
PowerDNS manual

PowerDNS BV

pdns.bd@powerdns.com

PowerDNS manual
by

Published v2.9.19 $Date: 2008-11-30 00:05:00 +0100 (Sun, 30 Nov 2008) $

It is a book about a Spanish guy called Manual. You should read it.
-- Dilbert

Table of Contents
1. The PowerDNS dynamic nameserver ..1

1.1. Function & design of PDNS ...1
1.2. About this document ...1
1.3. Release notes...2

1.3.1. Authoritative Server version 2.9.22..2
1.3.2. Authoritative Server version 2.9.21.2...7
1.3.3. Authoritative Server version 2.9.21.1...7
1.3.4. Recursor version 3.1.7 ..8
1.3.5. Recursor version 3.1.6 ..9
1.3.6. Recursor version 3.1.5 ..10
1.3.7. PowerDNS Authoritative Server version 2.9.21...14
1.3.8. Recursor version 3.1.4 ..19
1.3.9. Recursor version 3.1.3 ..20
1.3.10. Recursor version 3.1.2 ..21
1.3.11. Recursor version 3.1.1 ..23
1.3.12. Recursor version 3.0.1 ..25
1.3.13. Recursor version 3.0 ...26
1.3.14. Version 2.9.20...28
1.3.15. Version 2.9.19...30
1.3.16. Version 2.9.18...33
1.3.17. Version 2.9.17...36
1.3.18. Version 2.9.16...37
1.3.19. Version 2.9.15...39
1.3.20. Version 2.9.14...39
1.3.21. Version 2.9.13...40
1.3.22. Version 2.9.12...41
1.3.23. Version 2.9.11...43
1.3.24. Version 2.9.10...43
1.3.25. Version 2.9.8...44
1.3.26. Version 2.9.7...45
1.3.27. Version 2.9.6...46
1.3.28. Version 2.9.5...47
1.3.29. Version 2.9.4...49
1.3.30. Version 2.9.3a ...51
1.3.31. Version 2.9.2...54
1.3.32. Version 2.9.1...55
1.3.33. Version 2.9..56
1.3.34. Version 2.8..56
1.3.35. Version 2.7 and 2.7.1 ..57
1.3.36. Version 2.6.1...58
1.3.37. Version 2.6..58
1.3.38. Version 2.5.1...59
1.3.39. Version 2.5..59
1.3.40. Version 2.4..61
1.3.41. Version 2.3..62
1.3.42. Version 2.2..63

iii

1.3.43. Version 2.1..64
1.3.44. Version 2.0.1...66
1.3.45. Version 2.0..66
1.3.46. Version 2.0 Release Candidate 2 ..66
1.3.47. Version 2.0 Release Candidate 1 ..67
1.3.48. Version 1.99.12 Prerelease ...69
1.3.49. Version 1.99.11 Prerelease ...70
1.3.50. Version 1.99.10 Prerelease ...70
1.3.51. Version 1.99.9 Early Access Prerelease ...71
1.3.52. Version 1.99.8 Early Access Prerelease ...72
1.3.53. Version 1.99.7 Early Access Prerelease ...73
1.3.54. Version 1.99.6 Early Access Prerelease ...74
1.3.55. Version 1.99.5 Early Access Prerelease ...75
1.3.56. Version 1.99.4 Early Access Prerelease ...76
1.3.57. Version 1.99.3 Early Access Prerelease ...78
1.3.58. Version 1.99.2 Early Access Prerelease ...79
1.3.59. Version 1.99.1 Early Access Prerelease ...80

1.4. Security ...81
1.5. PowerDNS Security Advisory 2006-01: Malformed TCP queries can lead to a buffer overflow

which might be exploitable ..82
1.6. PowerDNS Security Advisory 2006-02: Zero second CNAME TTLs can make PowerDNS

exhaust allocated stack space, and crash ..83
1.7. PowerDNS Security Advisory 2008-01: System random generator can be predicted, leading to

the potential to ’spoof’ PowerDNS Recursor ...84
1.8. PowerDNS Security Advisory 2008-02: By not responding to certain queries, domains become

easier to spoof...85
1.9. PowerDNS Security Advisory 2008-02: Some PowerDNS Configurations can be forced to

restart remotely...86
1.10. Acknowledgements ...87

2. Installing on Unix...89
2.1. Possible problems at this point..89
2.2. Testing your install ..89

2.2.1. Typical errors..90
2.3. Running PDNS on unix...91

3. Installing on Microsoft Windows ...93
3.1. Configuring PDNS on Microsoft Windows ..94
3.2. Running PDNS on Microsoft Windows..94

4. Basic setup: configuring database connectivity ..95
4.1. Example: configuring MySQL..96

4.1.1. Common problems ...98

5. Dynamic resolution using the PipeBackend ..99
5.1. Deploying the PipeBackend with the BindBackend ...99

6. Logging & Monitoring Authoritative Server performance ...100
6.1. Webserver..100
6.2. Via init.d commands ...100
6.3. Operational logging using syslog..102

iv

7. Security settings & considerations ...104
7.1. Settings..104

7.1.1. Running as a less privileged identity ..104
7.1.2. Jailing the process in a chroot ..104

7.2. Considerations...105

8. Virtual hosting..106
9. Performance ...107

9.1. General advice...107
9.2. Native Posix Thread Library vs LinuxThreads ...107
9.3. Performance related settings ...107

9.3.1. Packet Cache...108
9.3.2. Query Cache ...108

10. Migrating to PDNS ..110
10.1. Zone2sql..110

11. Recursion ..112
11.1. Details ...112

12. PowerDNS resolver/recursing nameserver..114
12.1. pdns_recursor settings...114
12.2. Controlling and querying the recursor ..118
12.3. PowerDNS Recursor performance ..120
12.4. Details ...121

12.4.1. Anti-spoofing..121
12.4.2. Throttling..121

12.5. Statistics ..121
12.6. Scripting ..123

12.6.1. Configuring Lua scripts ..123
12.6.2. Writing Lua PowerDNS Recursor scripts ..124

12.7. Design and Engineering of the PowerDNS Recursor ...126
12.7.1. The PowerDNS Recursor ...127
12.7.2. Synchronous code using MTasker ..127
12.7.3. MPlexer ..127
12.7.4. MOADNSParser ...128
12.7.5. The C++ Standard Library / Boost ...130
12.7.6. Actual DNS Algorithm...130
12.7.7. The non-cached case...131
12.7.8. Some of the things we glossed over ...133
12.7.9. The Recursor Cache ...134
12.7.10. Some small things...134

13. Master/Slave operation & replication..135
13.1. Native replication ..135
13.2. Slave operation..135

13.2.1. Supermaster automatic provisioning of slaves ...136
13.3. Master operation ...136

v

14. Fancy records for seamless email and URL integration ..138
15. Index of all Authoritative Server settings ..139
16. Index of all Authoritative Server metrics ..145

16.1. Counters & variables...145
16.1.1. Counters..145
16.1.2. Ring buffers ..146

17. Supported record types and their storage ...148
18. HOWTO & Frequently Asked Questions..151

18.1. Getting support, free and paid FAQ ..151
18.2. Using and Compiling PowerDNS FAQ...152
18.3. Backend developer HOWTO ..154
18.4. About PowerDNS.COM BV, ’the company’ ..155

19. Other tools included with PowerDNS ..157
19.1. Notification proxy (nproxy) ..157

20. Tools to analyse DNS traffic..159
A. Backends in detail ...160

A.1. PipeBackend...160
A.1.1. PipeBackend protocol..161

A.2. MySQL backend ..164
A.2.1. Configuration settings..165
A.2.2. Notes..166

A.3. Random Backend ...166
A.4. MySQL PDNS backend ...167

A.4.1. Notes..170
A.5. Generic MySQL and PgSQL backends..170

A.5.1. MySQL specifics ...171
A.5.2. PostgresSQL specifics ...172
A.5.3. Oracle specifics..173
A.5.4. Basic functionality...175
A.5.5. Master/slave queries ..176
A.5.6. Fancy records...177
A.5.7. Settings and specifying queries ...178
A.5.8. Native operation...179
A.5.9. Slave operation ..179
A.5.10. Superslave operation..180
A.5.11. Master operation ..180

A.6. Oracle backend...180
A.6.1. Setting up Oracle for use with PowerDNS..182

A.7. Generic SQLite backend (2 and 3)...183
A.7.1. Compiling the SQLite backend ...184
A.7.2. Setting up the database ..184
A.7.3. Using the SQLite backend...185

A.8. DB2 backend ..186
A.9. Bind zone file backend ...187

A.9.1. Operation ...188
A.9.2. Pdns_control commands..188

vi

A.9.3. Performance...189
A.9.4. Master/slave configuration...189
A.9.5. Commands ...189

A.10. ODBC backend ..190
A.11. XDB Backend ..191
A.12. LDAP backend ...191
A.13. OpenDBX backend ..192
A.14. Geo backend...193

B. PDNS internals ..195
B.1. Controlsocket..195

B.1.1. pdns_control...195
B.2. Guardian ...196
B.3. Modules & Backends ...196
B.4. How PDNS translates DNS queries into backend queries ...197

C. Backend writers’ guide...199
C.1. Simple read-only native backends..199

C.1.1. A sample minimal backend..201
C.1.2. Interface definition ...202

C.2. Reporting errors..205
C.3. Declaring and reading configuration details...205
C.4. Read/write slave-capable backends ..206

C.4.1. Supermaster/Superslave capability ..209
C.5. Read/write master-capable backends..210

D. Compiling PowerDNS...212
D.1. Compiling PowerDNS on Unix..212

D.1.1. AIX ..212
D.1.2. FreeBSD ..212
D.1.3. Linux..213
D.1.4. MacOS X ...213
D.1.5. OpenBSD...213
D.1.6. Solaris ..213

D.2. Compiling PowerDNS on Windows...213
D.2.1. Assumptions ..214
D.2.2. Prequisites..214
D.2.3. Nullsoft Installer ..215
D.2.4. Setting up the build-environment ..216
D.2.5. Compilation ...218
D.2.6. Miscellaneous ..219

E. PowerDNS license (GNU General Public License version 2) ..221
F. Further copyright statements...225

F.1. AES implementation by Brian Gladman...225

vii

List of Tables
1-1. PowerDNS Security Advisory..82
1-2. PowerDNS Security Advisory..83
1-3. PowerDNS Security Advisory..84
1-4. PowerDNS Security Advisory..85
1-5. PowerDNS Security Advisory..86
17-1. SOA fields ..150
A-1. PipeBackend capabilities...160
A-2. MySQL backend capabilities ..164
A-3. Random Backend capabilities ...166
A-4. MySQL backend capabilities ..167
A-5. Generic PgSQL and MySQL backend capabilities ...170
A-6. Oracle backend capabilities ...180
A-7. Generic SQLite backend capabilities ..184
A-8. DB2 backend capabilities ..186
A-9. Bind zone file backend capabilities ...187
A-10. ODBC backend capabilities ..190
A-11. LDAP backend capabilities ...192
A-12. OpenDBX backend capabilities ..193
A-13. Geo backend capabilities ...193
C-1. DNSResourceRecord class ..203
C-2. SOAData struct ..203
C-3. DomainInfo struct..208

viii

Chapter 1. The PowerDNS dynamic nameserver

The PowerDNS daemon is a versatile nameserver which supports a large number of backends. These
backends can either be plain zonefiles or be more dynamic in nature. Additionally, through use of clever
programming techniques, PowerDNS offers very high domain resolution performance.

Prime examples of backends include relational databases, but also (geographical) loadbalancing and
failover algorithms.

The company is called PowerDNS.COM BV, the nameserver daemon is called PDNS.

1.1. Function & design of PDNS

PowerDNS consists of two parts: the Authoritative Server and the Recursor. Other nameservers fully
combine these functions, PowerDNS offers them separately, but can mix both authoritative and recursive
usage seamlessly. The Authoritative Server will answer questions about domains it knows about, but will
not go out on the net to resolve queries about other domains. However, it can use a recursing backend to
provide that functionality. Depending on your needs, this backend can either be the PowerDNS recursor
or an external one.

When the Authoritative Server answers a question, it comes out of the database, and can be trusted as
being authoritative. There is no way to pollute the cache or to confuse the daemon.

The Recursor, conversely, by default has no knowledge of domains itself, but will always consult other
authoritative servers to answer questions given to it.

PDNS has been designed to serve both the needs of small installations by being easy to setup, as well as
for serving very large query volumes on large numbers of domains.

Another prime goal is security. By the use of language features, the PDNS source code is very small (in
the order of 10.000 lines) which makes auditing easy. In the same way, library features have been used to
mitigate the risks of buffer overflows.

Finally, PDNS is able to give a lot of statistics on its operation which is both helpful in determining the
scalability of an installation as well as for spotting problems.

1

Chapter 1. The PowerDNS dynamic nameserver

1.2. About this document

If you are reading this document from disk, you may want to check http://doc.powerdns.com for updates.
The PDF version is available on http://doc.powerdns.com/pdf, a text file is on
http://doc.powerdns.com/txt/ (http://doc.powerdns.com/txt).

1.3. Release notes

Before proceeding, it is advised to check the release notes for your PDNS version, as specified in the
name of the distribution file.

Beyond PowerDNS 2.9.20, the Authoritative Server and Recursor are released separately.

1.3.1. Authoritative Server version 2.9.22

Warning

Released on the 27th of January 2009.

This is a huge release, spanning almost 20 months of development. Besides fixing a lot of bugs, of note is
the addition of the so called ’Notification Proxy’, which allows PowerDNS to function as a master server
behind a firewall, plus the huge performance improvement of the internal caches.

This work has been made possible by UPC Broadband and Directi, respectively.

Finally, the release candidates of this version have been tested & improved by Jorn Ekkelenkamp, Ton
van Rosmalen, Jeff Sipek, Tyler Hall, Christof Meerwald and Stefan Schmidt.

Fixed between rc1 and rc2, but not an issue in 2.9.21.

• pdns_control ccounts again outputs proper cache statistics. Implemented in commit 1304
(http://wiki.powerdns.com/projects/trac/changeset/1304).

• Negative query caching was reinstated, leading to 6 times fewer backend queries than rc1 on the
Express.powerdns.com servers.

• Packetcache no longer needlessly parses outgoing packets before sending them.

2

Chapter 1. The PowerDNS dynamic nameserver

• Fancy records work again. This work has been sponsored by ISP Services. Implemented in commit
1302 (http://wiki.powerdns.com/projects/trac/changeset/1302) and commit 1299
(http://wiki.powerdns.com/projects/trac/changeset/1299).

New features:

• pdns_control can now also work over TCP/IP. Sponsored by Directi. Commits 1246
(http://wiki.powerdns.com/projects/trac/changeset/1246), 1251
(http://wiki.powerdns.com/projects/trac/changeset/1251), 1254
(http://wiki.powerdns.com/projects/trac/changeset/1254), 1255
(http://wiki.powerdns.com/projects/trac/changeset/1255).

• Implemented a notification proxy, see Section 19.1. This work was sponsored by UPC Broadband.
Implemented in commits 1075 (http://wiki.powerdns.com/projects/trac/changeset/1075), 1077
(http://wiki.powerdns.com/projects/trac/changeset/1077), 1082
(http://wiki.powerdns.com/projects/trac/changeset/1082), 1083
(http://wiki.powerdns.com/projects/trac/changeset/1083), 1085
(http://wiki.powerdns.com/projects/trac/changeset/1085) and 1086
(http://wiki.powerdns.com/projects/trac/changeset/1086).

• IXFR queries are now supported in the sense that we treat them as AXFR queries, silencing warnings
in other nameservers. Suggested in ticket 131 (http://wiki.powerdns.com/projects/trac/ticket/131).

• The PIPE backend has been extended by David Apgar to allow the reporting of errors using the ’FAIL’
command, plus support for responses with whitespace. Implemented in commit 1114
(http://wiki.powerdns.com/projects/trac/changeset/1114).

• PowerDNS Authoritative server now parses incoming EDNS options, like maximum allowed packet
size. Implemented in commit 1123 (http://wiki.powerdns.com/projects/trac/changeset/1123) and
commit 1281 (http://wiki.powerdns.com/projects/trac/changeset/1281).

• Added support for DHCID, IPSECKEY and KX records, thanks Norbert Sendetzky for the hint.
Implemented in commit 1144 (http://wiki.powerdns.com/projects/trac/changeset/1144).

• Norbert Sendetzky has has added support for all record types supported by PowerDNS to the
LDAPBackend. Furthermore, the detection of OpenLDAP in autoconf has been improved. Finally,
debian has supplied some fixes to PowerLDAP. Implemented in commit 1152
(http://wiki.powerdns.com/projects/trac/changeset/1152) and commit 1153
(http://wiki.powerdns.com/projects/trac/changeset/1153).

• Implemented EDNS NSID option for retrieving the nameserver ID out of band. Defaults to hostname,
can be specified using the server-id setting. Code in commit 1232
(http://wiki.powerdns.com/projects/trac/changeset/1232).

• Implemented experimental EDNS PING for enhanced forgery resilience. Code in commit 1232
(http://wiki.powerdns.com/projects/trac/changeset/1232).

Performance:

3

Chapter 1. The PowerDNS dynamic nameserver

• Improve packet generation performance, in some cases by 25%. Code in 1258
(http://wiki.powerdns.com/projects/trac/changeset/1258), 1259
(http://wiki.powerdns.com/projects/trac/changeset/1259).

• Improved access list checking performance. commit 1261
(http://wiki.powerdns.com/projects/trac/changeset/1261).

• PowerDNS Authoritative caches were completely redone, and are now based on the same cache that is
in the resolver. This work has been sponsored by Directi. In large benchmarks, PowerDNS
performance has improved by an order of magnitude or more. This new version allows for
near-instantaneous cache purging, plus very rapid purging based on suffix. Purge commands can also
be batched. This work is partially based on an innovative reverse-string comparison function authored
by Aki Tuomi.

• Installations which run with very high cache hitrates can now benefit from multiple CPUs by setting
receiver-threads to the number of desired CPUs to utilize in cache operations. Implemented in
commit 1316 (http://wiki.powerdns.com/projects/trac/changeset/1316).

• BIND backend speedups in commit 1108 (http://wiki.powerdns.com/projects/trac/changeset/1108),
measured at around a 20% improvement, possibly more on very large setups.

Bugs fixed:

• Tyler Hall discovered the PowerDNS configuration file parser had problems with trailing tabs. This
turned out to be a wider problem in PowerDNS. Buggy code replaced by a library call in commit 1237
(http://wiki.powerdns.com/projects/trac/changeset/1237) and commit 1240
(http://wiki.powerdns.com/projects/trac/changeset/1240).

• David Apgar of Yahoo discovered that our ’guardian’ method of restarting PowerDNS in case of
problems was not fool proof, and submitted a fix. A variation of this fix can be found in commit 1323
(http://wiki.powerdns.com/projects/trac/changeset/1323). Also reported by Directi.

• Connection reset by peer events in the TCP nameserver no longer lead to the cycling of database
connections. Code in commit 1241 (http://wiki.powerdns.com/projects/trac/changeset/1241).

• FreeBSD compilation with Generic PostgreSQL backend was fixed. Reported by Wouter de Jong of
WideXS, fixed in commit 1305 (http://wiki.powerdns.com/projects/trac/changeset/1305), closes ticket
95 (http://wiki.powerdns.com/projects/trac/ticket/95).

• Webserver no longer prints ’1e2%’. Finally closes ticket 26
(http://wiki.powerdns.com/projects/trac/ticket/26). Much friendly nagging for over 3 years by Jeff
Sipek, code in commit 1303 (http://wiki.powerdns.com/projects/trac/changeset/1303).

• PowerDNS used to ignore certain queries it could not answer. These queries are no longer ignored, but
get a SERVFAIL response. Implemented in commit 1239
(http://wiki.powerdns.com/projects/trac/changeset/1239).

• Fix subtle CNAME and wildcard interactions reported by ’zzyzz’, implemented in commit 1147
(http://wiki.powerdns.com/projects/trac/changeset/1147).

• The generic backends did not honour the default-ttl setting. Spotted and implemented by Matti
Hiljanen.

4

Chapter 1. The PowerDNS dynamic nameserver

• Matti Hiljanen discovered that the OpenDBX backend did not fill out the SOA ttl value properly. Matti
also improved the SQL statements for better compatibility. Implemented in commit 1181
(http://wiki.powerdns.com/projects/trac/changeset/1181).

• Treat invalid WWW requests better. Spotted by Maikel Verheijen, implemented in commit 1092
(http://wiki.powerdns.com/projects/trac/changeset/1092).

• Documentation errors and typos, spotted by Marco Davids (commit 1097
(http://wiki.powerdns.com/projects/trac/changeset/1097)) and Rejo Zengers (commit 1119
(http://wiki.powerdns.com/projects/trac/changeset/1119))

• Properly fill out the ’recursion available’-flag. Spotted by Augie Schwer in ticket 167
(http://wiki.powerdns.com/projects/trac/ticket/167).

• Several memory leaks on bad data in the database or other errors have been fixed. Addressed in 1078
(http://wiki.powerdns.com/projects/trac/changeset/1078) and 1079
(http://wiki.powerdns.com/projects/trac/changeset/1079).

• In contravention to the documentation, the domain type as specified in the database (’MASTER’,
’SLAVE’ or ’NATIVE’) was interpreted case sensitively. 1084
(http://wiki.powerdns.com/projects/trac/changeset/1084).

• BIND backend could crash on processing information about slave zones to be checked. Spotted by
Stefan Schmidt, fixed in 1089 (http://wiki.powerdns.com/projects/trac/changeset/1089).

• Jelte Jansen of Stichting NLNetLabs discovered PowerDNS in BIND mode couldn’t operate as a
root-server! Fixed in 1057 (http://wiki.powerdns.com/projects/trac/changeset/1057).

• ’DPS’ discovered there was a rare opportunity for PowerDNS to lock up waiting for new data.
Addressed in 1076 (http://wiki.powerdns.com/projects/trac/changeset/1076).

• Make singlethreaded mode more resilient against errors. commit 1272
(http://wiki.powerdns.com/projects/trac/changeset/1272).

• DNSSEC records were part of 2.9.21, but were not actually hooked up. Please note that while
PowerDNS can serve most DNSSEC records, it does not do DNSSEC processing. Implemented in
1046 (http://wiki.powerdns.com/projects/trac/changeset/1046).

• Shawn Starr migrated all his domains to PowerDNS in one evening, from an installation that had been
used since BIND4. In doing so, he found 3 bugs in as many hours. An IN statement in the BIND
named.conf with a zone with a trailing dot was misparsed, fixed in commit 1233
(http://wiki.powerdns.com/projects/trac/changeset/1233). Secondly, the zonefile parser tripped over a
line consisting of nothing but comments in the wrong place. Finally ’$ORIGIN .’ was misparsed. Last
two issues fixed in commit 1234 (http://wiki.powerdns.com/projects/trac/changeset/1234).

• Our statistics counters did not wrap correctly after the 2.15 billion mark. Spotted by Stefan Schmidt,
reported in ticket 179 (http://wiki.powerdns.com/projects/trac/ticket/179), fixed in commit 1284
(http://wiki.powerdns.com/projects/trac/changeset/1284).

• Bindbackend could sometimes generate very strange error messages while processing a malformed
zone file. Sometimes such error messages could cause a crash (reported on HP-UX). Addressed by
commit 1279 (http://wiki.powerdns.com/projects/trac/changeset/1279). This could not be triggered
remotely. Closes ticket ticket 203 (http://wiki.powerdns.com/projects/trac/ticket/203).

• Pipe backend did not clean up killed coprocesses. Found and fixed by Daniel Drown

5

Chapter 1. The PowerDNS dynamic nameserver

• Installations with tens of thousands of slave domains would never complete the cycle to check the
freshness of all zones as each incoming notification disrupted this cycle. Addressed in cooperation
with Tyler Hall of EditDNS.

Improvements:

• Zoneparser improvements mean $TTL and $INCLUDES now work a lot better. Implemented in 1056
(http://wiki.powerdns.com/projects/trac/changeset/1056), 1062
(http://wiki.powerdns.com/projects/trac/changeset/1062).

• No longer report temporary recvfrom errors, which used to spam the log on many systems. Addressed
in commit 1320 (http://wiki.powerdns.com/projects/trac/changeset/1320).

• Direct queries for ’fancy records’ would lead to errors, such queries now fail early. Spotted by Jorn
Ekkelenkamp, implemented in 1051 (http://wiki.powerdns.com/projects/trac/changeset/1051).

• Fix typo in geobackend, closing ticket 157 (http://wiki.powerdns.com/projects/trac/ticket/157),
implemented in 1090 (http://wiki.powerdns.com/projects/trac/changeset/1090).

• Initial work on TSIG support - not done yet. Spurred on by Marco Davids.

• Embarrassingly, the ’master’ configuration setting was not documented in the list of all settings!

• Norbert has updated OpenDBX so that SQLite reads and writes no longer deadlock, plus compliation
fixes on Solaris, plus the addition of autoserials to backends that support triggers. Implemented in
commit 1154 (http://wiki.powerdns.com/projects/trac/changeset/1154).

• Random generator is now based on AES, improving the security of certain proxy operations. This is
the same random generator that is in the recursor. Implemented in commit 1256
(http://wiki.powerdns.com/projects/trac/changeset/1256).

• Documentation for ’supermaster’ mode was improved due to popular demand.

• When binding to a UDP port failed, supply a more precise error message (commit 1245
(http://wiki.powerdns.com/projects/trac/changeset/1245))

• The zoneparser error messages were vastly improved, partially inspired by Shawn’s cowboy
migration. Code in commit 1235 (http://wiki.powerdns.com/projects/trac/changeset/1235).

• Labels are compressed more efficiently (case-insensitively), leading to smaller packets. Implemented
in commit 1156 (http://wiki.powerdns.com/projects/trac/changeset/1156).

• Fix handling of TCP timeouts to not cause a reload of the backends. Implemented in commit 1092
(http://wiki.powerdns.com/projects/trac/changeset/1092).

• TCP Receiver no longer spams the log with common network errors. Implemented in commit 1306
(http://wiki.powerdns.com/projects/trac/changeset/1306).

• Move from select() to poll()-based multiplexing, allowing PowerDNS to listen on more than 1024
sockets simultaneously. One big PowerDNS user needs this. Implemented in 1072
(http://wiki.powerdns.com/projects/trac/changeset/1072).

• Zone2sql now reads source files in performance enhancing inode order. Additionally, zone2sql no
longer dies on a missing zone file if --on-error-resume-next was specified. Finally, statistics of

6

Chapter 1. The PowerDNS dynamic nameserver

zone2sql conversion have been improved. Implemented in 1055
(http://wiki.powerdns.com/projects/trac/changeset/1055).

• Address issues found by more recent g++ versions. Spotted and/or fixed by Jorn Ekkelenkamp
(commit 1051 (http://wiki.powerdns.com/projects/trac/changeset/1051)), Marcus Rueckert (commit
1094 (http://wiki.powerdns.com/projects/trac/changeset/1094)), Norbert Sendetzky (commit 1107
(http://wiki.powerdns.com/projects/trac/changeset/1107)), Serge Belyshev (commit 1171
(http://wiki.powerdns.com/projects/trac/changeset/1171)).

• The Intel C Compiler implements certain things differently, causing the master/slave communicator to
malfunction. Spotted by Marcus Rueckert, implemented in 1052
(http://wiki.powerdns.com/projects/trac/changeset/1052), plus fallout in 1105
(http://wiki.powerdns.com/projects/trac/changeset/1105).

• PowerDNS can now be compiled with Boost 1.37.0.

• Andre Lorbach of Adiscon discovered the microsoft windows 2003 nameserver adds out of zone data
to zonetransfers, which we need to ignore, instead of rejecting the entire zone. Implemented in 1048
(http://wiki.powerdns.com/projects/trac/changeset/1048).

• PowerDNS now skips remote master servers which consistently generate timeout messages,
improving the master checking cycle time tremendously. Developed in cooperation with Tyler Hall.
Implemented in commit 1278 (http://wiki.powerdns.com/projects/trac/changeset/1278).

• When binding to a UDP port failed, supply a more precise error message (commit 1245
(http://wiki.powerdns.com/projects/trac/changeset/1245))

• dnsreplay now waits for the final answers to arrive, making it possible to process even small pcap files
and get meaningful statistics. commit 1268 (http://wiki.powerdns.com/projects/trac/changeset/1268).

• dnsreplay has a more sane default timeout now, which can be configured too. Suggested by Augie
Schwer in ticket 163 (http://wiki.powerdns.com/projects/trac/ticket/163), implemented in commit
1287 (http://wiki.powerdns.com/projects/trac/changeset/1287).

1.3.2. Authoritative Server version 2.9.21.2

Released on the 18th of November 2008.

This release consists of a single patch to PowerDNS Authoritative Server version 2.9.21.1. In some
configurations, notably with configuration option ’distributor-threads=1’, the PowerDNS Authoritative
Server crashes easily in some error conditions.

All users are urged to upgrade. Even though PowerDNS restarts itself on encountering such error
conditions, and even though most PowerDNS configurations do not run in single threaded mode, an
upgrade is recommended.

More detail can be found in Section 1.9.

7

Chapter 1. The PowerDNS dynamic nameserver

1.3.3. Authoritative Server version 2.9.21.1

Released on the 6th of August 2008.

This release consists of a single patch to PowerDNS Authoritative Server version 2.9.21. Brian J.
Dowling of Simplicity Communications has discovered a security implication of the previous PowerDNS
behaviour to drop queries it considers malformed. We are grateful that Brian notified us quickly about
this problem.

This issue has been assigned CVE-2008-3337. The single patch is in commit 1239
(http://wiki.powerdns.com/projects/trac/changeset/1239). More detail can be found in Section 1.8.

The implication is that while the PowerDNS Authoritative server itself does not face a security risk
because of dropping these malformed queries, other resolving nameservers run a higher risk of accepting
spoofed answers for domains being hosted by PowerDNS Authoritative Servers before 2.9.21.1.

While the dropping of queries does not aid sophisticated spoofing attempts, it does facilitate simpler
attacks.

It may be good to know that several large sites already run with this patch applied, as it has been in the
public codebase for some weeks already.

1.3.4. Recursor version 3.1.7

Released the 25th of June 2008.

This version contains powerful scripting abilities, allowing operators to modify DNS responses in many
interesting ways. Among other things, these abilities can be used to filter out malware domains, to
perform load balancing, to comply with legal and other requirements and finally, to implement
’NXDOMAIN’ redirection.

It is hoped that the addition of Lua scripting will enable responsible DNS modification for those that
need it.

For more details about the Lua scripting, which can be modified, loaded and unloaded at runtime, see
Section 12.6. Many thanks are due to the #lua irc channel, for excellent near-realtime Lua support. In
addition, a number of PowerDNS users have been enthousiastically testing prereleases of the scripting
support, and have found and solved many issues.

In addition, 3.1.7 fixes a number of bugs:

8

Chapter 1. The PowerDNS dynamic nameserver

• In 3.1.5 and 3.1.6, an authoritative server could continue to renew its authority, even though a domain
had been delegated to other servers in the meantime.

In the rare cases where this happened, and the old servers were not shut down, the observed effect is
that users were fed outdated data.

Bug spotted and analysed by Darren Gamble, fix in commit 1182
(http://wiki.powerdns.com/projects/trac/changeset/1182) and commit 1183
(http://wiki.powerdns.com/projects/trac/changeset/1183).

• Thanks to long time PowerDNS contributor Stefan Arentz, for the first time, Mac OS X 10.5 users can
compile and run the PowerDNS Recursor! Patch in commit 1185
(http://wiki.powerdns.com/projects/trac/changeset/1185).

• Sten Spans spotted that for outgoing TCP/IP queries, the query-local-address setting was not
honored. Fixed in commit 1190 (http://wiki.powerdns.com/projects/trac/changeset/1190).

• rec_control wipe-cache now also wipes domains from the negative cache, hurrying up the expiry of
negatively cached records. Suggested by Simon Kirby, implemented in commit 1204
(http://wiki.powerdns.com/projects/trac/changeset/1204).

• When a forwarder server is configured for a domain, using the forward-zones setting, this server IP
address was filtered using the dont-query setting, which is generally not what is desired: the server to
which queries are forwarded will often live in private IP space, and the operator should be trusted to
know what he is doing. Reported and argued by Simon Kirby, fix in commit 1211
(http://wiki.powerdns.com/projects/trac/changeset/1211).

• Marcus Rueckert of OpenSUSE reported that very recent gcc versions emitted a (correct) warning on
an overly complicated line in syncres.cc, fixed in commit 1189
(http://wiki.powerdns.com/projects/trac/changeset/1189).

• Stefan Schmidt discovered that the netmask matching code, used by the new Lua scripts, but also by
all other parts of PowerDNS, had problems with explicit ’/32’ matches. Fixed in commit 1205
(http://wiki.powerdns.com/projects/trac/changeset/1205).

1.3.5. Recursor version 3.1.6

Released on the 1st of May 2008.

This version fixes two important problems, each on its own important enough to justify a quick upgrade.

• Version 3.1.5 had problems resolving several slightly misconfigured domains, including for a time
’juniper.net’. Nameserver timeouts were not being processed correctly, leading PowerDNS to not
update the internal clock, which in turn meant that any queries immediately following an error would
time out as well. Because of retries, this would usually not be a problem except on very busy servers,
for domains with different nameservers at different levels of the DNS-hierarchy, like ’juniper.net’.

9

Chapter 1. The PowerDNS dynamic nameserver

This issue was fixed rapidly because of the help of XS4ALL (http://www.xs4all.nl) (Eric Veldhuyzen,
Kai Storbeck), Brad Dameron and Kees Monshouwer. Fix in commit 1178
(http://wiki.powerdns.com/projects/trac/changeset/1178).

• The new high-quality random generator was not used for all random numbers, especially in source
port selection. This means that 3.1.5 is still a lot more secure than 3.1.4 was, and its algorithms more
secure than most other nameservers, but it also means 3.1.5 is not as secure as it could be. A quick
upgrade is recommended. Discovered by Thomas Biege of Novell (SUSE), fixed in commit 1179
(http://wiki.powerdns.com/projects/trac/changeset/1179).

1.3.6. Recursor version 3.1.5

Released on the 31st of March 2008.

Much like 3.1.4, this release does not add a lot of major features. Instead, performance has been
improved significantly (estimated at around 20%), and many rare and not so rare issues were addressed.
Multi-part TXT records now work as expected - the only significant functional bug found in 15 months.
One of the oldest feature requests was fulfilled: version 3.1.5 can finally forward queries for designated
domains to multiple servers, on differing port numbers if needed. Previously only one forwarder address
was supported. This lack held back a number of migrations to PowerDNS.

We would like to thank Amit Klein of Trusteer for bringing a serious vulnerability to our attention which
would enable a smart attacker to ’spoof’ previous versions of the PowerDNS Recursor into accepting
possibly mallicious data.

Details can be found on this Trusteer page (http://www.trusteer.com/docs/powerdnsrecursor.html).

It is recommended that all users of the PowerDNS Recursor upgrade to 3.1.5 as soon as practicable,
while we simultaneously note that busy servers are less susceptible to the attack, but not immune.

The PowerDNS Security Advisory can be found in Section 1.7.

This version can properly benefit from all IPv4 and IPv6 addresses in use at the root-servers as of early
February 2008. In order to implement this, changes were made to how the Recursor deals internally with
A and AAAA queries for nameservers, see below for more details.

Additionally, newer releases of the G++ compiler required some fixes (see ticket 173
(http://wiki.powerdns.com/projects/trac/ticket/173)).

This release was made possible by the help of Wichert Akkerman, Winfried Angele, Arnoud Bakker
(Fox-IT), Niels Bakker (no relation!), Leo Baltus (Nederlandse Publieke Omroep), Marco Davids

10

Chapter 1. The PowerDNS dynamic nameserver

(SIDN), David Gavarret (Neuf Cegetel), Peter Gervai, Marcus Goller (UPC), Matti Hiljanen
(Saunalahti/Elisa), Ruben Kerkhof, Alex Kiernan, Amit Klein (Trusteer), Kenneth Marshall (Rice
University), Thomas Rietz, Marcus Rueckert (OpenSUSE), Augie Schwer (Sonix), Sten Spans (Bit),
Stefan Schmidt (Freenet), Kai Storbeck (xs4all), Alex Trull, Andrew Turnbull (No Wires) and Aaron
Thompson, and many more who filed bugs anonymously, or who we forgot to mention.

Security related issues:

• Amit Klein has informed us that System random generator output can be predicted based on its past
behaviour, allowing a smart attacker to ’spoof’ our nameserver. Full details in Section 1.7.

• The Recursor will by default no longer query private-space nameservers. This closes a slight security
risk and simultaneously improves performance and stability. For more information, see dont-query in
Section 12.1. Implemented in commit 923 (http://wiki.powerdns.com/projects/trac/changeset/923).

• Applied fix for ticket 110 (http://wiki.powerdns.com/projects/trac/ticket/110) (’PowerDNS should
change directory to ’/’ in chroot), implemented in commit 944
(http://wiki.powerdns.com/projects/trac/changeset/944).

Performance:

• The DNS packet writing and parsing infrastructure performance was improved in several ways, see
commits 925 (http://wiki.powerdns.com/projects/trac/changeset/925), 926
(http://wiki.powerdns.com/projects/trac/changeset/926), 928
(http://wiki.powerdns.com/projects/trac/changeset/928), 931
(http://wiki.powerdns.com/projects/trac/changeset/931), 1021
(http://wiki.powerdns.com/projects/trac/changeset/1021), 1050
(http://wiki.powerdns.com/projects/trac/changeset/1050).

• Remove multithreading overhead from the Recursor (commit 999
(http://wiki.powerdns.com/projects/trac/changeset/999)).

Bug fixes:

• Built-in authoritative server now properly derives the TTL from the SOA record if not specified.
Implemented in commit 1165 (http://wiki.powerdns.com/projects/trac/changeset/1165). Additionally,
even when TTL was specified for the built-in authoritative server, it was ignored. Reported by Stefan
Schmidt, closing ticket 147 (http://wiki.powerdns.com/projects/trac/ticket/147).

