directory represents a group. It is permissible to create and edit these

files manually, however it is generally more convient to use the command ppad to do it automatically. The
Printer: line is the only one which should appear more than once. If any other line occurs more than once,
all but the last instance are ignored. Lines with ; or # in the first column are comments. The remaining lines
are of two types:

Comment: string
This line contains a comment describing the group. This comment is displayed by the ppad group
show command. This line is optional.

Printer: name
Thename is the name a printer that should be a member of the group. There should be one line for
each group member.

Rotate: boolean
This value indicates if the spooler should attempt to distribute the load evenly among the printers. If i
is False, the spooler will always take the first idle printer in the group. If it is True, the spooler will
attempt to use each printer in turn. The default is True.

DefFiltOpts: options
This line is optional. If present, it contains some name-value pairs to be prepended to any the user
supplies with ppr's —o switch. This line will be automatically updated by ppad whenever a group
member is added or deleted.

Switchset: switch_description

If this line is present, it contains a compress representation if the switches saved with the ppad grouj
switchset command.

Format of a Group Configuration File 5

The PPR Hacker's Guide

PassThru: type_list
This line is optional. If present, it contains a space separated list of file types which should be passe
directly through to the printer.

ppr2samba: include prototype
Used by ppr2samba. See the man page ppr2samba(8).

PPR's Directories and Files

This section describes the directory structure found within PPR's home directory (/usr/lib/ppr/), in its
spooling directory, (/var/spool/ppr/) and in its configuration directory (/etc/ppr/).

The /var/spool/ppr/ Directory
The /var/spool/ppr/queue/ Directory

The /var/spool/ppr/queue/ directory contains one file for each print job currently in the queue. Each
file name is the same as the queue id of the job is describes. These files are created by the program ppr an
removed by the print daemon pprd when the job has been printed or is canceled.

The /var/spool/ppr/jobs/ Directory
The /var/spool/ppr/jobs/ directory contains three to five files for each job currently in the queue.

The first part of each file name is the queue id of the job. The file whose name ends in —comments contains
any header and trailer comment lines which have not been removed and represented by parameters in the f
in the queue directory.

The file whose name ends in —pages contains the text of the document default section, if it exists, and a list
of the pages in the document. The record for each page includes the offset in the —text file at which it begins
and any page header and trailer comments for that page.

The file whose name ends in —text contains most of the text of the job. If the —S true switch was used
when ppr was invoked, then resources will be missing from this file, having been stript out and replaced by
comments which will later be used to put them back.

The files with names ending in —log contain the print job logs. If ppr was invoked with the —w log switch

then any warnings will be in this file. Any text received from the printer, including printer error messages,
will also be in this file. Messages which explain why the job was routed away from a particular printer will be
in this file, but each line of such messages will begin with a "+". Whenever a banner or trailer page is printec
the contents of the log file is printed and the log file is deleted.

The /var/spool/ppr/printers/alerts/ Directory
Each time a fault message is generated for a printer, it is appended to a file in this directory. There is one fil

for each printer. If the file is more than one hour old, the file is truncated to zero length before writing the ne
alert instead of appending. This ensures that only recent messages will be sent to the operator.

PPR's Directories and Files 6

The PPR Hacker's Guide

The /var/spool/ppr/printers/status/ Directory

This file may contain one file for each printer. If present, the file contains the last status message received
from the printer.

The /var/spool/ppr/logs/ Directory

This directory contains log files. Error messages may be written in these log files when PPR component fail.

If this directory contains the file printlog, PPR will append a line for each file printed. (See Appendix
???.)

The /etc/ppr/ Directory

This directory contains a number of configuration files. In also contains subdirectories which will be
described in later sections.

The file papsrv.conf is descibed in the papsrv.conf(5) man page.

The purpose of newprn.conf is explained in Appendix Section ., Format of a Printer Configuration
File .

The file smb-include.conf is a segment of Samba configuration file. It is generated by the program
ppr2samba.

The file charge_users.db is the user charge accounts database. The program ppuser can be used to read
and modify this file.

The documentation for the file Iw—messages.conf can be found in Iw—messages.conf.sample.

The file media.db is the list of known media types. It is consulted by ppr and pprdrv. It may be read and
modified by the ppad media series of commands.

The /etc/ppr/ Directory
The /etc/ppr/printers/ Directory

There is one file in this directory for each printer. Each file has the same name as the printer it describes. Tt
format of one of these files is described in Appendix Section , Format of a Printer Configuration File .

The /etc/ppr/groups/ Directory

There is one file in this directory for each group. Each file has the same name as the group it describes. The
format of these files is described in Appendix Section ., Format of a Group Configuration File .

The /etc/ppr/mounted/ Directory
This directory contains one file for each printer. Each file contains a list of a printer's bins and the medium
mounted on each bin. This file is created by the main print daemon pprd. When pprd starts up it looks in this

directory to determine what media was mounted last time it was running. It automatically re—-mounts all thos
media.

The /var/spool/ppr/printers/status/ Directory 7

The PPR Hacker's Guide

The program pprdrv also uses this file in order to select bins for printing banner pages and to automatically
select bins for print jobs according to their required media.

The /usr/lib/ppr/ Directory
The /ust/lib/ppr/bin/ Directory

This directory contains the program ppr which submits jobs, various utility programs such as ppop and ppad
the PPR daemons pprd, and the papsrv.

The /ust/lib/ppr/lib/ Directory

This directory contains pprdrv and as well as other programs a user or administrator wouldn't normally
execute directly. It also contains some configuration files which even a system administrator wouldn't
ordinarily modify. These files would be maodified by people who are creating new components for PPR.

The documentation for the file file Iw—messages.conf is in the file itself.

The file mfmodes.conf is used by ppad when determining the default filter options for a printer or group.
The format of this file is described in Section ???.

The file fontsub.conf is used to find substitutes for missing fonts. It is described in Section , Font
Substitution Configuration File .

The /ust/lib/ppr/interfaces/ Directory

Each file in this directory is a program which is responsible for making contact with any printer which has a
particular kind of interface. For instance, interfaces/atalk is used to communicate with printers
connected through Apple's Printer Access Protocol. If you would like to write a printer interface program, see

section Section , Printer Interface Programs .

The /ustr/lib/ppr/responders/ Directory

Each file in the responders/ directory is a program which can be used to attempt to send a message to the
user who submitted the job. A responder program is selected at the time the user invokes ppr, by using the
switch. The parameter for the —m switch is the name of the program in the responders/ directory which
should be used. If the —m switch is not used, the default responder, write, is used. (You can change the
default by setting the environment variable PPR_RESPONDER.) The manner in which a responder is invok

is described in Appendix Section ., Requirements for a Responder .

The /usr/lib/ppr/commentators/ Directory

This directory contains small programs similar to responders. Commentators will soon be merged with
responders, so don't worry about this directory.

The /ust/lib/pprffilters/ Directory

The programs in this directory are filters which convert various file formats to PostScript. If you would like to
write a new filter, see section Section , Input Filters .