• Empty TXT record components can now be served. Implemented in commit 1166
(http://wiki.powerdns.com/projects/trac/changeset/1166), closing ticket 178
(http://wiki.powerdns.com/projects/trac/ticket/178). Spotted by Matti Hiljanen.

• The Recursor would not properly override old data with new, sometimes serving old and new data
concurrently. Fixed in commit 1137 (http://wiki.powerdns.com/projects/trac/changeset/1137).

11

Chapter 1. The PowerDNS dynamic nameserver

• SOA records with embedded carriage-return characters are now parsed correctly. Implemented in
commit 1167 (http://wiki.powerdns.com/projects/trac/changeset/1167), closing ticket 162
(http://wiki.powerdns.com/projects/trac/ticket/162).

• Some routing conditions could cause UDP connected sockets to generate an error which PowerDNS
did not deal with properly, leading to a leaked file descriptor. As these run out over time, the recursor
could crash. This would also happen for IPv6 queries on a host with no IPv6 connectivity. Thanks to
Kai of xs4all and Wichert Akkerman for reporting this issue. Fix in commit 1133
(http://wiki.powerdns.com/projects/trac/changeset/1133).

• Empty unknown record types can now be stored without generating a scary error (commit 1129
(http://wiki.powerdns.com/projects/trac/changeset/1129))

• Applied fix for ticket 111 (http://wiki.powerdns.com/projects/trac/ticket/111), ticket 112
(http://wiki.powerdns.com/projects/trac/ticket/112) and ticket 153
(http://wiki.powerdns.com/projects/trac/ticket/153) - large (multipart) TXT records are now retrieved
and served properly. Fix in commit 996 (http://wiki.powerdns.com/projects/trac/changeset/996).

• Solaris compilation instructions in Recursor documentation were wrong, leading to an instant crash on
startup. Luckily nobody reads the documentation, except for Marcus Goller who found the error. Fixed
in commit 1124 (http://wiki.powerdns.com/projects/trac/changeset/1124).

• On Solaris, finally fix the issue where queries get distributed strangely over CPUs, or not get
distributed at all. Much debugging and analysing performed by Alex Kiernan, who also supplied fixes.
Implemented in commit 1091 (http://wiki.powerdns.com/projects/trac/changeset/1091), commit 1093
(http://wiki.powerdns.com/projects/trac/changeset/1093).

• Various fixes for modern G++ versions, most spotted by Marcus Rueckert (commits 964
(http://wiki.powerdns.com/projects/trac/changeset/964), 965
(http://wiki.powerdns.com/projects/trac/changeset/965), 1028
(http://wiki.powerdns.com/projects/trac/changeset/1028), 1052
(http://wiki.powerdns.com/projects/trac/changeset/1052)), and Ruben Kerkhof (commit 1136
(http://wiki.powerdns.com/projects/trac/changeset/1136), closing ticket 175
(http://wiki.powerdns.com/projects/trac/ticket/175)).

• Recursor would not properly clean up pidfile and control socket, closing ticket 120
(http://wiki.powerdns.com/projects/trac/ticket/120), code in commit 988
(http://wiki.powerdns.com/projects/trac/changeset/988), commit 1098
(http://wiki.powerdns.com/projects/trac/changeset/1098) (part of fix by Matti Hiljanen, spotted by Leo
Baltus)

• Recursor can now serve multi-line records from its limited authoritative server (commit 1014
(http://wiki.powerdns.com/projects/trac/changeset/1014)).

• When parsing zones, the ’m’ time specification stands for minutes, not months! Closing Debian bug
406462 (commit 1026 (http://wiki.powerdns.com/projects/trac/changeset/1026))

• Authoritative zone parser did not support ’@’ in the content of records. Spotted by Marco Davids,
fixed in commit 1030 (http://wiki.powerdns.com/projects/trac/changeset/1030).

• Authoritative zone parser could be confused by trailing TABs on record lines (commit 1062
(http://wiki.powerdns.com/projects/trac/changeset/1062)).

• EINTR error code could block entire server if received at the wrong time. Spotted by Arnoud Bakker,
fix in commit 1059 (http://wiki.powerdns.com/projects/trac/changeset/1059).

12

Chapter 1. The PowerDNS dynamic nameserver

• Fix crash on NetBSD on Alpha CPUs, might improve startup behaviour on empty caches on other
architectures as well (commit 1061 (http://wiki.powerdns.com/projects/trac/changeset/1061)).

• Outbound TCP queries were being performed sub-optimally because of an interaction with the
’Mplexer’. Fixes in commit 1115 (http://wiki.powerdns.com/projects/trac/changeset/1115), commit
1116 (http://wiki.powerdns.com/projects/trac/changeset/1116).

New features:

• Implemented rec_control command get uptime, as suggested by Niels Bakker (commit 935
(http://wiki.powerdns.com/projects/trac/changeset/935)). Added to default rrdtool scripts in commit
940 (http://wiki.powerdns.com/projects/trac/changeset/940).

• The Recursor Authorative component, meant for having the Recursor serve some zones
authoritatively, now supports $INCLUDE and $GENERATE. Implemented in commit 951
(http://wiki.powerdns.com/projects/trac/changeset/951) and commit 952
(http://wiki.powerdns.com/projects/trac/changeset/952), commit 967
(http://wiki.powerdns.com/projects/trac/changeset/967) (discovered by Thomas Rietz),

• Implemented forward-zones-file option in order to support larger amounts of zones which should be
forwarded to another nameserver (commit 963
(http://wiki.powerdns.com/projects/trac/changeset/963)).

• Both forward-zones and forward-zones-file can now specify multiple forwarders per domain,
implemented in commit 1168 (http://wiki.powerdns.com/projects/trac/changeset/1168), closing ticket
81 (http://wiki.powerdns.com/projects/trac/ticket/81). Additionally, both these settings can also
specify non-standard port numbers, as suggested in ticket ticket 122
(http://wiki.powerdns.com/projects/trac/ticket/122). Patch authored by Aaron Thompson, with
additional work by Augie Schwer.

• Sten Spans contributed allow-from-file, implemented in commit 1150
(http://wiki.powerdns.com/projects/trac/changeset/1150). This feature allows the Recursor to read
access rules from a (large) file.

General improvements:

• Ruben Kerkhof fixed up weird permission bits as well as our SGML documentation code in commit
936 (http://wiki.powerdns.com/projects/trac/changeset/936) and commit 937
(http://wiki.powerdns.com/projects/trac/changeset/937).

• Full IPv6 parity. If configured to use IPv6 for outgoing queries (using query-local-address6=::0 for
example), IPv6 and IPv4 addresses are finally treated 100% identically, instead of ’mostly’. This
feature is implemented using ’ANY’ queries to find A and AAAA addresses in one query, which is a
new approach. Treat with caution.

• Now perform EDNS0 root refreshing queries, so as to benefit from all returned addresses. Relevant
since early February 2008 when the root-servers started to respond with IPv6 addresses, which made
the default non-EDNS0 maximum packet length reply no longer contain all records. Implemented in

13

Chapter 1. The PowerDNS dynamic nameserver

commit 1130 (http://wiki.powerdns.com/projects/trac/changeset/1130). Thanks to dns-operations AT
mail.oarc.isc.org for quick suggestions on how to deal with this change.

• rec_control now has a timeout in case the Recursor does not respond. Implemented in commit 945
(http://wiki.powerdns.com/projects/trac/changeset/945).

• (Error) messages are now logged with saner priorities (commit 955
(http://wiki.powerdns.com/projects/trac/changeset/955)).

• Outbound query IP interface stemmed from 1997 (!) and was in dire need of a cleanup (commit 1117
(http://wiki.powerdns.com/projects/trac/changeset/1117)).

• L.ROOT-SERVERS.NET moved (commit 1118
(http://wiki.powerdns.com/projects/trac/changeset/1118)).

1.3.7. PowerDNS Authoritative Server version 2.9.21

Released the 21st of April 2007.

This is the first release the PowerDNS Authoritative Server since the Recursor was split off to a separate
product, and also marks the transfer of the new technology developed specifically for the recursor, back
to the authoritative server.

This move has reduced the amount of code of the Authoritative server by over 2000 lines, while
improving the quality of the program enormously.

However, since so much has been changed, care should be taken when deploying 2.9.21.

To signify the magnitude of the underlying improvements, the next release of the PowerDNS
Authoritative Server will be called 3.0.

This release would not have been possible without large amounts of help and support from the
PowerDNS Community. We specifically want to thank Massimo Bandinelli of Italy’s Register.it
(http://register.it), Dave Aaldering of Aaldering ICT (http://aaldering-ict.nl), True BV (http://true.nl),
XS4ALL (http://www.xs4all.nl), Daniel Bilik of Neosystem (http://www.neosystem.cz), EasyDNS
(http://www.easydns.com), Heinrich Ruthensteiner (http://www.siemens.com) of Siemens, Augie Schwer
(http://schwer.us), Mark Bergsma (http://www.wikipedia.org), Marco Davids (http://www.forfun.net),
Marcus Rueckert of OpenSUSE (http://www.opensuse.org), Andre Muraro of Locaweb
(http://www.locaweb.com.br), Antony Lesuisse, Norbert Sendetzky (http://www.linuxnetworks.de),
Marco Chiavacci (http://www.aruba.it), Christoph Haas, Ralf van der Enden and Ruben Kerkhof.

Security issues:

14

Chapter 1. The PowerDNS dynamic nameserver

• The previous packet parsing and generating code contained no known bugs, but was however very
lengthy and overly complex, and might have had security problems. The new code is ’inherently safe’
because it relies on bounds-checking C++ constructs. Therefore, a move to 2.9.21 is highly
recommended.

• Pre-2.9.21, communication between master and server nameservers was not checked as rigidly as
possible, possibly allowing third parties to disrupt but not modify such communications.

Warning

The ’bind1’ legacy version of our BIND backend has been dropped! There should
be no need to rely on this old version anymore, as the main BIND backend has
been very well tested recently.

Bugs:

• Multi-part TXT records weren’t supported. This has been fixed, and regression tests have been added.
Code in commits 1016 (http://wiki.powerdns.com/projects/trac/changeset/1016), 996
(http://wiki.powerdns.com/projects/trac/changeset/996), 994
(http://wiki.powerdns.com/projects/trac/changeset/994).

• Email addresses with embedded dots in SOA records were not parsed correctly, nor were other
embedded dots. Noted by ’Bastiaan’, fixed in commit 1026
(http://wiki.powerdns.com/projects/trac/changeset/1026).

• BIND backend treated the ’m’ TTL modifier as ’months’ and not ’minutes’. Closes Debian bug
406462. Addressed in commit 1026 (http://wiki.powerdns.com/projects/trac/changeset/1026).

• Our snapshots were built against a static version of PosgreSQL that was incompatible with many
Linux distributions, leading to instant crashes on startup. Fixed in 1022
(http://wiki.powerdns.com/projects/trac/changeset/1022) and 1023
(http://wiki.powerdns.com/projects/trac/changeset/1023).

• CNAME referrals to child zones gave improper responses. Noted by Augie Schwer in ticket 123
(http://wiki.powerdns.com/projects/trac/ticket/123), fixed in commit 992
(http://wiki.powerdns.com/projects/trac/changeset/992).

• When passing a port number with the recursor setting, this would sometimes generate errors during
additional processing. Switched off overly helpful additional processing for recursive queries to
remove this problem. Implemented in commit 1031
(http://wiki.powerdns.com/projects/trac/changeset/1031), spotted by Ralf van der Enden.

• NS to a nameserver with the name of the zone itself generated problems. Spotted by Augie Schwer,
fixed in commit 947 (http://wiki.powerdns.com/projects/trac/changeset/947).

• Multi-line records in the BIND backend were not always parsed correctly. Fixed in commit 1014
(http://wiki.powerdns.com/projects/trac/changeset/1014).

15

Chapter 1. The PowerDNS dynamic nameserver

• The LOC-record had problems operating outside of the eastern hemisphere of the northern part of the
world! Fixed in commit 1011 (http://wiki.powerdns.com/projects/trac/changeset/1011).

• Backends were compiled without multithreading preprocessor flags. As far as we can determine, this
would only cause problems for the BIND backend, but we cannot rule out this caused instability in
other backends. Fixed in commit 1001 (http://wiki.powerdns.com/projects/trac/changeset/1001).

• The BIND backend was highly unstable under reloads, and leaked memory and file descriptors.
Thanks to Mark Bergsma and Massimo Bandinelli for respectively pointing this out to us and testing
large amounts of patches to fix the problem. The fixes have resulted in better performance, less code,
and a remarkable simplification of this backend. Commits 1039
(http://wiki.powerdns.com/projects/trac/changeset/1039), 1034
(http://wiki.powerdns.com/projects/trac/changeset/1034), 1035
(http://wiki.powerdns.com/projects/trac/changeset/1035), 1006
(http://wiki.powerdns.com/projects/trac/changeset/1006), 999
(http://wiki.powerdns.com/projects/trac/changeset/999), 905
(http://wiki.powerdns.com/projects/trac/changeset/905) and previous.

• BIND backend gave convincing NXDOMAINS on unloaded zones in some cases. Spotted and fixed
by Daniel Bilik in commit 984 (http://wiki.powerdns.com/projects/trac/changeset/984).

• SOA records in zone transfers sometimes contained the wrong SOA TTL. Spotted by Christian Kuehn,
fixed in commit 902 (http://wiki.powerdns.com/projects/trac/changeset/902).

• PowerDNS could get confused by very high SOA serial numbers. Spotted and fixed by Dan Billik,
fixed in commit 626 (http://wiki.powerdns.com/projects/trac/changeset/626).

• Some versions of FreeBSD perform very strict checks on socket address sizes passed to ’connect’,
which could lead to problems retrieving zones over AXFR. Fixed in commit 891
(http://wiki.powerdns.com/projects/trac/changeset/891).

• Some versions of FreeBSD perform very strict checks on IPv6 socket addresses, leading to problems.
Discovered by Sten Spans, fixed in commit 885
(http://wiki.powerdns.com/projects/trac/changeset/885) and commit 886
(http://wiki.powerdns.com/projects/trac/changeset/886).

• IXFR requests were not logged properly. Noted by Ralf van der Enden, fixed in commit 990
(http://wiki.powerdns.com/projects/trac/changeset/990).

• Some NAPTR records needed an additional space character to encode correctly. Spotted by Heinrich
Ruthensteiner, fixed in commit 1029 (http://wiki.powerdns.com/projects/trac/changeset/1029).

• Many bugs in the TCP nameserver, leading to a PowerDNS process that did not respond to TCP
queries over time. Many fixes provided by Dan Bilik, other problems were fixed by rewriting our TCP
handling code. Commits 982 (http://wiki.powerdns.com/projects/trac/changeset/982) and 980
(http://wiki.powerdns.com/projects/trac/changeset/980), 950
(http://wiki.powerdns.com/projects/trac/changeset/950), 924
(http://wiki.powerdns.com/projects/trac/changeset/924), 889
(http://wiki.powerdns.com/projects/trac/changeset/889), 874
(http://wiki.powerdns.com/projects/trac/changeset/874), 869
(http://wiki.powerdns.com/projects/trac/changeset/869), 685
(http://wiki.powerdns.com/projects/trac/changeset/685), 684
(http://wiki.powerdns.com/projects/trac/changeset/684).

16

Chapter 1. The PowerDNS dynamic nameserver

• Fix crashes on the ARM processor due to alignment errors. Thanks to Sjoerd Simons. Closes Debian
bug 397031.

• Missing data in generic SQL backends would sometimes lead to faked SOA serial data. Spotted by
Leander Lakkas from True. Fix in commit 866
(http://wiki.powerdns.com/projects/trac/changeset/866).

• When receiving two quick notifications in succession, the packet cache would sometimes "process"
the second one, leading PowerDNS to ignore it. Spotted by Dan Bilik, fixed in commit 686
(http://wiki.powerdns.com/projects/trac/changeset/686).

• Geobackend (by Mark Bergsma) did not properly override the getSOA method, breaking non-overlay
operation of this fine backend. The geobackend now also skips ’.hidden’ configuration files, and now
properly disregards empty configuration files. Additionally, the overlapping abilities were improved.
Details available in commit 876 (http://wiki.powerdns.com/projects/trac/changeset/876), by Mark.

Features:

• Thanks to EasyDNS (http://www.easydns.com), PowerDNS now supports multiple masters per
domain. For configuration details, see Section 13.2. Implemented in commit 1018
(http://wiki.powerdns.com/projects/trac/changeset/1018), commit 1017
(http://wiki.powerdns.com/projects/trac/changeset/1017).

• Thanks to EasyDNS (http://www.easydns.com), PowerDNS now supports the KEY record type, as
well the SPF record. In commit 976 (http://wiki.powerdns.com/projects/trac/changeset/976).

• Added support for CERT, SSHFP, DNSKEY, DS, NSEC, RRSIG record types, as part of the move to
the new DNS parsing/generating code.

• Support for the AFSDB record type, as requested by ’Bastian’. Implemented in commit 978
(http://wiki.powerdns.com/projects/trac/changeset/978), closing ticket 129
(http://wiki.powerdns.com/projects/trac/ticket/129).

• Support for the MR record type. Implemented in commit 941
(http://wiki.powerdns.com/projects/trac/changeset/941) and commit 1019
(http://wiki.powerdns.com/projects/trac/changeset/1019).

• Gsqlite3 backend was added by Antony Lesuisse in commit 942
(http://wiki.powerdns.com/projects/trac/changeset/942);

• Added the ability to send out light-weight root-referrals that save bandwidth yet still placate mediocre
resolver implementations. Implemented in commit 912
(http://wiki.powerdns.com/projects/trac/changeset/912), enable with ’root-referral=lean’.

Improvements:

• Miscellaneous OpenDBX and LDAP backend improvements by Norbert Sendetzky. Applied in
commit 977 (http://wiki.powerdns.com/projects/trac/changeset/977) and commit 1040
(http://wiki.powerdns.com/projects/trac/changeset/1040).

17

Chapter 1. The PowerDNS dynamic nameserver

• SGML source of the documentation was cleaned up by Ruben Kerkhof in commit 936
(http://wiki.powerdns.com/projects/trac/changeset/936).

• Speedups in core DNS label processing code. Implemented in commit 928
(http://wiki.powerdns.com/projects/trac/changeset/928), commit 654
(http://wiki.powerdns.com/projects/trac/changeset/654), commit 1020
(http://wiki.powerdns.com/projects/trac/changeset/1020).

• When communicating with master servers and encountering errors, more useful details are logged.
Reported by Stefan Arentz in ticket 137 (http://wiki.powerdns.com/projects/trac/ticket/137), closed by
commit 1015 (http://wiki.powerdns.com/projects/trac/changeset/1015).

• Database errors are now logged with more details. Addressed in commit 1004
(http://wiki.powerdns.com/projects/trac/changeset/1004).

• pdns_control problems are now logged more verbosely. Change in commit 910
(http://wiki.powerdns.com/projects/trac/changeset/910).

• Erroneous address configuration was logged unclearly. Spotted by River Tarnell, fixed in commit 888
(http://wiki.powerdns.com/projects/trac/changeset/888).

• Example configuration shipped with PowerDNS was very old. Noted by Leen Besselink, fixed in
commit 946 (http://wiki.powerdns.com/projects/trac/changeset/946).

• PowerDNS neglected to chdir to the root when chrooted. This closes ticket 110
(http://wiki.powerdns.com/projects/trac/ticket/110), fixed in commit 944
(http://wiki.powerdns.com/projects/trac/changeset/944).

• Microsoft resolver had problems with responses we generated for CNAMEs pointing out of our
bailiwick. Fixed in commit 983 (http://wiki.powerdns.com/projects/trac/changeset/983) and expedited
by Locaweb.com.br.

• Built-in webserver logs errors more verbosely. Closes ticket 82
(http://wiki.powerdns.com/projects/trac/ticket/82), gixed in commit 991
(http://wiki.powerdns.com/projects/trac/changeset/991).

• Queries containing ’@’ no longer flood the logs. Addressed in commit 1014
(http://wiki.powerdns.com/projects/trac/changeset/1014).

• The build process now looks for PostgreSQL in more places. Implemented in commit 998
(http://wiki.powerdns.com/projects/trac/changeset/998), closes ticket 90
(http://wiki.powerdns.com/projects/trac/ticket/90).

• Speedups in the BIND backend now mean large installations enjoy startup times up to 30 times faster
than with the original BIND nameserver. Many thanks to Massimo Bandinelli.

• BIND backend now offers full support for query logging, implemented in commit 1026
(http://wiki.powerdns.com/projects/trac/changeset/1026), commit 1029
(http://wiki.powerdns.com/projects/trac/changeset/1029).

• BIND backend named.conf parsing is now fully case-insensitive for domain names. This closes
Debian bug 406461, fixed in commit 1027 (http://wiki.powerdns.com/projects/trac/changeset/1027).

• IPv6 and IPv4 address parsing routines have been replaced, which should result in prettier output in
some cases. commit 962 (http://wiki.powerdns.com/projects/trac/changeset/962), commit 1012
(http://wiki.powerdns.com/projects/trac/changeset/1012) and others.

• 5 new regression tests have been added to insure old bugs do not return.

18

Chapter 1. The PowerDNS dynamic nameserver

• Fix small issues with very modern compilers and BOOST snapshots. Noted by Marcus Rueckert,
addressed in commit 954 (http://wiki.powerdns.com/projects/trac/changeset/954), commit 964
(http://wiki.powerdns.com/projects/trac/changeset/964) commit 965
(http://wiki.powerdns.com/projects/trac/changeset/965), commit 1003
(http://wiki.powerdns.com/projects/trac/changeset/1003).

1.3.8. Recursor version 3.1.4

Released the 13th of November 2006.

This release contains almost no new features, but consists mostly of minor and major bug fixes. It also
addresses two major security issues, which makes this release a highly recommended upgrade.

Security issues:

• Large TCP questions followed by garbage could cause the recursor to crash. This critical security
issue has been assigned CVE-2006-4251, and is fixed in commit 915
(http://wiki.powerdns.com/projects/trac/changeset/915). More information can be found in Section
1.5.

• CNAME loops with zero second TTLs could cause crashes in some conditions. These loops could be
constructed by malicious parties, making this issue a potential denial of service attack. This security
issue has been assigned CVE-2006-4252 and is fixed by commit 919
(http://wiki.powerdns.com/projects/trac/changeset/919). More information can be found in Section
1.6. Many thanks to David Gavarret for helping pin down this problem.

Bugs:

• On certain error conditions, PowerDNS would neglect to close a socket, which might therefore
eventually run out. Spotted by Stefan Schmidt, fixed in commits 892
(http://wiki.powerdns.com/projects/trac/changeset/892), 897
(http://wiki.powerdns.com/projects/trac/changeset/897), 899
(http://wiki.powerdns.com/projects/trac/changeset/899).

• Some nameservers (including PowerDNS in rare circumstances) emit a SOA record in the authority
section. The recursor mistakenly interpreted this as an authoritative "NXRRSET". Spotted by Bryan
Seitz, fixed in commit 893 (http://wiki.powerdns.com/projects/trac/changeset/893).

• In some circumstances, PowerDNS could end up with a useless (not working, or no longer working)
set of nameserver records for a domain. This release contains logic to invalidate such broken NSSETs,
without overloading authoritative servers. This problem had previously been spotted by Bryan Seitz,
’Cerb’ and Darren Gamble. Invalidations of NSSETs can be plotted using the "nsset-invalidations"
metric, available through rec_control get. Implemented in commit 896

19

Chapter 1. The PowerDNS dynamic nameserver

(http://wiki.powerdns.com/projects/trac/changeset/896) and commit 901
(http://wiki.powerdns.com/projects/trac/changeset/901).

• PowerDNS could crash while dumping the cache using rec_control dump-cache. Reported by
Wouter of WideXS and Stefan Schmidt and many others, fixed in commit 900
(http://wiki.powerdns.com/projects/trac/changeset/900).

• Under rare circumstances (depleted TCP buffers), PowerDNS might send out incomplete questions to
remote servers. Additionally, on big-endian systems (non-Intel and non-AMD generally), sending out
large TCP answers questions would not work at all, and possibly crash. Brought to our attention by
David Gavarret, fixed in commit 903 (http://wiki.powerdns.com/projects/trac/changeset/903).

• The recursor contained the potential for a dead-lock processing an invalid domain name. It is not
known how this might be triggered, but it has been observed by ’Cerb’ on #powerdns. Several
dead-locks where PowerDNS consumed all CPU, but did not answer questions, have been reported in
the past few months. These might be fixed by commit 904
(http://wiki.powerdns.com/projects/trac/changeset/904).

• IPv6 ’allow-from’ matching had problems with the least significant bits, sometimes allowing
disallowed addresses, but mostly disallowing allowed addresses. Spotted by Wouter from WideXS,
fixed in commit 916 (http://wiki.powerdns.com/projects/trac/changeset/916).

Improvements:

• PowerDNS has support to drop answers from so called ’delegation only’ zones. A statistic
("dlg-only-drops") is now available to plot how often this happens. Implemented in commit 890
(http://wiki.powerdns.com/projects/trac/changeset/890).

• Hint-file parameter was mistakenly named "hints-file" in the documentation. Spotted by my Marco
Davids, fixed in commit 898 (http://wiki.powerdns.com/projects/trac/changeset/898).

• rec_control quit should be near instantaneous now, as it no longer meticulously cleans up memory
before exiting. Problem spotted by Darren Gamble, fixed in commit 914
(http://wiki.powerdns.com/projects/trac/changeset/914), closing ticket 84
(http://wiki.powerdns.com/projects/trac/ticket/84).

• init.d script no longer refers to the Recursor as the Authoritative Server. Spotted by Wouter of
WideXS, fixed in commit 913 (http://wiki.powerdns.com/projects/trac/changeset/913).

• A potentially serious warning for users of the GNU C Library version 2.5 was fixed. Spotted by
Marcus Rueckert, fixed in commit 920 (http://wiki.powerdns.com/projects/trac/changeset/920).

1.3.9. Recursor version 3.1.3

Released the 12th of September 2006.

Compared to 3.1.2, this release again consists of a number of mostly minor bug fixes, and some slight
improvements.

20

Chapter 1. The PowerDNS dynamic nameserver

Many thanks are again due to Darren Gamble who together with his team has discovered many
misconfigured domains that do work with some other name servers. DNS has long been tolerant of
misconfigurations, PowerDNS intends to uphold that tradition. Almost all of the domains found by
Darren now work as well in PowerDNS as in other name server implementations.

Thanks to some recent migrations, this release, or something very close to it, is powering over 40 million
internet connections that we know of. We appreciate hearing about succesful as well as unsuccesful
migrations, please feel free to notify pdns.bd@powerdns.com of your experiences, good or bad.

Bug-fixes:

• The MThread default stack size was too small, which led to problems, mostly on 64-bit platforms.
This stack size is now configurable using the stack-size setting should our estimate be off. Discovered
by Darren Gamble, Sten Spans and a number of others. Fixed in commit 868
(http://wiki.powerdns.com/projects/trac/changeset/868).

• Plug a small memory leak discovered by Kai and Darren Gamble, fixed in commit 870
(http://wiki.powerdns.com/projects/trac/changeset/870).

• Switch from the excellent nedmalloc to dlmalloc, based on advice by the nedmalloc author.
Nedmalloc is optimised for multithreaded operation, whereas the PowerDNS recursor is single
threaded. The version of nedmalloc shipped contained a number of possible bugs, which are probably
resolved by moving to dlmalloc. Some reported crashes on hitting 2G of allocated memory on 64 bit
systems might be solved by this switch, which should also increase performance. See commit 873
(http://wiki.powerdns.com/projects/trac/changeset/873) for details.

Improvements:

• The cache is now explicitly aware of the difference between authoritative and unauthoritative data,
allowing it to deal with some domains that have different data in the parent zone than in the
authoritative zone. Patch in commit 867 (http://wiki.powerdns.com/projects/trac/changeset/867).

• No longer try to parse DNS updates as if they were queries. Discovered and fixed by Jan Gyselinck,
fix in commit 871 (http://wiki.powerdns.com/projects/trac/changeset/871).

• Rebalance logging priorities for less log cluttering and add IP address to a remote server error
message. Noticed and fixed by Jan Gyselinck (commit 877
(http://wiki.powerdns.com/projects/trac/changeset/877)).

• Add logging-facility setting, allowing syslog to send PowerDNS logging to a separate file. Added in
commit 871 (http://wiki.powerdns.com/projects/trac/changeset/871).

1.3.10. Recursor version 3.1.2

Released Monday 26th of June 2006.

21

Chapter 1. The PowerDNS dynamic nameserver

Compared to 3.1.1, this release consists almost exclusively of bug-fixes and speedups. A quick update is
recommended, as some of the bugs impact operators of authoritative zones on the internet. This version
has been tested by some of the largest internet providers on the planet, and is expected to perform well
for everybody.

Many thanks are due to Darren Gamble, Stefan Schmidt and Bryan Seitz who all provided excellent
feedback based on their large-scale tests of the recursor.

Bug-fixes:

• Internal authoritative server did not differentiate between ’NXDOMAIN’ and ’NXRRSET’, in other
words, it would answer ’no such host’ when an AAAA query came in for a domain that did exist, but
did not have an AAAA record. This only affects users with auth-zones configured. Discovered by
Bryan Seitz, fixed in commit 848 (http://wiki.powerdns.com/projects/trac/changeset/848).

• ANY queries for hosts where nothing was present in the cache would not work. This did not cause real
problems as ANY queries are not reliable (by design) for anything other than debugging, but did slow
down the nameserver and cause unnecessary load on remote nameservers. Fixed in commit 854
(http://wiki.powerdns.com/projects/trac/changeset/854).

• When exceeding the configured maximum amount of TCP sessions, TCP support would break and the
nameserver would waste CPU trying to accept TCP connections on UDP ports. Noted by Bryan Seitz,
fixed in commit 849 (http://wiki.powerdns.com/projects/trac/changeset/849).

• DNS queries come in two flavours: recursion desired and non-recursion desired. The latter is not very
useful for a recursor, but is sometimes (erroneously) used by monitoring software or loadbalancers to
detect nameserver availability. A non-rd query would not only not recurse, but also not query
authoritative zones, which is confusing. Fixed in commit 847
(http://wiki.powerdns.com/projects/trac/changeset/847).

• Non-standard DNS TCP queries, that did occur however, could drive the recursor to 100% CPU usage
for extended periods of time. This did not disrupt service immediately, but does waste a lot of CPU,
possibly exhausting resources. Discovered by Bryan Seitz, fixed in commit 858
(http://wiki.powerdns.com/projects/trac/changeset/858), which is post-3.1.2-rc1.

• The PowerDNS recursor did not honour the rare but standardised ’ANY’ query class (normally ’ANY’
refers to the query type, not class), upsetting the Wildfire Jabber server. Discovered and debugged by
Daniel Nauck, fixed in commit 859 (http://wiki.powerdns.com/projects/trac/changeset/859), which is
post-3.1.2-rc1.

• Everybody’s favorite, when starting up under high load, a bogus line of statistics was sometimes
logged. Fixed in commit 851 (http://wiki.powerdns.com/projects/trac/changeset/851).

• Remove some spurious debugging output on dropping a packet by an unauthorized host. Discovered
by Kai. Fixed in commit 854 (http://wiki.powerdns.com/projects/trac/changeset/854).

Improvements:

• Misconfigured domains, with a broken nameserver in the parent zone, should now work better.
Changes motivated and suggested by Darren Gamble. This makes PowerDNS more compliant with

22

Chapter 1. The PowerDNS dynamic nameserver

RFC 2181 by making it prefer authoritative data over non-authoritative data. Implemented in commit
856 (http://wiki.powerdns.com/projects/trac/changeset/856).

• PowerDNS can now listen on multiple ports, using the local-address setting. Added in commit 845
(http://wiki.powerdns.com/projects/trac/changeset/845).

• A number of speedups which should have a noticeable impact, implemented in commits 850
(http://wiki.powerdns.com/projects/trac/changeset/850), 852
(http://wiki.powerdns.com/projects/trac/changeset/852), 853
(http://wiki.powerdns.com/projects/trac/changeset/853), 855
(http://wiki.powerdns.com/projects/trac/changeset/855)

• The recursor now works around an issue with the Linux kernel 2.6.8, as shipped by Debian. Fixed by
Christof Meerwald in commit 860 (http://wiki.powerdns.com/projects/trac/changeset/860), which is
post 3.1.2-rc1.

1.3.11. Recursor version 3.1.1

Warning

3.1.1 is identical to 3.1 except for a bug in the packet chaining code which would
mainly manifest itself for IPv6 enabled Konqueror users with very fast connections
to their PowerDNS installation. However, all 3.1 users are urged to upgrade to
3.1.1. Many thanks to Alessandro Bono for his quick aid in solving this problem.

Released on the 23rd of May 2006. Many thanks are due to the operators of some of the largest internet
access providers in the world, each having many millions of customers, who have tested the various 3.1
pre-releases for suitability. They have uncovered and helped fix bugs that could impact us all, but are
only (quickly) noticeable with such vast amounts of DNS traffic.

After version 3.0.1 has proved to hold up very well under tremendous loads, 3.1 adds important new
features:

• Ability to serve authoritative data from ’BIND’ style zone files (using auth-zones statement).

• Ability to forward domains so configured to external servers (using forward-zones).

• Possibility of ’serving’ the contents of /etc/hosts over DNS, which is very well suited to simple
domestic router/DNS setups. Enabled using export-etc-hosts.

• As recommended by recent standards documents, the PowerDNS recursor is now authoritative for
RFC-1918 private IP space zones by default (suggested by Paul Vixie).

• Full outgoing IPv6 support (off by default) with IPv6 servers getting equal treatment with IPv4,
nameserver addresses are chosen based on average response speed, irrespective of protocol.

23

Chapter 1. The PowerDNS dynamic nameserver

• Initial Windows support, including running as a service (’NET START "POWERDNS
RECURSOR"’). rec_channel is still missing, the rest should work. Performance appears to be below
that of the UNIX versions, this situation is expected to improve.

Bug fixes:

• No longer send out SRV and MX record priorities as zero on big-endian platforms (UltraSPARC).
Discovered by Eric Sproul, fixed in commit 773
(http://wiki.powerdns.com/projects/trac/changeset/773).

• SRV records need additional processing, especially in an Active Directory setting. Reported by
Kenneth Marshall, fixed in commit 774 (http://wiki.powerdns.com/projects/trac/changeset/774).

• The root-records were not being refreshed, which could lead to problems under inconceivable
conditions. Fixed in commit 780 (http://wiki.powerdns.com/projects/trac/changeset/780).

• Fix resolving domain names for nameservers with multiple IP addresses, with one of these addresses
being lame. Other nameserver implementations were also unable to resolve these domains, so not a
big bug. Fixed in commit 780 (http://wiki.powerdns.com/projects/trac/changeset/780).

• For a period of 5 minutes after expiring a negative cache entry, the domain would not be re-cached
negatively, leading to a lot of duplicate outgoing queries for this short period. This fix has raised the
average cache hit rate of the recursor by a few percent. Fixed in commit 783
(http://wiki.powerdns.com/projects/trac/changeset/783).

• Query throttling was not aggressive enough and not all sorts of queries were throttled. Implemented in
commit 786 (http://wiki.powerdns.com/projects/trac/changeset/786).

• Fix possible crash during startup when parsing empty configuration lines (commit 807
(http://wiki.powerdns.com/projects/trac/changeset/807)).

• Fix possible crash when the first query after wiping a cache entry was for the just deleted entry. Rare
in production servers. Fixed in commit 820 (http://wiki.powerdns.com/projects/trac/changeset/820).

• Recursor would send out differing TTLs when receiving a misconfigured, standards violating, RRSET
with different TTLs. Implement fix as mandated by RFC 2181, paragraph 5.2. Reported by Stephen
Harker (commit 819 (http://wiki.powerdns.com/projects/trac/changeset/819)).

• The top-remotes would list remotes duplicately, once per source port. Discovered by Jorn
Ekkelenkamp, fixed in commit 827 (http://wiki.powerdns.com/projects/trac/changeset/827), which is
post 3.1-pre1.

• Default allow-from allowed queries from fe80::/16, corrected to fe80::/10. Spotted by Niels Bakker,
fixed in commit 829 (http://wiki.powerdns.com/projects/trac/changeset/829), which is post 3.1-pre1.

• While PowerDNS blocks failing queries quickly, multiple packets could briefly be in flight for the
same domain and nameserver. This situation is now explicitly detected and queries are chained to
identical queries already in flight. Fixed in commit 833
(http://wiki.powerdns.com/projects/trac/changeset/833) and commit 834
(http://wiki.powerdns.com/projects/trac/changeset/834), post 3.1-pre1.

24

Chapter 1. The PowerDNS dynamic nameserver

Improvements:

• ANY queries are now implemented as in other nameserver implementations, leading to a decrease in
outgoing queries. The RFCs are not very clear on desired behaviour, what is implemented now saves
bandwidth and CPU and brings us in line with existing practice. Previously ANY queries were not
cached by the PowerDNS recursor. Implemented in commit 784
(http://wiki.powerdns.com/projects/trac/changeset/784).

• rec_control was very sparse in its error reporting, and user unfriendly as well. Reported by Erik Bos,
fixed in commit 818 (http://wiki.powerdns.com/projects/trac/changeset/818) and commit 820
(http://wiki.powerdns.com/projects/trac/changeset/820).

• IPv6 addresses were printed in a non-standard way, fixed in commit 788
(http://wiki.powerdns.com/projects/trac/changeset/788).

• TTLs of records are now capped at two weeks, commit 820
(http://wiki.powerdns.com/projects/trac/changeset/820).

• allow-from IPv4 netmasks now automatically work for IP4-to-IPv6 mapper IPv4 addresses, which
appear when running on the wildcard :: IPv6 address. Lack of feature noted by Marcus ’darix’
Rueckert. Fixed in commit 826 (http://wiki.powerdns.com/projects/trac/changeset/826), which is post
3.1-pre1.

• Errors before daemonizing are now also sent to syslog. Suggested by Marcus ’darix’ Rueckert. Fixed
in commit 825 (http://wiki.powerdns.com/projects/trac/changeset/825), which is post 3.1-pre1.

• When launching without any form of configured network connectivity, all root-servers would be
cached as ’down’ for some time. Detect this special case and treat it as a resource-constraint, which is
not accounted against specific nameservers. Spotted by Seth Arnold, fixed in commit 835
(http://wiki.powerdns.com/projects/trac/changeset/835), which is post 3.1-pre1.

• The recursor now does not allow authoritative servers to keep supplying its own NS records into
perpetuity, which causes problems when a domain is redelegated but the old authorative servers are
not updated to this effect. Noticed and explained at length by Darren Gamble of Shaw
Communications, addressed by commit 837 (http://wiki.powerdns.com/projects/trac/changeset/837),
which is post 3.1-pre2.

• Some operators may want to follow RFC 2181 paragraph 5.2 and 5.4. This harms performance and
does not solve any real problem, but does make PowerDNS more compliant. If you want this, enable
auth-can-lower-ttl. Implemented in commit 838
(http://wiki.powerdns.com/projects/trac/changeset/838), which is post 3.1-pre2.

1.3.12. Recursor version 3.0.1

Released 25th of April 2006, download (http://www.powerdns.com/en/downloads.aspx).

This release consists of nothing but tiny fixes to 3.0, including one with security implications. An
upgrade is highly recommended.

25

Chapter 1. The PowerDNS dynamic nameserver

• Compilation used both cc and gcc, leading to the possibility of compiling with different compiler
versions (commit 766 (http://wiki.powerdns.com/projects/trac/changeset/766)).

• rec_control would leave files named lsockXXXXXX around in the configured socket-dir. Operators
may wish to remove these files from their socket-dir (often /var/run), quite a few might have
accumulated already (commit 767 (http://wiki.powerdns.com/projects/trac/changeset/767)).

• Certain malformed packets could crash the recursor. As far as we can determine these packets could
only lead to a crash, but as always, there are no guarantees. A quick upgrade is highly recommended
(commits 760 (http://wiki.powerdns.com/projects/trac/changeset/760), 761
(http://wiki.powerdns.com/projects/trac/changeset/761)). Reported by David Gavarret.

• Recursor would not distinguish between NXDOMAIN and NXRRSET (commit 756
(http://wiki.powerdns.com/projects/trac/changeset/756)). Reported and debugged by Jorn
Ekkelenkamp.

• Some error messages and trace logging statements were improved (commits 756
(http://wiki.powerdns.com/projects/trac/changeset/756), 758
(http://wiki.powerdns.com/projects/trac/changeset/758), 759
(http://wiki.powerdns.com/projects/trac/changeset/759)).

• stderr was closed during daemonizing, but not dupped to /dev/null, leading to slight chance of odd
behaviour on reporting errors (commit 757 (http://wiki.powerdns.com/projects/trac/changeset/757))

Operating system specific fixes:

• The stock Debian sarge Linux kernel, 2.6.8, claims to support epoll but fails at runtime. The epoll
self-testing code has been improved, and PowerDNS will fall back to a select based multiplexer if
needed (commit 758 (http://wiki.powerdns.com/projects/trac/changeset/758)) Reported by Michiel
van Es.

• Solaris 8 compilation and runtime issues were addressed. See the README for details (commit 765
(http://wiki.powerdns.com/projects/trac/changeset/765)). Reported by Juergen Georgi and Kenneth
Marshall.

• Solaris 10 x86_64 compilation issues were addressed (commit 755
(http://wiki.powerdns.com/projects/trac/changeset/755)). Reported and debugged by Eric Sproul.

1.3.13. Recursor version 3.0

Released 20th of April 2006, download (http://www.powerdns.com/en/downloads.aspx).

This is the first separate release of the PowerDNS Recursor. There are many reasons for this, one of the
most important ones is that previously we could only do a release when both the recursor and the
authoritative nameserver were fully tested and in good shape. The split allows us to release new versions
when each part is ready.

26

Chapter 1. The PowerDNS dynamic nameserver

Now for the real news. This version of the PowerDNS recursor powers the network access of over two
million internet connections. Two large access providers have been running pre-releases of 3.0 for the
past few weeks and results are good. Furthermore, the various pre-releases have been tested nearly
non-stop with DNS traffic replayed at 3000 queries/second.

As expected, the 2 million househoulds shook out some very rare bugs. But even a rare bug happens once
in a while when there are this many users.

We consider this version of the PowerDNS recursor to be the most advanced resolver publicly available.
Given current levels of spam, phishing and other forms of internet crime we think no recursor should
offer less than the best in spoofing protection. We urge all operators of resolvers without proper spoofing
countermeasures to consider PowerDNS, as it is a Better Internet Nameserver Daemon.

A good article on DNS spoofing can be found here
(http://www.securesphere.net/download/papers/dnsspoof.htm). Some more information, based on a
previous version of PowerDNS, can be found on the PowerDNS development blog
(http://blog.netherlabs.nl/articles/2006/04/14/holy-cow-1-3-million-additional-ip-addresses-served-by-
powerdns).

Warning

Because of recent DNS based denial of service attacks, running an open recursor
has become a security risk. Therefore, unless configured otherwise this version of
PowerDNS will only listen on localhost, which means it does not resolve for hosts
on your network. To fix, configure the local-address setting with all addresses you
want to listen on. Additionally, by default service is restricted to RFC 1918 private
IP addresses. Use allow-from to selectively open up the recursor for your own
network. See Section 12.1 for details.

Important new features of the PowerDNS recursor 3.0:

• Best spoofing protection and detection we know of. Not only is spoofing made harder by using a new
network address for each query, PowerDNS detects when an attempt is made to spoof it, and
temporarily ignores the data. For details, see Section 12.4.1.

• First nameserver to benefit from epoll/kqueue/Solaris completion ports event reporting framework, for
stellar performance.

• Best statistics of any recursing nameserver we know of, see Section 12.5.

• Last-recently-used based cache cleanup algorithm, keeping the ’best’ records in memory

• First class Solaris support, built on a ’try and buy’ Sun CoolThreads T 2000.

• Full IPv6 support, implemented natively.

27

Chapter 1. The PowerDNS dynamic nameserver

• Access filtering, both for IPv4 and IPv6.

• Experimental SMP support for nearly double performance. See Section 12.3.

Many people helped package and test this release. Jorn Ekkelenkamp of ISP-Services helped find the
’8000 SOAs’ bug and spotted many other oddities and XS4ALL (http://www.xs4all.nl) internet funded a
lot of the recent development. Joaquín M López Muñoz of the boost::multi_index_container was again of
great help.

1.3.14. Version 2.9.20

Released the 15th of March 2006

Besides adding OpenDBX, this release is mostly about fixing problems and speeding up the recursor.
This release has been made possible by XS4ALL (http://www.xs4all.nl) and True (http://true.nl). Thanks!

Furthermore, we are very grateful for the help of Andrew Pinski, who hacks on gcc, and of Joaquín M
López Muñoz, the author of boost::multi_index_container
(http://www.boost.org/libs/multi_index/doc/index.html). Without their near-realtime help this release
would’ve been delayed a lot. Thanks!

Bugs fixed in the recursor:

• Possible stability issues in the recursor on encountering errors (commit 532
(http://wiki.powerdns.com/projects/trac/changeset/532), commit 533
(http://wiki.powerdns.com/projects/trac/changeset/533))

• Memory leaks in recursor fixed (commit 534 (http://wiki.powerdns.com/projects/trac/changeset/534),
commit 572 (http://wiki.powerdns.com/projects/trac/changeset/572)). In a test 800 million real life
DNS packets have been sent to the recursor, representing several days of traffic from a major ISP,
memory use was high (500MB), but stable.

• Prune all data in PowerDNS - previously per-nameserver and per-query performance statistics were
kept around forever (commit 535 (http://wiki.powerdns.com/projects/trac/changeset/535))

• IPv6 additional processing was broken. Reported by Lionel Elie Mamane, who also provided a fix.
The problem was fixed differently in the end. commit 562
(http://wiki.powerdns.com/projects/trac/changeset/562).

• pdns_recursor did not shuffle answers since 2.9.19, leading to problems sending mail to the Hotmail
servers. Reported in ticket 54 (http://wiki.powerdns.com/projects/trac/ticket/54), fixed in commit 567
(http://wiki.powerdns.com/projects/trac/changeset/567).

• If a single nameserver had multiple IP addresses listed, PowerDNS would only use one of them. Noted
by Mark Martin, fixed in commit 570 (http://wiki.powerdns.com/projects/trac/changeset/570), who
depends on a domain with 4 nameserver IP addresses of which 2 are broken.

28

Chapter 1. The PowerDNS dynamic nameserver

Improvements to the recursor:

• Commits 535 (http://wiki.powerdns.com/projects/trac/changeset/535), 540
(http://wiki.powerdns.com/projects/trac/changeset/540), 541
(http://wiki.powerdns.com/projects/trac/changeset/541), 542
(http://wiki.powerdns.com/projects/trac/changeset/542), 543
(http://wiki.powerdns.com/projects/trac/changeset/543), 544
(http://wiki.powerdns.com/projects/trac/changeset/544), 545
(http://wiki.powerdns.com/projects/trac/changeset/545), 547
(http://wiki.powerdns.com/projects/trac/changeset/547) and 548
(http://wiki.powerdns.com/projects/trac/changeset/548), 574
(http://wiki.powerdns.com/projects/trac/changeset/574) all speed up the recursor by a large factor,
without altering the DNS algorithm.

• Move recursor to the incredible boost::multi_index_container (commit 580
(http://wiki.powerdns.com/projects/trac/changeset/580)). This brings a huge improvement in cache
pruning times.

• commit 549 (http://wiki.powerdns.com/projects/trac/changeset/549) and commit 550
(http://wiki.powerdns.com/projects/trac/changeset/550) work around gcc bug 24704
(http://gcc.gnu.org/bugzilla/show_bug.cgi?id=24704) if requested, which speeds up the recursor a lot,
but involves a dirty hack. Enable with ./configure --enable-gcc-skip-locking. No guarantees!

Bugs fixed in the authoritative nameserver:

• PowerDNS would no longer allow a ’/’ in domain names, fixed by commit 537
(http://wiki.powerdns.com/projects/trac/changeset/537), reported in ticket 48
(http://wiki.powerdns.com/projects/trac/ticket/48).

• Parameters to pdns_control notify-host were not checked, leading to possible crashes. Reported in
ticket 24 (http://wiki.powerdns.com/projects/trac/ticket/24), fixed in commit 565
(http://wiki.powerdns.com/projects/trac/changeset/565).

• On some compilers, processing of NAPTR records could cause the server to crash. Reported by Bernd
Froemel in ticket 29 (http://wiki.powerdns.com/projects/trac/ticket/29), fixed in commit 538
(http://wiki.powerdns.com/projects/trac/changeset/538).

• Backend errors could make the whole nameserver exit under some circumstances, notably using the
LDAP backend. Fixed in commit 583 (http://wiki.powerdns.com/projects/trac/changeset/583),
reported in ticket 62 (http://wiki.powerdns.com/projects/trac/ticket/62).

• Referrals were subtly broken by recent CNAME/Wildcard improvements, fixed in commit 539
(http://wiki.powerdns.com/projects/trac/changeset/539). Fix and other improvements sponsored by
True (http://true.nl).

• PowerDNS would try to insert records it has no knowledge about in slave zones, which did not work.
Reported in ticket 60 (http://wiki.powerdns.com/projects/trac/ticket/60), fixed in commit 566
(http://wiki.powerdns.com/projects/trac/changeset/566). A superior fix would be to implement the
relevant unknown record standard.

Improvements to the authoritative nameserver:

29

Chapter 1. The PowerDNS dynamic nameserver

• Pipebackend did not properly propagate the ABI version to its children, fixed in commit 546
(http://wiki.powerdns.com/projects/trac/changeset/546), reported by kickdaddy@gmail.com in ticket
45 (http://wiki.powerdns.com/projects/trac/ticket/45).

• OpenDBX (http://www.linuxnetworks.de/pdnsodbx/index.html) backend added (commit 559
(http://wiki.powerdns.com/projects/trac/changeset/559), commit 560
(http://wiki.powerdns.com/projects/trac/changeset/560), commit 561
(http://wiki.powerdns.com/projects/trac/changeset/561)) by Norbert Sendetzky. From the website: “
The OpenDBX backend enables it to fetch DNS information from every DBMS supported by the
OpenDBX library and combines the power of one of the best DNS server implementations with the
flexibility of the OpenDBX library. ” OpenDBX adds some other features like database failover.
Thanks Norbert!

• LDAP fixes as reported in ticket 37 (http://wiki.powerdns.com/projects/trac/ticket/37), fixed in commit
558 (http://wiki.powerdns.com/projects/trac/changeset/558), which maked pdns_control notify work.

• Arjo Hooimeijer added support for soa-refresh-default, soa-retry-default, soa-expire-default, which
were previously hardcoded. commit 563 (http://wiki.powerdns.com/projects/trac/changeset/563) and
fallout in commit 573 (http://wiki.powerdns.com/projects/trac/changeset/573) (thanks to Wolfram
Schlich).

Miscellaneous:

• Fixes for g++ 4.1. Compiling with 4.1 realizes notable speedups. commit 568
(http://wiki.powerdns.com/projects/trac/changeset/568), commit 569
(http://wiki.powerdns.com/projects/trac/changeset/569).

• PowerDNS now reports if it is running in 32 or 64 bit mode, useful for bi-arch users that need to know
if they are benefitting from their great processor (http://www.amd.com). commit 571
(http://wiki.powerdns.com/projects/trac/changeset/571).

• dnsscope compiles again, commit 551 (http://wiki.powerdns.com/projects/trac/changeset/551),
commit 564 (http://wiki.powerdns.com/projects/trac/changeset/564) (FreeBSD 64-bit time_t).

• dnsreplay_mindex compiles again, fixed by commit 572
(http://wiki.powerdns.com/projects/trac/changeset/572). Its performance, and the performance of the
recursor was improved by commit 559 (http://wiki.powerdns.com/projects/trac/changeset/559).

• Build scripts were added, mostly for internal use but we know some PowerDNS users build their own
packages too. commit 553 (http://wiki.powerdns.com/projects/trac/changeset/553), commit 554
(http://wiki.powerdns.com/projects/trac/changeset/554), commit 555
(http://wiki.powerdns.com/projects/trac/changeset/555), commit 556
(http://wiki.powerdns.com/projects/trac/changeset/556), commit 557
(http://wiki.powerdns.com/projects/trac/changeset/557).

• bootstrap script was not included in release. Thanks to Stefan Arentz for noticing. Fixed in commit
574 (http://wiki.powerdns.com/projects/trac/changeset/574).

30

Chapter 1. The PowerDNS dynamic nameserver

1.3.15. Version 2.9.19

Released 29th of October 2005.

As with other recent releases, the usage of PowerDNS appears to have skyrocketed. Informal, though
strict, measurements show that PowerDNS now powers around 50% of all German domains, and
somewhere in the order of 10-15% of the rest of the world. Furthermore, DNS is set to take a central role
in connecting Voice over IP providers, with PowerDNS offering a very good feature set for these ENUM
deployments. PowerDNS is already powering the E164.info ENUM zone and also acts as the backend
for a major VoIP provisioning platform.

Included in this release is the now complete packet parsing/generating, record parsing/generating
infrastructure. Furthermore, this framework is used by the recursor, hopefully making it very fast,
memory efficient and robust. Many records are now processed using a single line of code. This has made
the recursor a lot stricter in packet parsing, you will see some error messages which did not appear
before. Rest assured however that these only happen for queries which have no valid answer in any case.

Furthermore, support for DNSSEC records is available in the new infrastructure, although is should be
emphasised that there is more to DNSSEC than parsing records. There is no real support for DNSSEC
(yet).

Additionally, the BIND Backend has been replaced by what was up to now known as the
’Bind2Backend’. Initial benchmarking appears to show that this backend is faster, uses less memory and
has shorter startup times. The code is also shorter.

This release fixes a number of embarassing bugs and is a recommended upgrade.

Thanks are due to XS4ALL (http://www.xs4all.nl) who are supporting continuing development of
PowerDNS, the fruits of which can be found in this release already. Furthermore, a remarkable number
of people have helped report bugs, validate solutions or have submitted entire patches. Many thanks!

Improvements:

• dnsreplay now has a help message and has received further massive updates, making the code
substantially faster. It turns out that dnsreplay is often ’heavier’ than the PowerDNS process being
benchmarked.

• PowerDNS recursor no longer prints out its queries by default as most recursor deployments have too
much traffic for this to be useful.

• PowerDNS recursor is now able to read its root-hints from disk, which is useful to operate with
alternate roots, like the Open Root Server Network (http://www.orsn.org). See Chapter 12.

• PowerDNS can now send out old-fashioned root-referrals when queried for domains for which it is not
authoritative. Wastes some bandwidth but may solve incoming query floods if domains are delegated
to you for which you are not authoritative, but which are queried by broken recursors.

31

Chapter 1. The PowerDNS dynamic nameserver

• PowerDNS now prints out a warning when running with legacy LinuxThreads implementation instead
of the high performance NPTL library, see Section 9.2. commit 455
(http://wiki.powerdns.com/projects/trac/changeset/455).

• A lot of superfluous calls to gettimeofday() have been removed, making PowerDNS and especially the
recursor faster. Suggested by Kai.

• SPF records are now supported natively. commit 472
(http://wiki.powerdns.com/projects/trac/changeset/472), closing ticket 22
(http://wiki.powerdns.com/projects/trac/ticket/22).

• Improved IPv6 ’bound to’ messages. Thanks to Niels Bakker, Wichert Akkerman and Gerty de Wolf
for suggestions.

• Separate graphs can now be made of IPv6 queries and answers. commit 485
(http://wiki.powerdns.com/projects/trac/changeset/485).

• Out of zone additional processing is now on by default to better comply with standards. commit 487
(http://wiki.powerdns.com/projects/trac/changeset/487).

• Regression tests have been expanded to deal with more record types (SRV, NAPTR, TXT, duplicate
SRV).

• Improved query-logging in Bindbackend, which can be used for debugging purposes.

• Dropped libpcap dependency, making compilation easier

• pdns_control now has a help message.

• Add RRSIG, DNSKEY, DS and NSEC records for DNSSEC-bis to new parser infrastructure.

• Recursor now honours EDNS0 allowing it to send out larger answers.

Bugs fixed:

• Domain name validation has been made a lot stricter - it turns out PostgreSQL was interpreting some
(corrupt) domain names as unicode. Tested and suggested by Register.com (commit 451
(http://wiki.powerdns.com/projects/trac/changeset/451)).

• LDAP backend did not compile (commits 452 (http://wiki.powerdns.com/projects/trac/changeset/452),
453 (http://wiki.powerdns.com/projects/trac/changeset/453)) due to partially applied patch (Norbert
Sendetzky)

• Incoming zone transfers work reliably again. Fixed in commit 460
(http://wiki.powerdns.com/projects/trac/changeset/460) and beyond. And commit 523
(http://wiki.powerdns.com/projects/trac/changeset/523) - closing Debian bug 330184.

• Recent g++ versions exposed a mistake in the PowerDNS recursor cache pruning code, causing
random crashes. Fixed in commit 465 (http://wiki.powerdns.com/projects/trac/changeset/465).
Reported by several Red Hat users.

• PowerDNS recursor, and MTasker in general, did not work on Solaris. Patch by Juergen Ilse, commit
471 (http://wiki.powerdns.com/projects/trac/changeset/471). Also moved most of PowerDNS over to
uint32_t style typedefs, which eases compilation problems on Solaris, commit 477
(http://wiki.powerdns.com/projects/trac/changeset/477).

32

Chapter 1. The PowerDNS dynamic nameserver

• Bindbackend2 did not properly search its include path for $INCLUDE statements. Noted by Mark
Bergsma, commit 474 (http://wiki.powerdns.com/projects/trac/changeset/474).

• Bindbackend did not notice changed zones, this problem has been fixed by the move to Bind2.

• Pipebackend did not clean up, leading to an additional pipe backend per AXFR or pdns_control
reload. Discovered by Marc Jauvin, fixed by commit 525
(http://wiki.powerdns.com/projects/trac/changeset/525).

• Bindbackend (both old and current versions) did not honour ’include’ statements in named.conf on
pdns_control rediscover. Noted by Marc Jauvin, fixed by commit 526
(http://wiki.powerdns.com/projects/trac/changeset/526).

• Zone transfers were sometimes shuffled, which wastes useless time, commit 478
(http://wiki.powerdns.com/projects/trac/changeset/478).

• CNAMEs and Wildcards now work as in Bind, fixing many complaints, commit 487
(http://wiki.powerdns.com/projects/trac/changeset/487).

• NAPTR records were compressed, which would work, but was in violation of the RFC, commit 493.

• NAPTR records were not always parsed correctly from BIND zonefiles, fixed, commit 494.

• Geobackend needed additional include statement to compile on more recent Linux distrbutions,
commit 496.

1.3.16. Version 2.9.18

Released on the 16th of July 2005.

The ’8 million domains’ release, which also marks the battle readiness of the PowerDNS Recursor. The
latest improvements have been made possible by financial support and contributions by Register.com
(http://register.com) and XS4ALL (http://www.xs4all.nl/). Thanks!

This release brings a number of new features (vastly improved recursor, Generic Oracle Support, DNS
analysis and replay tools, and more) but also has a new build dependency, the Boost library
(http://www.boost.org) (version 1.31 or higher).

Currently several big ISPs are evaluating the PowerDNS recursor for their resolving needs, some of them
have switched already. In the course of testing, over 350 million actual queries have been recorded and
replayed, the answers turn out to be satisfactorily.

This testing has verified that the pdns recursor, as shipped in this release, can stand up to heavy duty ISP
loads (over 20000 queries/second) and in fact does so better than major other nameservers, giving more
complete answers and being faster to boot.

33

Chapter 1. The PowerDNS dynamic nameserver

We invite ISPs who note recursor problems to record their problematic traffic and replay it using the
tools described in Chapter 20 to discover if PowerDNS does a better job, and to let us know the results.

Additionally, the bind2backend is almost ready to replace the stock bind backend. If you run with Bind
zones, you are cordially invited to substitute ’launch=bind2’ for ’launch=bind’. This will happen
automatically in 2.9.19!

In other news, the entire Wikipedia constellation now runs on PowerDNS using the Geo Backend!
Thanks to Mark Bergsma for keeping us updated.

There are two bugs with security implications, which only apply to installations running with the LDAP
backend, or installations providing recursion to a limited range of IP addresses. If any of these apply to
you, an upgrade is highly advised:

• The LDAP backend did not properly escape all queries, allowing it to fail and not answer questions.
We have not investigated further risks involved, but we advise LDAP users to update as quickly as
possible (Norbert Sendetzky, Jan de Groot)

• Questions from clients denied recursion could blank out answers to clients who are allowed recursion
services, temporarily. Reported by Wilco Baan. This would’ve made it possible for outsiders to blank
out a domain temporarily to your users. Luckily PowerDNS would send out SERVFAIL or Refused,
and not a denial of a domain’s existence.

General bugs fixed:

• TCP authoritative server would not relaunch a backend after failure (reported by Norbert Sendetzky)

• Fix backend restarting logic (reported, and fix suggested by Norbert Sendetzky)

• Launching identical backends multiple times, with different settings, did not work. Reported by Mario
Manno.

• Master/slave queries did not honour the query-local-address setting. Spotted by David Levy of
Register.com. The fix also randomises the local port used, slightly improving security.

Compilation fixes:

• Fix compile on Solaris, they define ’PC’ for some reason. Reported by Eric Yiu.

• PowerDNS recursor would not compile on FreeBSD due to Linux specific defines, as reported in
cvstrac ticket 26 (Ralf van der Enden)

• Several 64 bits issues have been fixed, especially in the Logging subsystem.

• SSQLite would fail to compile on recent Debian systems (Matthijs Mohlmann)

• Generic MySQL would not compile on 64-bit platforms.

34

Chapter 1. The PowerDNS dynamic nameserver

Improvements:

• PowerDNS now reports stray command line arguments, like when running ’--local-port 5300’ instead
of ’--local-port=5300’. Reported by Christian Welzel.

• We now warn against erroneous logging-facility specification, ie specifying an unknown facility.

• --version now outputs gcc version used, so we can tell people 2.95 is no longer supported.

• Extended regression tests, moved them to the new ’sdig’ tool (see below).

• Bind2backend is now blazingly fast, and highly memory efficient to boot. As a special bonus it can
read gzipped zones directly. The ’.NET’ zone is hosted using 401MB of memory, the same size as the
zone on disk.

• The Pipe Backend has been improved such that it can send out different answers based on the IP
address the question was received ON. See Section A.1.1 for how this changed the Pipe Backend
protocol. Note that you need to set pipebackend-abi-version to benefit from this change, existing
clients are not affected. Change and documentation contributed by Marc Jauvin of Register4Less.

• LDAP backend has been updated (Norbert Sendetzky).

Recursor improvements and fixes. See Chapter 11 for details. The changes below mean that all of the
caveats listed for the recursor have now been addressed.

• After half an hour of uptime, the entire cache would be pruned for each packet, which is a tad slow. It
now appears the pdns recursor is among the faststest around.

• Under high loads, or when unlucky, some query mthreads would get ’stuck’, and show up in the
statistics as eternally running queries.

• Lots of redundant gettimeofday() and time() calls were removed, which has resulted in a measurable
speedup.

• pdns_recursor can now listen on several addresses simultaneously.

• Now supports setuid and setgid operation to allow running as a less privileged user (Bram Vandoren)

• Return code of pdns_recursor binary did not make sense (Matthijs Mohlmann and Thomas Hood)

• Timeouts and errors are now split out in statistics.

• Many people reported broken statistics, it turned out that no statistics were being reported if there had
been no questions to base them on. We now log a message to that effect.

• Add query-local-address support, which allows the recursor to send questions from a specific IP
address. Useful for anycast setups.

• Add outgoing TCP query support and proper truncated answer support. Needed for Worldnic Denial
of Service protection, which sends out truncated packets to force clients to connect over TCP, which
prevents spoofing.

• Properly truncate our own answers.

• Improve our TCP answers by using writev, which is slightly friendlier to the network.

• On FreeBSD, TCP errors could cause the recursor to exit suddenly due to a SIGPIPE signal.

35

Chapter 1. The PowerDNS dynamic nameserver

• Maximum number of simultaneous client TCP connections can now be limited with the
max-tcp-clients setting.

• Add agressive timeouts for TCP clients to make sure resources are not wasted. Defaults to two
seconds, can be configured with the client-tcp-timeout setting.

Backend fixes:

• SQLite backend would not slave properly (Darron Broad)

• Generic MySQL would not compile on 64-bit platforms.

New technology:

• Added the new DNS parser logic, called MOADNSParser. Completely modular, every memory access
checked.

• ’sdig’, a simple dig workalike with ’canonical’ output, which is used for the regression tests. Based on
the new DNS parser logic.

• dnswasher, dnsreplay and dnsscope, all DNS analysis tools. See Chapter 20 for more details.

• Generic Oracle Backend, sponsored by Register.COM. See Section A.5.3.

1.3.17. Version 2.9.17

See the new timeline (http://wiki.powerdns.com/projects/trac/timeline) for progress reports.

The ’million domains’ release - PowerDNS has now firmly established itself as a major player with the
unofficial count (ie, guesswork) now at over two million PowerDNS domains! Also, the GeoBackend has
been tested by a big website and may soon see wider deployment. Thanks to Mark Bergsma for
spreading the word!

It is also a release with lots of changes and fixes. Take care when deploying!

Security issues:

• PowerDNS could be temporarily DoSed using a random stream of bytes. Reported cause of this has
been fixed.

Enhancements:

36

Chapter 1. The PowerDNS dynamic nameserver

• Reported version can be changed, or removed - see the "version-string" setting.

• Duplicate MX records are now no longer considered duplicate if their priorities differ. Some people
need this feature for spam filtering.

Bug fixes:

• NAPTR records can now be slaved, patch by Lorens Kockum.

• GMySQL now works on Solaris

• PowerDNS could be confused by questions with a %-sign in them - fixing cvstrac ticket #16 (reported
by dilinger at voxel.net)

• An authentication bug in the webserver was possibly fixed, please report if you were suffering from
this. Being unable to authenticate to the webserver was what you would’ve noticed.

• Fix for cvstrac ticket #2, PowerDNS could lose sync when sending out a very large number of
notifications. Excellent bug report by Martin Hoffman, who also improved our original bugfix.

• Fix the oldest PowerDNS bug in existence - under some circumstances, PowerDNS would log to
syslog one character at a time. This was cvstrac ticket #4

• HINFO records can now be slaved, fixing cvstrac ticket #8.

• pdns_recursor could block under some circumstances, especially in case of corrupt UDP packets.
Reported by Wichert Akkerman. Fix by Christopher Meer. This was cvstrac ticket #13.

• Large SOA serial numbers would sometimes be logged as a signed integer, leading to negative
numbers in the log.

• PowerDNS now fully supports 32 bit SOA serial numbers (thanks to Mark Bergsma), closing cvstrac
ticket #5.

• pdns_recursor --local-address help text was wrong.

• Very devious bug - PowerDNS did not clear its cache before sending out update notifications, leading
slaves to conclude there was no update to AXFR. Excellent debugging by mkuchar at wproduction.cz.

• Probably fixed cvstrac ticket #26, which caused pdns_recursor to fail on recent FreeBSD 5.3 systems.
Please check, I have no such system to test on.

• Geobackend did not get built for Debian.

1.3.18. Version 2.9.16

The ’it must still be Friday somewhere’ release. Massive number of fixes, portability improvements and
the new Geobackend by Mark Bergsma & friends.

New:

37

Chapter 1. The PowerDNS dynamic nameserver

• The Geobackend which makes it possible to send different answers to different IP ranges. Initial
documentation can be found in pdns/modules/geobackend/README.

• qgen query generation tool. Nearly completely undocumented and hard to build too, it requires Boost.
But very spiffy. Use cd pdns; make qgen to build it.

Bugfixes:

• The most reported bug ever was fixed. Zone2sql required the inclusion of unistd.h, except on Debian
unstable.

• PowerDNS tried to listen on its control "pipe" which does not work. Probably harmless, but might
have caused some oddities.

• The Packet Cache did not always set its TTL immediately, causing some packets to be inserted, even
when running with the cache disabled (Mark Bergsma).

• Valgrind found some unitialized reads, causing bogus values in the priority field when it was not
needed

• Valgrind found a bug in MTasker where we used delete instead of delete[].

• SOA serials and other parameters are unsigned. This means that very large SOA serial numbers would
be messed up (Michel Stol, Stefano Straus)

• PowerDNS left its controlsocket around after exit and reported confusing errors if a socket was
already in use.

• The recursor proxy did not work on big endian systems like SPARC and some MIPS processors
(Remco Post)

• We no longer dump core on processing LOC records on UltraSPARC (Andrew Mulholland supplied a
testing machine)

Improvements:

• MySQL can now connect to a specified port again (Chris Anderton)

• When running chroot()ed and with master or slave support active, PowerDNS needs to resolve domain
names to find slaves. This in turn may require access to certain libraries. Previously, these needed to be
available in the chroot directory but by forcing an initial lookup, these libraries are now loaded before
the chrooting.

• pdns_recursor was very slow after having done a larger number of queries because of the checks to see
if a query should be throttled. This is now done using a set which is a lot faster than the previous full
sequential scan.

• The throttling code may not have throttled as much as was configured.

• Yet another big LDAP update. The LDAP backend now loadbalances connections over several hosts
(Norbert Sendetzky)

• Updated b.root-servers.net address in the recursor

38

Chapter 1. The PowerDNS dynamic nameserver

1.3.19. Version 2.9.15

This release fixes up some of the shortcomings in 2.9.14, and adds some new features too.

Bugfixes:

• allow-recursion-override was on by default, it was meant to be off.

• Logging was still off in daemon mode, fixed.

• debian/rules forgot to build an sqllite package

• Recursor accidentally linked in MySQL - this was the result of an experiment with a persistent
recursor cache.

• The PowerDNS recursor had stability problems. It now sorts nameservers (roughly) by responsiveness.
The ’roughly’ part upset the sorting algorithm used, the speeds being sorted on changed during sorting.

• The recursor now outputs the nameserver average response times in trace mode

• LDAP compiles again.

Improvements:

• zone2sql can now accept - as a filename which causes it to read stdin. This allows the following to
work: dig axfr ds9a.nl | zone2sql --gmysql --zone=- | mysql pdns, which is a nice way to import a
zone.

• zone2sql now ignores duplicate SOA records which are identical - which also makes the above
possible.

• Remove libpqpp dependencies - since we now use the native C API for PostgreSQL

1.3.20. Version 2.9.14

Big release with the fix for the all important 2^30 seconds problem and a lot of other news.

• errno problems would cause compilation problems when using LDAP (Norbert Sendetzky)

• The Generic SQL backend could cause crashes on PostgreSQL when using pdns_control notify
(Georg Bauer)

• Debian compatible init.d script (Wichert Akkerman)

39

Chapter 1. The PowerDNS dynamic nameserver

• If using the master or slave features, pdns had the notion of eternity ending in 2038, except that due to
a thinko, eternity ended out to be the 10th of January 2004. This caused a loop to timeout immediately.
Many thanks to Jasper Spaans for spotting the bug within five minutes.

• Parts of the SOA field were not cannonicalized

• The loglevel could in fact cause nothing to be logged (Norbert Sendetzky)

Improvements:

• The recursor now chooses the fastest nameserver, which causes a big speedup!

• LDAP now has different lookup models

• Cleanups, better load distribution, better exception handling, zone2ldap improvements

• The recursor was somewhat chatty about TCP connections

• PostgreSQL now only depends on the C API and not on the deprecated C++ one

• PowerDNS can now fully overrule external zones when doing recursion. See Chapter 11.

1.3.21. Version 2.9.13

Big news! Windows is back! Our great friend Michel Stol found the time to update the PowerDNS code
so it works again under windows.

Furthermore, big thanks go out to Dell who quickly repaired my trusty laptop (http://ds9a.nl/dell-d800).

His changes:

• Generic SQLite support added

• Removed the ODBC backend, replaced it by the Generic ODBC Backend, which has all the cool
configurability of the Generic MySQL and PostgreSQL backends.

• The PowerDNS Recursor now runs as a Service. It defaults to running on port 5300, PowerDNS itself
is configured to expect the Recursor on port 5300 now.

• The PowerDNS Service is now known as ’PowerDNS’ to Windows.

• The Installer was redone, this time with NSIS2 (http://nsis.sf.net).

• General updates and fixes.

Other news:

40

Chapter 1. The PowerDNS dynamic nameserver

Note: There appears to be a problem with PowerDNS on Red Hat 7.3 with GCC 2.96 and
self-compiled binaries. The symptoms are that PowerDNS works on the foreground but fails as a
daemon. We’re working on it.

If you do note problems, let the list know, if you don’t, please do so as well. Tell us if you use the
RPM or compiled yourself.

It is known that not compiling in MySQL support helps solve the problem, but then you don’t have
MySQL.

There have been a number of reports on MySQL connections being dropped on FreeBSD 4.x, which
sometimes causes PowerDNS to give up and reload itself. To combat this, MySQL error messages have
been improved in some places in hopes of figuring out what is up. The initial indication is that MySQL
itself sometimes terminates the connection and, amazingly, that switching to a Unix domain socket
instead of TCP solves the problem.

Bug fixes:

• allow-axfr-ips did not work for individual IP addresses (bug & fix by Norbert Sendetzky)

Improvements:

• Opteron support! Thanks to Jeff Davey for providing a shell on an Opteron. The fixes should also help
PowerDNS on other platforms with a 64 bit userspace.

Btw, the PowerDNS team has a strong desire for an Opteron :-)

• pdns_recursor jumbles answers now. This means that you can do poor man’s roundrobin by supplying
multiple A, MX or AAAA records for a service, and get a random one on top each time. Interestingly,
this feature appeared out of nowhere, this change was made to the authoritative code but due to the
wonders of code-reuse had an effect on pdns_recursor too.

• Big LDAP cleanup. Support for TLS was added. Zone2LDAP also gained the ability to generate ldif
files containing a tree or a list of entries. (Norbert Sendetzky)

• Zone2sql is now somewhat clearer when reporting malformed line errors - it did not always include
the name of the file causing a problem, especially for big installations. Problem noted by Thom May.

• pdns_recursor now survives the expiration of all its root records, most often caused by prolonged
disconnection from the net.

41

Chapter 1. The PowerDNS dynamic nameserver

1.3.22. Version 2.9.12

Release rich in features. Work on Verisign oddities, addition of SQLite backend, pdns_recursor maturity.

New features:

• --version command (requested by Mike Benoit)

• delegation-only, a Verisign special.

• Generic SQLite (http://www.sqlite.org) support, by Michel ’Who da man?’ Stol. See Section A.7.

• init.d script for pdns_recursor

• Recursor now actually purges its cache, saving memory.

• Slave configuration now no longer falls over when presented with a NULL master

• Bindbackend2 now has supermaster support (Mark Bergsma, untested)

• Answers are now shuffled! It turns out a few recursors don’t do shuffling (pdns_recursor, djbdns), so
we do it now. Requested by Jorn Ekkelenkamp of ISP-Services. This means that if you have multiple
IP addresses for one host, they will be returned in differing order every once in a while.

Bugs:

• 0.0.0.0/0 didn’t use to work (Norbert Sendetzky)

• pdns_recursor would try to resolve IP address which to bind to, potentially causing chicken/egg
problem

• gpgsql no longer reports as gmysql (Sherwin Daganoto)

• SRV would not be parsed right from disk (Christof Meerwald)

• An AXFR from a zone hosted on the LDAP backend no longer transmits all the reverse entries too
(Norbert Sendetzky)

• PostgreSQL backend now does error checking. It would be a bit too trusting before.