The /usr/lib/ppr/ Directory 8

The PPR Hacker's Guide

The /ust/lib/ppr/fixup/ Directory

This directory contains skeletal scripts which could potentially be installed in /ust/lib/ppr/filters/
by the command ppd-index filters.

The /ust/lib/ppr/cgi-bin/ Directory

Files in this directory are part of the PPR web interface. This directory appears as /cgi—bin/ at the top
level of the PPR web server's directory tree.

The /usr/share/ppr/ Directory

The /usr/share/ppr/cache/ Directory

This directory contains the PostScript resources distributed with PPR. They are segregated in subdirectorie:
by resource type. Many of the input filters distributed with PPR use resources in the encodings/ and
procset/ subdirectories. The filters don't use these files directly. Instead, they insert

%%lncludeResource: in their output so that pprdrv will insert the contents of the desired file.

The /usr/share/ppr/www/ Directory

This directory is the root for the PPR web server ppr—httpd.

The /usr/share/ppr/fonts/ Directory

This directory contains fonts and font metric files which are distributed with PPR. Formerly, the font files
were stored in /usr/share/ppr/cache/font/, but the font index mechanism made this unnecessary.

The /usr/share/ppr/man/ Directory

This directory contains the PPR man pages. Packagers may choose to relocate this files to the system-wide
man page directory. If not, one must either use the ppdoc command to view them or add this directories to
one's MANPATH.

The /usr/share/ppr/PPDFiles/ Directory

This is the default location for PPD files. It contains a collection of PPD files for common printers. Most of
these were provided by the manufacturers or by Adobet a few are part of PPR.

The /usr/share/ppr/locale/ Directory

This directory contains GNU Gettext message catalogs. These catalogs are used to display program messa
in languages other than English. If you would like to add messages for your language, see the file
README.txt in the source code directory po/.

The /usr/share/ppr/speach/ Directory

This directory contains sound files used by the audio responder.

The /usr/lib/ppr/fixup/ Directory 9

The PPR Hacker's Guide

Printer Interface Programs

This section provides the information you will need to write a PPR printer interface program. An interface is
program, possibly a shell script, which receives the text of the print job from pprdrv and sends it to the
printer. The interface program will receive the print job text on stdin.

The interface program should should print any data received from the printer on stdout which will cause ther
to be sent to pprdrv for analysis. The interface program may print additional specially formatted messages o
stdout in order to inform pprdrv of its progress or the current status of the printers. Any messages which
pprdrv does not recognize as a progress or status message will be appended to the print job's log file.

The interface program will receive command line parameters which include the name of the printer, the
printer's address, interface program options, and other parameters which describe certain aspects of pprdrv
intended interaction with the printer.

The interface program may append messages to the printer's log file by calling the alert(). It should do
this to report invalid command line parameters or unexpected problems communicating with the printer.

The interface program must return an exit codes in order to inform pprdrv of its success or failure. If the cod
indicates failure, then pprdrv will adopt the exit code as its own. If the code indicates success, then pprdrv
will adopt it only if it too achieved success.

Figure 1. A typical Printer Interface Program acts as an intermediary between pprdrv and a
PostScript printer. It communicates with the printer by using TCP/IP and SNMP.

pprdrv Interface Program PosiScript Printer
Y
argvl]
Re—assembled PostScrip)
Job Text N stdin R
I R Stdin
[} [}
— SO — Stdout, Stderr
) [)
‘u SNMP Query| k| b
| SNMP Re 13 | e —
‘, D) spons [
i alert() X —
' 1
! ! '
] 1 '
. . |
TCP Connexioa PostScript lnnerpretea
Print Job

M

[@ Printer Aleris Log

Some interface programs have a special probe mode. In probe mode they don't connect to the printer, but
instead use out-of-band means to extract identifying information from the printer. An interface program's
probe mode is one of the ways the ppad ppdg and ppad ppd query commands attempt to identify the printer
in order to recommend an appropriate PPD file.

In the remainder of this sections, the way an interface program ought to work is explaned in more detalil.

Printer Interface Programs 10

The PPR Hacker's Guide

The Command Line Parameters

There are 10 parameters in all. That seems a lot, but very few interface programs will examine any beyond 1
first six. Most will use parameters one through three and simply verify that four through six have acceptable
values. It is perfectly acceptable to write an interface which uses only the first two.

It is helpful if the interface program also examines parameters four through six, if for nothing else, to make
sure that it and the communications channel which it opens to the printer are able to cope with the
implications of the values of these parameters. If it cannot, it should call alert() to post an explanatory
message to the printer's alert log and then exit with the code EXIT_PRNERR_BAD _

Some of the parameters are small integers which represent enumerated values. These values are defined
symbolically in the C include file include/interface.h and in the shell script fragment
interface.sh.

Parameter One——The Printer's Name

The interface is invoked with the first parameter set to the name of the printer. The interface should use this
name when posting alerts using either the alert() function in libppr.a or lib/alert.

Parameter Two——The Printer's Address

The second parameter is set to the string following the Address: keyword in the printer configuration file or
to the printer name if there is no address line. (That last feature is a holdover from very old versions of PPR.
Printer configuration files created by ppad always have Address: lines.)

What constitutes a syntatically valid address is entirely up to the designer of the interface program. If the
address is syntactically invalid, the interface must call alert() to post an error message to that effect and
then exit returning the code EXIT_PRNERR_NORETRY_BAD_SETTINGS.

Parameter Three——The Interface Options

The third parameter is set to the string following the Options: keyword in the printer's configuration file.
This will be zero or more space separated nhame=value pairs.

The set of valid options and acceptable values is determined by the designer of the interface program.
However, when devising options for a new interface program, he should be aware of the options of similiar
existing interfaces and avoid creating new options or option sementics. If the interface program does not
recognize one of the options or finds an option with an invalid or out—-of-range value, it must call alert()

to post an error message to that effect and then exit with the value
EXIT_PRNERR_NORETRY_BAD_SETTINGS.

Parameter Four——The JobBreak Value

The fourth parameter is the value from the printer configuration file's JobBreak: line. This value is a small
integer representing an enumerated value. The JobBreak: line is set with the command ppad feedback.

Most job break values do not require any special action on the part of the interface. However, it is a good ide

for the interface program to test for jobbreak settings with which it is known to be incompatible. It should
only check for settings known to be incompatible. It should not limit jobbreak settings to a list of those knowr

The Command Line Parameters 11

The PPR Hacker's Guide

to be compatible since other, compatible settings may be added in future versions of PPR. The various
possible jobbreak settings are described in the ppad(8) man page under the section for the ppad jobbreak
command. Most interfaces will only be incompatible with JOBBREAK _SIGNAL and
JOBBREAK_SIGNAL_PJL.

The jobbreak methods JOBBREAK_SIGNAL and JOBBREAK_SIGNAL_PJL require explicit support in

the interface program. The interface atalk is the only one supplied with PPR which does this. If it detects tha
one of these jobbreak methods is in use, it will send its parent (pprdrv) SIGUSR1 as soon as it has
established its own SIGUSR1 handler. Thereafter, whenever it receives SIGUSRL1, it will read all bytes
currently available from the pipe, send them to the printer and then send the printer an end of job indication.
When atalk receives an acknowleding end of job indication from the printer, it should sends pprdrv
SIGUSRL1. This handshaking method is necessary because the PAP (AppleTalk Printer Access Protocol) er
of file marker has no representation in the byte stream. Instead it is sent out—of-band by setting a special fle
in the header of the packet.