Improvements, cleanups:

• PowerDNS now reports the numerical IP addresses it binds to instead of the, possibly, alphanumeric
names the operator passed.

• Removed only-soa hackery (noticed by Norbert Sendetzky)

• Debian packaging fixes (Wichert Akkerman)

• Some parameter descriptions were improved.

• Cleanups by Norbert: getAuth moved to chopOff, arguments::contains massive cleanup, more.

42

Chapter 1. The PowerDNS dynamic nameserver

1.3.23. Version 2.9.11

Yet another iteration, hopefully this will be the last silly release.

Warning

There has been a change in behaviour whereby disable-axfr does what it means
now! From now on, setting allow-axfr-ips automatically disables AXFR from
unmentioned subnets.

This release enables AXFR again, disable-axfr did the opposite of what it claimed. Furthermore, the
pdns_recursor now cleans its cache, which should save some memory in the long run. Norbert
contributed some small LDAP work which should come in useful in the future.

1.3.24. Version 2.9.10

Small bugfixes, LDAP update. Released 3rd of July 2003. Apologies for the long delay, real life keeps
interfering.

Warning

Do not use or try to use 2.9.9, it was a botched release!

Warning

There has been a change in behaviour whereby disable-axfr does what it means
now! From now on, setting allow-axfr-ips automatically disables AXFR from
unmentioned subnets.

43

Chapter 1. The PowerDNS dynamic nameserver

• 2.9.8 was prone to crash on adding additional records. Thanks to excellent debugging by PowerDNS
users worldwide, the bug was found quickly and is in fact present in all earlier PowerDNS releases,
but for some reason doesn’t cause crashes there.

• Notifications now jump in front of the queue of domains that need to be checked for changes, giving
much greater perceived performance. This is needed if you have tens of thousands of slave domains
and your master server is on a high latency link. Thanks to Mark Jeftovic of EasyDNS for suggesting
this change and testing it on their platform.

• Dean Mills reported that PowerDNS does confusing logging about changing GIDs and UIDs, fixed.
Cosmetic only.

• pdns_recursor may have logged empty lines for some users, fixed. Solution suggested by Norbert
Sendetzky.

• LDAP: DNS TTLs were random values (Norbert Sendetzky, Stefan Pfetzing). New ldap-default-ttl
option.

• LDAP: Now works with OpenLDAP 2.1 (Norbert Sendetzky)

• LDAP: error handling for invalid MX records implemented (Norbert Sendetzky)

• LDAP: better exception handling (Norbert Sendetzky)

• LDAP: code cleanup of lookup() (Norbert Sendetzky)

• LDAP: added support for scoped searches (Norbert Sendetzky)

1.3.25. Version 2.9.8

Queen’s day release! 30th of April 2003.

Added support for AIX, fixed negative SOA caching. Some other cleanups. Not a major release but
enough reasons to upgrade.

Bugs fixed:

• Recursor had problems expiring negatively cached entries, which wasted memory and also led to the
continued non-existence of hosts that since had come into existence.

• The Generic SQL backends did not lowercase the names of records, which led to new records not
being found by case sensitive databases (notably PostgreSQL). Found by Volker Goetz.

• NS queries for zones for which we did not carry authority, but only had delegation information, had
their NS records in the wrong section. Minor detail, but a standards violation on etheless. Spotted by
Stephane Bortzmeyer.

Improvements:

44

Chapter 1. The PowerDNS dynamic nameserver

• Removed crypt.h dependency from powerldap.hh, which was a problem on some platforms (Richard
Arends)

• PowerDNS can’t parse so called binary labels which we now detect and ignore, after printing a
warning.

• Specifying allow-axfr-ips now automatically disables AXFR for all non-mentioned addresses.

• A Solaris ready init.d script is now part of the tar.gz (contributed, but I lost by whom).

• Added some fixes to PowerDNS can work on AIX (spotted by Markus Heimhilcher).

• Norbert Sendetzky contributed zone2ldap.

• Everybody’s favorite compiler warning from zone2sql.cc was removed!

• Recursor now listens on TCP!

1.3.26. Version 2.9.7

Released on 2003-03-20.

This is a sweeping release in the sense of cleanup. There are some new features but mostly a lot of
cleanup going on. Hiding inside is the bind2backend, the next generation of the bind backend. A work
in progress. Those of you with overlapping zones, as mentioned in the changelog of 2.9.6, are invited to
check it out by replacing launch=bind by launch=bind2 and renaming all bind- parameters to bind2-.
Be aware that if you run with many small zones, this backend is faster, but if you run with a few large
ones, it is slower. This will improve.

Features:

• Mark Bergsma contributed query-local-address which allows the operator to select which source
address to use. This is useful on servers with multiple source addresses and the operating system
selecting an unintended one, leading to remotes denying access.

• PowerDNS can now perform AAAA additional processing optionally, turned on by setting
do-ipv6-additional-processing. Thanks to Stephane Bortzmeyer for pointing out the need.

• Bind2backend, which is almost in compliance with the new IETF AXFR-clarify (some would say
’redefinition’) draft.

This backend is not ready for primetime but you may want to try it if you currently have overlapping
zones and note problems. An overlapping zone would be having "ipv6.powerdns.com" and
"powerdns.com" zones on one server.

Improvements:

45

Chapter 1. The PowerDNS dynamic nameserver

• Zone2sql would happily try to read from a directory and not give a useful error about this.

• PowerDNS now reports the case where it can’t figure out any IP address of slave nameservers for a
zone

• Removed receiver-threads setting which was experimental and in fact only made things worse.

• LDAP backend updates from its author Norbert Sendetzky. Reverse lookups should work now too.

• An error message about unparseable packets did not include the originating IP address (fixed by Mark
Bergsma)

• PowerDNS can now be started via path resolution while running with a guardian. Suggested by
Maurice Nonnekes.

• pdns_recursor moved to sbin (reported by Norbert Sendetzky)

• Retuned some logger errorlevels, a lot of master/slave chatter was logged as ’Error’. Reported by
Willem de Groot.

Bugs fixed:

• zone2sql did not remove trailing dots in SOA records.

• ldapbackend did not include utility.hh which caused compilation problems on Solaris (reported by
Remco Post)

• pdns_control could leave behind remnants in case PowerDNS was not running (reported by dG)

• Incoming AXFR did not work on Solaris and other big-endian systems (Willem de Groot helped
debugging this long standing problem).

• Recursor could crash on convoluted CNAME loops. Thanks to Dan Faerch for delivering coredumps.

• Silly ’wuh’ debugging output in zone2sql and bindbackend removed (spotted by Ivo van der Wijk)

• Recursor neglected to differentiate between negative cache of NXDOMAIN and NOERROR, leading
to problems with IPv6 enabled Windows clients. Thanks to Stuart Walsh for reporting this and testing
the fix.

• PowerDNS set the ’aa’ bit on serving NS records in a zone for which it was authoritative. Most
implementations drop the ’aa’ bit in this case and Stephane Bortzmeyer informed us of this.
PowerDNS now also drops the ’aa’ bit in this case.

• The webserver tended to fail after prolonged operation on FreeBSD, this was due to an uninitialised
timeout, other platforms were lucky. Thanks to G.P. de Boer for helping debug this.

• getAnswers() in dnspacket.cc could be forced to read bytes beyond the end of the packet, leading to
crashes in the PowerDNS recursor. This is an ongoing project that needs more work. Reported by Dan
Faerch, with a coredump proving the problem.

46

Chapter 1. The PowerDNS dynamic nameserver

1.3.27. Version 2.9.6

Two new backends - Generic ODBC (windows only) and LDAP. Furthermore, a few important bugs have
been fixed which may have hampered sites seeing a lot of outgoing zonetransfers. Additionally, the pdns
recursor now has ’query throttling’ which is pretty cool. In short this makes sure that PowerDNS does
not send out heaps of queries if a nameserver is unable to provide an answer. Many operators of
authoritative setups are all too aware of recursing nameservers that hammer them for zones they don’t
have, PowerDNS won’t do that anymore now, no matter what clients request of it.

Warning

There is an unresolved issue with the BIND backend and ’overlapping’ slave
zones. So if you have ’example.com’ and also have a separate slave zone called
’external.example.com’, things may go wrong badly. Thanks to Christian Laursen
for working with us a lot in finding this issue. We hope to resolve it soon.

• BIND Backend now honours notifies, code to support this was accidentally left out. Thanks to
Christian Laursen for noticing this.

• Massive speedup for those of you using the slightly deprecated MBOXFW records. Thanks to Jorn of
ISP Services (http://www.ISP-Services.nl) for helping and testing this improvement.

• $GENERATE had an off-by-one bug where it would omit the last record to be generated (Christian
Laursen)

• Simultaneous AXFRs may have been problematic on some backends. Thanks to Jorn of ISP-Services
again for helping us resolve this issue.

• Added LDAP backend by Norbert Sendetzky, see Section A.12.

• Added Generic ODBC backend for Windows by Michel Stol.

• Simplified ’out of zone data’ detection in incoming AXFR support, hopefully removing a case
sensitivity bug there. Thanks again to Christian Laursen for reporting this issue.

• $include in-zonefile was broken under some circumstances, losing the last character of a filename.
Thanks to Joris Vandalon for noticing this.

• The zoneparser was more case-sensitive than BIND, refusing to accept ’in’ as well as ’IN’. Thanks to
Joris Vandalon for noticing this.

1.3.28. Version 2.9.5

Released on 2002-02-03.

47

Chapter 1. The PowerDNS dynamic nameserver

This version is almost entirely about recursion with major changes to both the pdns recursor, which is
renamed to ’pdns_recursor’ and to the main PowerDNS binary to make it interact better with the
recursing component.

Sadly, due to technical reasons (http://sources.redhat.com/ml/libc-alpha/2003-01/msg00245.html),
compiling the pdns recursor and pdns authoritative nameserver into one binary is not immediately
possible. During the release of 2.9.4 we stated that the recursing nameserver would be integrated in the
next release - this won’t happen now.

However, this turns out to not be that bad at all. The recursor can now be restarted without having to
restart the rest of the nameserver, for example. Cooperation between the both halves of PDNS is also
almost seamless. As a result, ’non-lazy recursion’ has been dropped. See Chapter 11 for more details.

Furthermore, the recursor only works on Linux, Windows and Solaris (not entirely). FreeBSD does not
support the required functions. If you know any important FreeBSD people, plea with them to support
set/get/swapcontext! Alternatively, FreeBSD coders could read the solution presented here in figure 5
(http://www.eng.uwaterloo.ca/~ejones/software/threading.html).

The ’Contributor of the Month’ award goes to Mark Bergsma who has responded to our plea for help
with the label compressor and contributed a wonderfully simple and right fix that allows PDNS to
compress just as well as Other namerervers out there. An honorary mention goes to Ueli Heuer who,
despite having no C++ experience, submitted an excellent SRV record implementation.

Excellent work was also performed by Michel Stol, the Windows guy, in fixing all our non-portable stuff
again. Christof Meerwald has also done wonderful work in porting MTasker to Windows, which was
then used by Michel to get the recursor functioning on Windows.

Other changes:

• dnspacket.cc was cleaned up by factoring out common operations

• Heaps of work on the recursing nameserver. Has now achieved *days* of uptime!

• Recursor renamed from syncres to pdns_recursor

• PowerDNS can now serve records it does not know about. To benefit from this slightly undocumented
feature, add 1024 to the numerical type of a record and include the record in binary form in your
database. Used internally by the recursing nameserver but you can use it too.

• PowerDNS now knows about SIG and KEY records *names*. It does not support them yet but can at
least report so now.

• HINFO records can now be transferred from a master to PowerDNS (thanks to Ueli Heuer for noticing
it didn’t work).

• Yet more UltraSPARC alignment issues fixed (Chris Andrews).

• Dropped non-lazy recursion, nobody was using it. Lazy recursion became even more lazy after Dan
Bernstein pointed out that additional processing is not vital, so PowerDNS does its best to do

48

Chapter 1. The PowerDNS dynamic nameserver

additional processing on recursive queries, but does not scream murder if it does not succeed. Due to
caching, the next identical query will be successfully additionally processed.

• Label compression was improved so we can now fit all . records in 436 bytes, this used to be 460!
(Code & formal proof of correctness by Mark Bergsma).

• SRV support (incoming and outgoing), submitted by Ueli Heuer.

• Generic backends do not support SOA serial autocalculation, it appears. Could lead to random SOA
serials in case of a serial of 0 in the database. Fixed so that 0 stays zero in that case. Don’t set the SOA
serial to 0 when using Generic MySQL or Generic PostgreSQL!

• J root-server address was updated to its new location.

• SIGUSR1 now forces the recursor to print out statistics to the log.

• Meaning of recursor logging was changed a bit - a cache hit is now a question that was answered with
0 outgoing packets needed. Used to be a weighted average of internal cache hits.

• MySQL compilation did not include -lz which causes problems on some platforms. Thanks to James
H. Cloos Jr for reporting this.

• After a suggestion by Daniel Meyer and Florus Both, the built in webserver now reports the
configuration name when multiple PowerDNS instances are active.

• Brad Knowles noticed that zone2sql had problems with the root.zone, fixed. This also closes some
other zone2sql annoyances with converting single zones.

1.3.29. Version 2.9.4

Yet another grand release. Big news is the addition of a recursing nameserver which has sprung into
existence over the past week. It is in use on several computers already but it is not ready for prime time.
Complete integration with PowerDNS is expected around 2.9.5, for now the recursor is a separate
program.

In preliminary tests, the recursor appears to be four times faster than BIND 9 on a naive benchmark
starting from a cold cache. BIND 9 managed to get through to some slower nameservers however, which
were given up on by PowerDNS. We will continue to tune the recursor. See Chapter 12 for further details.

The BIND Backend has also been tested (see the bind-domain-status item below) rather heavily by
several parties. After some discussion online, one of the BIND authors ventured that the newsgroup
comp.protocols.dns.bind may now in fact be an appropriate venue for discussing PowerDNS. Since this
discussion, traffic to the PowerDNS pages has increased sixfold and shows no signs of slowing down.

From this, it is apparent that far more people are interested in PowerDNS than yet know about it. So
spread the word!

49

Chapter 1. The PowerDNS dynamic nameserver

In other news, we now have a security page at Section 1.4. Furthermore, Maurice Nonnekes contributed
an OpenBSD port! See his page (http://www.codeninja.nl/openbsd/powerdns/) for more details!

New features and improvements:

• All SQL queries in the generic backends are now available for configuration. (Martin Klebermass, bert
hubert). See Section A.5.

• A recursing nameserver! See Chapter 12.

• An incoming AXFR now only starts a backend zone replacement transaction after the first record
arrived successfully, thus making sure no work is done when a remote nameserver is unable/unwilling
to AXFR a zone to us.

• Zoneparser error messages were improved slightly (thanks to Stef van Dessel for spotting this
shortcoming)

• XS4ALL’s Erik Bos checked how PowerDNS reacted to a BIND installation with almost 60.000
domains, some of which with >100.000 records, and he discovered the pdns_control
bind-domain-status command became very slow with larger numbers of domains. Fixed, 60.000
domains are now listed in under one second.

• If a remote nameserver disconnects during an incoming AXFR, the update is now rolled back, unless
the AXFR was properly terminated.

• The migration chapter mentioned the use of deprecated backends.

A tremendous number of bugs were discovered and fixed:

• Zone parser would only accept $include and not $INCLUDE

• Zone parser had problems with $lines with comments on the end

• Wildcard ANY queries were broken (thanks Colemarcus for spotting this)

• A connection failure with the Generic backends would lead to a powerdns reload (cast of many)

• Generic backends had some semantic problems with slave support. Symptoms were oft-repeated
notifications and transfers (thanks to Mark Bergsma for helping resolve this).

• Solaris version compiles again. Thanks to Mohamed Lrhazi for reporting that it didn’t.

• Some UltraSPARC alignment fixes. Thanks to Mohamed Lrhazi for being helpful in spotting these.
One problem is still outstanding, Mohamed sent a core dump that tells us where the problem is. Expect
the fix to be in 2.9.5. Volunteers can grep the source for ’UltraSPARC’ to find where the problem is.

• Our support of IPv6 on FreeBSD had phase of moon dependent bugs, fixed by Peter van Dijk.

• Some crashes of and by pdns_control were fixed, thanks to Mark Bergsma for helping resolve these.

• Outgoing AXFR in pdns installations with multiple loaded backends was broken (thanks to Stuart
Walsh for reporting this).

• A failed BIND Backend incoming AXFR would block the zone until it succeeded again.

• Generic PostgreSQL backend wouldn’t compile with newer libpq++, fixed by Julien
Lemoine/SpeedBlue.

50

Chapter 1. The PowerDNS dynamic nameserver

• Potential bug (not observed) when listening on multiple interfaces fixed.

• Some typos in manpages fixed (reported by Marco Davids).

1.3.30. Version 2.9.3a

Note: 2.9.3a is identical to 2.9.3 except that zone2sql does work

Broad range of huge improvements. We now have an all-static .rpm and .deb for Linux users and a link
to an OpenBSD port. Major news is that work on the Bind backend has progressed to the point that
we’ve just retired our last Bind server and replaced it with PowerDNS in Bind mode! This server is
operating a number of master and slave setups so it should stress the Bind backend somewhat.

This version is rapidly approaching the point where it is a better-Bind-than-Bind and nearly a drop-in
replacement for authoritative setups. PowerDNS is now equipped with a powerful master/slave apparatus
that offers a lot of insight and control to the user, even when operating from Bind zonefiles and a Bind
configuration. Observe.

After the SOA of ds9a.nl was raised:

pdns[17495]: All slave domains are fresh
pdns[17495]: 1 domain for which we are master needs notifications
pdns[17495]: Queued notification of domain ’ds9a.nl’ to 195.193.163.3
pdns[17495]: Queued notification of domain ’ds9a.nl’ to 213.156.2.1
pdns[17520]: AXFR of domain ’ds9a.nl’ initiated by 195.193.163.3
pdns[17520]: AXFR of domain ’ds9a.nl’ to 195.193.163.3 finished
pdns[17521]: AXFR of domain ’ds9a.nl’ initiated by 213.156.2.1
pdns[17521]: AXFR of domain ’ds9a.nl’ to 213.156.2.1 finished
pdns[17495]: Removed from notification list: ’ds9a.nl’ to 195.193.163.3 (was acknowledged)
pdns[17495]: Removed from notification list: ’ds9a.nl’ to 213.156.2.1 (was acknowledged)
pdns[17495]: No master domains need notifications

If however our slaves would ignore us, as some are prone to do, we can send some additional
notifications:

$ sudo pdns_control notify ds9a.nl
Added to queue
pdns[17492]: Notification request for domain ’ds9a.nl’ received
pdns[17492]: Queued notification of domain ’ds9a.nl’ to 195.193.163.3
pdns[17492]: Queued notification of domain ’ds9a.nl’ to 213.156.2.1
pdns[17495]: Removed from notification list: ’ds9a.nl’ to 195.193.163.3 (was acknowledged)

51

Chapter 1. The PowerDNS dynamic nameserver

pdns[17495]: Removed from notification list: ’ds9a.nl’ to 213.156.2.1 (was acknowledged)

Conversely, if PowerDNS needs to be reminded to retrieve a zone from a master, a command is provided:

$ sudo pdns_control retrieve forfun.net
Added retrieval request for ’forfun.net’ from master 212.187.98.67
pdns[17495]: AXFR started for ’forfun.net’, transaction started
pdns[17495]: Zone ’forfun.net’ (/var/cache/bind/forfun.net) reloaded
pdns[17495]: AXFR done for ’forfun.net’, zone committed

Also, you can force PowerDNS to reload a zone from disk immediately with pdns_control
bind-reload-now. All this happens ’live’, per your instructions. Without instructions, the right things
also happen, but the operator is in charge.

For more about all this coolness, see Section B.1.1 and Section A.9.2.

Warning

Again some changes in compilation instructions. The hybrid pgmysql backend has
been split up into ’gmysql’ and ’gpgsql’, sharing a common base within the
PowerDNS server itself. This means that you can no longer compile
--with-modules="pgmysql" --enable-mysql --enable-pgsql but that you should
now use: --with-modules="gmysql gpgsql". The old launch-names remain
available.

If you launch the Generic PgSQL backend as gpgsql2, all parameters will have
gpsql2 as a prefix, for example pgsql2-dbname. If launched as gpsql, the regular
names are in effect.

Warning

The pdns_control protocol was changed which means that older pdns_controls
cannot talk to 2.9.3. The other way around is broken too. This may lead to
problems with automatic upgrade scripts, so pay attention if your daemon is truly
restarted.

Also make sure no old pdns_control command is around to confuse things.

52

Chapter 1. The PowerDNS dynamic nameserver

Improvements:

• Bind backend can now deal with missing files and try to find them later.

• Bind backend is now explicitly master capable and triggers the sending of notifications.

• General robustness improvements in Bind backend - many errors are now non-fatal.

• Accessability, Serviceability. New pdns_server commands like bind-list-rejects (lists zones that
could not be loaded, and the reason why), bind-reload-now (reload a zone from disk NOW),
rediscover (reread named.conf NOW). More is coming up.

• Added support for retrieving RP (Responsible Person) records from remote masters. Serving them was
already possible.

• Added support for LOC records, which encode the geographical location of a host, both serving and
retrieving (thanks to Marco Davids using them on our last Bind server, forcing us to implement this
silly record).

• Configuration file parser now strips leading spaces too, allowing "chroot= /tmp" to work, as well as
"chroot=/tmp" (Thanks to Hub Dohmen for reporting this for months on end).

• Added bind-domain-status command that shows the status of all domains (when/if they were parsed,
any errors encountered while parsing them).

• Added bind-reload-now command that tries to reload a zone from disk NOW, and reports back errors
to the operator immediatly.

• Added retrieve command that queues a request to retrieve a zone from its master.

• Zones retrieved from masters are now stored way smaller on disk because the domain is stripped from
records, which is derived from the configuration file. Retrieved zones are now prefixed with some
information on where they came from.

Changes:

• gpgsql and gmysql backends split out of the hybrid pgmysqlbackend. This again changed compilation
instructions!

• pdns_control now uses the rarely seen SOCK_STREAM Unix Domain socket variety so it can
transport large amounts of text, which is needed for the bind-domain-status command, for which see
Section A.9.2. This breaks compatibility with older pdns_control and pdns_server binaries!

• Bind backend now ignores ’hint’ and ’forward’ and other unsupported zone types.

• AXFRs are now logged more heavily by default. An AXFR is a heavy operation anyhow, some more
logging does not further increase the load materially. Does help in clearing up what slaves are doing.

• A lot of master/slave chatter has been silenced, making output more relevant. No more repetitive ’No
master domains need notifications’ etc, only changes are reported now.

Bugfixes:

• Windows version did not compile without minor changes.

53

Chapter 1. The PowerDNS dynamic nameserver

• Confusing error reporting on Windows 98 (which does not support PowerDNS) fixed

• Potential crashes with shortened packets addressed. An upgrade is advised!

• notify (which was already there, just badly documented) no longer prints out debugging garbage.

• pgmysql backend had problems launching when not compiled in but available as a module.
Workaround for 2.9.2 is ’load-modules=pgmysql’, but even then gpgsql would not work! gmysql
would then, however. These modules are now split out, removing such issues.

1.3.31. Version 2.9.2

Bugfixes galore. Solaris porting created some issues on all platforms. Great news is that PowerDNS is
now in Debian ’sid’ (unstable). The 2.9.1 packages in there currently aren’t very good but the 2.9.2 ones
will be. Many thanks to Wichert Akkerman, our ’downstream’ for making this possible.

Warning

The Generic MySQL backend, part of the Generic MySQL & PostgreSQL backend,
is now the DEFAULT! The previous default, the ’mysql’ backend (note the lack of
’g’) is now DEPRECATED. This was the source of much confusion. The ’mysql’
backend does not support MASTER or SLAVE operation. The Generic backends
do.

To get back the mysql backend, add --with-modules="mysql" or
--with-dynmodules="mysql" if you prefer to load your modules at runtime.

Bugs fixed:

• Silly debugging output removed from the webserver (found by Paul Wouters)

• SEVERE: due to Solaris portability fixes, qtypes<127 were broken. These include NAPTR, ANY and
AXFR. The upshot is that powerdns wasn’t performing outgoing AXFRs nor ANY queries. These
were the ’question for type -1’ warnings in the log

• incoming AXFR could theoretically miss some trailing records (not observed, but could happen)

• incoming AXFR did not support TXT records (spotted by Paul Wouters)

• with some remotes, an incoming AXFR would not terminate until a timeout occured (observed by
Paul Wouters)

• Documentation bug, pgmysql != mypgsql

Documentation:

54

Chapter 1. The PowerDNS dynamic nameserver

• Documented the ’random backend’, see Section A.3.

• Wichert Akkerman contributed three manpages.

• Building PowerDNS on Unix is now documented somewhat more, see Section D.1.

Features:

• pdns init.d script is now +x by default

• OpenBSD is on its way of becoming a supported platform! As of 2.9.2, PowerDNS compiles on
OpenBSD but swiftly crashes. Help is welcome.

• ODBC backend (for Windows only) was missing from the distribution, now added.

• xdb backend added - see Section A.11. Designed for use by root-server operators.

• Dynamic modules are back which is good news for distributors who want to make a pdns packages
that does not depend one every database under the sun.

1.3.32. Version 2.9.1

Thanks to the great enthusiasm from around the world, powerdns is now available for Solaris and
FreeBSD users again! Furthermore, the Windows build is back. We are very grateful for the help of:

• Michel Stol

• Wichert Akkerman

• Edvard Tuinder

• Koos van den Hout

• Niels Bakker

• Erik Bos

• Alex Bleker

• steven stillaway

• Roel van der Made

• Steven Van Steen

We are happy to have been able to work with the open source community to improve PowerDNS!

Changes:

55

Chapter 1. The PowerDNS dynamic nameserver

• The monitor command set no longer allows the changing of non-existant variables.

• IBM Universal Database DB2 backend now included in source distribution (untested!)

• Oracle backend now included in source distribution (sligthly tested!)

• configure script now searches for postgresql and mysql includes

• Bind parser now no longer dies on records with a ’ in them (Erik Bos)

• The pipebackend was accidentally left out of 2.9

• FreeBSD fixes (with help from Erik Bos, Alex Bleeker, Niels Bakker)

• Heap of Solaris work (with help from Edvard Tuinder, Stefan Van Steen, Koos van den Hout, Roel van
der Made and especially Mark Bakker). Now compiles in 2.7 and 2.8, haven’t tried 2.9. May be a bit
dysfunctional on 2.7 though - it won’t do IPv6 and it won’t serve AAAA. Patches welcome!

• Windows 32 build is back! Michel Stol updated his earlier work to the current version.

• S/Linux (Linux on Sparc) build works now (with help from steven stillaway).

• Silly debugging message (’sd.ttl from cache’) removed

• .debs are back, hopefully in ’sid’ soon! (Wichert Akkerman)

• Removal of bzero and other less portable constructs. Discovered that recent Linux glibc’s need
-D_GNU_SOURCE (Wichert Akkerman).

1.3.33. Version 2.9

Open source release. Do not deploy unless you know what you are doing. Stability is expected to return
with 2.9.1, as are the binary builds.

• License changed to the GNU General Public License version 2.

• Cleanups by Erik Bos @ xs4all.

• Build improvements by Wichert Akkerman

• Lots of work on the build system, entirely revamped. By PowerDNS.

1.3.34. Version 2.8

From this release onwards, we’ll concentrate on stabilising for the 3.0 release. So if you have any
must-have features, let us know soonest. The 2.8 release fixes a bunch of small stability issues and add
two new features. In the spirit of the move to stability, this release has already been running 24 hours on
our servers before release.

56

Chapter 1. The PowerDNS dynamic nameserver

• pipe backend gains the ability to restricts its invocation to a limited number of requests. This allows a
very busy nameserver to still serve packets from a slow perl backend.

• pipe backend now honors query-logging, which also documents which queries were blocked by the
regex.

• pipe backend now has its own backend chapter.

• An incoming AXFR timeout at the wrong moment had the ability to crash the binary, forcing a reload.
Thanks to our bug spotting champions Mike Benoit and Simon Kirby of NetNation for reporting this.

1.3.35. Version 2.7 and 2.7.1

This version fixes some very long standing issues and adds a few new features. If you are still running
2.6, upgrade yesterday. If you were running 2.6.1, an upgrade is still strongly advised.

Features:

• The controlsocket is now readable and writable by the ’setgid’ user. This allows for non-root access to
PDNS which is nice for mrtg or cricket graphs.

• MySQL backend (the non-generic one) gains the ability to read from a different table using the
mysql-table setting.

• pipe backend now has a configurable timeout using the pipe-timeout setting. Thanks fo Steve
Bromwich for pointing out the need for this.

• Experimental backtraces. If PowerDNS crashes, it will log a lot of numbers and sometimes more to
the syslog. If you see these, please report them to us. Only available under Linux.

Bugs:

• 2.7 briefly broke the mysql backend, so don’t use it if you use that. 2.7.1 fixes this.

• SOA records could sometimes have the wrong TTL. Thanks to Jonas Daugaard for reporting this.

• An ANY query might lead to duplicate SOA records being returned under exceptional circumstances.
Thanks to Jonas Daugaard for reporting this.

• Underlying the above bug, packet compression could sometimes suddenly be turned off, leading to
overly large responses and non-removal of duplicate records.

• The allow-axfr-ips setting did not accept IP ranges (1.2.3.0/24) which the documentation claimed it
did (thanks to Florus Both of Ascio technologies for being sufficiently persistent in reporting this).

• Killed backends were not being respawned, leading to suboptimal behaviour on intermittent database
errors. Thanks to Steve Bromwich for reporting this.

57

Chapter 1. The PowerDNS dynamic nameserver

• Corrupt packets during an incoming AXFR when acting as a slave would cause a PowerDNS reload
instead of just failing that AXFR. Thanks to Mike Benoit and Simon Kirby of NetNation for reporting
this.

• Label compression in incoming AXFR had problems with large offsets, causing the above mentioned
errors. Thanks to Mike Benoit and Simon Kirby of NetNation for reporting this.

1.3.36. Version 2.6.1

Quick fix release for a big cache problem.

1.3.37. Version 2.6

Performance release. A lot of work has been done to raise PDNS performance to staggering levels in
order to take part in benchmarketing efforts. Together with our as yet unnamed partner, PDNS has been
benchmarked at 60.000 mostly cached queries/second on off the shelf PC hardware. Uncached
performance was 17.000 uncached DNS queries/second on the .ORG domain.

Performance has been increased by both making PDNS itself quicker but also by lowering the number of
backend queries typically needed. Operators will typically see PDNS taking less CPU and the backend
seeing less load.

Furthermore, some real bugs were fixed. A couple of undocumented performance switches may appear
in --help output but you are advised to stay away from these.

Developers: this version needs the pdns-2.5.1 development kit, available on
http://downloads.powerdns.com/releases/dev (http://downloads.powerdns.com/releases/dev). See also
Appendix C.

Performance:

• A big error in latency calculations - cached packets were weighed 50 times less, leading to inflated
latency reporting. Latency calculations are now correct and way lower - often in the microseconds
range.

• It is now possible to run with 0 second cache TTLs. This used to cause very frequent cache cleanups,
leading to performance degradation.

• Many tiny performance improvements, removing duplicate cache key calculations, etc. The cache
itself has also been reworked to be more efficient.

• First ’CNAME’ backend query replaced by an ’ANY’ query, which most of the time returns the actual
record, preventing the need for a separate CNAME lookup, halving query load.

58

Chapter 1. The PowerDNS dynamic nameserver

• Much of the same for same-level-NS records on queries needing delegation.

Bugs fixed:

• Incidentally, the cache count would show ’unknown’ packets, which was harmless but confusing.
Thanks to Mike and Simon of NetNation for reporting this.

• SOA hostmaster with a . in the local-part would be cached wrongly, leading to a stray backslash in
case of multiple successively SOA queries. Thanks to Ascio Techologies for spotting this bug.

• zone2sql did not parse Verisign zonefiles correctly as these contained a $TTL statement in mid-record.

• Sometimes packets would not be accounted, leading to ’udp-queries’ and ’udp-answers’ divergence.

Features:

• ’cricket’ command added to init.d scripts that provides unadorned output for parsing by ’Cricket’.

1.3.38. Version 2.5.1

Brown paper bag (http://www.tuxedo.org/~esr/jargon/html/entry/brown-paper-bag-bug.html) release
fixing a huge memory leak in the new Query Cache.

Developers: this version needs the new pdns-2.5.1 development kit, available on
http://downloads.powerdns.com/releases/dev (http://downloads.powerdns.com/releases/dev). See also
Appendix C.

And some small changes:

• Added support for RF2038 (http://wiki.powerdns.com/projects/trac/changeset/2038) compliant
negative-answer caching. This allows remotes to cache the fact that a domain does not exist and will
not exist for a while. Thanks to Chris Thompson for pointing out how tiny our minds are
(http://ops.ietf.org/lists/namedroppers/namedroppers.2002/msg01697.html). This feature may cause a
noticeable reduction in query load.

• Small speedup to non-packet-cached queries, incidentally fixing the huge memory leak.

• pdns_control ccounts command outputs statistics on what is in the cache, which is useful to help
optimize your caching strategy.

59

Chapter 1. The PowerDNS dynamic nameserver

1.3.39. Version 2.5

An important release which has seen quite a lot of trial and error testing. As a result, PDNS can now run
with a huge cache and concurrent invalidations. This is useful when running of a slower database or
under high traffic load with a fast database.

Furthermore, the gpgsql2 backend has been validated for use and will soon supplant the gpgsql backend
entirely. This also bodes well for the gmysql backend which is the same code.

Also, a large amount of issues biting large scale slave operators were addressed. Most of these issues
would only show up after prolonged uptime.

New features:

• Query cache. The old Packet Cache only cached entire questions and their answers. This is very CPU
efficient but does not lead to maximum hitrate. Two packets both needing to resolve smtp.you.com
internally would not benefit from any caching. Furthermore, many different DNS queries lead to the
same backend queries, like ’SOA for .COM?’.

PDNS now also caches backend queries, but only those having no answer (the majority) and those
having one answer (almost the rest).

In tests, these additional caches appear to halve the database backend load numerically and perhaps
even more in terms of CPU load. Often, queries with no answer are more expensive than those having
one.

The default ttls for the query-cache and negquery-cache are set to safe values (20 and 60 seconds
respectively), you should be seeing an improvement in behaviour without sacrificing a lot in terms of
quick updates.

The webserver also displays the efficiency of the new Query Cache.

The old Packet Cache is still there (and useful) but see Chapter 9 for more details.

• There is now the ability to shut off some logging at a very early stage. High performance sites doing
thousands of queries/second may in fact spend most of their CPU time on attempting to write out
logging, even though it is ignored by syslog. The new flag log-dns-details, on by default, allows the
operator to kill most informative-only logging before it takes any cpu.

• Flags which can be switched ’on’ and ’off’ can now also be set to ’off’ instead of only to ’no’ to turn
them off.

60

Chapter 1. The PowerDNS dynamic nameserver

Enhancements:

• Packet Cache is now case insensitive, leading to a higher hitrate because identical queries only
differing in case now both match. Care is taken to restore the proper case in the answer sent out.

• Packet Cache stores packets more efficiently now, savings are estimated at 50%.

• The Packet Cache is now asynchronous which means that PDNS continues to answer questions while
the cache is busy being purged or queried. Incidentally this will mean a cache miss where previously
the question would wait until the cache became available again.

The upshot of this is that operators can call pdns_control purge as often as desired without fearing
performance loss. Especially the full, non-specific, purge was speeded up tremendously.

This optimization is of little merit for small sites but is very important when running with a large
packetcache, such as when using recursion under high load.

• AXFR log messages now all contain the word ’AXFR’ to ease grepping.

• Linux static version now compiled with gcc 3.2 which is known to output better and faster code than
the previously used 3.0.4.

Bugs fixed:

• Packetcache would sometimes send packets back with slightly modified flags if these differed from the
flags of the cached copy.

• Resolver code did bad things with filedescriptors leading to fd exhaustion after prolonged uptimes and
many slave SOA currency checks.

• Resolver code failed to properly log some errors, leading to operator uncertainty regarding to AXFR
problems with remote masters.

• After prolonged uptime, slave code would try to use privileged ports for originating queries, leading to
bad replication efficiency.

• Masters sending back answers in differing case from questions would lead to bogus ’Master tried to
sneak in out-of-zone data’ errors and failing AXFRs.

1.3.40. Version 2.4

Developers: this version is compatible with the pdns-2.1 development kit, available on
http://downloads.powerdns.com/releases/dev (http://downloads.powerdns.com/releases/dev). See also
Appendix C.

61

Chapter 1. The PowerDNS dynamic nameserver

This version fixes some stability issues with malformed or malcrafted packets. An upgrade is advised.
Furthermore, there are interesting new features.

New features:

• Recursive queries are now also cached, but in a separate namespace so non-recursive queries don’t get
recursed answers and vice versa. This should mean way lower database load for sites running with the
current default lazy-recursion. Up to now, each and every recursive query would lead to a large
amount of SQL queries.

To prevent the packetcache from becoming huge, a separate recursive-cache-ttl can be specified.

• The ability to change parameters at runtime was added. Currently, only the new query-logging flag
can be changed.

• Added query-logging flag which hints a backend that it should output a textual representation of
queries it receives. Currently only gmysql and gpgsql2 honor this flag.

• Gmysql backend can now also talk to PgSQL, leading to less code. Currently, the old postgresql driver
(’gpgsql’) is still the default, the new driver is available as ’gpgsql2’ and has the benefit that it does
query logging. In the future, gpgsql2 will become the default gpgsql driver.

• DNS recursing proxy is now more verbose in logging odd events which may be caused by buggy
recursing backends.

• Webserver now displays peak queries/second 1 minute average.

Bugs fixed:

• Failure to connect to database in master/slave communicator thread could lead to an unclean reload,
fixed.

Documentation: added details for strict-rfc-axfrs. This feature can be used if very old clients need to be
able to do zone transfers with PDNS. Very slow.

1.3.41. Version 2.3

Developers: this version is compatible with the pdns-2.1 development kit, available on
http://downloads.powerdns.com/releases/dev (http://downloads.powerdns.com/releases/dev). See also
Appendix C.

62

Chapter 1. The PowerDNS dynamic nameserver

This release adds the Generic MySQL backend which allows full master/slave semantics with MySQL
and InnoDB tables (or other tables that support transactions). See Section A.5.

Other new features:

• Improved error messages in master/slave communicator will help down track problems.

• slave-cycle-interval setting added. Very large sites with thousands of slave domains may need to raise
this value above the default of 60. Every cycle, domains in undeterminate state are checked for their
condition. Depending on the health of the masters, this may entail many SOA queries or attempted
AXFRs.

Bugs fixed:

• ’pdns_control purge domain’ and ’pdns_control purge domain$’ were broken in version 2.2 and did
not in fact purge the cache. There is a slight risk that domain-specific purge commands could force a
reload in previous version. Thanks to Mike Benoit of NetNation for discovering this.

• Master/slave communicator thread got confused in case of delayed answers from slow masters. While
not causing harm, this caused inefficient behaviour when testing large amounts of slave domains
because additional ’cycles’ had to pass before all domains would have their status ascertained.

• Backends implementing special SOA semantics (currently only the undocumented ’pdns express
backend’, or homegrown backends) would under some circumstances not answer the SOA record in
case of an ANY query. This should put an end to the last DENIC problems. Thanks to DENIC for
helping us find the problem.

1.3.42. Version 2.2

Developers: this version is compatible with the pdns-2.1 development kit, available on
http://downloads.powerdns.com/releases/dev (http://downloads.powerdns.com/releases/dev). See also
Appendix C.

Again a big release. PowerDNS is seeing some larger deployments in more demanding environments and
these are helping shake out remaining issues, especially with recursing backends.

The big news is that wildcard CNAMEs are now supported, an oft requested feature and nearly the only
part in which PDNS differed from BIND in authoritative capabilities.

63

Chapter 1. The PowerDNS dynamic nameserver

If you were seeing signal 6 errors in PDNS causing reloads and intermittent service disruptions, please
upgrade to this version.

For operators of PowerDNS Express trying to host .DE domains, the very special soa-serial-offset
feature has been added to placate the new DENIC requirement that the SOA serial be at least six digits.
PowerDNS Express uses the SOA serial as an actual serial and not to insert dates and hence often has
single digit soa serial numbers, causing big problems with .DE redelegations.

Bugs fixed:

• Malformed or shortened TCP recursion queries would cause a signal 6 and a reload. Same for EOF
from the TCP recursing backend. Thanks to Simon Kirby and Mike Benoit of NetNation for helping
debug this.

• Timeouts on the TCP recursing backend were far too long, leading to possible exhaustion of TCP
resolving threads.

• pdns_control purge domain accidentally cleaned all packets with that name as a prefix. Thanks to
Simon Kirby for spotting this.

• Improved exception error logging - in some circumstances PDNS would not properly log the cause of
an exception, which hampered problem resolution.

New features:

• Wildcard CNAMEs now work as expected!

• pdns_control purge can now also purge based on suffix, allowing operators to purge an entire domain
from the packet cache instead of only specific records. See also Section B.1.1 Thanks to Mike Benoit
for this suggestion.

• soa-serial-offset for installations with small SOA serial numbers wishing to register .DE domains
with DENIC which demands six-figure SOA serial numbers. See also Chapter 15.

1.3.43. Version 2.1

This is a somewhat bigger release due to pressing demands from customers. An upgrade is advised for
installations using Recursion. If you are using recursion, it is vital that you are aware of changes in
semantics. Basically, local data will now override data in your recursing backend under most
circumstances. Old behaviour can be restored by turning lazy-recursion off.

Developers: this version has a new pdns-2.1 development kit, available on
http://downloads.powerdns.com/releases/dev (http://downloads.powerdns.com/releases/dev). See also
Appendix C.

64

Chapter 1. The PowerDNS dynamic nameserver

Warning

Most users will run a static version of PDNS which has no dependencies on
external libraries. However, some may need to run the dynamic version. This
warning applies to these users.

To run the dynamic version of PDNS, which is needed for backend drivers which
are only available in source form, gcc 3.0 is required. RedHat 7.2 comes with gcc
3.0 as an optional component, RedHat 7.3 does not. However, the RedHat 7.2
Update gcc rpms install just fine on RedHat 7.3. For Debian, we suggest running
’woody’ and installing the g++-3.0 package. We expect to release a FreeBSD
dynamic version shortly.

Bugs fixed:

• RPM releases sometimes overwrote previous configuration files. Thanks to Jorn Ekkelenkamp of
Hubris/ISP Services for reporting this.

• TCP recursion sent out overly large responses due to a byteorder mistake, confusing some clients.
Thanks to the capable engineers of NetNation for bringing this to our attention.

• TCP recursion in combination with a recursing backend on a non-standard port did not work, leading
to a non-functioning TCP listener. Thanks to the capable engineers of NetNation for bringing this to
our attention.

Unexpected behaviour:

• Wildcard URL records where not implemented because they are a performance penalty. To turn these
on, enable wildcard-url in the configuration.

• Unlike other nameservers, local data did not override the internet for recursing queries. This has
mostly been brought into conformance with user expectations. If a recursive question can be answered
entirely from local data, it is. To restore old behaviour, disable lazy-recursion. Also see Chapter 11.

Features:

• Oracle support has been tuned, leading to the first public release of the Oracle backend. Zone2sql now
outputs better SQL and the backend is now fully documented. Furthermore, the queries are compatible
with the PowerDNS XML-RPC product, allowing PowerDNS express to run off Oracle. See Section
A.6.

• Zone2sql now accepts --transactions to wrap zones in a transaction for PostgreSQL and Oracle output.
This is a major speedup and also makes for better isolation of inserts. See Section 10.1.

65

Chapter 1. The PowerDNS dynamic nameserver

• pdns_control now has the ability to purge the PowerDNS cache or parts of it. This enables operators
to raise the TTL of the Packet Cache to huge values and only to invalidate the cache when changes are
made. See also Chapter 9 and Section B.1.1.

1.3.44. Version 2.0.1

Maintenance release, fixing three small issues.

Developers: this version is compatible with 1.99.11 backends.

• PowerDNS ignored the logging-facility setting unless it was specified on the commandline. Thanks to
Karl Obermayer from WebMachine Technologies for noticing this.

• Zone2sql neglected to preserve ’slaveness’ of domains when converting to the slave capable
PostgreSQL backend. Thanks to Mike Benoit of NetNation for reporting this. Zone2sql now has a
--slave option.

• SOA Hostmaster addresses with dots in them before the @-sign were mis-encoded on the wire.

1.3.45. Version 2.0

Two bugfixes, one stability/security related. No new features.

Developers: this version is compatible with 1.99.11 backends.

Bugfixes:

• zone2sql refused to work under some circumstances, taking 100% cpu and not functioning. Thanks to
Andrew Clark and Mike Benoit for reporting this.

• Fixed a stability issue where malformed packets could force PDNS to reload. Present in all earlier 2.0
versions.

1.3.46. Version 2.0 Release Candidate 2

Mostly bugfixes, no really new features.

66

Chapter 1. The PowerDNS dynamic nameserver

Developers: this version is compatible with 1.99.11 backends.

Bugs fixed:

• chroot() works again - 2.0rc1 silently refused to chroot. Thanks to Hub Dohmen for noticing this.

• setuid() and setgid() security features were silently not being performed in 2.0rc1. Thanks to Hub
Dohmen for noticing this.

• MX preferences over 255 now work as intended. Thanks to Jeff Crowe for noticing this.

• IPv6 clients can now also benefit from the recursing backend feature. Thanks to Andy Furnell for
proving beyond any doubt that this did not work.

• Extremely bogus code removed from DNS notification reception code - please test! Thanks to Jakub
Jermar for working with us in figuring out just how broken this was.

• AXFR code improved to handle more of the myriad different zonetransfer dialects available.
Specifically, interoperability with Bind 4 was improved, as well as Bind 8 in ’strict rfc conformance’
mode. Thanks again for Jakub Jermar for running many tests for us. If your transfers failed with
’Unknown type 14!!’ or words to that effect, this was it.

Features:

• Win32 version now has a zone2sql tool.

• Win32 version now has support for specifying how urgent messages should be before they go to the
NT event log.

Remaining issues:

• One persistent report of the default ’chroot=./’ configuration not working.

• One report of disable-axfr and allow-axfr-ips not working as intended.

• Support for relative paths in zones and in Bind configuration is not bug-for-bug compatible with bind
yet.

1.3.47. Version 2.0 Release Candidate 1

The MacOS X release! A very experimental OS X 10.2 build has been added. Furthermore, the Windows
version is now in line with Unix with respect to capabilities. The ODBC backend now has the code to
function as both a master and a slave.

67

Chapter 1. The PowerDNS dynamic nameserver

Developers: this version is compatible with 1.99.11 backends.

• Implemented native packet response parsing code, allowing Windows to perform AXFR and NS and
SOA queries.

• This is the first version for which we have added support for Darwin 6.0, which is part of the
forthcoming Mac OS X 10.2. Please note that although this version is marked RC1, that we have not
done extensive testing yet. Consider this a technology preview.

• The Darwin version has been developed on Mac OS X 10.2 (635
(http://wiki.powerdns.com/projects/trac/changeset/35)). Other versions may or may not work.

• Currently only the random, bind, mysql and pdns backends are included.

• The menu based installer script does not work, you will have to edit pathconfig by hand as outlined
in chapter 2.

• On Mac OS X Client, PDNS will fail to start because a system service is already bound to port 53.

This version is distributed as a compressed tar file. You should follow the generic UNIX installation
instructions.

Bugs fixed:

• Zone2sql PostgreSQL mode neglected to lowercase $ORIGIN. Thanks to Maikel Verheijen of Ladot
for spotting this.

• Zone2sql PostgreSQL mode neglected to remove a trailing dot from $ORIGIN if present. Thanks to
Thanks to Maikel Verheijen of Ladot for spotting this.

• Zonefile parser was not compatible with bind when $INCLUDING non-absolute filenames. Thanks to
Jeff Miller for working out how this should work.

• Bind configuration parser was not compatible with bind when including non-absolute filenames.
Thanks to Jeff Miller for working out how this should work.

• Documentation incorrectly listed the Bind backend as ’slave capable’. This is not yet true, now labeled
’experimental’.

Windows changes. We are indebted to Dimitry Andric who educated us in the ways of distributing
Windows software.

• pdns.conf is now read if available.

• Console version responds to ^c now.

68

Chapter 1. The PowerDNS dynamic nameserver

• Default pdns.conf added to distribution

• Uninstaller missed several files, leaving remnants behind

• DLLs are now installed locally, with the pdns executable.

• pdns_control is now also available on Windows

• ODBC backend can now act as master and slave. Experimental.

• The example zone missed indexes and had other faults.

• A runtime DLL that is present on most windows systems (but not all!) was missing.

1.3.48. Version 1.99.12 Prerelease

The Windows release! See Chapter 3. Beware, windows support is still very fresh and untested.
Feedback is very welcome.

Developers: this version is compatible with 1.99.11 backends.

• Windows 2000 codebase merge completed. This resulted in quite some changes on the Unix end of
things, so this may impact reliability

• ODBC backend added for Windows. See Section A.10.

• IBM DB2 Universal Database backend available for Linux. See Section A.8.

• Zone2sql now understands $INCLUDE. Thanks to Amaze Internet for nagging about this

• The SOA Mininum TTL now has a configurable default (soa-minimum-ttl)value to placate the
DENIC requirements.

• Added a limit on the simultaneous numbers of TCP connections to accept (max-tcp-connections).
Defaults to 10.

Bugs fixed:

• When operating in virtual hosting mode (See Chapter 8), the additional init.d scripts would not
function correctly and interface with other pdns instances.

• PDNS neglected to conserve case on answers. So a query for WwW.PoWeRdNs.CoM would get an
answer listing the address of www.powerdns.com. While this did not confuse resolvers, it is better to
conserve case. This has semantical concequences for all backends, which the documentation now
spells out.

• PostgreSQL backend was case sensitive and returned only answers in case an exact match was found.
The Generic PostgreSQL backend is now officially all lower case and zone2sql in PostgreSQL mode
enforces this. Documentation has been been updated to reflect the case change. Thanks to Maikel
Verheijen of Ladot for spotting this!

69

Chapter 1. The PowerDNS dynamic nameserver

• Documentation bug - postgresql create/index statements created a duplicate index. If you’ve
previously copy pasted the commands and not noticed the error, execute CREATE INDEX
rec_name_index ON records(name) to remedy. Thanks to Jeff Miller for reporting this. This also
lead to depressingly slow ’ANY’ lookups for those of you doing benchmarks.

Features:

• pdns_control (see Section B.1.1) now opens the local end of its socket in /tmp instead of next to the
remote socket (by default /var/run). This eases the way for allowing non-root access to
pdns_control. When running chrooted (see Chapter 7), the local socket again moves back to
/var/run.

• pdns_control now has a ’version’ command. See Section B.1.1.

1.3.49. Version 1.99.11 Prerelease

This release is important because it is the first release which is accompanied by an Open Source Backend
Development Kit, allowing external developers to write backends for PDNS. Furthermore, a few bugs
have been fixed:

• Lines with only whitespace in zone files confused PDNS (thanks Henk Wevers)

• PDNS did not properly parse TTLs with symbolic sufixes in zone files, ie 2H instead of 7200 (thanks
Henk Wevers)

1.3.50. Version 1.99.10 Prerelease

IMPORTANT: there has been a tiny license change involving free public webbased dns hosting, check
out the changes before deploying!

PDNS is now feature complete, or very nearly so. Besides adding features, a lot of ’fleshing out’ work is
done now. There is an important performance bug fix which may have lead to disappointing benchmarks
- so if you saw any of that, please try either this version or 1.99.8 which also does not have the bug.

This version has been very stable for us on multiple hosts, as was 1.99.9.

PostgreSQL users should be aware that while 1.99.10 works with the schema as presented in earlier
versions, advanced features such as master or slave support will not work unless you create the new
’domains’ table as well.

70

Chapter 1. The PowerDNS dynamic nameserver

Bugs fixed:

• Wildcard AAAA queries sometimes received an NXDOMAIN error where they should have gotten an
empty NO ERROR. Thanks to Jeroen Massar for spotting this on the .TK TLD!

• Do not disable the packetcache for ’recursion desired’ packets unless a recursor was configured.
Thanks to Greg Schueler for noticing this.

• A failing backend would not be reinstated. Thanks to ’Webspider’ for discovering this problem with
PostgreSQL connections that die after prolonged inactivity.

• Fixed loads of IPv6 transport problems. Thanks to Marco Davids and others for testing. Considered
ready for production now.

• Zone2sql printed a debugging statement on range $GENERATE commands. Thanks to Rene van
Valkenburg for spotting this.

Features:

• PDNS can now act as a master, sending out notifications in case of changes and allowing slaves to
AXFR. Big rewording of replication support, domains are now either ’native’, ’master’ or ’slave’. See
Chapter 13 for lots of details.

• Zone2sql in PostgreSQL mode now populates the ’domains’ table for easy master, slave or native
replication support.

• Ability to disable those annoying Windows DNS Dynamic Update messages from appearing in the
log. See log-failed-updates in Chapter 15.

• Ability to run on IPv6 transport only

• Logging can now happen under a ’facility’ so all PDNS messages appear in their own file. See Section
6.3.

• Different OS releases of PDNS now get different install path defaults. Thanks to Mark Lastdrager for
nagging about this and to Nero Imhard and Frederique Rijsdijk for suggesting saner defaults.

• Infrastructure for ’also-notify’ statements added.

1.3.51. Version 1.99.9 Early Access Prerelease

This is again a feature and an infrastructure release. We are nearly feature complete and will soon start
work on the backends to make sure that they are all master, slave and ’superslave’ capable.

Bugs fixed:

• PDNS sometimes sent out duplicate replies for packets passed to the recursing backend. Mostly a
problem on SMP systems. Thanks to Mike Benoit for noticing this.

71

Chapter 1. The PowerDNS dynamic nameserver

• Out-of-bailiwick CNAMES (ie, a CNAME to a domain not in PDNS) caused a ’ServFail’ packet in
1.99.8, indicating failure, leading to hosts not resolving. Thanks to Martin Gillstrom for noticing this.

• Zone2sql balked at zones editted under operating sytems terminating files with ^Z (Windows). Thanks
Brian Willcott for reporting this.

• PostgreSQL backend logged the password used to connect. Now only does so in case of failure to
connect. Thanks to ’Webspider’ for noticing this.

• Debian unstable distribution wrongly depended on home compiled PostgreSQL libraries. Thanks to
Konrad Wojas for noticing this.

Features:

• When operating as a slave, AAAA records are now supported in the zone. They were already
supported in master zones.

• IPv6 transport support - PDNS can now listen on an IPv6 socket using the local-ipv6 setting.

• Very silly randombackend added which appears in the documentation as a sample backend. See
Appendix C.

• When transferring a slave zone from a master, out of zone data is now rejected. Malicious operators
might try to insert bad records otherwise.

• ’Supermaster’ support for automatic provisioning from masters. See Section 13.2.1.

• Recursing backend can now live on a non-standard (!=53) port. See Chapter 11.

• Slave zone retrieval is now queued instead of immediate, which scales better and is more resilient to
temporary failures.

• max-queue-length parameter. If this many packets are queued for database attention, consider the
situation hopeless and respawn.

Internal:

• SOA records are now ’special’ and each backend can optionally generate them in special ways.
PostgreSQL backend does so when operating as a slave.

• Writing backends is now a lot easier. See Appendix C.

• Added Bindbackend to internal regression tests, confirming that it is compliant.

1.3.52. Version 1.99.8 Early Access Prerelease

A lot of infrastructure work gearing up to 2.0. Some stability bugs fixed and a lot of new features.

Bugs fixed:

72

Chapter 1. The PowerDNS dynamic nameserver

• Bindbackend was overly complex and crashed on some systems on startup. Simplified launch code.

• SOA fields were not always properly filled in, causing default values to go out on the wire

• Obscure bug triggered by malicious packets (we know who you are) in SOA finding code fixed.

• Magic serial number calculation contained a double free leading to instability.

• Standards violation, questions for domains for which PDNS was unauthoritative now get a SERVFAIL
answer. Thanks to the IETF Namedroppers list for helping out with this.

• Slowly launching backends were being relaunched at a great rate when queries were coming in while
launching backends.

• MySQL-on-unix-domain-socket on SMP systems was overwhelmed by the quick connection rate on
launch, inserted a small 50ms delay.

• Some SMP problems appear to be compiler related. Shifted to GCC 3.0.4 for Linux.

• Ran ispell on documentation.

Feature enhancements:

• Recursing backend. See Chapter 11. Allows recursive and authoritative DNS on the same IP address.

• NAPTR support, which is especially useful for the ENUM/E.164 community.

• Zone transfers can now be allowed per netmask instead of only per IP address.

• Preliminary support for slave operation included. Only for the adventurous right now! See Section 13.2

• All record types now documented, see Chapter 17.

1.3.52.1. Known bugs

Wildcard CNAMES do not work as they do with bind.

Recursion sometimes sends out duplicate packets (fixed in 1.99.9 snapshots)

Some stability issues which are caught by the guardian

1.3.52.2. Missing features

Features present in this document, but disabled or withheld from the current release:

• gmysqlbackend, oraclebackend

73

Chapter 1. The PowerDNS dynamic nameserver

1.3.53. Version 1.99.7 Early Access Prerelease

Named.conf parsing got a lot of work and many more bind configurations can now be parsed.
Furthermore, error reporting was improved. Stability is looking good.

Bugs fixed:

• Bind parser got confused by filenames with underscores and colons.

• Bind parser got confused by spaces in quoted names

• FreeBSD version now stops and starts when instructed to do so.

• Wildcards were off by default, which violates standards. Now on by default.

• --oracle was broken in zone2sql

Feature enhancements:

• Line number counting goes on as it should when including files in named.conf

• Added --no-config to enable users to start the pdns daemon without parsing the configuration file.

• zone2sql now has --bare for unformatted output which can be used to generate insert statements for
different database layouts

• zone2sql now has --gpgsql, which is an alias for --mysql, to output in a format useful for the default
Generic PgSQL backend

• zone2sql is now documented.

1.3.53.1. Known bugs

Wildcard CNAMES do not work as they do with bind.

1.3.53.2. Missing features

Features present in this document, but disabled or withheld from the current release:

• gmysqlbackend, oraclebackend

Some of these features will be present in newer releases.

74

Chapter 1. The PowerDNS dynamic nameserver

1.3.54. Version 1.99.6 Early Access Prerelease

This version is now running on dns-eu1.powerdns.net and working very well for us. But please remain
cautious before deploying!

Bugs fixed:

• Webserver neglected to show log messages

• TCP question/answer miscounted multiple questions over one socket. Fixed misnaming of counter

• Packetcache now detects clock skew and times out entries

• named.conf parser now reports errors with line number and offending token

• Filenames in named.conf can now contain :

Feature enhancements:

• The webserver now by default does not print out configuration statements, which might contain
database backends. Use webserver-print-arguments to restore the old behaviour.

• Generic PostgreSQL backend is now included. Still rather beta.

1.3.54.1. Known bugs

FreeBSD version does not stop when requested to do so.

Wildcard CNAMES do not work as they do with bind.

1.3.54.2. Missing features

Features present in this document, but disabled or withheld from the current release:

• gmysqlbackend, oraclebackend

Some of these features will be present in newer releases.

1.3.55. Version 1.99.5 Early Access Prerelease

The main focus of this release is stability and TCP improvements. This is the first release
PowerDNS-the-company actually considers for running on its production servers!

75

Chapter 1. The PowerDNS dynamic nameserver

Major bugs fixed:

• Zone2sql received a floating point division by zero error on named.confs with less than 100 domains.

• Huffman encoder failed without specific error on illegal characters in a domain

• Fixed huge memory leaks in TCP code.

• Removed further file descriptor leaks in guardian respawning code

• Pipebackend was too chatty.

• pdns_server neglected to close fds 0, 1 & 2 when daemonizing

Feature enhancements:

• bindbackend can be instructed not to check the ctime of a zone by specifying bind-check-interval=0,
which is also the new default.

• pdns_server --list-modules lists all available modules.

Performance enhancements:

• TCP code now only creates a new database connection for AXFR.

• TCP connections timeout rather quickly now, leading to less load on the server.

1.3.55.1. Known bugs

FreeBSD version does not stop when requested to do so.

Wildcard CNAMES do not work as they do with bind.

1.3.55.2. Missing features

Features present in this document, but disabled or withheld from the current release:

• gmysqlbackend, oraclebackend, gpgsqlbackend

Some of these features will be present in newer releases.

76

Chapter 1. The PowerDNS dynamic nameserver

1.3.56. Version 1.99.4 Early Access Prerelease

A lot of new named.confs can now be parsed, zone2sql & bindbackend have gained features and stability.

Major bugs fixed:

• Label compression was not always enabled, leading to large reply packets sometimes.

• Database errors on TCP server lead to a nameserver reload by the guardian.

• MySQL backend neglected to close its connection properly.

• BindParser miss parsed some IP addresses and netmasks.

• Truncated answers were also truncated on the packetcache, leading to truncated TCP answers.

Feature enhancements:

• Zone2sql and the bindbackend now understand the Bind $GENERATE{} syntax.

• Zone2sql can optionally gloss over non-existing zones with --on-error-resume-next.

• Zone2sql and the bindbackend now properly expand @ also on the right hand side of records.

• Zone2sql now sets a default TTL.

• DNS UPDATEs and NOTIFYs are now logged properly and sent the right responses.

Performance enhancements:

• ’Fancy records’ are no longer queried for on ANY queries - this is a big speedup.

1.3.56.1. Known bugs

FreeBSD version does not stop when requested to do so.

Zone2sql refuses named.confs with less than 100 domains.

Wildcard CNAMES do not work as they do with bind.

77

Chapter 1. The PowerDNS dynamic nameserver

1.3.56.2. Missing features

Features present in this document, but disabled or withheld from the current release:

• gmysqlbackend, oraclebackend, gpgsqlbackend

Some of these features will be present in newer releases.

1.3.57. Version 1.99.3 Early Access Prerelease

The big news in this release is the BindBackend which is now capable of parsing many more named.conf
Bind configurations. Furthermore, PDNS has successfully parsed very large named.confs with large
numbers of small domains, as well as small numbers of large domains (TLD).

Zone transfers are now also much improved.

Major bugs fixed:

• zone2sql leaked file descriptors on each domain, used wrong Bison recursion leading to parser stack
overflows. This limited the amount of domains that could be parsed to 1024.

• zone2sql can now read all known zonefiles, with the exception of those containing $GENERATE

• Guardian relaunching a child lost two file descriptors

• Don’t die on a connection reset by peer during zone transfer.

• Webserver does not crash anymore on ringbuffer resize

Feature enhancements:

• AXFR can now be disabled, and re-enabled per IP address

• --help accepts a parameter, will then show only help items with that prefix.

• zone2sql now accepts a --zone-name parameter

• BindBackend maturing - 9500 zones parsed in 3.5 seconds. No longer case sensitive.

Performance enhancements:

• Implemented RFC-breaking AXFR format (which is the industry standard). Zone transfers now zoom
along at wirespeed (many megabits/s).

78

Chapter 1. The PowerDNS dynamic nameserver

1.3.57.1. Known bugs

FreeBSD version does not stop when requested to do so.

BindBackend cannot parse zones with $GENERATE statements.

1.3.57.2. Missing features

Features present in this document, but disabled or withheld from the current release:

• gmysqlbackend, oraclebackend, gpgsqlbackend

Some of these features will be present in newer releases.

1.3.58. Version 1.99.2 Early Access Prerelease

Major bugs fixed:

• Database backend reload does not hang the daemon anymore

• Buffer overrun in local socket address initialisation may have caused binding problems

• setuid changed the uid to the gid of the selected user

• zone2sql doesn’t coredump on invocation anymore. Fixed lots of small issues.

• Don’t parse configuration file when creating configuration file. This was a problem with reinstalling.

Performance improvements:

• removed a lot of unnecessary gettimeofday calls

• removed needless select(2) call in case of listening on only one address

• removed 3 useless syscalls in the fast path

Having said that, more work may need to be done. Testing on a 486 saw packet rates in a simple setup
(question/wait/answer/question..) improve from 200 queries/second to over 400.

Usability improvements:

• Fixed error checking in init.d script (show, mrtg)

• Added ’uptime’ to the mrtg output

• removed further GNUisms from installer and init.d scripts for use on FreeBSD

• Debian package and apt repository, thanks to Wichert Akkerman.

• FreeBSD /usr/ports, thanks to Peter van Dijk (in progress).

79

Chapter 1. The PowerDNS dynamic nameserver

Stability may be an issue as well as performance. This version has a tendency to log a bit too much
which slows the nameserver down a lot.

1.3.58.1. Known bugs

Decreasing a ringbuffer on the website is a sure way to crash the daemon. Zone2sql, while improved,
still has problems with a zone in the following format:

name IN A 1.2.3.4
IN A 1.2.3.5

To fix, add ’name’ to the second line.

Zone2sql does not close filedescriptors.

FreeBSD version does not stop when requested via the init.d script.

1.3.58.2. Missing features

Features present in this document, but disabled or withheld from the current release:

• gmysqlbackend, oraclebackend, gpgsqlbackend

• fully functioning bindbackend - will try to parse named.conf, but probably fail

Some of these features will be present in newer releases.

1.3.59. Version 1.99.1 Early Access Prerelease

This is the first public release of what is going to become PDNS 2.0. As such, it is not of production
quality. Even PowerDNS-the-company does not run this yet.

Stability may be an issue as well as performance. This version has a tendency to log a bit too much
which slows the nameserver down a lot.

1.3.59.1. Known bugs

Decreasing a ringbuffer on the website is a sure way to crash the daemon. Zone2sql is very buggy.

80

Chapter 1. The PowerDNS dynamic nameserver

1.3.59.2. Missing features

Features present in this document, but disabled or withheld from the current release:

• gmysqlbackend, oraclebackend, gpgsqlbackend

• fully functioning bindbackend - will not parse configuration files

Some of these features will be present in newer releases.

1.4. Security

If you have a security problem to report, please email us at both <powerdns@powerdns.com> and at
<ahu@ds9a.nl>. We adhere to the Rain Forest Puppy Full Disclosure Policy (RFPolicy) v2.0
(http://www.wiretrip.net/rfp/policy.html) and we ask you to do the same. In particular, please do not mail
security issues to public lists unless we do not get back to you in a timely manner.

We remind PowerDNS users that under the terms of the GNU General Public License, PowerDNS comes
with ABSOLUTELY NO WARRANTY. This license is included in the distribution and in this
documentation, see Appendix E.

As of the 6th of August 2008, no actual security problems with PowerDNS 2.9.21.1, Recursor 3.1.5, or
later are known about. This page will be updated with all bugs which are deemed to be security problems,
or could conceivably lead to those. Any such notifications will also be sent to all PowerDNS mailinglists.

Version 3.1.4 and earlier of the PowerDNS recursor were vulnerable to a spoofing attack. For more
detail, see Section 1.7.

Version 3.1.3 and earlier of the PowerDNS recursor contain two security issues, both of which can lead
to a denial of service, both of which can be triggered by remote users. One of the issues might lead be
exploited and lead to a system compromise. For more detail, see Section 1.5 and Section 1.6.

Version 3.0 of the PowerDNS recursor contains a denial of service bug which can be exploited remotely.
This bug, which we believe to only lead to a crash, has been fixed in 3.0.1. There are no guarantees
however, so an upgrade from 3.0 is highly recommended.

All versions of PowerDNS before 2.9.21.1 do not respond to certain queries. This in itself is not a
problem, but since the discovery by Dan Kaminsky of a new spoofing technique, this silence for queries
PowerDNS considers invalid, within a valid domain, allows attackers more chances to feed *other*
resolvers bad data.

81

Chapter 1. The PowerDNS dynamic nameserver

All versions of PowerDNS before 2.9.18 contain the following two bugs, which only apply to
installations running with the LDAP backend, or installations providing recursion to a limited range of IP
addresses. If any of these apply to you, an upgrade is highly advised:

• The LDAP backend did not properly escape all queries, allowing it to fail and not answer questions.
We have not investigated further risks involved, but we advise LDAP users to update as quickly as
possible (Norbert Sendetzky, Jan de Groot)

• Questions from clients denied recursion could blank out answers to clients who are allowed recursion
services, temporarily. Reported by Wilco Baan. This would’ve made it possible for outsiders to blank
out a domain temporarily to your users. Luckily PowerDNS would send out SERVFAIL or Refused,
and not a denial of a domain’s existence.

All versions of PowerDNS before 2.9.17 are known to suffer from remote denial of service problems
which can disrupt operation. Please upgrade to 2.9.17 as this page will only contain detailed security
information from 2.9.17 onwards.

1.5. PowerDNS Security Advisory 2006-01: Malformed
TCP queries can lead to a buffer overflow which might be
exploitable

Table 1-1. PowerDNS Security Advisory

CVE CVE-2006-4251

Date 13th of November 2006

Affects PowerDNS Recursor versions 3.1.3 and earlier, on
all operating systems.

Not affected No versions of the PowerDNS Authoritative Server
(’pdns_server’) are affected.

Severity Critical

Impact Potential remote system compromise.

Exploit As far as we know, no exploit is available as of 11th
of November 2006.

Solution Upgrade to PowerDNS Recursor 3.1.4, or apply the
patches referred below and recompile

82

Chapter 1. The PowerDNS dynamic nameserver

Workaround Disable TCP access to the Recursor. This will have
slight operational impact, but it is likely that this
will not lead to meaningful degradation of service.
Disabling access is best performed at packet level,
either by configuring a firewall, or instructing the
host operating system to drop TCP connections to
port 53. Additionally, exposure can be limited by
configuring the allow-from setting so only trusted
users can query your nameserver.

PowerDNS Recursor 3.1.3 and previous miscalculate the length of incoming TCP DNS queries, and will
attempt to read up to 4 gigabytes of query into a 65535 byte buffer.

We have not verified if this problem might actually lead to a system compromise, but are acting on the
assumption that it might.

For distributors, a minimal patch is available on the PowerDNS wiki
(http://wiki.powerdns.com/cgi-bin/trac.fcgi/changeset/915). Additionally, those shipping very old
versions of the PowerDNS Recursor might benefit from this patch
(http://ds9a.nl/tmp/cve-2006-4251.patch).

The impact of these and other security problems can be lessened by considering the advice in Chapter 7.

1.6. PowerDNS Security Advisory 2006-02: Zero second
CNAME TTLs can make PowerDNS exhaust allocated
stack space, and crash

Table 1-2. PowerDNS Security Advisory

CVE CVE-2006-4252

Date 13th of November 2006

Affects PowerDNS Recursor versions 3.1.3 and earlier, on
all operating systems.

Not affected No versions of the PowerDNS Authoritative Server
(’pdns_server’) are affected.

Severity Moderate

Impact Denial of service

83

Chapter 1. The PowerDNS dynamic nameserver

Exploit This problem can be triggered by sending queries
for specifically configured domains

Solution Upgrade to PowerDNS Recursor 3.1.4, or apply
commit 919
(http://wiki.powerdns.com/projects/trac/changeset/919).

Workaround None known. Exposure can be limited by
configuring the allow-from setting so only trusted
users can query your nameserver.

PowerDNS would recurse endlessly on encountering a CNAME loop consisting entirely of zero second
CNAME records, eventually exceeding resources and crashing.

1.7. PowerDNS Security Advisory 2008-01: System
random generator can be predicted, leading to the
potential to ’spoof’ PowerDNS Recursor

Table 1-3. PowerDNS Security Advisory

CVE Not yet assigned

Date 31st of March 2008

Affects PowerDNS Recursor versions 3.1.4 and earlier, on
most operating systems

Not affected No versions of the PowerDNS Authoritative Server
(’pdns_server’) are affected.

Severity Moderate

Impact Data manipulation; client redirection

Exploit This problem can be triggered by sending queries
for specifically configured domains, sending
spoofed answer packets immediately afterwards.

Solution Upgrade to
PowerDNS Recursor 3.1.5, or apply changesets 1159
(http://wiki.powerdns.com/projects/trac/changeset/1159),
1160
(http://wiki.powerdns.com/projects/trac/changeset/1160)
and 1164
(http://wiki.powerdns.com/projects/trac/changeset/1164).

84

Chapter 1. The PowerDNS dynamic nameserver

Workaround None known. Exposure can be limited by
configuring the allow-from setting so only trusted
users can query your nameserver.

We would like to thank Amit Klein of Trusteer for bringing a serious vulnerability to our attention which
would enable a smart attacker to ’spoof’ previous versions of the PowerDNS Recursor into accepting
possibly mallicious data.

Details can be found on this Trusteer page (http://www.trusteer.com/docs/powerdnsrecursor.html).

This security problem was announced in this email message
(http://mailman.powerdns.com/pipermail/pdns-users/2008-March/005279.html).

It is recommended that all users of the PowerDNS Recursor upgrade to 3.1.5 as soon as practicable,
while we simultaneously note that busy servers are less susceptible to the attack, but not immune.

The vulnerability is present on all operating systems where the behaviour of the libc random() function
can be predicted based on its past output. This includes at least all known versions of Linux, as well as
Microsoft Windows, and probably FreeBSD and Solaris.

The magnitude of this vulnerability depends on internal details of the system random() generator. For
Linux, the mathematics of the random generator are complex, but well understood and Amit Klein has
written and published a proof of concept that can succesfully predict its output after uninterrupted
observation of 40-50 DNS queries.

Because the observation needs to be uninterrupted, busy PowerDNS Recursor instances are harder to
subvert - other data is highly likely to be interleaved with traffic generated by an attacker.

Nevertheless, operators are urged to update at their earliest convenience.

1.8. PowerDNS Security Advisory 2008-02: By not
responding to certain queries, domains become easier
to spoof

Table 1-4. PowerDNS Security Advisory

85

Chapter 1. The PowerDNS dynamic nameserver

CVE CVE-2008-3337

Date 6th of August 2008

Affects PowerDNS Authoritative Server 2.9.21 and earlier

Not affected No versions of the PowerDNS Recursor
(’pdns_recursor’) are affected.

Severity Moderate

Impact Data manipulation; client redirection

Exploit Domains with servers that drop certain queries can
be spoofed using simpler measures than would
usually be required

Solution Upgrade to PowerDNS Authoritative Server
2.9.21.1, or apply commit 1239
(http://wiki.powerdns.com/projects/trac/changeset/1239).

Workaround None known.

Brian J. Dowling of Simplicity Communications has discovered a security implication of the previous
PowerDNS behaviour to drop queries it considers malformed. We are grateful that Brian notified us
quickly about this problem.

The implication is that while the PowerDNS Authoritative server itself does not face a security risk
because of dropping these malformed queries, other resolving nameservers run a higher risk of accepting
spoofed answers for domains being hosted by PowerDNS Authoritative Servers before 2.9.21.1.

While the dropping of queries does not aid sophisticated spoofing attempts, it does facilitate simpler
attacks.

1.9. PowerDNS Security Advisory 2008-02: Some
PowerDNS Configurations can be forced to restart
remotely

Table 1-5. PowerDNS Security Advisory

CVE Not yet assigned

Date 18th of November 2008

86

Chapter 1. The PowerDNS dynamic nameserver

Affects PowerDNS Authoritative Server 2.9.21.1 and
earlier

Not affected No versions of the PowerDNS Recursor
(’pdns_recursor’) are affected. Versions not running
in single threaded mode (’distributor-threads=1’) are
probably not affected.

Severity Moderate

Impact Denial of Service

Exploit Send PowerDNS an CH HINFO query.

Solution Upgrade to PowerDNS Authoritative Server
2.9.21.2, or wait for 2.9.22.