Parameter Five——The Feedback Value

The fifth is the value from the printer configuration file's Feedback: line. It is zero if the printer is
incapable of sending data back to the computer running PPR over the communications line, non-zero if it is
capable. The Feedback: line is set with the ppad feedback command.

Parameter Six——The Codes value

The sixth parameter is the value from the printer configuration file's Codes: line. The value is a small
integer representing an enumerated value. The Codes: line is set with the command ppad codes.

This parameter indicate the set of byte values which pprdrv believes that the interface program and the
communications channel are capable of conveying all the way to the PostScript interpreter. It is recommend
that the interface program examine the codes value and abort if the interface and the communications chani
are not capable of passing the set of codes indicated.

Parameter Seven——The Job Name

The seventh parameter is set to the name of the job. (For example, mouse:chipmunk-148.0(mouse).
This parameter will be of no interest to most interface programs. An exception is the Ipr interface which
passes this information on to the remote system.

Parameter Eight——The Routing Instructions

The eight parameter is set the the text of the %%Routing: comment in the print job. If the %%Routing:
comment is absent, then this parameter will be blank. The routing comment is intended to convey written
instructions to a human printer operator. For example, its value might be "deliver to room 101". If your
interface program can somehow make this message appear on an operator console, it may do so. If it is an
interface to a fax server, then it may read the telephone number from this parameter. This is acceptable
because a telephone number can be considered a delivery instruction. This parameter should not use this
parameter for any other purpose. Particularly, it should not be used as a way to pass options which control t
printing process.

Parameter Five——The Feedback Value 12

The PPR Hacker's Guide

Parameter Nine——The User's Name

The ninth parameter is the text of the %%For: comment in the print job. (The %%For: line in the job as sent
to the printer which is not necessarily the same as the %%/For: line in the input file.) If this information is
unavailable, the field is blank. The Ipr interface passes this on to the remote system. Unless your interface
passes the job on to another spooler (as the Ipr interface may), it should ignore this parameter.

Parameter Ten——The File Type

The tenth was once used by special interface programs which ran the input file through Ghostscript if this
parameter was empty. Since pprdrv now performs this function, these interface programs are are obsolete.
This parameter will probably be removed in a future version of PPR. This only possible reason for preservin
it is if someone can show that some printer comuncation method requires the file type to be communicated
out—of-band.

The tenth parameter indicates the type of the file on stdin, that is, the file which the interface program is beg
asked transmit to the printer. Normally this parameter is an empty string, which indicates that the file is in
PostScript format.

If passthru mode is in effect (see ppad passthru and ppad group passthru), that is if the file to be
transmitted to the printer is not a PostScript file, then this parameter will be the name of the file type, such a:
pcl or pdf. (The file type names which appear in this parameter are the same names as are used with the pg
=T switch. A non—-empty tenth parameter does not necessarily indicate that a —T switch was used.)

Also, if transparent mode is in effect (see ppr —H transparent), then this parameter will contain a space
separated list of the filters which would be required (and may actually have been invoked) to convert the inp
file to PostScript. Uncompression with uncompress and gunzip are indicated by the strings uncompress
and gunzip respectively. Here are some examples: if the input file is already PostScript, then this parameter
will be empty. If the file is PCL data, then this paramater will be pcl. If the file is gzip compressed
PostScript, then this parameter will be gunzip. If the file is gzip compressed PCL, then this parameter will
be gunzip pcl.

Help in Parsing the Command Line

The interface command line in not particularly difficult to parse, but you might find it helpful to use the
library functions which those interfaces which come with PPR and are written in C use. To use it, include the
file libppr_int.h and call the function int_cmdline_set() from main() like this:

int_cmdline_set(argc, argv);

Once you have do this, the parameters will be available to you as members of the global structure
int_cmdline. The structure int_cmdline is an instance of INT_CMDLINE, which is defined below:

struct INT_CMDLINE
{

gu_boolean probe; /* TRUE if ——probe used */

const char *int_name; [* example: "interfaces/atalk" */

const char *int_basename; [* example: "atalk" */

const char *printer; /* example: "myprn" */

const char *address; /* example: "My Laser Printer:LaserWriter@Computing Center" */
const char *options; /* example: "idle_status_interval=60 open_retries=5" */

int jobbreak; [* example: 1 (JOBBREAK_SIGNAL) */

Parameter Nine——The User's Name 13

The PPR Hacker's Guide

gu_boolean feedback; [* example: 1 (TRUE) */

enum CODES codes; /* example: 3 (CODES_Binary) */

const char *jobname; [* example: "mouse:myprn-1001.0(mouse)" */

const char *routing; [* example: "Call David Chappell at 2114 when ready" */
const char *forline; [* example: "David Chappell" */

const char *barbarlang; [* example: " (PostScript) */

const char *title; /* example: "My Print Job" */

H

It is now very easy to write code that refers to the command line parameters by name. For example, if your
interface program doesn't support probe mode, bidirectional communication, or the jobbreak methods signal
and signal/pjl, you could put this right after the call to int_cmdline_set():

if(int_cmdline.probe)

{
fprintf(stderr,

_("The interface program \"%s\" does not support probing.\n"),
int_cmdline.int_basename
);

exit(EXIT_PRNERR_NORETRY_BAD_SETTINGS);

}

if(int_cmdline.feedback)

{
alert(int_cmdline.printer, TRUE,

_("The PPR interface program \"%s\" is incapable of sending feedback."),
int_cmdline.int_basename
)i

exit(EXIT_PRNERR_NORETRY_BAD_SETTINGS);

}

if(int_cmdline.jobbreak == JOBBREAK_SIGNAL || int_cmdline.jobbreak == JOBBREAK_SIGNAL_PJL)

{
alert(int_cmdline.printer, TRUE,

_("The jobbreak methods \"signal\" and \"signal/pjl\" are not compatible with\n"
"the PPR interface program \"%s\"."), int_cmdline.int_basename);
exit(EXIT_PRNERR_NORETRY_BAD_SETTINGS);

}
The Return Codes

The exit codes which interface programs should use are defined in include/interface.h and
llib/interface.sh.

EXIT_PRINTED
This interface program should return this code if it was able to complete its jobs sucessfully. It doesn
actually mean that the interface knows the job was printed sucessfully, just that it was able to do its
part. When it receives this exit code, pprdrv will exit with the same code if the interface program
accepted all of the job data before exiting and if no other error was detected (such as a PostScript
error).

EXIT_PRNERR
If the interface was unable to connect to the printer or the connection was broken off, it may return
this code. The printer will be fault—auto-retry mode. This is the catchall code. If there is a code listed
below which better fits the specific circumstance, it would be better to return that code.