Workaround Remove ’distributor-threads=1’ if this is set.

Daniel Drown discovered that his PowerDNS 2.9.21.1 installation crashed on receiving a HINFO CH
query. In his enthousiasm, he shared his discovery with the world, forcing a rapid over the weekend
release cycle.

While we thank Daniel for his discovery, please study our security policy as outlined in Section 1.4
before making vulnerabilities public.

It is believed that this issue only impacts PowerDNS Authoritative Servers operating with
’distributor-threads=1’, but even on other configurations a database reconnect occurs on receiving a CH
HINFO query.

1.10. Acknowledgements

PowerDNS is grateful for the help of the following people or institutions:

• Dave Aaldering

• Wichert Akkerman

• Antony Antony

• Mike Benoit (NetNation Communication Inc)

• Peter van Dijk

• Koos van den Hout

• Andre Koopal

• Eric Veldhuyzen

• Paul Wouters

87

Chapter 1. The PowerDNS dynamic nameserver

• Thomas Wouters

• IETF Namedroppers mailinglist

Thanks!

(these people don’t share the blame for any errors or mistakes in powerdns - those are all ours)

88

Chapter 2. Installing on Unix

You will typically install PDNS > 2.9 via source or via a package. Earlier versions used a clumsy binary
installer.

2.1. Possible problems at this point

At this point some things may have gone wrong. Typical errors include:

error while loading shared libraries: libstdc++.so.x: cannot open shared object file: No such file or
directory

Errors looking like this indicate a mismatch between your PDNS distribution and your Unix
operating system. Download the static PDNS distribution for your operating system and try again.
Please contact <pdns@powerdns.com> if this is impractical.

2.2. Testing your install

After installing, it is a good idea to test the basic functionality of the software before configuring
database backends. For this purpose, PowerDNS contains the ’bindbackend’ which has a domain built in
example.com, which is officially reserved for testing. To test, edit pdns.conf and add the following if
not already present:

launch=bind
bind-example-zones

Warning

As of 2.9.21, the BIND backend no longer features the ’bind-example-zones’
command. These will return in 2.9.22.

This configures powerdns to ’launch’ the bindbackend, and enable the example zones. To fire up PDNS
in testing mode, execute: /etc/init.d/pdns monitor, where you may have to substitute the location of
your SysV init.d location you specified earlier. In monitor mode, the pdns process runs in the foreground
and is very verbose, which is perfect for testing your install. If everything went all right, you can query
the example.com domain like this:

host www.example.com 127.0.0.1

89

Chapter 2. Installing on Unix

www.example.com should now have IP address 1.2.3.4. The host command can usually be found in the
dnsutils package of your operating system. Alternate command is: dig www.example.com A @127.0.0.1
or even nslookup www.example.com 127.0.0.1, although nslookup is not advised for DNS diagnostics.

• example.com SOA record

• example.com NS record pointing to ns1.example.com

• example.com NS record pointing to ns2.example.com

• example.com MX record pointing to mail.example.com

• example.com MX record pointing to mail1.example.com

• mail.example.com A record pointing to 4.3.2.1

• mail1.example.com A record pointing to 5.4.3.2

• ns1.example.com A record pointing to 4.3.2.1

• ns2.example.com A record pointing to 5.4.3.2

• host-0 to host-9999.example.com A record pointing to 2.3.4.5

When satisfied that basic functionality is there, type QUIT to exit the monitor mode. The adventurous
may also type SHOW * to see some internal statistics. In case of problems, you will want to read the
following section.

2.2.1. Typical errors

At this point some things may have gone wrong. Typical errors include:

binding to UDP socket: Address already in use

This means that another nameserver is listening on port 53 already. You can resolve this problem by
determining if it is safe to shutdown the nameserver already present, and doing so. If uncertain, it is
also possible to run PDNS on another port. To do so, add local-port=5300 to pdns.conf, and try
again. This however implies that you can only test your nameserver as clients expect the nameserver
to live on port 53.

binding to UDP socket: Permission denied

You must be superuser in order to be able to bind to port 53. If this is not a possibility, it is also
possible to run PDNS on another port. To do so, add local-port=5300 to pdns.conf, and try again.
This however implies that you can only test your nameserver as clients expect the nameserver to
live on port 53.

Unable to launch, no backends configured for querying

PDNS did not find the launch=bind instruction in pdns.conf.

90

Chapter 2. Installing on Unix

Multiple IP addresses on your server, PDNS sending out answers on the wrong one
Massive amounts of ’recvfrom gave error, ignoring: Connection refused’

If you have multiple IP addresses on the internet on one machine, UNIX often sends out answers
over another interface than which the packet came in on. In such cases, use local-address to bind to
specific IP addresses, which can be comma separated. The second error comes from remotes
disregarding answers to questions it didn’t ask to that IP address and sending back ICMP errors.

2.3. Running PDNS on unix

PDNS is normally controlled via a SysV-style init.d script, often located in /etc/init.d or
/etc/rc.d/init.d. This script accepts the following commands:

monitor

Monitor is a special way to view the daemon. It executes PDNS in the foreground with a lot of
logging turned on, which helps in determining startup problems. Besides running in the foreground,
the raw PDNS control socket is made available. All external communication with the daemon is
normally sent over this socket. While useful, the control console is not an officially supported
feature. Commands which work are: QUIT, SHOW *, SHOW varname, RPING.

start

Start PDNS in the background. Launches the daemon but makes no special effort to determine
success, as making database connections may take a while. Use status to query success. You can
safely run start many times, it will not start additional PDNS instances.

restart

Restarts PDNS if it was running, starts it otherwise.

status

Query PDNS for status. This can be used to figure out if a launch was successful. The status found
is prefixed by the PID of the main PDNS process.

stop

Requests that PDNS stop. Again, does not confirm success. Success can be ascertained with the
status command.

dump

Dumps a lot of statistics of a running PDNS daemon. It is also possible to single out specific
variable by using the show command.

show variable

Show a single statistic, as present in the output of the dump.

91

Chapter 2. Installing on Unix

mrtg

See the performance monitoring Chapter 6.

92

Chapter 3. Installing on Microsoft Windows

Note: PowerDNS support for Windows is, as of 1.99.12, very recent and therefore quite ’beta’. For
reliability, we currently advise the use of the Unix versions. Furthermore there is no support for
master or slave operation in the ODBC backend, which is the only one provided currently.

As of 1.99.12, PowerDNS supports Windows natively. PDNS can act as an NT service and works with
any ODBC drivers you may have.

To install PowerDNS for Windows you should check if your PC meets the following requirements:

• A PC running Microsoft NT (with a recent servicepack and at least mdac 2.5), 2000 or XP.

• An ODBC source containing valid zone information (an example MS Access database is supplied in
the form of powerdns.mdb).

After installing the software you should create a valid ODBC source. To do this you have open the
ODBC sources dialog: Start->Settings->Control Panel->Administrative Tools->Data

Sources (ODBC).

We’ll use the example zone database that is included in the installation to explain how to create a source.

When you are in the ODBC sources dialog you activate the System DSN tab.

Note: It is important to create a System DSN instead of an User DNS, otherwise the ODBC backend
cannot function.

Press Add..., then you have to select a driver.

Select Microsoft Access Driver (*.mdb).

Use PowerDNS as the DSN name, you can leave the description empty.

Then press Select... to select the database (ie. C:\Program Files\PowerDNS\powerdns.mdb).

93

Chapter 3. Installing on Microsoft Windows

Press Ok and you should be done.

For more information, see Section A.10.

3.1. Configuring PDNS on Microsoft Windows

You can specify program parameters in the pdns.conf file which should be located in pdns directory
(ie. C:\Program Files\PowerDNS\).

To see a list of available parameters you can run pdns.exe --help.

Note: A default configuration file has been supplied with the installation.

3.2. Running PDNS on Microsoft Windows

If you installed pdns on Windows NT, 2000 or XP you can run pdns as a service.

This is how to do it: Go to services (Start->Settings->Control Panel->Administrative

Tools->Services) and locate PDNS (you should have registered the program as a NT service during
the installation).

Double-click on PDNS and push the start button. You should now see a progress bar that gets to the end
and see the status change to ’Started’.

This is the same as starting pdns like this: pdns.exe --ntservice

If you haven’t registered pdns as a service during the installation you can do so from the commandline
by starting pdns like this: pdns.exe --register-service

You can run pdns as a standard console program by using a command prompt or Start->Run... This
way you can specify command-line parameters (see the documentation for commandline options).

If you chose to add a PowerDNS menu to the start menu during the installation you can start pdns using
the pdns shortcut in that menu.

94

Chapter 4. Basic setup: configuring database
connectivity

This chapter shows you how to configure the Generic MySQL backend, which we like a lot. But feel free
to use any of the myriad other backends. This backend is called ’gmysql’, and needs to be configured in
pdns.conf. Add the following lines, adjusted for your local setup:

launch=gmysql
gmysql-host=127.0.0.1
gmysql-user=root
gmysql-dbname=pdnstest

Remove any earlier launch statements. Also remove the bind-example-zones statement as the bind
module is no longer launched.

Warning

Make sure that you can actually resolve the hostname of your database without
accessing the database! It is advised to supply an IP address here to prevent
chicken/egg problems!

Warning

Be very very sure that you configure the *g*mysql backend and not the mysql
backend. See Section A.5. If you use the ’mysql’ backend things will only appear to
work.

Now start PDNS using the monitor command:

/etc/init.d/pdns monitor
(...)
15:31:30 About to create 3 backend threads
15:31:30 [gMySQLbackend] Failed to connect to database: Error: Unknown database ’pdnstest’
15:31:30 [gMySQLbackend] Failed to connect to database: Error: Unknown database ’pdnstest’
15:31:30 [gMySQLbackend] Failed to connect to database: Error: Unknown database ’pdnstest’

This is as to be expected - we did not yet add anything to MySQL for PDNS to read from. At this point
you may also see other errors which indicate that PDNS either could not find your MySQL server or was
unable to connect to it. Fix these before proceeding.

95

Chapter 4. Basic setup: configuring database connectivity

General MySQL knowledge is assumed in this chapter, please do not interpret these commands as DBA
advice!

4.1. Example: configuring MySQL

Connect to MySQL as a user with sufficient privileges and issue the following commands:

create table domains (
id INT auto_increment,
name VARCHAR(255) NOT NULL,
master VARCHAR(128) DEFAULT NULL,
last_check INT DEFAULT NULL,
type VARCHAR(6) NOT NULL,
notified_serial INT DEFAULT NULL,
account VARCHAR(40) DEFAULT NULL,
primary key (id)

)type=InnoDB;

CREATE UNIQUE INDEX name_index ON domains(name);

CREATE TABLE records (
id INT auto_increment,
domain_id INT DEFAULT NULL,
name VARCHAR(255) DEFAULT NULL,
type VARCHAR(6) DEFAULT NULL,
content VARCHAR(255) DEFAULT NULL,
ttl INT DEFAULT NULL,
prio INT DEFAULT NULL,
change_date INT DEFAULT NULL,
primary key(id)

)type=InnoDB;

CREATE INDEX rec_name_index ON records(name);
CREATE INDEX nametype_index ON records(name,type);
CREATE INDEX domain_id ON records(domain_id);

create table supermasters (
ip VARCHAR(25) NOT NULL,
nameserver VARCHAR(255) NOT NULL,
account VARCHAR(40) DEFAULT NULL

);

GRANT SELECT ON supermasters TO pdns;
GRANT ALL ON domains TO pdns;
GRANT ALL ON records TO pdns;

Now we have a database and an empty table. PDNS should now be able to launch in monitor mode and
display no errors:

/etc/init.d/pdns monitor

96

Chapter 4. Basic setup: configuring database connectivity

(...)
15:31:30 PowerDNS 1.99.0 (Mar 12 2002, 15:00:28) starting up
15:31:30 About to create 3 backend threads
15:39:55 [gMySQLbackend] MySQL connection succeeded
15:39:55 [gMySQLbackend] MySQL connection succeeded
15:39:55 [gMySQLbackend] MySQL connection succeeded

A sample query sent to the database should now return quickly without data:

$ host www.test.com 127.0.0.1
www.test.com A record currently not present at localhost

And indeed, the control console now shows:

Mar 12 15:41:12 We’re not authoritative for ’www.test.com’, sending unauth normal response

Now we need to add some records to our database:

mysql pdnstest
mysql> INSERT INTO domains (name, type) values (’test.com’, ’NATIVE’);
INSERT INTO records (domain_id, name, content, type,ttl,prio)
VALUES (1,’test.com’,’localhost ahu@ds9a.nl 1’,’SOA’,86400,NULL);
INSERT INTO records (domain_id, name, content, type,ttl,prio)
VALUES (1,’test.com’,’dns-us1.powerdns.net’,’NS’,86400,NULL);
INSERT INTO records (domain_id, name, content, type,ttl,prio)
VALUES (1,’test.com’,’dns-eu1.powerdns.net’,’NS’,86400,NULL);
INSERT INTO records (domain_id, name, content, type,ttl,prio)
VALUES (1,’www.test.com’,’199.198.197.196’,’A’,120,NULL);
INSERT INTO records (domain_id, name, content, type,ttl,prio)
VALUES (1,’mail.test.com’,’195.194.193.192’,’A’,120,NULL);
INSERT INTO records (domain_id, name, content, type,ttl,prio)
VALUES (1,’localhost.test.com’,’127.0.0.1’,’A’,120,NULL);
INSERT INTO records (domain_id, name, content, type,ttl,prio)
VALUES (1,’test.com’,’mail.test.com’,’MX’,120,25);

If we now requery our database, www.test.com should be present:

$ host www.test.com 127.0.0.1
www.test.com A 199.198.197.196

$ host -v -t mx test.com 127.0.0.1
Address: 127.0.0.1
Aliases: localhost

Query about test.com for record types MX
Trying test.com ...
Query done, 1 answer, authoritative status: no error
test.com 120 IN MX 25 mail.test.com
Additional information:
mail.test.com 120 IN A 195.194.193.192

To confirm what happened, issue the command SHOW * to the control console:

% show *

97

Chapter 4. Basic setup: configuring database connectivity

corrupt-packets=0,latency=0,packetcache-hit=2,packetcache-miss=5,packetcache-size=0,
qsize-a=0,qsize-q=0,servfail-packets=0,tcp-answers=0,tcp-queries=0,
timedout-packets=0,udp-answers=7,udp-queries=7,
%

The actual numbers will vary somewhat. Now enter QUIT and start PDNS as a regular daemon, and
check launch status:

/etc/init.d/pdns start
pdns: started
/etc/init.d/pdns status
pdns: 8239: Child running
/etc/init.d/pdns dump
pdns: corrupt-packets=0,latency=0,packetcache-hit=0,packetcache-miss=0,
packetcache-size=0,qsize-a=0,qsize-q=0,servfail-packets=0,tcp-answers=0,
tcp-queries=0,timedout-packets=0,udp-answers=0,udp-queries=0,

You now have a working database driven nameserver! To convert other zones already present, use the
zone2sql described in Appendix A.

4.1.1. Common problems

Most problems involve PDNS not being able to connect to the database.

Can’t connect to local MySQL server through socket ’/tmp/mysql.sock’ (2)

Your MySQL installation is probably defaulting to another location for its socket. Can be resolved
by figuring out this location (often /var/run/mysqld.sock), and specifying it in the
configuration file with the gmysql-socket parameter.

Another solution is to not connect to the socket, but to 127.0.0.1, which can be achieved by
specifying gmysql-host=127.0.0.1.

Host ’x.y.z.w’ is not allowed to connect to this MySQL server

These errors are generic MySQL errors. Solve them by trying to connect to your MySQL database
with the MySQL console utility mysql with the parameters specified to PDNS. Consult the MySQL
documentation.

98

Chapter 5. Dynamic resolution using the
PipeBackend

Also included in the PDNS distribution is the PipeBackend. The PipeBackend is primarily meant for
allowing rapid development of new backends without tight integration with PowerDNS. It allows
end-users to write PDNS backends in any language. A perl sample is provided. The PipeBackend is also
very well suited for dynamic resolution of queries. Example applications include DNS based
loadbalancing, geo-direction, DNS based failover with low TTLs.

The Pipe Backend also has a separate chapter in the backends appendix, see Section A.1.

Note: The Pipe Backend currently does not function under FreeBSD 4.x and 5.x, probably due to
unfavorable interactions between its threading implementation and the fork system call.

Interestingly, the Linux PowerDNS binary running under the Linuxulator on FreeBSD does work.

5.1. Deploying the PipeBackend with the BindBackend

Included with the PDNS distribution is the example.pl backend which has knowledge of the
example.com zone, just like the BindBackend. To install both, add the following to your pdns.conf:

launch=pipe,bind
bind-example-zones
pipe-command=location/of/backend.pl

Please adjust the pipe-command statement to the location of the unpacked PDNS distribution. If your
backend is slow, raise pipe-timeout from its default of 2000ms. Now launch PDNS in monitor mode,
and perform some queries. Note the difference with the earlier experiment where only the BindBackend
was loaded. The PipeBackend is launched first and thus gets queried first. The sample backend.pl script
knows about:

• webserver.example.com A records pointing to 1.2.3.4, 1.2.3.5, 1.2.3.6

• www.example.com CNAME pointing to webserver.example.com

• MBOXFW (mailbox forward) records pointing to powerdns@example.com. See the smtpredir
documentation for information about MBOXFW.

For more information about how to write exciting backends with the PipeBackend, see Appendix A.

99

Chapter 6. Logging & Monitoring Authoritative
Server performance

In a production environment, you will want to be able to monitor PDNS performance. For this purpose,
currently two methods are available, the webserver and the init.d dump, show and mrtg, commands.
Furthermore, PDNS can perform a configurable amount of operational logging. This chapter also
explains how to configure syslog for best results.

6.1. Webserver

To launch the internal webserver, add a webserver statement to the pdns.conf. This will instruct the
PDNS daemon to start a webserver on localhost at port 8081, without password protection. Only local
users (on the same host) will be able to access the webserver by default. The webserver lists a lot of
information about the PDNS process, including frequent queries, frequently failing queries, lists of
remote hosts sending queries, hosts sending corrupt queries etc. The webserver does not allow remote
management of the daemon. The following nameserver related configuration items are available:

webserver

If set to anything but ’no’, a webserver is launched.

webserver-address

Address to bind the webserver to. Defaults to 127.0.0.1, which implies that only the local computer
is able to connect to the nameserver! To allow remote hosts to connect, change to 0.0.0.0 or the
physical IP address of your nameserver.

webserver-password

If set, viewers will have to enter this plaintext password in order to gain access to the statistics.

webserver-port

Port to bind the webserver to. Defaults to 8081.

6.2. Via init.d commands

As mentioned before, the init.d commands dump, show and mrtg fetch data from a running PDNS
process. Especially mrtg is powerful - it outputs data in a format that is ready for processing by the
MRTG graphing tool.

100

Chapter 6. Logging & Monitoring Authoritative Server performance

MRTG can make insightful graphics on the performance of your nameserver, enabling the operator to
easily spot trends. MRTG can be found on http://people.ee.ethz.ch/~oetiker/webtools/mrtg/mrtg.html
(http://people.ee.ethz.ch/~oetiker/webtools/mrtg/mrtg.html)

A sample mrtg.conf:

Interval: 5
WorkDir: /var/www/mrtg
WriteExpires: yes
Options[_]: growright,nopercent
XSize[_]: 600

#---

Target[udp-queries]: ‘/etc/init.d/pdns mrtg udp-queries udp-answers‘
Options[udp-queries]: growright,nopercent,perminute
MaxBytes[udp-queries]: 600000
AbsMax[udp-queries]: 600000
Title[udp-queries]: Queries per minute
PageTop[udp-queries]: <H2>Queries per minute</H2>

WithPeak[udp-queries]: ymwd
YLegend[udp-queries]: queries/minute
ShortLegend[udp-queries]: q/m
LegendI[udp-queries]: udp-questions
LegendO[udp-queries]: udp-answers

Target[perc-failed]: ‘/etc/init.d/pdns mrtg udp-queries udp-answers‘
Options[perc-failed]: growright,dorelpercent,perminute
MaxBytes[perc-failed]: 600000
AbsMax[perc-failed]: 600000
Title[perc-failed]: Queries per minute, with percentage success
PageTop[perc-failed]: <H2>Queries per minute, with percentage success</H2>

WithPeak[perc-failed]: ymwd
YLegend[perc-failed]: queries/minute
ShortLegend[perc-failed]: q/m
LegendI[perc-failed]: udp-questions
LegendO[perc-failed]: udp-answers

Target[packetcache-rate]: ‘/etc/init.d/pdns mrtg packetcache-hit udp-queries‘
Options[packetcache-rate]: growright,dorelpercent,perminute
Title[packetcache-rate]: packetcache hitrate
MaxBytes[packetcache-rate]: 600000
AbsMax[packetcache-rate]: 600000
PageTop[packetcache-rate]: <H2>packetcache hitrate</H2>

WithPeak[packetcache-rate]: ymwd
YLegend[packetcache-rate]: queries/minute
ShortLegend[packetcache-rate]: q/m
LegendO[packetcache-rate]: total
LegendI[packetcache-rate]: hit

101

Chapter 6. Logging & Monitoring Authoritative Server performance

Target[packetcache-missrate]: ‘/etc/init.d/pdns mrtg packetcache-miss udp-queries‘
Options[packetcache-missrate]: growright,dorelpercent,perminute
Title[packetcache-missrate]: packetcache MISSrate
MaxBytes[packetcache-missrate]: 600000
AbsMax[packetcache-missrate]: 600000
PageTop[packetcache-missrate]: <H2>packetcache MISSrate</H2>

WithPeak[packetcache-missrate]: ymwd
YLegend[packetcache-missrate]: queries/minute
ShortLegend[packetcache-missrate]: q/m
LegendO[packetcache-missrate]: total
LegendI[packetcache-missrate]: MISS

Target[latency]: ‘/etc/init.d/pdns mrtg latency‘
Options[latency]: growright,nopercent,gauge
MaxBytes[latency]: 600000
AbsMax[latency]: 600000
Title[latency]: Query/answer latency
PageTop[latency]: <H2>Query/answer latency</H2>

WithPeak[latency]: ymwd
YLegend[latency]: usec
ShortLegend[latency]: usec
LegendO[latency]: latency
LegendI[latency]: latency

Target[recursing]: ‘/etc/init.d/pdns mrtg recursing-questions recursing-answers‘
Options[recursing]: growright,nopercent,gauge
MaxBytes[recursing]: 600000
AbsMax[recursing]: 600000
Title[recursing]: Recursive questions/answers
PageTop[recursing]: <H2>Recursing questions/answers</H2>

WithPeak[recursing]: ymwd
YLegend[recursing]: queries/minute
ShortLegend[recursing]: q/m
LegendO[recursing]: recursing-questions
LegendI[recursing]: recursing-answers

6.3. Operational logging using syslog

(logging-facility is available from 1.99.10 and onwards)

This chapter assumes familiarity with syslog, the unix logging device. PDNS logs messages with
different levels. The more urgent the message, the lower the ’priority’. By default, PDNS will only log
messages with an urgency of 3 or lower, but this can be changed using the loglevel setting in the
configuration file. Setting it to 0 will eliminate all logging, 9 will log everything.

102

Chapter 6. Logging & Monitoring Authoritative Server performance

By default, logging is performed under the ’DAEMON’ facility which is shared with lots of other
programs. If you regard nameserving as important, you may want to have it under a dedicated facility so
PDNS can log to its own files, and not clutter generic files.

For this purpose, syslog knows about ’local’ facilities, numbered from LOCAL0 to LOCAL7. To move
PDNS logging to LOCAL0, add logging-facility=0 to your configuration.

Furthermore, you may want to have separate files for the differing prioties - preventing lower priority
messages from obscuring important ones.

A sample syslog.conf might be:

local0.info -/var/log/pdns.info
local0.warn -/var/log/pdns.warn
local0.err /var/log/pdns.err

Where local0.err would store the really important messages. For performance and diskspace reasons, it is
advised to audit your syslog.conf for statements also logging PDNS activities. Many syslog.confs have a
’*.*’ statement to /var/log/syslog, which you may want to remove.

For performance reasons, be especially certain that no large amounts of synchronous logging take place.
Under Linux, this is indicated by filenames not starting with a ’-’ - indicating a synchronous log, which
hurts performance.

Be aware that syslog by default logs messages at the configured priority and higher! To log only info
messages, use local0.=info.

103

Chapter 7. Security settings & considerations

7.1. Settings

PDNS has several options to easily allow it to run more securely. Most notable are the chroot, setuid and
setgid options which can be specified.

For additional information on PowerDNS security, PowerDNS security incidents and PowerDNS
security policy, see Section 1.4.

7.1.1. Running as a less privileged identity

By specifying setuid and setgid, PDNS changes to this identity shortly after binding to the privileged
DNS ports. These options are highly recommended. It is suggested that a separate identity is created for
PDNS as the user ’nobody’ is in fact quite powerful on most systems.

Both these parameters can be specified either numerically or as real names. You should set these
parameters immediately if they are not set!

7.1.2. Jailing the process in a chroot

The chroot option secures PDNS to its own directory so that even if it should become compromised and
under control of external influences, it will have a hard time affecting the rest of the system.

Even though this will hamper hackers a lot, chroot jails have been known to be broken.

Warning

When chrooting PDNS, take care that backends will be able to get to their files.
Many databases need access to a UNIX domain socket which should live within
the chroot. It is often possible to hardlink such a socket into the chroot dir.

When running with master or slave support, be aware that many operating
systems need access to specific libraries (ofen /lib/libnss*) in order to support
resolution of domain names! You can also hardlink these.

104

Chapter 7. Security settings & considerations

The default PDNS configuration is best chrooted to ./, which boils down to the configured location of
the controlsocket.

This is achieved by adding the following to pdns.conf: chroot=./, and restarting PDNS.

7.2. Considerations

In general, make sure that the PDNS process is unable to execute commands on your backend database.
Most database backends will only need SELECT privilege. Take care to not connect to your database as
the ’root’ or ’sa’ user, and configure the chosen user to have very slight privileges.

Databases empathic-ally do not need to run on the same machine that runs PDNS! In fact, in benchmarks
it has been discovered that having a separate database machine actually improves performance.

Separation will enhance your database security highly. Recommended.

105

Chapter 8. Virtual hosting

It may be advantageous to run multiple separate PDNS installations on a single host, for example to
make sure that different customers cannot affect each others zones. PDNS fully supports running
multiple instances on one host.

To generate additional PDNS instances, copy the init.d script pdns to pdns-name, where name is the
name of your virtual configuration. Must not contain a - as this will confuse the script.

When you launch PDNS via this renamed script, it will seek configuration instructions not in
pdns.conf but in pdns-name.conf, allowing for separate specification of parameters.

Be aware however that the init.d force-stop will kill all PDNS instances!

106

Chapter 9. Performance

9.1. General advice

In general, best performance is achieved on recent Linux 2.6 kernels and using MySQL, although many
of the largest PowerDNS installations are based on PostgreSQL. FreeBSD appears to achieve lower
packet rates both for the PowerDNS recursor as for the authoritative nameserver, this is still being
investigated. No comparative measurements have been done for Solaris installations.

On Linux, make sure to read Section 9.2.

Database servers can require configuration to achieve decent performance. It is especially worth noting
that several vendors ship PostgreSQL with a slow default configuration.

9.2. Native Posix Thread Library vs LinuxThreads

To get the best performance under Linux, especially on SMP systems, the use of NPTL is advised. The
difference in performance can be over a factor of ten in some circumstances.

NPTL is the default library on modern Linux distributions, so there is generally not a problem, except if
you use a statically compiled version that, for portability reasons, defaults to LinuxThreads. This
includes all .deb’s and .rpm’s provided by us up to and including 2.9.18.

When running a PowerDNS-provided static binary of 2.9.18 or lower, it may make sense to recompile, or
to upgrade to a newer version, if available. When recompiling, be sure to use a supported compiler, like
g++ >3.2. You might also consider moving to a distribution supplied version.

A good indication that your installation might benefit from such an upgrade is to watch the ’cs’ count in
the output of vmstat 1. If this is very high (> 10000), you are suffering from a LinuxThreads
performance problem called ’overspin’.

Thanks are due to L. Bunt Jackson who noted the static compilation problem in an article in Dr. Dobb’s
Journal.

9.3. Performance related settings

Different backends will have different characteristics - some will want to have more parallel instances

107

Chapter 9. Performance

than others. In general, if your backend is latency bound, like most relational databases are, it pays to
open more backends.

This is done with the distributor-threads setting. Of special importance is the choice between 1 or more
backends. In case of only 1 thread, PDNS reverts to unthreaded operation which may be a lot faster,
depending on your operating system and architecture.

Another very important setting cache-ttl. PDNS caches entire packets it sends out so as to save the time
to query backends to assemble all data. The default setting of 10 seconds may be low for high traffic
sites, a value of 60 seconds rarely leads to problems.

Some PDNS operators set cache-ttl to many hours or even days, and use pdns_control purge to
selectively or globally notify PDNS of changes made in the backend. Also look at the Query Cache
described in this chapter. It may materially improve your performance.

To determine if PDNS is unable to keep up with packets, determine the value of the qsize-q variable.
This represents the number of packets waiting for database attention. During normal operations the
queue should be small.

If it is known that backends will not contain CNAME records, the skip-cname setting can be used to
prevent the normally mandatory CNAME lookup that is needed at least once for each DNS query.

Much the same holds for the wildcards setting. On by default, each non-existent query will lead to a
number of additional wildcard queries. If it is known that the backends do not contain wildcard records,
performance can be improved by adding wildcards=no to pdns.conf.

Logging truly kills performance as answering a question from the cache is an order of magnitude less
work than logging a line about it. Busy sites will prefer to turn log-dns-details and log-failed-updates
off.

9.3.1. Packet Cache

PDNS by default uses the ’Packet Cache’ to recognise identical questions and supply them with identical
answers, without any further processing. The default time to live is 10 seconds. It has been observed that
the utility of the packet cache increases with the load on your nameserver.

Not all backends may benefit from the packetcache. If your backend is memory based and does not lead
to context switches, the packetcache may actually hurt performance.

The size of the packetcache can be observed with /etc/init.d/pdns show packetcache-size

108

Chapter 9. Performance

9.3.2. Query Cache

Besides entire packets, PDNS can also cache individual backend queries. Each DNS query leads to a
number of backend queries, the most obvious additional backend query is the check for a possible
CNAME. So, when a query comes in for the ’A’ record for ’www.powerdns.com’, PDNS must first
check for a CNAME for ’www.powerdns.com’.

The Query Cache caches these backend queries, many of which are quite repetitive. PDNS only caches
queries with no answer, or with exactly one. In the future this may be expanded but this lightweight
solution is very simple and therefore fast.

Most gain is made from caching negative entries, ie, queries that have no answer. As these take little
memory to store and are typically not a real problem in terms of speed-of-propagation, the default TTL
for negative queries is a rather high 60 seconds.

This only is a problem when first doing a query for a record, adding it, and immediately doing a query
for that record again. It may then take up to 60 seconds to appear. Changes to existing records however
do not fall under the negative query ttl (negquery-cache-ttl), but under the generic query-ttl which
defaults to 20 seconds.

The default values should work fine for many sites. When tuning, keep in mind that the Query Cache
mostly saves database access but that the Packet Cache also saves a lot of CPU because 0 internal
processing is done when answering a question from the Packet Cache.

109

Chapter 10. Migrating to PDNS

Before migrating to PDNS a few things should be considered.

PDNS does not operate as a ’slave’ or ’master’ server with all backends

Only the Generic SQL, OpenDBX and BIND backends have the ability to act as master or slave.

To migrate, the zone2sql tool is provided.

Additionally, the PowerDNS source comes with a number of diagnostic tools, which can be helpful in
verifying proper PowerDNS operation, versus incumbent nameservers. See Chapter 20 for more details.

10.1. Zone2sql

Zone2sql parses Bind named.conf files and zonefiles and outputs SQL on standard out, which can then
be fed to your database.

Zone2sql understands the Bind master file extension ’$GENERATE’ and will also honour ’$ORIGIN’
and ’$TTL’.

For backends supporting slave operation (currently only the Generic PostgreSQL, Generic MySQL and
BIND backend), there is also an option to keep slave zones as slaves, and not convert them to native
operation.

By default, zone2sql outputs code suitable for the mysqlbackend, but it can also generate SQL for the
Generic PostgreSQL, Generic MySQL and Oracle backends. The following commands are available:

--bare

Output in a bare format, suitable for further parsing. The output is formatted as follows:

domain_id<TAB>’qname’<TAB>’qtype’<TAB>’content’<TAB>prio<TAB>ttl

--gmysql

Output in format suitable for the default configuration of the Generic MySQL backend.

--gpgsql

Output in format suitable for the default configuration of the Generic PostgreSQL backend.

--help

List options.

110

Chapter 10. Migrating to PDNS

--mysql

Output in format suitable for the default configuration of the MySQL backend. Default.

--named-conf=...

Parse this named.conf to find locations of zones.

--on-error-resume-next

Ignore missing files during parsing. Dangerous.

--oracle

Output in format suitable for the default configuration of the Generic Oracle backend.

--slave

Maintain slave status of zones listed in named.conf as being slaves. The default behaviour is to
convert all zones to native operation.

--startid

Supply a value for the first domain_id generated. Defaults at 0.

--transactions

For Oracle and PostgreSQL output, wrap each domain in a transaction for higher speed and
integrity.

--verbose

Be verbose during conversion.

--zone=...

Parse only this zone file. Conflicts with --named-conf parameter.

--zone-name=...

When parsing a single zone without $ORIGIN statement, set this as the zone name.

111

Chapter 11. Recursion

(only available from 1.99.8 and onwards, recursing component available since 2.9.5)

From 2.9.5 onwards, PowerDNS offers both authoritative nameserving capabilities and a recursive
nameserver component. These two halves are normally separate but many users insist on combining both
recursion and authoritative service on one IP address. This can be likened to running Apache and Squid
both on port 80.

However, many sites want to do this anyhow and some with good reason. For example, a setup like this
allows the creation of fake domains which only exist for local users. Such domains often don’t end on
".com" or ".org" but on ".intern" or ".name-of-isp".

PowerDNS can cooperate with either its own recursor or any other you have available to deliver recursive
service on its port.

By specifying the recursor option in the configuration file, questions requiring recursive treatment will
be handed over to the IP address specified. An example configuration might be recursor=130.161.180.1,
which designates 130.161.180.1 as the nameserver to handle recursive queries.

As of 2.9.5, the recursing component of PowerDNS is a bit young and relatively untested but we hope
people will want to use it anyhow. As an alternative, we highly advise the use of the DJBDNS dnscache
(http://cr.yp.to/djbdns/dnscache.html).

Take care not to point recursor to PDNS, which leads to a very tight packet loop!

By specifying allow-recursion, recursion can be restricted to netmasks specified. The default is to allow
recursion from everywhere. Example: allow-recursion=192.168.0.0/24, 10.0.0.0/8, 1.2.3.4.

11.1. Details

Questions carry a number of flags. One of these is called ’Recursion Desired’. If PDNS is configured to
allow recursion, AND such a flag is seen, AND the IP address of the client is allowed to recurse via
PDNS, then the packet may be handed to the recursing backend.

If a Recursion Desired packet arrives and PDNS is configured to allow recursion, but not to the IP
address of the client, resolution will proceed as if the RD flag were unset and the answer will indicate
that recursion was not available.

112

Chapter 11. Recursion

It is also possible to use a resolver living on a different port. To do so, specify a recursor like this:
recursor=130.161.180.1:5300.

If the backend does not answer a question within a large amount of time, this is logged as ’Recursive
query for remote 10.96.0.2 with internal id 0 was not answered by backend within timeout, reusing id’.
This may happen when using ’BIND’ as a recursor as it is prone to drop queries which it can’t answer
immediately.

To make sure that the local authoritative database overrides recursive information, PowerDNS first tries
to answer a question from its own database. If that succeeds, the answer packet is sent back immediately
without involving the recursor in any way. This means that for questions for which there is no answer,
PowerDNS will consult the recursor for an recursive query, even if PowerDNS is authoritative for a
domain! This will only cause problems if you ’fake’ domains which don’t really exist.

If you want to create such fake domains or override existing domains, please set the
allow-recursion-override feature (available as of 2.9.14).

Some packets, like those asking for MX records which are needed for SMTP transport of email, can be
subject to ’additional processing’. This means that a recursing nameserver is obliged to try to add A
records (IP addresses) for any of the mailservers mentioned in the packet, should it have these addresses
available.

If PowerDNS encounters records needing such processing and finds that it does not have the data in its
authoritative database, it will send an opportunistic quick query to the recursing component to see if it
perhaps has such data. This question is worded such that the recursing nameserver should return
immediately such as not to block the authoritative nameserver.

This marks a change from pre-2.9.5 behaviour where a packet was handed wholesale to the recursor in
case it needed additional processing which could not proceed from the authoritative database.

113

Chapter 12. PowerDNS resolver/recursing
nameserver

The PowerDNS recursor is part of the source tarball of the main PowerDNS distribution, but it is
released separately. Starting from the version 3.0 pre-releases, there are zero known bugs or issues with
the recursor. It is known to power the resolving needs of over 2 million internet connections.

The documentation below is only for the 3.0 series, users of older versions are urged to upgrade!

Notable features:

• Uses MTasker (homepage (http://ds9a.nl/mtasker))

• Can handle thousands of concurrent questions. A dual Xeon 3GHz has been measured functioning
very well at 9000 real life replayed packets per second, with 40% cpu idle. More testing equipment is
needed to max out the recursor.

• Powered by a highly modern DNS packet parser that should be resistant against many forms of buffer
overflows.

• Best spoofing protection that we know about, involving both source port randomisation and spoofing
detection.

• Uses ’connected’ UDP sockets which allow the recursor to react quickly to unreachable hosts or hosts
for which the server is running, but the nameserver is down. This makes the recursor faster to respond
in case of misconfigured domains, which are sadly very frequent.

• Special support for FreeBSD, Linux and Solaris stateful multiplexing (kqueue, epoll, completion
ports).