The Return Codes 14

The PPR Hacker's Guide

EXIT_PRNERR_NORETRY
There was a printer error caused by a circumstance which will not disappear spontainiously, such as
syntactically invalid printer address. The printer will be placed in fault—-no—-auto-retry mode. Like
EXIT_PRNERR, this is a catch-all code. If there is a code listed below that better fits the specific
circumstance, then it would be better to return that code.

EXIT_JOBERR
This code is normally only used by pprdrv. Very few interfaces would ever have cause to return this
error code.

Since PostScript errors are detected by pprdrv by watching for messages from the PostScript
interpreter in the data stream which the interface receives from the printer and prints on stdout, there
is no need for the interface to detect PostScript errors or to report them using this exit code.

But, if the interface detects an error and has some kind of information which definitely indicates that
the fault was caused by the job being printed, it should return this code. The job will be "arrested" an
held for inspection by the operator.

One of the few types of interfaces which might return this code is an interace to a fax server. It might
return this code if the phone number (possibly passed as a routing instruction) turned out to be invali
In such a case it could print a message to that effect to stdout (which leads into the jobs log file) and
then return this code.

EXIT_SIGNAL
When a job is canceled during printing or the printer is forced to halt during printing, pprdrv sends
SIGTERM to the interface program. The interface program has the option of catching the signal and
performing shutdown operations before termination. After the shutdown is finished, it should return
this code. Note that an interface program is not required to catch the signal. Simply dieing is perfectl
acceptable.

EXIT_ENGAGED
If the interface was unable to connect to the printer because it was busy or off-line, it should return
this code. The printer state will be set to "otherwise engaged or off-line" and the operation will be
retried after a short delay.

Normally this code will be used when a definite indication is present that the printer is turned on and
connected but is not ready to open a session. If there is no indicatation that the printer even exists,
then the code EXIT_PRNERR_NOT_RESPONDING is more appropriate. For example, a TCP
connect attempt results in "connection refused”, this code is probably appropriate. If however no
response at all is received (i.e., the connexion attempt times out), then
EXIT_PRNERR_NOT_RESPONDING is more appropriate.

An interface should not call alert() if it intends to exit with this code. An engaged printer isn't
considered a condition worthy of notation in the printer's alerts log.

EXIT_STARVED
If the interface program cannot perform its function because a it cannot obtain a sufficient quantity of
a finite system resource such as RAM or file descriptors, it should exit with this code. It should not
call alert() since the problem is not related to the printer. Since the condition is presumably
temporary, the operation will be retried after a short delay.

The Return Codes 15

The PPR Hacker's Guide

EXIT_PRNERR_NORETRY_ACCESS _DENIED
If when the interace program attempts to connect to the printer it receives unambiguous notification
that the connection is refused on the basis of of access control rules or failure to sucessfully complet
an authenticaition process, then it should call alert() to append a suitable message to the printers
alert log and then exit with this code. Since correcting this condition will require administrator
intervention (either by reconfiguring the printer itself to allow access reconfiguration the print queue
to supply the necessary credentials), the operation will not be retried. Once the problem has been
corrected, the command ppop start must be used to restart the printer queue.

EXIT_PRNERR_NOT_RESPONDING
If the printer did not respond to the connexion attempt in any way, then the interface program should
call alert() in order to append an appropriate message to the printers alerts log and then exit with
this code. The printer will be show to be in an error state and the operation will be retried after a
delay.

If the printer responded indicating that it was unready or unwilling to accept the connection, then a
different error code such as EXIT_PRNERR_ENGAGED or
EXIT_PRNERR_NORETRY_ACCESS DENIED should be used instead.

EXIT_PRNERR_NORETRY_BAD_SETTINGS
If the interfaces finds that any of parameters two through six are syntactically incorrect, or logically
incompatible, or have values which are incompatible with the interface program or the means of
communication with the printer, it should call alert() to append a message to the printers alerts
log and then exit with this code. Printing will be halted until an administrator changes the settings an
restarts the printer with the ppop start command.

The interface should not use this code to report that an address lookup failed. The code
EXIT_PRNERR_NO_SUCH_ADDRESS should be used instead. The only address problem that
should be reported with this code is an unparsable address.

EXIT_PRNERR_NO_SUCH_ADDRESS
This exit code should be used if an attempt to look up the specified printer address fails. This code
should be used if no answer was received, the failure might be temporary, or the failure may indicate
that the device is simply turned off. An appropriate message should be posted to the printers alerts I
by calling alert(). The operation will be retried after a delay.

If the result is definite information that a printer with the indicated address does not exist, then
EXIT_PRNERR_NORETRY_NO_SUCH_ADDRESS should be used instead.

EXIT_PRNERR_NORETRY_NO_SUCH_ADDRESS
This code should be used when printer address lookup results in an answer which unambiguously
indicates that the address does not exist. An appropriate message should be posted to the printers
alerts log by calling alert(). The operation will not be retried until an operator intervens by
running the ppop start command.

The interface program should not return any value other than those defined above. Any undefined value will

be interpreted as a EXIT_PRNERR. Note that Perl's die returns the code 255, which is not among those
defined above.

The Return Codes 16

The PPR Hacker's Guide

Posting Alerts

An interface program can post alerts to the printer's alerts log by calling the alert() function or runing the alel
command. An interface program is required to do so before exiting with any of the codes whose names begi
with EXIT_PRNERR.

The function alert() requires three or more parameters. The first is the name of the printer (from

argv[1]). The second is a boolean. One may build up the alert message by calling alert() several times

to add lines to it. This boolean should be TRUE on the first call and FALSE on subsequent calls. The third
parameter is a printf() style format string. Any addition parameters are values for interpolation into the
format string.

A newline will automatically be appended to the format string. Format strings containing embedded newline:
are an acceptable way to create multi-line alert messages.

Here is a simplified example of how one might do this in C. It is somewhat contrived. It verifies the address
by making sure that it begins with "/dev/".

if(strncmp(argv[2], "/dev/", 5) I= 0)

{
alert(argv[1], TRUE, "Address \"%s\" is syntactically invalid.", argv[2]);
exit(EXIT_PRNERR_BAD_SETTINGS);

}

For interfaces written as shell scripts, the alert() has been wrapped in a tiny program. It may be used like
this:

. lib/interface.sh

if [""echo $2 | cut —c1-5™ !="/dev/"]
then
lib/alert $1 TRUE "The address \"$2\" is syntactically invalid."
exit(EXIT_PRNERR_BAD_SETTINGS);
fi

Robust Bidirectional Operation

If your interface program supports bidirectional communication with the printer (which is refered to elsewher
as "feedback"), care should be taken to avoid situations which could cause communications to lock up.
Lockups can occur if your interface program fails to give top priority to receiving messages from the printer.
If the printer has a large amount of data to transmit to the interface program, its output buffer could fill. Whet
a printer has a message to send, it will not process additional input until it has placed the message in its out
buffer. If your interface program refuses to accept data from the printer until after the printer has accepted tt
next data block, a lockup will occur and both parties will wait forever. A particularly insidious aspect of this
problem is that it will not happen every time. It is most likely to happen when the printer has a great deal of
data to send back, such as query results or status messages.

This means that your interface program must place the file descriptor connected to the printer in non—blockil
mode. When activity is detected (perhaps by the select() function), data that can be read from the

desciptor must be read. It should then be sent out on stdout. Since pprdrv lives by the same rules, giving
highest priority to the data which your interface program sends to its stdout, it is not absolutely necessary to
run stdout in non-blocking mode.

Posting Alerts 17

The PPR Hacker's Guide

Your interface program must not block on reads from stdin. This is because, after the job has been
transmitted, pprdrv tries to keep the connexion open until the job is completed. It will stop sending data. But
your interface program must go on relaying messages from the printer to pprdrv. These messages are used
pprdrv not only to keep the printer status up—to—date, but also to determine when the job has been complete
If your interface program blocks on stdin, then PPR will likely get stuck at the end of each job.

The interfaces tcpip and serial are good sources of example code. They share a function call
int_copy_job(). This function handles correct two—way communication between stdin, stdout, and the
printer file descriptor.

In the same directory you will find several PostScript files with names such as feedback_testl.ps. If

you print them using your interface program, then will do things such as commanding the printer to send hu
amounts of data back. They will quickly smoke out interfaces with fragile two—way communication
implementions.

Special Messages

There are special messages which an interface program can send to pprdrv to inform it of its progress or to
report the status of the printer. These messages are similiar to those which many PostScript printers send b
to the computer connecting to them.

Note that an interface program is not required to send any of these messages. However, their use may resu
better user feedback.

%%][PPR address lookup]%%
This message indicates that the interface program has parsed its arguments without finding any
problems and is not begining a potentially time—consuming address lookup. This message is simply
ignored by pprdrv, but when ppad is running the interface in probe mode it will extend the timeout
after receiving this message.

%%][PPR connecting 1%%
This message indicates that the interface is begining a the potentially time—consuming process of
connecting to the printer. When pprdrv receives this message, it sets the cooresponding flag in a
status file so that ppop status will show the user that a connexion attempt is in progress.

%%][PPR connected %%
This message indicate that the connexion process has been complete sucessfully.

%% PrinterError: message 1%%
Indicates that the printer is unable to print due some disabling condition descrimedsage. If it
is among those listed in lw—messages.conf, then pprdrv will alter the printer status
appropriately.

%% status: message %%
Indicates a printer condition that is either normal, transient, not critical, or not yet critical. If it is
among those listed in Iw—messages.conf, then pprdrv will alter the printer status appropriately.

%% PrinterError: out of paper %%
Indicates that the printer has gone off line because it is out of paper.

Special Messages 18

The PPR Hacker's Guide

%% PrinterError: off line 1%%
Indicates that the printer explicitly indicates that it has been taken off line, generally by a user
pressing a button. If the interface prints this message before exiting with the code EXIT_ENGAGED,
then ppop status will show the printer status as "off line" rather than "otherwise engaged or off line".

%% PrinterError: printer disconnected or powered down 1%%
Indicates that a printer directly connected to the server does not appear to be electrically alive at the
end of its cable.

%% status: busy]%%
Indicates that the printer is online and ready and that any disabling PrinterError conditions (such as
off line) have cleared.

%%[PPR SNMP: hrDeviceStatus hrPrinterStatus hrPrinterDetectedErrorState 1%%
This message reports the SNMP status of the printer. Thelw@egiceStatus and
hrPrinterStatus are decimal integers. The value hrPrinterDetectedErrorState is an
eight digit hexadecimal unsigned integer.

Probe Mode

The ppad ppdq and ppad ppd query commands provide a way to automatically determine a printer's type.
They use a number of techniques to accomplish this goal.

One technique is to connect to the printer and sending it query messages to which it will hopefully respond.
These queries use langauges such as PostScript and PJL. These techniques do not generally change accol
to the connection method, so interface programs need only support two—way communication in order to
support them.

But some connection methods, such as USB and IP may provide additional methods for obtaining informatic
about the printer, such as alternative communications channels. For example, many printers which accept jc
over TCP/IP also response to SNMP queries. Since these methods depend very much on the method of
connecting to the printer, probes of this type, called out-of-band probes, are implemented in interface
programs.

Interface programs which support out—of-band probe will recognize and act on ——probe. It will interrogate
the printer in some way rather than connecting to it with the intention of transmitting a print job. The results
of the probe are sent back to pprdrv as a series of PROBE: lines.

If the probe may take more than a few seconds, it is recommended that the interface immedately send a
PROBE: line with no value in order to let ppad know that it supports probe mode. Otherwise, ppad may
conclude that the interface program doesn't implement ——probe and give up too soon.

If the interface is able to obtain information about the printer, it should report it by printing addional PROBE:
lines. These show be in the form PROBEmMe=value. The value should not be quoted, even if it

contains spaces. Currently defined names are listed below. Since the probe feature is very new, this list is
subject to change.

PostScript Product=
The PostScript product name. The value should be the bare hame without surounding partheses.

Probe Mode 19

The PPR Hacker's Guide

PostScript Version=
The PostScript interpreter's version number.

PostScript Revision=
The PostScript interpreter's revision number.

SNMP sysDescr=
???

SNMP hrDeviceDescr=
?7?

1284DevicelD MANUFACTURER=
272

1284DevicelD MFG=
same as above

1284DevicelD MODEL=
?7?

1284DevicelD MDL=
same as above

When running in probe mode, the interface program will be invoked with the printer name on the command
line set to "-". The alert() knows about this special name. When it is asked to post an alert to the printer

"—" it sends the alert to stderr instead. The result is that the messages will be visible to the user of ppad ratt
than being hidden away in the alert log.

Input Filters

If ppr determines that the input file is not PostScript, it will seek to use a filter to convert it to PostScript. This
appendix provides the information you will need to write your own PPR input filters.

The filters are found in the directory /ust/lib/ppr/filters/. Each of these files has a name that
consists of filter_ followed by the PPR input type name. For example, the filter for JPEG files is called
lusr/lib/ppr/filters/filter_jpeg.

A filter should read the file from STDIN and write PostScript code on STDOUT. If it must, it can write
messages on STDERR. STDIN is guaranteed to be seekable. Messages sent to STDERR will go wherever
STDERR was going when ppr was invoked.

The parameters are as follows:

1.
The first parameter is the list of filter options. These are expressed as a space seperated list of
name-value pairs. The name and value are joined by an equal sign. The options list is formed by
concatrnating the contents of the DefFiltOpts: line in the printer or group configuration file with
the contents of any —o lines the user put on the ppr command line. Before passing the option list to
the filter, ppr pre—processes it. Any options whose names begin with a file type name and a hyphen

Input Filters 20

The PPR Hacker's Guide

will have the file type name and the hyphen removed if the file type name matches the filter being
invoked, otherwise, such options are discarded. The hames of the parameters (the part to the left of
equals sign) are converted to lower case. The values (the part to the right of the equals sign) are not
responder should ignore any option it does not recognize. If the same option appears more than onc
the value from the last instance is the one that should be used.