• Very fast, and contains innovative query-throttling code to save time talking to obsolete or broken
nameservers.

• Code is written linearly, sequentially, which means that there are no problems with ’query restart’ or
anything.

• Relies heavily on Standard C++ Library infrastructure, which makes for little code (406 core lines).

• Is very verbose in showing how recursion actually works, when enabled to do so with --verbose.

• The algorithm is simple and quite nifty.

The PowerDNS recursor is controlled and queried using the rec_control tool.

114

Chapter 12. PowerDNS resolver/recursing nameserver

12.1. pdns_recursor settings

At startup, the recursing nameserver reads the file recursor.conf from the configuration directory,
often /etc/powerdns or /usr/local/etc. Each setting below can appear on the command line,
prefixed by ’--’, or in the configuration file. The command line overrides the configuration file.

A switch can be set to on simply by passing it, like ’--daemon’, and turned off explicitly by
’--daemon=off’ or ’--daemon=no’.

The following settings can be configured:

aaaa-additional-processing

If turned on, the recursor will attempt to add AAAA IPv6 records to questions for MX records and
NS records. Can be quite slow as absence of these records in earlier answers does not guarantee
their non-existance. Can double the amount of queries needed. Off by default.

allow-from

Comma separated netmasks (both IPv4 and IPv6) that are allowed to use the server. The default
allows access only from RFC 1918 private IP addresses, like 10.0.0.0/8. Due to the agressive nature
of the internet these days, it is highly recommended to not open up the recursor for the entire
internet. Questions from IP addresses not listed here are ignored and do not get an answer.

allow-from-file

Like allow-from, except reading from file. Overrides the ’allow-from’ setting. To use this feature,
supply one netmask per line, with optional comments preceeded by a #. Available since 3.1.5.

auth-can-lower-ttl

Authoritative zones can transmit a TTL value that is lower than that specified in the parent zone.
This is called a ’delegation inconsistency’. To follow RFC 2181 paragraphs 5.2 and 5.4 to the letter,
enable this feature. This will mean a slight deterioration of performance, and it will not solve any
problems, but does make the recursor more standards compliant. Not recommended unless you have
to tick an ’RFC 2181 compliant’ box. Off by default.

auth-zones

Comma separated list of ’zonename=filename’ pairs. Zones read from these files are served
authoritatively. Example: auth-zones= ds9a.nl=/var/zones/ds9a.nl,
powerdns.com=/var/zones/powerdns.com. Available since 3.1.

chroot

If set, chroot to this directory for more security. See Chapter 7.

client-tcp-timeout

Time to wait for data from TCP clients. Defaults to 2 seconds.

115

Chapter 12. PowerDNS resolver/recursing nameserver

config-dir

Directory where the configuration file can be found.

daemon

Operate in the background, which is the default.

delegation-only

A Verisign special.

dont-query

The DNS is a public database, but sometimes contains delegations to private IP addresses, like for
example 127.0.0.1. This can have odd effects, depending on your network, and may even be a
security risk. Therefore, since version 3.1.5, the PowerDNS recursor by default does not query
private space IP addresses. This setting can be used to expand or reduce the limitations.

entropy-source

From version 3.1.5 onwards, PowerDNS can read entropy from a (hardware) source. This is used
for generating random numbers which are very hard to predict. Generally on UNIX platforms, this
source will be /dev/urandom, which will always supply random numbers, even if entropy is
lacking. Change to /dev/random if PowerDNS should block waiting for enough entropy to arrive.

export-etc-hosts

If set, this flag will export the host names and IP addresses mentioned in /etc/hosts. Available
since 3.1.

fork

If running on an SMP system with enough memory, this feature forks PowerDNS so it benefits from
two processors. Experimental. Renames controlsockets, so care is needed to connect to the right one
using rec_control, using --socket-pid.

forward-zones

Comma separated list of ’zonename=IP’ pairs. Queries for zones listed here will be forwarded to
the IP address listed. forward-zones= ds9a.nl=213.244.168.210, powerdns.com=127.0.0.1.
Available since 3.1.

Since version 3.1.5, multiple IP addresses can be specified. Additionally, port numbers other than
53 can be configured. Sample syntax: forward-zones=ds9a.nl=213.244.168.210:5300;127.0.0.1,
powerdns.com=127.0.0.1;9.8.7.6:530, or on the command line:
--forward-zones="ds9a.nl=213.244.168.210:5300;127.0.0.1,
powerdns.com=127.0.0.1;9.8.7.6:530",

forward-zones-file

Same as forward-zones, parsed from a file. Only 1 zone is allowed per line, specified as follows:
ds9a.nl=213.244.168.210, 1.2.3.4:5300. No comments are allowed. Available since 3.1.5.

116

Chapter 12. PowerDNS resolver/recursing nameserver

hint-file

If set, the root-hints are read from this file. If unset, default root hints are used. Available since
2.9.19.

local-address

Local IPv4 or IPv6 addresses to bind to, comma separated. Defaults to only loopback. Addresses
can also contain port numbers, for IPv4 specify like this: 1.2.3.4:5300, for IPv6: [::1]:5300. Port
specifications are available since 3.1.2.

local-port

Local port (singular) to bind to. Defaults to 53.

log-common-errors

Some DNS errors occur rather frequently and are no cause for alarm. Logging these is on by default.

logging-facility

If set to a digit, logging is performed under this LOCAL facility. See Section 6.3>. Available from
3.1.3 and onwards. Do not pass names like ’local0’!

max-cache-entries

Maximum number of cache entries. 1 million will generally suffice for most installations.

max-negative-ttl

A query for which there is authoritatively no answer is cached to quickly deny a record’s existence
later on, without putting a heavy load on the remote server. In practice, caches can become saturated
with hundreds of thousands of hosts which are tried only once. This setting, which defaults to 3600
seconds, puts a maximum on the amount of time negative entries are cached.

max-tcp-clients

Maximum number of simultaneous incoming TCP connections allowed. Defaults to 128. Available
since 2.9.18.

max-tcp-per-client

Maximum number of simultaneous incoming TCP connections allowed per client (remote IP
address). Defaults to 0, which means unlimited.

query-local-address

Send out local queries from this address. Useful for anycast.

query-local-address6

Send out local IPv6 queries from this address. Disabled by default, which also disables outgoing
IPv6 support. A useful setting is ::0.

quiet

Don’t log queries. On by default.

117

Chapter 12. PowerDNS resolver/recursing nameserver

remotes-ringbuffer-entries

Number of entries in the remotes ringbuffer, which keeps statistics on who is querying your server.
Can be read out using rec_control top-remotes. Defaults to 0.

serve-rfc1918

On by default, this makes the server authoritatively aware of: 10.in-addr.arpa,
168.192.in-addr.arpa, 16-31.172.in-addr.arpa, which saves load on the AS112 servers.
Individual parts of these zones can still be loaded or forwarded.

server-id

The PowerDNS recursor by replies to a query for ’id.server’ with its hostname, useful for in
clusters. Use this setting to override the answer it gives.

setgid
setuid

PowerDNS can change its user and group id after binding to its socket. Can be used for better
security.

socket-dir

Where to store the control socket. This option also works with the controller, rec_control.

spoof-nearmiss-max

If set to non-zero, PowerDNS will assume it is being spoofed after seeing this many answers with
the wrong id. Defaults to 20.

trace

If turned on, output impressive heaps of logging. May destroy performance under load.

version

Print version of this binary. Useful for checking which version of the PowerDNS recursor is
installed on a system. Available since 3.1.5.

version-string

By default, PowerDNS replies to the ’version.bind’ query with its version number. Security
concious users may wish to override the reply PowerDNS issues.

12.2. Controlling and querying the recursor

To control and query the PowerDNS recursor, the tool rec_control is provided. This program talks to
the recursor over the ’controlsocket’, often stored in /var/run.

118

Chapter 12. PowerDNS resolver/recursing nameserver

As a sample command, try:

rec_control ping
pong

When not running as root, --socket-dir=/tmp might be appropriate.

All rec_control commands are documented below:

dump-cache filename

Dumps the entire cache to the filename mentioned. This file should not exist already, PowerDNS
will refuse to overwrite it. While dumping, the recursor will not answer questions.

get statistic

Retrieve a statistic. For items that can be queried, see below.

get-parameter parameter1 parameter2 ../term>

Retrieve a configuration parameter. All parameters from the configuration and command line can be
queried.

ping

Check if server is alive.

quit

Request shutdown of the recursor.

reload-zones

Reload data about all authoritative and forward zones. The configuration file is also scanned to see
if the auth-domain, forward-domain and export-etc-hosts statements have changed, and if so,
these changes are incorporated.

top-remotes

Shows the top-20 most active remote hosts. Statistics are over the last ’remotes-ringbuffer-entries’
queries, which defaults to 0.

wipe-cache domain0. [domain1. domain2.]

Wipe entries from the cache. This is useful if, for example, an important server has a new IP
address, but the TTL has not yet expired. Multiple domain names can be passed. For versions before
3.1, you must terminate a domain with a .! So to wipe powerdns.org, issue ’rec_control wipe-cache
powerdns.org.’. For later versions, the dot is optional.

Note that deletion is exact, wiping ’com.’ will leave ’www.powerdns.com.’ untouched!

119

Chapter 12. PowerDNS resolver/recursing nameserver

Warning

As of 3.1.7, this command also wipes the negative query cache for the
specified domain.

Warning

Don’t just wipe ’www.somedomain.com’, its NS records or CNAME
target may still be undesired, so wipe ’somedomain.com’ as well.

The command ’get’ can query a large number of statistics, which are detailed in Section 12.5.

More details on what ’throttled’ queries and the like are can be found below in Section 12.4.

12.3. PowerDNS Recursor performance

To get the best out of the PowerDNS recursor, which is important if you are doing thousands of queries
per second, please consider the following.

• Limit the size of the cache to a sensible value. Cache hit rate does not improve meaningfully beyond 4
million max-cache-entries, reducing the memory footprint reduces CPU cache misses.

• Compile using g++ 4.1 or later. This compiler really does a good job on PowerDNS, much better than
3.4 or 4.0.

• Consider performing a ’profiled build’ as described in the README. This is good for a 20%
performance boost in some cases.

• When running with >3000 queries per second, and running Linux versions prior to 2.6.17 on some
motherboards, your computer may spend an inordinate amount of time working around an ACPI bug
for each call to gettimeofday. This is solved by rebooting with ’clock=tsc’ or upgrading to a 2.6.17
kernel.

The above is relevant if dmesg shows Using pmtmr for high-res timesource

• A busy server may need hundreds of file descriptors on startup, and deals with spikes better if it has
that many available later on. Linux by default restricts processes to 1024 file descriptors, which should

120

Chapter 12. PowerDNS resolver/recursing nameserver

suffice most of the time, but Solaris has a default limit of 256. This can be raised using the ulimit
command. FreeBSD has a default limit that is high enough for even very heavy duty use.

• If you need it, try --fork, this will fork the daemon into two halves, allowing it to benefit from a
second CPU. This feature almost doubles performance, but is a bit of a hack.

Following the instructions above, you should be able to attain very high query rates.

12.4. Details

12.4.1. Anti-spoofing

The PowerDNS recursor 3.0 uses a fresh UDP source port for each outgoing query, making spoofing
around 64000 times harder. This raises the bar from ’easily doable given some time’ to ’very hard’.
Under some circimstances, ’some time’ has been measured at 2 seconds. This technique was first used by
dnscache by Dan J. Bernstein.

In addition, PowerDNS detects when it is being sent too many unexpected answers, and mistrusts a
proper answer if found within a clutch of unexpected ones.

This behaviour can be tuned using the spoof-nearmiss-max.

12.4.2. Throttling

PowerDNS implements a very simple but effective nameserver. Care has been taken not to overload
remote servers in case of overly active clients.

This is implemented using the ’throttle’. This accounts all recent traffic and prevents queries that have
been sent out recently from going out again.

There are three levels of throttling.

• If a remote server indicates that it is lame for a zone, the exact question won’t be repeated in the next
60 seconds.

• After 4 ServFail responses in 60 seconds, the query gets throttled too.

• 5 timeouts in 20 seconds also lead to query suppression.

121

Chapter 12. PowerDNS resolver/recursing nameserver

12.5. Statistics

The rec_control get command can be used to query the following keys, either single keys or multiple
keys at once:

all-outqueries counts the number of outgoing UDP queries since starting
answers0-1 counts the number of queries answered within 1 milisecond
answers100-1000 counts the number of queries answered within 1 second
answers10-100 counts the number of queries answered within 100 miliseconds
answers1-10 counts the number of queries answered within 10 miliseconds
answers-slow counts the number of queries answered after 1 second
cache-entries shows the number of entries in the cache
cache-hits counts the number of cache hits since starting
cache-misses counts the number of cache misses since starting
chain-resends number of queries chained to existing outstanding query
client-parse-errors counts number of client packets that could not be parsed
concurrent-queries shows the number of MThreads currently running
dlg-only-drops number of records dropped because of delegation only setting
negcache-entries shows the number of entries in the Negative answer cache
noerror-answers counts the number of times it answered NOERROR since starting
nsspeeds-entries shows the number of entries in the NS speeds map
nsset-invalidations number of times an nsset was dropped because it no longer worked
nxdomain-answers counts the number of times it answered NXDOMAIN since starting
outgoing-timeouts counts the number of timeouts on outgoing UDP queries since starting
qa-latency shows the current latency average
questions counts all End-user initiated queries with the RD bit set
resource-limits counts number of queries that could not be performed because of resource limits
server-parse-errors counts number of server replied packets that could not be parsed
servfail-answers counts the number of times it answered SERVFAIL since starting
spoof-prevents number of times PowerDNS considered itself spoofed, and dropped the data
sys-msec number of CPU milliseconds spent in ’system’ mode
tcp-client-overflow number of times an IP address was denied TCP access because it already had too many connections
tcp-outqueries counts the number of outgoing TCP queries since starting
tcp-questions counts all incoming TCP queries (since starting)
throttled-out counts the number of throttled outgoing UDP queries since starting
throttle-entries shows the number of entries in the throttle map
unauthorized-tcp number of TCP questions denied because of allow-from restrictions
unauthorized-udp number of UDP questions denied because of allow-from restrictions
unexpected-packets number of answers from remote servers that were unexpected (might point to spoofing)
uptime number of seconds process has been running (since 3.1.5)
user-msec number of CPU milliseconds spent in ’user’ mode

In the rrd/ subdirectory a number of rrdtool scripts is provided to make nice graphs of all these
numbers.

Every half our or so, the recursor outputs a line with statistics. More infrastructure is planned so as to
allow for Cricket or MRTG graphs. To force the output of statistics, send the process a SIGUSR1. A line
of statistics looks like this:

Feb 10 14:16:03 stats: 125784 questions, 13971 cache entries, 309 negative entries, 84% cache hits, outpacket/query ratio 37%, 12% throttled

122

Chapter 12. PowerDNS resolver/recursing nameserver

This means that there are 13791 different names cached, which each may have multiple records attached
to them. There are 309 items in the negative cache, items of which it is known that don’t exist and won’t
do so for the near future. 84% of incoming questions could be answered without any additional queries
going out to the net.

The outpacket/query ratio means that on average, 0.37 packets were needed to answer a question.
Initially this ratio may be well over 100% as additional queries may be needed to actually recurse the
DNS and figure out the addresses of nameservers.

Finally, 12% of queries were not performed because identical queries had gone out previously, saving
load servers worldwide.

12.6. Scripting

As of version 3.1.7 of the PowerDNS Recursor, it is possible to modify resolving behaviour using simple
scripts written in the Lua (http://www.lua.org) programming language.

Warning

This functionality is expected to change from version to version as additional
scripting needs become apparant!

These scripts can be used to quickly override dangerous domains, for load balancing or for legal or
commercial purposes.

As of 3.1.7, queries can be intercepted in two places: before the resolving logic starts to work, plus after
the resolving process failed to find a correct answer for a domain.

12.6.1. Configuring Lua scripts

In order to load scripts, the PowerDNS Recursor must have Lua support built in. The packages
distributed from the PowerDNS website have this language enabled, other distributions may differ. To
compile with Lua support, use: LUA=1 make or LUA=1 gmake as the case may be. Paths to the Lua
include files and binaries may be found near the top of the Makefile.

If lua support is available, a script can be configured either via the configuration file, or at runtime via the
rec_control tool. Scripts can be reloaded or unloaded at runtime with no interruption in operations. If a

123

Chapter 12. PowerDNS resolver/recursing nameserver

new script contains syntax errors, the old script remains in force.

On the commandline, or in the configuration file, the setting lua-dns-script can be used to supply a full
path to a ’lua’ script.

At runtime, rec_control reload-lua-script can be used to either reload the script from its current
location, or, when passed a new filename, load one from a new location. A failure to parse the new script
will leave the old script in working order.

Finally, rec_control unload-lua-script can be used to remove the currently installed script, and revert to
unmodified behaviour.

12.6.2. Writing Lua PowerDNS Recursor scripts

Once a script is loaded, PowerDNS looks for two functions: preresolve and nxdomain. Either or both
of these can be absent, in which case the corresponding functionality is disabled.

preresolve is called before any DNS resolution is attempted, and if this function indicates it, it can
supply a direct answer to the DNS query, overriding the internet. This is useful to combat botnets, or to
disable domains unacceptable to an organization for whatever reason.

nxdomain is called after the DNS resolution process has run its course, but ended in an ’NXDOMAIN’
situation, indicating that the domain or the specific record does not exist. This can be used for various
purposes.

Both functions are passed the IP address of the requestor, plus the name and type being requested. In
return, these functions indicate if they have taken over the request, or want to let normal proceedings take
their course. Beyond version 3.1.7, the IP address on which the question was received is inserted
immediately after the IP address of the requestor - so in that case there are 4 parameters.

If a function has taken over a request, it should return an rcode (usually 0), and specify a table with
records to be put in the answer section of a packet. An interesting rcode is NXDOMAIN (3, or
pdns.NXDOMAIN), which specifies the non-existence of a domain. Returning -1 and an empty table
signifies that the function chose not to intervene.

A minimal sample script:

function nxdomain (ip, domain, qtype)
print ("nxhandler called for: ", ip, domain, qtype)

ret={}

124

Chapter 12. PowerDNS resolver/recursing nameserver

if qtype ~= pdns.A then return -1, ret end -- only A records
if not string.find(domain, "^www%.") then return -1, ret end -- only things that start with www.
if not matchnetmask(ip, "10.0.0.0/8", "192.168.0.0/16") then return -1, ret end -- only interfere with local queries
ret[1]={qtype=pdns.A, content="127.1.2.3"} -- add IN A 127.1.2.3
ret[2]={qtype=pdns.A, content="127.3.2.1"} -- add IN A 127.3.2.1
return 0, ret -- return no error, plus records

end

Warning

Please do NOT use the above sample script in production! Responsible
NXDomain redirection requires more attention to detail.

Note that the domain is passed to the Lua function terminated by a ’.’. A more complete sample script is
provided as powerdns-example-script.lua in the PowerDNS Recursor distribution.

The answer content format is (nearly) identical to the storage in the PowerDNS Authoritative Server
database, or as in zone files. The exception is that, unlike in the database, there is no ’prio’ field, which
means that an MX record with priority 25 pointing to ’smtp.mailserver.com’ would be encoded as ’25
smtp.mailserver.com.’.

Useful return ’rcodes’ include 0 for "no error" and pdns.NXDOMAIN for "NXDOMAIN".

Fields that can be set in the return table include:

content

Content of the record, as specified above in ’zone file format’. No default, mandatory field.

place

Place of this record. Defaults to 1, indicating ’Answer’ section. Can also be 2, for Authority of 3 for
Additional. When using this rare feature, always emit records with ’Place’ in ascending order. This
field is usually not needed.

qname

qname of the answer, the ’name’ of the record. Defaults to the name of the query, which is almost
always correct except when specifying additional records or rolling out a CNAME chain.

125

Chapter 12. PowerDNS resolver/recursing nameserver

qtype

Currently the numerical qtype of the answer, defaulting to ’1’ which is an A record. Can be also be
specified as pdns.A, or pdns.CNAME etc.

ttl

Time to live of a record. Defaults to 3600. Be sure not to specify differing TTLs within answers
with an identical qname. While this will be encoded in DNS, actual results may be undesired.

Warning

The result table must have indexes that start at 1! Otherwise the first or confusingly
the last entry of the table will be ignored. A useful technique is to return data using:
return 0, {{qtype=1, content="1.2.3.4"}, {qtype=1,

content="4.3.2.1"}} as this will get the numbering right automatically.

The function matchnetmask(ip, netmask1, netmask2..) (or matchnetmask(ip,
{netmask1, netmask2})) is available to match incoming queries against a number of netmasks. If
any of these matches, the function returns true.

To log messages with the main PowerDNS Recursor process, use pdnslog(message). Available since
3.1.8.

12.7. Design and Engineering of the PowerDNS Recursor

Warning

This section is aimed at programmers wanting to contibute to the recursor, or to
help fix bugs. It is not required reading for a PowerDNS operator, although it might
prove interesting.

The PowerDNS Recursor consists of very little code, the core DNS logic is less than a thousand lines.

126

Chapter 12. PowerDNS resolver/recursing nameserver

This smallness is achieved through the use of some fine infrastructure: MTasker, MOADNSParser,
MPlexer and the C++ Standard Library/Boost. This page will explain the conceptual relation between
these components, and the route of a packet through the program.

12.7.1. The PowerDNS Recursor

The Recursor started out as a tiny project, mostly a technology demonstration. These days it consists of
the core plus 9000 lines of features. This combined with a need for very high performance has made the
recursor code less accessible than it was. The page you are reading hopes to rectify this situation.

12.7.2. Synchronous code using MTasker

The original name of the program was syncres, which is still reflected in the filename syncres.cc, and
the class SyncRes. This means that PowerDNS is written naively, with one thread of execution per query,
synchronously waiting for packets, Normally this would lead to very bad performance (unless running on
a computer with very fast threading, like possibly the Sun CoolThreads family), so PowerDNS employs
MTasker (http://ds9a.nl/mtasker) for very fast userspace threading.

MTasker, which was developed separately from PowerDNS, does not provide a full multithreading
system but restricts itself to those features a nameserver needs. It offers cooperative multitasking, which
means there is no forced preemption of threads. This in turn means that no two MThreads ever really
run at the same time.

This is both good and bad, but mostly good. It means PowerDNS does not have to think about locking.
No two threads will ever be talking to the DNS cache at the same time, for example.

It also means that the recursor could block if any operation takes too long.

The core interaction with MTasker are the waitEvent() and sendEvent() functions. These pass around
PacketID objects. Everything PowerDNS needs to wait for is described by a PacketID event, so the name
is a bit misleading. Waiting for a TCP socket to have data available is also passed via a PacketID, for
example.

The version of MTasker in PowerDNS is newer than that described at the MTasker site, with a vital
difference being that thet waitEvent() structure passes along a copy of the exact PacketID sendEvent()
transmitted. Furthermore, threads can trawl through the list of events being waited for and modify the
respective PacketIDs. This is used for example with near miss packets: packets that appear to answer
questions we asked, but differ in the DNS id. On seeing such a packet, the recursor trawls through all
PacketIDs and if it finds any nearmisses, it updates the PacketID::nearMisses counter. The actual
PacketID thus lives inside MTasker while any thread is waiting for it.

127

Chapter 12. PowerDNS resolver/recursing nameserver

12.7.3. MPlexer

The Recursor uses a separate socket per outgoing query. This has the important benefit of making
spoofing 64000 times harder, and additionally means that ICMP errors are reported back to the program.
In measurements this appears to happen to one in ten queries, which would otherwise take a two-second
timeout before PowerDNS moves on to another nameserver.

However, this means that the program routinely needs to wait on hundreds or even thousands of sockets.
Different operating systems offer various ways to monitor the state of sockets or more generally,
filedescriptors. To abstract out the differing strategies (select, epoll, kqueue, completion ports),
PowerDNS contains MPlexer classes, all of which descend from the FDMultiplexer class.

This class is very simple and offers only five important methods: addReadFD(), addWriteFD(),
removeReadFD(), removeWriteFD() and run.

The arguments to the add functions consist of an fd, a callback, and a boost::any variable that is passed
as a reference to the callback.

This might remind you of the MTasker above, and it is indeed the same trick: state is stored within the
MPlexer. As long as a filedescriptor remains within either the Read or Write active list, its state will
remain stored.

On arrival of a packet (or more generally, when an FD becomes readable or writable, which for example
might mean a new TCP connection), the callback is called with the aforementioned reference to its
parameter.

The callback is free to call removeReadFD() or removeWriteFD() to remove itself from the active list.

PowerDNS defines such callbacks as newUDPQuestion(), newTCPConnection(),
handleRunningTCPConnection().

Finally, the run() method needs to be called whenever the program is ready for new data. This happens in
the main loop in pdns_recursor.cc. This loop is what MTasker refers to as the kernel. In this loop, any
packets or other MPlexer events get translated either into new MThreads within MTasker, or into calls to
sendEvent(), which in turn wakes up other MThreads.

12.7.4. MOADNSParser

Yes, this does stand for the Mother of All DNS Parsers. And even that name does not do it justice! The
MOADNSParser is the third attempt I’ve made at writing DNS packet parser and after two miserable
failures, I think I’ve finally gotten it right.

128

Chapter 12. PowerDNS resolver/recursing nameserver

Writing and parsing DNS packets, and the DNS records it contains, consists of four things:

1. Parsing a DNS record (from packet) into memory

2. Generating a DNS record from memory (to packet)

3. Writing out memory to user-readable zone format

4. Reading said zone format into memory

This gets tedious very quickly, as one needs to implement all four operations for each new record type,
and there are dozens of them.

While writing the MOADNSParser, it was discovered there is a remarkable symmetry between these four
transitions. DNS Records are nearly always laid out in the same order in memory as in their zone format
representation. And reading is nothing but inverse writing.

So, the MOADNSParser is built around the notion of a Conversion, and we write all Conversion types
once. So we have a Conversion from IP address in memory to an IP address in a DNS packet, and vice
versa. And we have a Conversion from an IP address in zone format to memory, and vice versa.

This in turn means that the entire implementation of the ARecordContent is as follows (wait for it!)

conv.xfrIP(d_ip);

Through the use of the magic called c++ Templates, this one line does everything needed to perform
the four operations mentioned above.

At one point, I got really obsessed with PowerDNS memory use. So, how do we store DNS data in the
PowerDNS recorsor? I mentioned memory above a lot - this means we could just store the
DNSRecordContent objects. However, this would be wasteful.

For example, storing the following:

www.ds9a.nl 3600 IN CNAME outpost.ds9a.nl.

Would duplicate a lot of data. So, what is actually stored is a partial DNS packet. To store the
CNAMEDNSRecordContent that corresponds to the above, we generate a DNS packet that has
www.ds9a.nl IN CNAME as its question. Then we add 3600 IN CNAME outpost.ds9a.nl. as its
answer. Then we chop off the question part, and store the rest in the www.ds9a.nl IN CNAME key in
our cache.

When we need to retrieve www.ds9a.nl IN CNAME, the inverse happens. We find the proper partial
packet, prefix it with a question for www.ds9a.nl IN CNAME, and expand the resulting packet into the

129

Chapter 12. PowerDNS resolver/recursing nameserver

answer 3600 IN CNAME outpost.ds9a.nl..

Why do we go through all these motions? Because of DNS compression, which allows us to omit the
whole .ds9a.nl. part, saving us 9 bytes. This is amplified when storing multiple MX records which all
look more or less alike. This optimization is not performed yet though.

Even without compression, it makes sense as all records are automatically stored very compactly.

The PowerDNS recursor only parses a number of well known record types and passes all other
information across verbatim - it doesn’t have to know about the content it is serving.

12.7.5. The C++ Standard Library / Boost

C++ is a powerful language. Perhaps a bit too powerful at times, you can turn a program into a real
freakshow if you so desire.

PowerDNS generally tries not to go overboard in this respect, but we do build upon a very advanced part
of the Boost (http://www.boost.org) C++ library: boost::multi index container
(http://boost.org/libs/multi_index/doc/index.html).

This container provides the equivalent of SQL indexes on multiple keys. It also implements compound
keys, which PowerDNS uses as well.

The main DNS cache is implemented as a multi index container object, with a compound key on the
name and type of a record. Furthermore, the cache is sequenced, each time a record is accessed it is
moved to the end of the list. When cleanup is performed, we start at the beginning. New records also get
inserted at the end. For DNS correctness, the sort order of the cache is case insensitive.

The multi index container appears in other parts of PowerDNS, and MTasker as well.

12.7.6. Actual DNS Algorithm

The DNS rfcs do define the DNS algorithm, but you can’t actually implement it exactly that way, it was
written in 1987.

Also, like what happened to HTML, it is expected that even non-standards conforming domains work,
and a sizeable fraction of them is misconfigured these days.

Everything begins with SyncRes::beginResolve(), which knows nothing about sockets, and needs to be
passed a domain name, dns type and dns class which we are interested in. It returns a vector of

130

Chapter 12. PowerDNS resolver/recursing nameserver

DNSResourceRecord objects, ready for writing either into an answer packet, or for internal use.

After checking if the query is for any of the hardcoded domains (localhost, version.bind, id.server), the
query is passed to SyncRes::doResolve, together with two vital parameters: the depth and beenthere

set. As the word recursor implies, we will need to recurse for answers. The depth parameter documents
how deep we’ve recursed already.

The beenthere set prevents loops. At each step, when a nameserver is queried, it is added to the
beenthere set. No nameserver in the set will ever be queried again for the same question in the
recursion process - we know for a fact it won’t help us further. This prevents the process from getting
stuck in loops.

SyncRes::doResolve first checks if there is a CNAME in cache, using SyncRes::doCNAMECacheCheck,
for the domain name and type queried and if so, changes the query (which is passed by reference) to the
domain the CNAME points to. This is the cause of many DNS problems, a CNAME record really means
start over with this query.

This is followed by a call do SyncRes::doCacheCheck, which consults the cache for a straight answer to
the question (as possibly rerouted by a CNAME). This function also consults the so called negative
cache, but we won’t go into that just yet.

If this function finds the correct answer, and the answer hasn’t expired yet, it gets returned and we are
(almost) done. This happens in 80 to 90% of all queries. Which is good, as what follows is a lot of work.

To recap:

1. beginResolve() - entry point, does checks for hardcoded domains

2. doResolve() - start of recursion process, gets passed depth of 0 and empty beenthere set

3. doCNAMECacheCheck() - check if there is a CNAME in cache which would reroute the query

4. doCacheCheck() - see if cache contains straight answer to possibly rerouted query.

If the data we were queried for was in the cache, we are almost done. One final step, which might as well
be optional as nobody benefits from it, is SyncRes::addCruft. This function does additional processing,
which means that if the query was for the MX record of a domain, we also add the IP address of the mail
exchanger.

12.7.7. The non-cached case

This is where things get interesting, because we start out with a nearly empty cache and have to go out to
the net to get answers to fill it.

131

Chapter 12. PowerDNS resolver/recursing nameserver

The way DNS works, if you don’t know the answer to a question, you find somebody who does. Initially
you have no other place to go than the root servers. This is embodied in the
SyncRes::getBestNSNamesFromCache method, which gets passed the domain we are interested in, as
well as the depth and beenthere parameters mentioned earlier.

From now on, assume our query will be for www.powerdns.com..
SyncRes::getBestNSNamesFromCache will first check if there are NS records in cache for
www.powerdns.com., but there won’t be. It then checks powerdns.com. NS, and while these records
do exist on the internet, the recursor doesn’t know about them yet. So, we go on to check the cache for
com. NS, for which the same holds. Finally we end up checking for . NS, and these we do know about:
they are the root servers and were loaded into PowerDNS on startup.

So, SyncRes::getBestNSNamesFromCache fills out a set with the names of nameservers it knows about
for the . zone.

This set, together with the original query www.powerdns.com gets passed to SyncRes::doResolveAt.
This function can’t yet go to work immediately though, it only knows the names of nameservers it can
try. This is like asking for directions and instead of hearing take the third right you are told go to 123
Fifth Avenue, and take a right - the answer doesn’t help you further unless you know where 123 Fifth
Avenue is.

SyncRes::doResolveAt first shuffles the nameservers both randomly and on performance order. If it
knows a nameserver was fast in the past, it will get queried first. More about this later.

Ok, here is the part where things get a bit scary. How does SyncRes::doResolveAt find the IP address of
a nameserver? Well, by calling SyncRes::getAs (get A records), which in turn calls..
SyncRes::doResolve. Hang on! That’s where we came from! Massive potential for loops here. Well, it
turns out that for any domain which can be resolved, this loop terminates. We do pass the beenthere set
again, which makes sure we don’t keep on asking the same questions to the same nameservers.

Ok, SyncRes::getAs will give us the IP addresses of the chosen root-server, because these IP addresses
were loaded on startup. We then ask these IP addresses (nameservers can have several) for its best
answer for www.powerdns.com.. This is done using the LWRes class and specifically
LWRes::asyncresolve, which gets passed domain name, type and IP address. This function interacts with
MTasker and MPlexer above in ways which needn’t concern us now. When it returns, the LWRes object
contains the best answers the queried server had for our domain, which in this case means it tells us
about the nameservers of com., and their IP addresses.

All the relevant answers it gives are stored in the cache (or actually, merged), after which
SyncRes::doResolveAt (which we are still in) evaluates what to do now.

There are 6 options:

1. The final answer is in, we are done, return to SyncRes::doResolve and SyncRes::beginResolve

132

Chapter 12. PowerDNS resolver/recursing nameserver

2. The nameserver we queried tells us the domain we asked for authoritatively does not exist. In case of
the root-servers, this happens when we query for www.powerdns.kom. for example, there is no
kom.. Return to SyncRes::beginResolve, we are done.

3. A lesser form - it tells us it is authoritative for the query we asked about, but there is no record
matching our type. This happens when querying for the IPv6 address of a host which only has an
IPv4 address. Return to SyncRes::beginResolve, we are done.

4. The nameserver passed us a CNAME to another domain, and we need to reroute. Go to
SyncRes::doResolve for the new domain.

5. The namserver did not know about the domain, but does know who does, a referral. Stay within
doResolveAt and loop to these new nameservers.

6. The nameserver replied saying no idea. This is called a lame delegation. Stay within
SyncRes::doResolveAt and try the other nameservers we have for this domain.

When not redirected using a CNAME, this function will loop until it has exhausted all nameservers and
all their IP addresses. DNS is surprisingly resilient that there is often only a single non-broken
nameserver left to answer queries, and we need to be prepared for that.

This is the whole DNS algorithm in PowerDNS, all in less than 700 lines of code. It contains a lot of
tricky bits though, related to the cache.

12.7.8. Some of the things we glossed over

Whenever a packet is sent to a remote nameserver, the response time is stored in the
SyncRes::s_nsSpeeds map, using an exponentially weighted moving average. This EWMA averages out
different response times, and also makes them decrease over time. This means that a nameserver that
hasn’t been queried recently gradually becomes faster in the eyes of PowerDNS, giving it a chance
again.

A timeout is accounted as a 1s response time, which should take that server out of the running for a while.

Furthermore, queries are throttled. This means that each query to a nameserver that has failed is
accounted in the s_throttle object. Before performing a new query, the query and the nameserver are
looked up via shouldThrottle. If so, the query is assumed to have failed without even being performed.
This saves a lot of network traffic and makes PowerDNS quick to respond to lame servers.

It also offers a modicum of protection against birthday attack powered spoofing attempts, as PowerDNS
will not innundate a broken server with queries.

The negative query cache we mentioned earlier caches the cases 2 and 3 in the enumeration above. This
data needs to be stored separately, as it represents non-data. Each negcache query entry is the name of

133

Chapter 12. PowerDNS resolver/recursing nameserver

the SOA record that was presented with the evidence of non-existance. This SOA record is then retrieved
from the regular cache, but with the TTL that originally came with the NXDOMAIN (case 2) or
NXRRSET (case 3).

12.7.9. The Recursor Cache

As mentioned before, the cache stores partial packets. It also stores not the Time To Live of records, but
in fact the Time To Die. If the cache contains data, but it is expired, that data should not be deemed
present. This bit of PowerDNS has proven tricky, leading to deadlocks in the past.

There are some other very tricky things to deal with. For example, through a process called more details,
a domain might have more nameservers than listed in its parent zone. So, there might only be two
nameservers for powerdns.com. in the com. zone, but the powerdns.com zone might list more.

This means that the cache should not, when talking to the com. servers later on, overwrite these four
nameservers with only the two copies the com. servers pass us.

However, in other cases (like for example for SOA and CNAME records), new data should overwrite old
data.

Note that PowerDNS deviates from RFC 2181 (section 5.4.1) in this respect.

12.7.10. Some small things

The server-side part of PowerDNS (pdns_recursor.cc), which listens to queries by end-users, is fully
IPv6 capable using the ComboAddress class. This class is in fact a union of a struct sockaddr_in

and a struct sockaddr_in6. As long as the sin_family (or sin6_family) and sin_port

members are in the same place, this works just fine, allowing us to pass a ComboAddress*, cast to a
sockaddr* to the socket functions. For convenience, the ComboAddress also offers a length() method
which can be used to indicate the length - either sizeof(sockaddr_in) or sizeof(sockaddr_in6).

Access to the recursor is governed through the NetmaskGroup class, which internally contains Netmaks,
which in turn contain a ComboAddress.

134

Chapter 13. Master/Slave operation &
replication

PDNS offers full master and slave semantics for replicating domain information. Furthermore, PDNS
can benefit from native database replication.

13.1. Native replication

Native replication is the default, unless other operation is specifically configured. Native replication
basically means that PDNS will not send out DNS update notifications, nor will react to them. PDNS
assumes that the backend is taking care of replication unaided.

MySQL replication has proven to be very robust and well suited, even over transatlantic connections
between badly peering ISPs. Other PDNS users employ Oracle replication which also works very well.

To use native replication, configure your backend storage to do the replication and do not configure
PDNS to do so.