2.
The name of the printer or group to which the job was submitted. This will generally be ignored.

3.
The third is the job title. This may be used by filters which format their input as pages with headers
and footers.

4.
The directory which was current when ppr was invoked. This is used by the TeX, TeXinfo, and DVI
filters when searching for include files.

When a filter is invoked, the environment variable IFS is set to a space and a tab, and the variable PATH is
set to a value which is just adequate to find standard shell script helper programs such as test, sed, and gre
On most systems, that value of PATH is /bin:/usr/bin.

Here is an example. Suppose this line is in the printer's configuration file:

DefFiltOpts: level=2 colour=False resolution=300 freevm=1048576 mfmode=CanonCX

and the user submits a JPEG (JFIF) file with this command:

$ ppr —d myprn —o noisy=no —o ‘fortran-width=130 jpeg—noisy=yes' picture.jpg

The filter will be invoked like this:

filter_jpeg 'level=2 colour=False resolution=300 freevm=1048576 mfmode=CanonCX noisy=no noisy=yes' myprn 'picture.jpg' /home

A filter should interpret any options it recognizes and ignore any it does not. If it finds two contradictory
options, it should obey the last one. In the example above, the option noisy=yes is the one that prevails.
The options freevm=1048576 and mfmodes=CanonCX would be ignored simply because the JPEG filter
has no code to use them.

If the filter exits with a value other than 0, the job will not be discarded. A message may be informed by
printing on stderr or invoking a responder, the exect behaviour being controled by the —e switch.

When a filter is executed, the real user id is that of the user who executed ppr. The effective user id and the
saved user id's are ppr. The real group id is the same as it was when ppr was executed. The effective and
saved group id's are ppop.

It is possible to determine precisely what filter is being executed with what arguments by running ppr with
the -G infile:filter option.

The filters supplied with PPR, together with their options are described in the ppr(1) man page, under the
section for the —T switch.

Input Filters 21

The PPR Hacker's Guide

Fonts

Font Substitution Configuration File

This file resides in the directory /usr/lib/ppr/lib/. 1t is replaced whenever a new version of PPR is
installed, so if you modify it you should keep a copy of your modifications elsewhere.

The file contains a list of PostScript font names and possible substitute fonts.

Any line that has # or ; in the first column is a comment. Blank lines are ignored. A font substitution record
begins with the name of the font for which there are substitutes. The name should start in column one and b
on a line by itself. The list of possible substitutes follows, one per line. Each substitute font line should start
with a space or tab. You may list as many substitute fonts as you like. The first substitute font to be found in
the printer's PPD file, in the cache directories or in the index created with ppr—index fonts will be used.

Here is an example of four records which indicate that the IBM Courier fonts are suitable substitutes for the
Adobe Courier fonts:

Courier
IBMCourier
Courier-Bold
IBMCourier—-Bold
Courier—-Oblique
IBMCourier—lItalic
Courier-BoldOblique
IBMCourier—Boldltalic

You have the option of specifying a PostScript transform matrix to be applied to the substitute font. Generall
this will be used to adjust the width. The should appear on the substitute font line, after the substitute font
name. Here is an example:

Helvetica-Condensed
Helvetica [0.80 00 1 0 O]
Helvetica-Condensed-Bold
Helvetica-Bold [0.80 00 1 0 0]
Helvetica-Condensed-Oblique
Helvetica—Oblique [0.80 00 1 0 0]
Helvetica-Condensed-BoldOblique
Helvetica—BoldOblique [0.80 00 1 0 0]

This approximates Helvetica Condensed by scaling Helvetica to 80% of its normal width. The role of the
other members of the matrix, refer to the PostScript language reference manual.

MetaFont Modes Configuration File

This file mfmodes.conf is used by ppad when setting the default filter options. Specifically, the mfmode=
option is selected with the aid of this file. The mfmode= option is used by the DVI filter to select an
appropriate MetaFont mode for a given printer.

Before consulting this file, ppad reads the printer's PPD file and extracts the values from the following lines:

*Product:
*ModelName:

Fonts 22

The PPR Hacker's Guide

*NickName:
*DefaultResolution:

The extracted values are then compared to values on lines in the mfmodes.conf file. Each line in the
mfmodes.conf file has the following format:

product:modelname:nickname:resolution:mfmode

The file is read top to bottom until a match is found or the end is reached. The information from the PPD file
is compared to the first four fields of each line. A * may be used as a wildcard in any or all of the first four
fields. When a match is found, the value from the fifth field is used as the value for the default filter option
mfmode-=.

Identification by Product

The *Product: line from the PPD file generally identifies the manufacturer and model line of which the
printer is a part. Since all printers which use one product string generally use the same print mechanism, thi
parameter alone is usually enough to make selection of the correct MetaFont mode possible. For this reasol
most entries in the mfmodes.conf file will have theproduct field filled in but the modelname,

nickname, and resolution fields will all be *.

For example, the following line:

LaserJet 4:*:*:*:ljfour

will match if the *Product: line from the PPD file has a value of (LaserJet 4). The fact that fields
two through four contain astrisks indicates that any value is acceptable for product, modelname, and
resolution.

Identification by ModelName

The GhostScript interpreter has a product string of Ghostscript or Alladin GhostScript. Therefor,
the printer must be identified by means of its PPD files *ModelName: line. Here are some reasonable
configuration lines for printers driven by Ghostscript:

:Dot Matrix 24 pin Ghostscript::*:NEChi
:HP LaserJet Il Ghostscript::*:CanonCX
:HP DeskJet 500 Ghostscript::*: HPDeskJet

Identification by NickName

In a PPD file obtained from Adobe or the printer's manufacture, the *NickName: line is identical to the
*ModelName: line. You might change it if you make a special hacked-up copy of the PPD file for a
particular printer. For example, you might change it to David's HP DeskJet 500 Ghostscript.

There are valid reasons for using a modified PPD file, but why changes to the PPD file should dictate a

different MetaFont mode is hard to say. (Changes to the *DefaultResolution: line are covered by the
next section.) Unless you know a good reason not to, you should always put a "*" in this field.

Identification by Product 23

ftp://ftp.tug.org/tex/modes.mf

The PPR Hacker's Guide

Identification by Resolution

Generally, you can just put * in thresolution field. There are however two possible reasons for filling in
the value from the PPD file's *DefaultResolution: line.

One is if the printer's resolution can be changed. A change in resolution requires a change in the MetaFont
mode. You might have several different PPD files for the same make and model of printer, one for each
resolution. Here is a (fictitous) example:

:HP LaserJet Il Ghostscript::300dpi:CanonCX
:HP LaserJet Il Ghostscript 150DPI::150dpi:ljlo

The other reason for putting a value other than * inréis®lution field is if the line is one at the end of
the file which is intened to to be a best guess for printers which have not matched any of the lines above.
These are some reasonable last resort lines:

**:*:300dpi:CanonCX
***:600dpi:ljfour
**:*:360dpi:NEChi

Selecting MetaFont Mode Names

The MetaFont mode names in the mfmodes.conf file that comes with PPR are taken from the modes.mf

file maintained by Karl Berry. A recent version of his modes.mf file is distributed with the PPR source

code, in the misc directory. His file defines a number of aliases for each mode. When adding entries to PPR
mfmodes.conf file you should try not to use two different names that both refer to the same mode in
modes.mf because that would result in the generation of duplicate sets of identical pk font files. The
mfmodes.conf file supplied with PPR always uses the first alias from Karl Berry's modes.mf file which

may be abtained from ftp://ftp.tug.org/tex/modes.mf.

Protocol for Comunicating with pprd

This section describes the protocol which use commands such as ppr, ppop, and ppad use to communicate
with pprd. This information may assist those attempting to understand the source code. However, one shoul
not implement this protocol since it changes from version to version. Instead one should run ppop with the -
option and parse its output. For this reason, only a few example commands are described here.

The spooler daemon, pprd receives commands over a hamed pipe and acts on them. The program ppr senc
one such command to pprd in order to inform it that a new jobs has been placed in the queue directories. Tt
program ppad uses two different commands which it uses to inform pprd that a printer, group configuration
file has been modified. Finally, ppop has many commands which it uses to control pprd or to request
information from it.

Accepting Jobs

Once the job submission program ppr has created the queue files it sends a command to pprd telling it that
the job is there and is ready for printing or transfer to the remote system. This command takes the form:

j destination_node destination_queue id subid home_node initial_priority

Identification by Resolution 24

The PPR Hacker's Guide

Thedestination_node is the node to which the job should be sent. Since transmission to remote notes is
not yet supported, this will always be the name of the local nodedégtimation_queue is the name of

the print queue on the destination node. ifhe&nd subid are the queue id and the job fragment number
respectively. Thaubid will most often be zero. Thehome_node is the node name of the system on which
the job originated (again, the local node).

Reloading Configuration Files

Whenever a printer or group configuration file is modified or a new one created, pprd must be directed to
read it. To inform pprd that it must read a new or revised printer configuration file, a command line of this
form is sent:

NP printername

To indicate that a group configuration file must be re—read or that a new group configuration file must be rea
for the first time:

NG groupname

Neither command is acknowledged by pprd.

Yielding Information to ppop

The utility ppop must communicate with pprd in order to list the queue, show the status of printers, mount
forms, and do other tasks. Most of these communications take the form of a query and a reply.

As currently implemented, the interprocess communications is crude but effective. The queries are sent by
writing to pprd's named pipe. The replies are sent back in temporary files. The command which ppop writes
to the name pipe begin with ppop's process id. After writing the command, ppop waits for a signal, USR1 to
be specific. The process ID is read by ppad which creates a temporary file called /tmp/ppr—ppop-pid
wherepid is the process id sent by ppop. Once pprd has finished writing the reply, it closes the temporary
file and sends SIGUSR1 to ppop which opens the file, deletes it, reads its contents, and formats and display
said contents.

Many of the replies take the form of a numberic exit code for ppop and a human-language message to
display. Some include many additional lines of results but only if the code in the first line is zero (indicating
success).

Much of the code in the parts of ppop and pprd which communication with one another was written before
any attempt was mode to internationalize PPR. This is a problem because pprd may be generating messag
in one language while ppop is generating them in another. The plan is to eventually eliminate all user visible

messages from these files leaving only code information. At the same time ppop will be modified to digest
this information and produce text in the users language.

How Continuous Queue and Printer Status Display Works

[This section has not been written yet.]

Reloading Configuration Files 25

The PPR Hacker's Guide

Requirements for a Responder

A responder is a small program. All responders are stored in the responders directory

lusr/ppriresponders. The responder which will eventually be used to tell the user what happened to

the job is selected when the job is submitted. It is selected using ppr's —-m. switch. The argument to the -m
switch is the name of the program in the responders directory which should be used. A responder can be ve
simple. Here is an example:

#1/bin/sh
echo "Message for $1:\n$3" | write $2
exit 0

The responder shown above is a stript down version of the responder write. If the —m switch is not used thel
the name of the responder will be read from the environment variable PPR_RESPONDER. If
PPR_RESPONDER is not defined then the responder write will be used.

A responder program is invoked with the name of the user as the first parameter. It is the name just as it
appears in queue listings and on banner pages.

The address to which the message should be sent is the second parameter. The address is specified at the
ppr is invoked by using the —r switch. The proper format for the address depends on the responder. If the —r
switch is absent then the value of the environment variable PPR_RESPONDER_ADDRESS is used. If that
too is absent then the name of the Unix user who invoked ppr is used. The value used in the absence of bot
-r and PPR_RESPONDER_ADDRESS is appropriate since the default responder is a script which invokes
the Unix program write.

The third parameter is the suggested message text. The message text will contain embedded line feeds. Th
length of the lines will depend on the responder. The routine get_responder_width() in

libppr/reswidth.c determines what length to limit the lines to. For most responders, this routine

returns 0 which means to use a predetermined set of line breaks which generally results in lines less than 8(
characters long.

The fourth parameter is reserved for future use, at present it is an empty string.

The fifth parameter is a space separated list of responder options. Each of this options is a name=value pail
Common options include printed=no and timeout=60. The value of this option comes from the ppr
——responder—options switch or from the environment variable PPR_RESPONDER_OPTIONS. A responder
should ignore any options it does not recognize.

The sixth parameter is a code number which represents the approximate content of the message. It is provit
in case a responder wants to send different types of message by different methods or wishes to provide its ¢
wording for one or more of the messages. For example, it might want to send a popup message but then
follow it up with email if the message indicated that the job was arrested. The code numbers are defined in (
include file include/respond.h, the Bourne shell script include file lib/respond.sh, and the Perl

include file lib/respond.ph.

The seventh parameter contains the complete job id. This is probably only useful if the responder is
constructing its own messages since the default messages provided in the third parameter already mention
job id. The job id is not provided in the normal form since that is rather difficult to parse. In stead, the
elements are separated by spaces. The elements are, in order, destinatidestiodéon name,

gueue id number, subid number,and home node. For example, mouse chipmunk 1000 0

Requirements for a Responder 26

The PPR Hacker's Guide

mouse. This id would normally appear as mouse:chipmunk-1000.0(mouse) or more likely in
abreviated form as chipmunk-1000.

The eight parameter is also necessary for constructing replacement messages. Some of the messages norr
contain a blank space which is filled with a piece of text. Normally this is the name of the printer which the

job was printed on, but if the user database is being used and PPR refuses access the the printer, the piece
text is the name of the user who was refused access. At other times the piece of text will be an error messay

The ninth parameter is the title of the job. This title will be derived from a "%%Title:" line if present. Failing
that, the title will be the name of the file being printed. If the file was received on stdin, this field will
generally be blank.

The tenth parameter is the time at which the job was submitted. It is represented in Unix format (as a count
the seconds since 12:00am, January 1, 1970). The program lib/time_elapsed may be used to express this ti
in terms of how far in the past it is.

The eleventh parameter will contain a short message which indicates the reason the job was arrested. If the
response code does not indicated that the job has been arrested, this string will be blank.

The twelth parameter contains the number of pages printed. If this is unknown, it is "?". If the response code
(the fourth parameter) has a value other than RESP_FINISHED then the contents of this field is undefined.

When the responder is run, stdin with either be connected to /dev/null or it will be connected to the job's
log file. This is so that the responder may send the job log back to the user. Some of the supplied responde!
exploit this feature.

When exiting, the responder should return a value of zero if the message was delivered. It should also retur
value of zero if the addresse was not found. Non-zero exit values should be reserved for truly abnormal
conditions such as insufficient system resources or syntactically invalid addresses. If a responder does retul
non-zero exit value, ppr will print a notice to that effect on stderr or pprd will put a notice in its log file,
depending on which one invoked the responder.

When the responder is invoked by pprd, it will always have a real uid, effective uid and saved uid of ppr.
When it is invoked by ppr (due to the use of the —e responder option) things will be different. The program
ppr is setuid ppr, so the effective and saved uids are ppr and the real uid is the id of the user who invoked it.
Just before executing the responder ppr sets the effective user id equal to the real user id. This last feature |
not intended as a security measure, rather, the xwin responder will not work if this is not done since the X
library uses access() on the .Xauthority file before trying to open it which means that the .Xauthority file in
the user's home directory must be readable under both the real and the effective uids. This feature may be
overridden by setting the setuid bit on the responder. If this is done then the effective uid will remain ppr.

Custom Hooks

A custom hooks is a small program which PPR runs at predetermined points in the process of sending a job
a printer. Anything that the program sends to standard output will be transmitted to the printer. The program
has access to the queue file, so it can determine the characteristics of the job. For example, you could write
custom hook program which printed a banner page. If a print queue is properly configured, your program wil
be used to print banner pages instead of PPR's internal banner page printing code.

In the file pprdrv/pprdrv.h the following constants are defined:

Custom Hooks 27

The PPR Hacker's Guide

#define CUSTOM_HOOK_BANNER 1
#define CUSTOM_HOOK_TRAILER 2
#define CUSTOM_HOOK_COMMENTS 4
#define CUSTOM_HOOK_PROLOG 8
#define CUSTOM_HOOK_DOCSETUP 16
#define CUSTOM_HOOK_PAGEZERO 32

We will get to what they individually mean in a minute. For now let us say that they each one of them stands
for a point at which your custom hook may be called to insert additional text into the PostScript job. Notice
that they are powers of two. That means that they may be added up to produce a number that represents a
of choices as a bitmap. In order to tell PPR at which insertion points in the job a custom hook should be run,
one adds up the code numbers which represent the desired points.

Where does this value go? You should enter it, together with the name of your custom hook program, on a
line in the printer configuration file. The line has the following format:

CustomHook: bitmask program

Thebitmask is the total of the codes and therogram is the name of your custom hook program. You
should probably specify the complete path. Since ppad doesn't have a command for manipulating entries lik
this one, you should add the line using a text editor. You will find the file in /etc/ppr/printers/.

When your custom hook program is run, stdout will be connected to the printer. That is, anything you print o
stdout will be transmitted to the printer. What you are expected to send to the printer depends on the insertic
point and will be discussed below when the insertin points are described. Stdin will be connected to
/dev/null. Stderr will be directed to the pprdrv log file (/var/spool/ppr/logs/pprdrv). While

developing a custom hook program it is helpful to print debugging messages to stderr.

The custom hook program will receive three command line parameters. The first parameter is the code for i
part of the PostScript document that is being generated. The second parameter gives details. For most
document parts it is zero. The third parameter is the full queue ID of the job. It may be passed to ppop
gguery to get details about the job or, since it is also the name of the queue file, it may be used to open the
gueue file in /var/spool/ppr/queue/.

And now for a description of the various points at which your custom hook program can be called.

CUSTOM_HOOK_BANNER (1)
The custom hook program is invoked to print a substitute banner page. The regular banner page is
suppressed. Remember that a banner page comes before the job in the sense that it is placed in the
output tray in front of page one. Whether it is actually printed before the job depends on whether PPI
thinks the tray is face up or face down. If your code needs to know if is being printed
(chronologically) before the job's pages or after, it should examine its second command line
parameter which will be 0 for before the job and 1 for after. [Note: verify that | have that right.] Note
that your custom hook program should generate a complete PostScript document. The printer's
PostScript interpreter will be reset before and after your banner page.

CUSTOM_HOOK_TRAILER (2)
The custom hook program is invoked to print a substitute trailer page. Again, the second parameter
indicates whether the body of the job has been printed yet.

CUSTOM_HOOK_COMMENTS (4)

Custom Hooks 28

The PPR Hacker's Guide

The custom hook program is invoked just before the document header comments are sent. Thus the
program can add any additional document header comments it likes. Notice that each and every line
generated must begin with % and be followed by a printable character other than space tab or newlir

CUSTOM_HOOK_PROLOG (8)
The custom hook program is invoked at the end of the document prolog maybe so that it can insert
any procedure sets it might need. It is unlikely you would want to do this, unless perhaps the intent o
your custom hook is to do something like N-Up printing. (Of course, PPR can already do N-Up

printing.)

CUSTOM_HOOK_DOCSETUP (16)
The custom hook program is invoked at the end of the document setup section. This is where you
would turn on your replacement N-Up printing implementation.

CUSTOM_HOOK_PAGEZERO (32)
The custom hook program is invoked just before the first page of the document. It can insert one or
more additional pages. Basically, it can be used to add a banner page inside a job. This is for use in
environments where banner pages outside the job would confuse some system furthure down the lin
This is the case when printing to a Xerox Docutech. Since the document setup section's code may
have already set up transform matrixes which could squish or shift the page you will be generating, i
should wrap itself in save initmatrix ... restore.

You may have noticed that there is no provision for calling separate custom hook programs for separate

insertion points. Your custom hook program should examine its first command line parameter and select the
code path that cooresponds to the current insertion point. If you really need separate program, you will have
create a shell custom hook program that examines its first parameter and then executes the desired prograr

If you need to invoke any printer—specific features, such as to select a particular paper size, you should prin
DSC comment line like this one:

%%%%IncludeFeature: feature setting

Thefeatures is a PPD feature name such as *PageSize and the value is on of the possible values such
as Letter or A4. Before your program's output is sent to the printer, this comment will be replaced with the
proper code from the printer's PPD file.

Of course, since you will be generating PostScript code or at least PostScript comments, the is always the
possibility that you will turn a job into an invalid PostScript program that won't print. In that case, PPR will
come to your rescue by arresting the job so that you can examine its log with ppop log in order to see what
the PostScript error messages are.

You will almost certainly want to look at the final output sent to the printer in order to verify that your text is
being inserted where you expect. To do that, set up a test queue using the dummy interface. It will print to a
file which you can then examine.

PPR currently includes one sample custom hook program. It is installed at

lusr/lib/ppr/lib/custom_hook_docutech. Among other things it demonstrates how to do
CUSTOM_HOOK_PAGEZERO.

Custom Hooks 29

ftp://ftp.adobe.com/pub/adobe/