13.2. Slave operation

On launch, PDNS requests from all backends a list of domains which have not been checked recently for
changes. This should happen every ’refresh’ seconds, as specified in the SOA record. All domains that
are unfresh are then checked for changes over at their master. If the SOA serial number there is higher,
the domain is retrieved and inserted into the database. In any case, after the check the domain is declared
’fresh’, and will only be checked again after ’refresh’ seconds have passed.

Warning

Slave support is OFF by default, turn it on by adding slave to the configuration.
The same holds for master operation. Both can be on simultaneously.

PDNS also reacts to notifies by immediately checking if the zone has updated and if so, retransfering it.

All backends which implement this feature must make sure that they can handle transactions so as to not
leave the zone in a half updated state. MySQL configured with either BerkeleyDB or InnoDB meets this

135

Chapter 13. Master/Slave operation & replication

requirement, as do PostgreSQL and Oracle. The Bindbackend implements transaction semantics by
renaming files if and only if they have been retrieved completely and parsed correctly.

Slave operation can also be programmed using several pdns_control commands, see Section B.1.1. The
’retrieve’ command is especially useful as it triggers an immediate retrieval of the zone from the
configured master.

Since 2.9.21, PowerDNS supports multiple masters. For the BIND backend, the native BIND
configuration language suffices to specify multiple masters, for SQL based backends, list all master
servers separated by commas in the ’master’ field of the domains table.

13.2.1. Supermaster automatic provisioning of slaves

PDNS can recognize so called ’supermasters’. A supermaster is a host which is master for domains and
for which we are to be a slave. When a master (re)loads a domain, it sends out a notification to its slaves.
Normally, such a notification is only accepted if PDNS already knows that it is a slave for a domain.

However, a notification from a supermaster carries more persuasion. When PDNS determines that a
notification comes from a supermaster and it is bonafide, PDNS can provision the domain automatically,
and configure itself as a slave for that zone.

Before a supermaster notification succeeds, the following conditions must be met:

• The supermaster must carry a SOA record for the notified domain

• The supermaster IP must be present in the ’supermaster’ table

• The set of NS records for the domain, as retrieved by the slave from the supermaster, must include the
name that goes with the IP address in the supermaster table

So, to benefit from this feature, a backend needs to know about the IP address of the supermaster, and
how PDNS will be listed in the set of NS records remotely, and the ’account’ name of your supermaster.
There is no need to fill the account name out but it does help keep track of where a domain comes from.

13.3. Master operation

When operating as a master, PDNS sends out notifications of changes to slaves, which react to these
notifications by querying PDNS to see if the zone changed, and transferring its contents if it has.
Notifications are a way to promptly propagate zone changes to slaves, as described in RFC 1996.

136

Chapter 13. Master/Slave operation & replication

Warning

Master support is OFF by default, turn it on by adding master to the configuration.
The same holds for slave operation. Both can be on simultaneously.

Left open by RFC 1996 is who is to be notified - which is harder to figure out than it sounds. All slaves
for this domain must receive a notification but the nameserver only knows the names of the slaves - not
the IP addresses, which is where the problem lies. The nameserver itself might be authoritative for the
name of its secondary, but not have the data available.

To resolve this issue, PDNS tries multiple tactics to figure out the IP addresses of the slaves, and notifies
everybody. In contrived configurations this may lead to duplicate notifications being sent out, which
shouldn’t hurt.

Some backends may be able to detect zone changes, others may chose to let the operator indicate which
zones have changed and which haven’t. Consult the documentation for your backend to see how it
processes changes in zones.

To help deal with slaves that may have missed notifications, or have failed to respond to them, several
override commands are available via the pdns_control tool (Section B.1.1):

pdns_control notify domain

This instructs PDNS to notify all IP addresses it considers to be slaves of this domain.

pdns_control notify-host domain ip-address

This is truly an override and sends a notification to an arbitrary IP address. Can be used in
’also-notify’ situations or when PDNS has trouble figuring out who to notify - which may happen in
contrived configurations.

137

Chapter 14. Fancy records for seamless email
and URL integration

PDNS also supports so called ’fancy’ records. A Fancy Record is actually not a DNS record, but it is
translated into one. Currently, two fancy records are implemented, but not very useful without additional
unreleased software. For completeness, they are listed here. The software will become available later on
and is part of the Express and PowerMail suite of programs.

These records imply extra database lookups which has a performance impact. Therefore fancy records
are only queried for if they are enabled with the fancy-records command in pdns.conf.

MBOXFW

This record denotes an email forward. A typical entry looks like this:

support@yourdomain.com MBOXFW you@yourcompany.com

When PDNS encounters a request for an MX record for yourdomain.com it will, if fancy records
are enabled, also check for the existence of an MBOXFW record ending on ’@yourdomain.com’, in
which case it will hand out a record containing the configured smtpredirector. This server should
then also be able to access the PDNS database to figure out where mail to
support@yourdomain.com should go to.

URL

URL records work in much the same way, but for HTTP. A sample record:

yourdomain.com URL http://somewhere.else.com/yourdomain

A URL record is converted into an A record containing the IP address configured with the
urlredirector setting. On that IP address a webserver should live that knows how to redirect
yourdomain.com to http://somewhere.else.com/yourdomain.

138

Chapter 15. Index of all Authoritative Server
settings

All PDNS Authoritative Server settings are listed here, excluding those that originate from backends,
which are documented in the relevant chapters.

allow-axfr-ips=...

Behaviour pre 2.9.10: When not allowing AXFR (disable-axfr), DO allow from these IP addresses
or netmasks.

Behaviour post 2.9.10: If set, only these IP addresses or netmasks will be able to perform AXFR.

allow-recursion=...

By specifying allow-recursion, recursion can be restricted to netmasks specified. The default is to
allow recursion from everywhere. Example: allow-recursion=192.168.0.0/24, 10.0.0.0/8, 1.2.3.4.

allow-recursion-override=on|off

By specifying allow-recursion-override, local data even about hosts that don’t exist will override
the internet. This allows you to generate zones that don’t really exist on the internet. Does increase
the number of SQL queries for hosts that truly don’t exist, also not in your database.

cache-ttl=...

Seconds to store packets in the PacketCache. See Section 9.3.1.

chroot=...

If set, chroot to this directory for more security. See Chapter 7.

config-dir=...

Location of configuration directory (pdns.conf)

config-name=...

Name of this virtual configuration - will rename the binary image. See Chapter 8.

control-console=...

Debugging switch - don’t use.

daemon=...

Operate as a daemon

default-soa-name=...

name to insert in the SOA record if none set in the backend

139

Chapter 15. Index of all Authoritative Server settings

disable-axfr=...

Do not allow zone transfers. Before 2.9.10, this could be overridden by allow-axfr-ips.

disable-tcp=...

Do not listen to TCP queries. Breaks RFC compliance.

distributor-threads=...

Default number of Distributor (backend) threads to start. See Chapter 9.

do-ipv6-additional-processing=...

Perform AAAA additional processing.

fancy-records=...

Process URL and MBOXFW records. See Chapter 14.

guardian | --guardian=yes | --guardian=no

Run within a guardian process. See Section B.2.

help

Provide a helpful message

launch=...

Which backends to launch and order to query them in. See Section B.3.

lazy-recursion=...

On by default as of 2.1. Checks local data first before recursing. See Chapter 11.

load-modules=...

Load this module - supply absolute or relative path. See Section B.3.

local-address=...

Local IP address to which we bind. You can specify multiple addresses separated by commas or
whitespace. It is highly advised to bind to specific interfaces and not use the default ’bind to any’.
This causes big problems if you have multiple IP addresses. Unix does not provide a way of figuring
out what IP address a packet was sent to when binding to any.

local-ipv6=...

Local IPv6 address to which we bind. You can specify multiple addresses separated by commas or
whitespace.

local-port=...

The port on which we listen. Only one port possible.

log-failed-updates=...

If set to ’no’, failed Windows Dynamic Updates will not be logged.

140

Chapter 15. Index of all Authoritative Server settings

log-dns-details=...

If set to ’no’, informative-only DNS details will not even be sent to syslog, improving performance.
Available from 2.5 and onwards.

logging-facility=...

If set to a digit, logging is performed under this LOCAL facility. See Section 6.3. Available from
1.99.9 and onwards. Do not pass names like ’local0’!

loglevel=...

Amount of logging. Higher is more. Do not set below 3

master [,=on].

Turn on master support. Boolean.

max-cache-entries

Maximum number of cache entries. 1 million will generally suffice for most installations. Available
since 2.9.22.

max-queue-length=...

If this many packets are waiting for database attention, consider the situation hopeless and respawn.

max-tcp-connections=...

Allow this many incoming TCP DNS connections simultaneously.

module-dir=...

Default directory for modules. See Section B.3.

negquery-cache-ttl=...

Seconds to store queries with no answer in the Query Cache. See Section 9.3.2.

no-config

Do not attempt to read the configuration file.

no-shuffle

Do not attempt to shuffle query results.

server-id

This is the server ID that will be returned on an EDNS NSID query. Defaults to the host name.

out-of-zone-additional-processing | --out-of-zone-additional-processing=yes |
--out-of-zone-additional-processing=no

Do out of zone additional processing. This means that if a malicious user adds a ’.com’ zone to your
server, it is not used for other domains and will not contaminate answers. Do not enable this setting
if you run a public DNS service with untrusted users. Off by default.

141

Chapter 15. Index of all Authoritative Server settings

query-cache-ttl=...

Seconds to store queries with an answer in the Query Cache. See Section 9.3.2.

query-local-address=...

The IP address to use as a source address for sending queries. Useful if you have multiple IPs and
pdns is not bound to the IP address your operating system uses by default for outgoing packets.

query-logging | query-logging=yes | query-logging=no

Hints to a backend that it should log a textual representation of queries it performs. Can be set at
runtime.

queue-limit=...

Maximum number of miliseconds to queue a query. See Chapter 9.

recursive-cache-ttl=...

Seconds to store recursive packets in the PacketCache. See Section 9.3.1.

recursor=...

If set, recursive queries will be handed to the recursor specified here. See Chapter 11.

send-root-referral | --send-root-referral=yes | --send-root-referral=no | --send-root-referral=lean

If set, PowerDNS will send out old-fashioned root-referrals when queried for domains for which it
is not authoritative. Wastes some bandwidth but may solve incoming query floods if domains are
delegated to you for which you are not authoritative, but which are queried by broken recursors.
Available since 2.9.19.

Since 2.9.21, it is possible to specify ’lean’ root referrals, which waste less bandwidth.

setgid=...

If set, change group id to this gid for more security. See Chapter 7.

setuid=...

If set, change user id to this uid for more security. See Chapter 7.

skip-cname | --skip-cname=yes | --skip-cname=no

Do not perform CNAME indirection for each query. Has performance implications. See Chapter 7.

slave-cycle-interval=60

Schedule slave up-to-date checks of domains whose status is unknown every .. seconds. See Chapter
14.

smtpredirector=...

Our smtpredir MX host. See Chapter 14.

142

Chapter 15. Index of all Authoritative Server settings

soa-expire-default=604800

Default SOA expire.

soa-minimum-ttl=3600

Default SOA minimum ttl.

soa-refresh-default=10800

Default SOA refresh.

soa-retry-default=3600

Default SOA retry.

soa-serial-offset=...

If your database contains single-digit SOA serials and you need to host .DE domains, this setting
can help placate their 6-digit SOA serial requirements. Suggested value is to set this to 1000000
which adds 1000000 to all SOA Serials under that offset.

socket-dir=...

Where the controlsocket will live. See Section B.1.

strict-rfc-axfrs | --strict-rfc-axfrs=yes | --strict-rfc-axfrs=no

Perform strictly RFC conformant AXFRs, which are slow, but needed to placate some old client
tools.

urlredirector=...

Where we send hosts to that need to be url redirected. See Chapter 14.

version-string=anonymous|powerdns|full|custom

When queried for its version over DNS (dig chaos txt version.bind @pdns.ip.address),
PowerDNS normally resonds truthfully. With this setting you can overrule what will be returned.
Set the version-string to ’full’ to get the default behaviour, to ’powerdns’ to just make it state
’served by PowerDNS - http://www.powerdns.com’. The ’anonymous’ setting will return a
ServFail, much like Microsoft nameservers do. You can set this response to a custom value as well.

webserver | --webserver=yes | --webserver=no

Start a webserver for monitoring. See Chapter 6.

webserver-address=...

IP Address of webserver to listen on. See Chapter 6.

webserver-password=...

Password required for accessing the webserver. See Chapter 6.

webserver-port=...

Port of webserver to listen on. See Chapter 6.

143

Chapter 15. Index of all Authoritative Server settings

wildcard-url=...

Check for wildcard URL records.

wildcards=...

Honor wildcards in the database. On by default. Turning this off has performance implications, see
Chapter 9.

144

Chapter 16. Index of all Authoritative Server
metrics

16.1. Counters & variables

A number of counters and variables are set during PDNS Authoritative Server operation. These can be
queried with the init.d dump, show and mrtg commands, or viewed with the webserver.

16.1.1. Counters

corrupt-packets

Number of corrupt packets received

latency

Average number of microseconds a packet spends within PDNS

packetcache-hit

Number of packets which were answered out of the cache

packetcache-miss

Number of times a packet could not be answered out of the cache

packetcache-size

Amount of packets in the packetcache

qsize-a

Size of the queue before the transmitting socket.

qsize-q

Number of packets waiting for database attention

servfail-packets

Amount of packets that could not be answered due to database problems

tcp-answers

Number of answers sent out over TCP

tcp-questions

Number of questions received over TCP

145

Chapter 16. Index of all Authoritative Server metrics

timedout-questions

Amount of packets that were dropped because they had to wait too long internally

udp-answers

Number of answers sent out over UDP

udp-questions

Number of questions received over UDP

16.1.2. Ring buffers

Besides counters, PDNS also maintains the ringbuffers. A ringbuffer records events, each new event gets
a place in the buffer until it is full. When full, earlier entries get overwritten, hence the name ’ring’.

By counting the entries in the buffer, statistics can be generated. These statistics can currently only be
viewed using the webserver and are in fact not even collected without the webserver running.

The following ringbuffers are available:

Log messages (logmessages)

All messages logged

Queries for existing records but for a type we don’t have (noerror-queries)

Queries for, say, the AAAA record of a domain, when only an A is available. Queries are listed in
the following format: name/type. So an AAA query for pdns.powerdns.com looks like
pdns.powerdns.com/AAAA.

Queries for non-existing records within existing domains(nxdomain-queries)

If PDNS knows it is authoritative over a domain, and it sees a question for a record in that domain
that does not exist, it is able to send out an authoritative ’no such domain’ message. Indicates that
hosts are trying to connect to services really not in your zone.

UDP queries received (udp-queries)

All UDP queries seen.

Remote server IP addresses (remotes)

Hosts querying PDNS. Be aware that UDP is anonymous - person A can send queries that appear to
be coming from person B.

146

Chapter 16. Index of all Authoritative Server metrics

Remotes sending corrupt packets (remote-corrupts)

Hosts sending PDNS broken packets, possibly meant to disrupt service. Be aware that UDP is
anonymous - person A can send queries that appear to be coming from person B.

Remotes querying domains for which we are not auth (remote-unauth)

It may happen that there are misconfigured hosts on the internet which are configured to think that a
PDNS installation is in fact a resolving nameserver. These hosts will not get useful answers from
PDNS. This buffer lists hosts sending queries for domains which PDNS does not know about.

Queries that could not be answered due to backend errors (servfail-queries)

For one reason or another, a backend may be unable to extract answers for a certain domain from its
storage. This may be due to a corrupt database or to inconsistent data. When this happens, PDNS
sends out a ’servfail’ packet indicating that it was unable to answer the question. This buffer shows
which queries have been causing servfails.

Queries for domains that we are not authoritative for (unauth-queries)

If a domain is delegated to a PDNS instance, but the backend is not made aware of this fact,
questions come in for which no answer is available, nor is the authority. Use this ringbuffer to spot
such queries.

147

Chapter 17. Supported record types and their
storage

This chapter lists all record types PDNS supports, and how they are stored in backends. The list is mostly
alphabetical but some types are grouped.

The PowerDNS Recursor can serve and store all record types, regardless of wether these are explicitly
supported.

A

The A record contains an IP address. It is stored as a decimal dotted quad string, for example:
’213.244.168.210’.

AAAA

The AAAA record contains an IPv6 address. An example: ’3ffe:8114:2000:bf0::1’.

AFSDB (since 2.9.21)

Specialised record type for the ’Andrew Filesystem’. Stored as: ’#subtype hostname’, where
subtype is a number.

CERT (since 2.9.21)

Specialised record type for storing certificates, defined in RFC 2538.

CNAME

The CNAME record specifies the canonical name of a record. It is stored plainly. Like all other
records, it is not terminated by a dot. A sample might be ’webserver-01.yourcompany.com’.

DNSKEY (since 2.9.21)

The DNSKEY DNSSEC record type is fully supported, as described in RFC 3757. Note that while
PowerDNS can store, retrieve and serve DNSSEC records, no further DNSSEC processing is
performed.

DS (since 2.9.21)

The DS DNSSEC record type is fully supported, as described in RFC 3757. Note that while
PowerDNS can store, retrieve and serve DNSSEC records, no further DNSSEC processing is
performed.

HINFO

Hardware Info record, used to specify CPU and operating system. Stored with a single space
separating these two, example: ’i386 Linux’.

KEY (since 2.9.21)

The KEY record is fully supported. For its syntax, see RFC 2535.

148

Chapter 17. Supported record types and their storage

LOC

The LOC record is fully supported. For its syntax, see RFC 1876. A sample content would be: ’51
56 0.123 N 5 54 0.000 E 4.00m 1.00m 10000.00m 10.00m’

MX

The MX record specifies a mail exchanger host for a domain. Each mail exchanger also has a
priority or preference. This should be specified in the separate field dedicated for that purpose, often
called ’prio’.

NAPTR

Naming Authority Pointer, RFC 2915. Stored as follows:

’100 50 "s" "z3950+I2L+I2C" "" _z3950._tcp.gatech.edu’.

The fields are: order, preference, flags, service, regex, replacement. Note that the replacement is not
enclosed in quotes, and should not be. The replacement may be omitted, in which case it is empty.
See also RFC 2916 for how to use NAPTR for ENUM (E.164) purposes.

NS

Nameserver record. Specifies nameservers for a domain. Stored plainly: ’ns1.powerdns.com’, as
always without a terminating dot.

NSEC (since 2.9.21)

The NSEC DNSSEC record type is fully supported, as described in RFC 3757. Note that while
PowerDNS can store, retrieve and serve DNSSEC records, no further DNSSEC processing is
performed.

PTR

Reverse pointer, used to specify the host name belonging to an IP or IPv6 address. Name is stored
plainly: ’www.powerdns.com’. As always, no terminating dot.

RP

Responsible Person record, as described in RFC 1183. Stored with a single space between the
mailbox name and the more-information pointer. Example ’peter.powerdns.com
peter.people.powerdns.com’, to indicate that peter@powerdns.com is responsible and that more
information about peter is available by querying the TXT record of peter.people.powerdns.com.

RRSIG (since 2.9.21)

The RRSIG DNSSEC record type is fully supported, as described in RFC 3757. Note that while
PowerDNS can store, retrieve and serve DNSSEC records, no further DNSSEC processing is
performed.

SOA

The Start of Authority record is one of the most complex available. It specifies a lot about a domain:
the name of the master nameserver (’the primary’), the hostmaster and a set of numbers indicating
how the data in this domain expires and how often it needs to be checked. Further more, it contains
a serial number which should rise on each change of the domain.

149

Chapter 17. Supported record types and their storage

The stored format is:

primary hostmaster serial refresh retry expire default_ttl

Besides the primary and the hostmaster, all fields are numerical. PDNS has a set of default values:

Table 17-1. SOA fields

primary default-soa-name configuration option

hostmaster hostmaster@domain-name

serial 0

refresh 10800 (3 hours)

retry 3600 (1 hour)

expire 604800 (1 week)

default_ttl 3600 (1 hour)

The fields have complicated and sometimes controversial meanings. The ’serial’ field is special. If
left at 0, the default, PDNS will perform an internal list of the domain to determine highest
change_date field of all records within the zone, and use that as the zone serial number. This means
that the serial number is always raised when changes are made to the zone, as long as the
change_date field is being set.

SPF (since 2.9.21)

SPF records can be used to store Sender Permitted From details.

SSHFP (since 2.9.21)

The SSHFP record type, used for storing Secure Shell (SSH) fingerprints, is fully supported. A
sample from RFC 4255 is: ’2 1 123456789abcdef67890123456789abcdef67890’.

SRV

SRV records can be used to encode the location and port of services on a domain name. When
encoding, the priority field is used to encode the priority. For example,
’_ldap._tcp.dc._msdcs.conaxis.ch SRV 0 100 389 mars.conaxis.ch’ would be encoded with 0 in the
priority field and ’100 389 mars.conaxis.ch’ in the content field.

TXT

The TXT field can be used to attach textual data to a domain. Text is stored plainly.

150

Chapter 18. HOWTO & Frequently Asked
Questions

This chapter contains a number of FAQs and HOWTOs.

18.1. Getting support, free and paid FAQ

PowerDNS is an open source program so you may get help from the PowerDNS users’ community or
from its authors. You may also help others (please do).

The PowerDNS company provides free support on the public mailing lists, and can help or support you
in private as well. For first class and rapid support, please contact pdns.bd@trilab.com.

More information about the PowerDNS community, and its mailing lists, can be found on its Wiki
(http://wiki.powerdns.com).

Below, please find a list of common questions asked on our public mailing lists.

Q: Help!

A: Please try harder :-) Specifically, before people will be able to help you, they need to know a lot
about your system. If you list more details, chances are you’ll get better answers.

Q: I have a question, what details should I supply?

A: Start out with stating what you think should be happening. Quite often, wrong expectations are
the actual proble. Furthermore, which database backend you use, your operating system, which
version of PowerDNS you use and where you got it from (RPM, .DEB, tar.gz). If you compiled it
yourself, what were the ./configure parameters.

If at *all* possible, supply the actual name of your domain and the IP address of your server(s).

Q: Where should I send my question?

A: To a mailinglist. Please email the authors directly only if you previously entered a support
contract with them, or are considering doing so. For mailing list details, see the mailinglists page
(http://mailman.powerdns.com/mailman/admin/).

Questions about using PowerDNS should be sent to the pdns-users list, questions about compiler
errors or feature requests to pdns-dev.

151

Chapter 18. HOWTO & Frequently Asked Questions

Before posting, read all FAQs.

Q: My information is confidential, must I send it to the mailing list?

If you desire privacy, please consider entering a support relationship with us, in which case you can
email <pdns.bd@trilab.com>.

18.2. Using and Compiling PowerDNS FAQ

In the course of compiling and using PowerDNS, many questions may arise. Here are some we’ve heard
earlier or questions we expect people may have. Please read this list before mailing us!

If you don’t see your question answered here, please check out the Wiki FAQ
(http://wiki.powerdns.com/projects/trac/wiki/TodoList), but do note that it is user-editable and not under
our constant control.

Q: I get this entry a lot of times in my log file: Authoritative empty NO ERROR to 1.2.3.4 for
’powerdns.nl’ (AAAA)..

As the name implies, this is not an error. It tells you there are questions for a domain which exists in
your database, but for which no record of the requested type exists. To get rid of this error, add
log-dns-details=off to your configuration.

Q: Can I launch multiple backends simultaneously?

A: You can. This might for example be useful to keep an existing BIND configuration around but to
store new zones in, say MySQL. The syntax to use is ’launch=bind,gmysql’.

Q: PowerDNS does not give authoritative answers, how come?

A: This is almost always not the case. An authoritative answer is recognized by the ’AA’ bit being
set. Many tools prominently print the number of Authority records included in an answer, leading
users to conclude that the absence or presence of these records indicates the authority of an answer.
This is not the case.

Verily, many misguided country code domain operators have fallen into this trap and demand
authority records, even though these are fluff and quite often misleading. Invite such operators to
look at section 6.2.1 of RFC 1034, which shows a correct authoritative answer without authority
records. In fact, none of the non-deprecated authoritative answers shown have authority records!

Sorry for sounding like DJB on this, but we get so many misguided questions about authority..

152

Chapter 18. HOWTO & Frequently Asked Questions

Q: Which backend should I use? There are so many!

A: If you have no external constraints, the Generic MySQL (gmysql) and Generic PostgreSQL
(gpgsql) ones are probably the most used and complete. By all means do not use the non-generic
MySQL backend, which is deprecated and only available for older installations.

The Oracle backend also has happy users, we know of no deployments of the DB2 backend. The
BIND backend is pretty capable too in fact, but many prefer a relational database.

Q: I’m trying to build from SVN but I get lots of weird errors!

A: Read the ’HACKING’ file, it lists the build requirements (mostly autoconf, automake, libtool).
In many cases, it may be easier to build from the source distribution though. More information for
developers is available on the PowerDNS Open Source Community Wiki
(http://wiki.powerdns.com).

Q: When compiling I get errors about ’sstream’ and ’ostringstream’, or BITSPERCHAR

A: Your gcc is too old. Versions 2.95.2 and older are not supported. Many distributions have
improved gcc 2.95.2 with an ostringstream implementation, in which case their 2.95.2 is also
supported.

Q: PowerDNS crashes when I install the pdns-static .deb on Debian SID

A: Indeed. Install the .debs that come with Debian or recompile PowerDNS yourself. If not using
MySQL, the crashes will go away if you remove setuid and setgid statements from the
configuration.

Q: Why don’t my slaves act on notifications and transfer my updated zone?

A: Raise the serial number of your zone. In most backends, this is the first digit of the SOA contents
field. If this number is lower to equal to that on a slave, it will not consider your zone updated.

Q: Master or Slave support is not working, PDNS is not picking up changes

A: The Master/Slave apparatus is off by default. Turn it on by adding a slave and/or master
statement to the configuration file. Also, check that the configured backend is master or slave
capable.

Q: My masters won’t allow PowerDNS to access zones as it is using the wrong local IP address

A: Mark Bergsma contributed the query-local-address setting to tell PowerDNS which local IP
address to use.

Q: I compiled PowerDNS myself and I see weird problems, especially on SMP

A: There are known issues between gcc <3.2 and PowerDNS on Linux SMP systems. The exact
cause is not known but moving to our precompiled version always fixes the problems. If you
compile yourself, use a recent gcc!

Q: I see this a lot: Backend error: Failed to execute mysql_query, perhaps connection died?

A: Check your MySQL timeout, it may be set too low. This can be changed in the my.cnf file.

153

Chapter 18. HOWTO & Frequently Asked Questions

Q: PowerDNS does not answer queries on all my IP addresses and I’ve ignored the warning I got about
that at startup

A: Please don’t ignore what PowerDNS says to you. Furthermore, read Chapter 15 about the
local-address setting, and use it to specify which IP addresses PowerDNS should listen on.

Q: Can I use a MySQL database with the Windows version of PowerDNS?

A: You can. MySQL support is supplied through the ODBC backend, which is compiled into the
main binary. So if you want to use MySQL you can change the pdns.conf file, which is located in
the PowerDNS for Windows directory, to use the correct ODBC data sources. If you don’t know
how to use ODBC with MySQL:

• Download MyODBC from http://www.mysql.com/

• Install the MySQL ODBC driver.

Then you can follow the instructions located in Chapter 3. But instead of selecting the Microsoft
Access Driver you select the MySQL ODBC Driver and configure it to use your MySQL database.

Note: For other databases for which an ODBC driver is available, the procedure is the same as this
example.

18.3. Backend developer HOWTO

Writing backends without access to the full PDNS source means that you need to write code that can be
loaded by PDNS at runtime. This in turn means that you need to use the same compiler that we do.

Furthermore, your pdns_server executable must be dynamically linked. The default .rpm PDNS contains
a static binary so you need to retrieve the dynamic rpm or the dynamic tar.gz or the Debian unstable
(’Woody’) deb. FreeBSD dynamic releases are forthcoming.

Q: Will PDNS drivers work with other PDNS versions than they were compiled for?

A: ’Probably’. We make no guarantees. Efforts have been made to keep the interface between the
backend and PDNS as thin as possible. For example, a backend compiled with the 1.99.11 backend
development kit works with 1.99.10. But don’t count on it. We will notify when we think an
incompatible API change has occured but you are best off recompiling your driver for each new
PDNS release.

Q: What is in that DNSPacket * pointer passed to lookup!

A: For reasons outlined above, you should treat that pointer as opaque and only access it via the
getRemote() functions made available and documented above. The DNSPacket class changes a
lot and this level of indirection allows for greater changes to be made without changing the API to
the backend coder.

154

Chapter 18. HOWTO & Frequently Asked Questions

Q: How is the PowerDNS Open Source Backend Development Kit licensed?

A: MIT X11, a very liberal license permitting basically everything.

Q: Can I release the backend I wrote?

A: Please do! If you tell us about it we will list you on our page.

Q: Can I sell backends I wrote?

A: You can. Again, if you tell us about them we will list your backend on the site. You can keep the
source of your backend secret if you want, or you can share it with the world under any license of
your chosing.

Q: Will PowerDNS use my code in the PDNS distribution?

A: If your license permits it and we like your backend, we sure will. If your license does not permit
it but we like your backend anyway we may contact you.

Q: My backend compiles but when I try to load it, it says ’undefined symbol: BackendMakers__Fv’

A: You compiled with the wrong GCC. Use GCC 3.x for Linux, 2.95.x for FreeBSD. You may want
to change g++ to g++-3.0 in the Makefile, or change your path so that 3.x is used.

Q: I downloaded a dynamic copy of pdns_server but it doesn’t run, even without my backend

A: Run ’ldd’ on the pdns_server binary and figure out what libraries you are missing. Most likely
you need to install gcc 3.0 libraries, RedHat 7.1 and 7.2 have packages available, Debian installs
these by default if you use the ’unstable deb’ of PDNS.

Q: What is this ’AhuException’ I keep reading about?

A: This name has historical reasons and has no significance (http://ds9a.nl).

Q: I need a backend but I can’t write it, can you help?

A: Yes, we also do custom development. Contact us at pdns.bd@trilab.com.

18.4. About PowerDNS.COM BV, ’the company’

As of 25 November 2002, the PowerDNS nameserver and its modules are open source. This has led to a
lot of questions on the future of both PowerDNS, the company and the products. This FAQ attempts to
address these questions.

Q: Is PowerDNS 2.9 really open source? What license?

A: PowerDNS 2.9 is licensed under the GNU General Public License version two, the same license
that covers the Linux kernel.

Q: Is the open source version crippled?

A: It is not. Not a single byte has been omitted.

155

Chapter 18. HOWTO & Frequently Asked Questions

Q: Is the nameserver abandoned?

A: Far from it. In fact, we expect development to speed up now that we have joined the open source
community.

Q: Can I buy support contracts for PowerDNS?

Sure, to do so, please contact us at <sales@powerdns.com>

Q: Will you accept patches? We’ve added a feature

Probably - in general, it is best to discuss your intentions and needs on the
<pdns-dev@mailman.powerdns.com> (subscribe
(http://mailman.powerdns.com/mailman/listinfo/pdns-dev)) mailinglist before doing the work. We
may have suggestions or guidelines on how you should implement the feature.

Q: PowerDNS doesn’t work on my platform, will you port it?
Q: PowerDNS doesn’t have feature I need, will you add it?

Be sure to ask on the <pdns-dev@mailman.powerdns.com> (subscribe
(http://mailman.powerdns.com/mailman/listinfo/pdns-dev)) mailinglist. You can even hire us to do
work on PowerDNS if plain asking is not persuasive enough. This might be the case if we don’t
currently have time for your feature, but you need it quickly anyhow, and are not in a position to
submit a patch implementing it.

Q: Will PowerDNS Express (http://express.powerdns.com) be open sourced?

Perhaps, we’re not yet sure.

Q: We are a Linux/Unix vendor, can we include PowerDNS?

A: Please do. In fact, we’d be very happy to work with you to make this happen. Contact
<ahu@ds9a.nl> if you have specific upstream needs.

156

Chapter 19. Other tools included with
PowerDNS

PowerDNS comes with several tools that can be used to do various DNS related things.

19.1. Notification proxy (nproxy)

Available in PowerDNS 2.9.22 and later.

For additional security, operators may prefer to have a ’hidden slave’ that sits behind a strong firewall.
This slave pulls in zones from the outside world, and stores them in a database. This database is then
used by publicly accessible nameservers to publish zone data.

For proper slave operation, master nameservers send out notifications to inform slaves of updates. This is
not normally a problem, but when operating with a hidden slave behind a firewall, notification packets
can’t reach the slave.

For this purpose, the PowerDNS also supplies a notification proxy. It sits outside the firewall, and accepts
notifications from remote master servers. It interprets and validates these packets, and then sends on a
new notification to the hidden slave.

The hidden slave then promptly retrieves an updated zone from the master.

The notification proxy, called nproxy, can be configured using the following settings:

chroot

Change root to this directory for additional security.

daemon

Run in the background. Defaults to true, can be turned off using ’--daemon=no’.

listen-address

Public addresses (IPv4 and IPv6) to listen on for incoming notification packets. Defaults to "all
addresses", but it is highly recommended to specify addresses here.

origin-address

Can be used to pin the address the nproxy uses to communicate with the hidden slave. Highly
recommended. Corresponds to the PowerDNS settting trusted-notification-proxy.

157

Chapter 19. Other tools included with PowerDNS

powerdns-address

IP address (IPv4 or IPv6) of the hidden slave, to which notifications should be relayed. This setting
is mandatory, and has no default.

setuid and setgid

Change to these numerical user-id and/or group-id, dropping root privileges, for additional security.

158

Chapter 20. Tools to analyse DNS traffic

DNS is highly mission critical, it is therefore necessary to be able to study and compare DNS traffic.
Since 2.9.18, PowerDNS comes with three tools to aid in analysis:

Warning

As of 2.9.18 these tools are somewhat rough - they have no help messages for
example. They do work though.

dnsreplay pcapfile [ipaddress] [port number]

This program takes recorded questions and answers and replays them to a specified nameserver and
reporting afterwards which percentage of answers matched, were worse or better.

dnswasher pcapfile output

Anonymises recorded traffic, making sure it only contains DNS, and that the originating IP
addresses of queries are stripped, which may allow you to send traces to our company or mailing
list without violating obligations towards your customers or privacy laws.

dnsscope pcapfile

Calculates statistics without replaying traffic

159

Appendix A. Backends in detail

This appendix lists several of the available backends in more detail

A.1. PipeBackend

Table A-1. PipeBackend capabilities

Native Yes

Master No

Slave No

Superslave No

Autoserial No

Case Depends

Module name pipe

Launch name pipe

The PipeBackend allows for easy dynamic resolution based on a ’Coprocess’ which can be written in any
programming language that can read a question on standard input and answer on standard output.

To configure, the following settings are available:

pipe-command

Command to launch as backend. Mandatory.

pipe-timeout

Number of milliseconds to wait for an answer from the backend. If this time is ever exceeded, the
backend is declared dead and a new process is spawned. Available since 2.7.

pipe-regex

If set, only questions matching this regular expression are even sent to the backend. This makes sure
that most of PowerDNS does not slow down if you you reploy a slow backend. A query for the A
record of ’www.powerdns.com’ would be presented to the regex as ’www.powerdns.com;A’. A
matching regex would be ’^www.powerdns.com;.*$’.

To match only ANY and A queries for www.powerdns.com, use ’^www.powerdns.com;(A|ANY)$’.
Please be aware that the single quotes used in this document should not be present in the

160

Appendix A. Backends in detail

configuration file, and only on the command line. In the configuration file, the previous example
would be stored as: pipe-regex=^www.powerdns.com;(A|ANY)$

Available since 2.8.

pipebackend-abi-version

This is the version of the question format that is sent to the co-process (pipe-command) for the pipe
backend.

If not set the default pipebackend-abi-version is 1. When set to 2, the local-ip-address field is added
after the remote-ip-address. (the local-ip-address refers to the IP address the question was received
on)

A.1.1. PipeBackend protocol

Questions come in over a file descriptor, by default standard input. Answers are sent out over another file
descriptor, standard output by default.

A.1.1.1. Handshake

PowerDNS sends out ’HELO\t1’, indicating that it wants to speak the protocol as defined in this
document, version 1. A PowerDNS CoProcess must then send out a banner, prefixed by ’OK\t’,
indicating it launched successfully. If it does not support the indicated version, it should respond with
FAIL, but not exit. Suggested behaviour is to try and read a further line, and wait to be terminated.

A.1.1.2. Questions

Questions come in three forms and are prefixed by a tag indicating the kind:

Q

Regular queries

AXFR

List requests, which mean that an entire zone should be listed

PING

Check if the coprocess is functioning

The question format: pipebackend-abi-version = 1 [default]

161

Appendix A. Backends in detail

type qname qclass qtype id remote-ip-address

pipebackend-abi-version = 2

type qname qclass qtype id remote-ip-address local-ip-address

Fields are tab separated, and terminated with a single \n. The remote-ip-address is the IP address of the
nameserver asking the question; the local-ip-address is the IP address on which the question was
received. Type is the tag above, qname is the domain the question is about. qclass is always ’IN’
currently, denoting an INternet question. qtype is the kind of information desired, the record type, like A,
CNAME or AAAA. id can be specified to help your backend find an answer if the id is already known
from an earlier query. You can ignore it. remote-ip-address is the ip-address of the nameserver asking the
question. local-ip-address is the ip-address that was querried locally.

A.1.1.3. Answers

Each answer starts with a tag, possibly followed by a TAB and more data.

DATA

Indicating a successful line of DATA

END

Indicating the end of an answer - no further data

FAIL

Indicating a lookup failure. Also serves as ’END’. No further data.

LOG

For specifying things that should be logged. Can only be sent after a query and before an END line.
After the tab, the message to be logged

So letting it be known that there is no data consists if sending ’END’ without anything else. The answer
format:

DATA qname qclass qtype ttl id content

’content’ is as specified in Chapter 17. A sample dialogue may look like this:

Q www.ds9a.nl IN CNAME -1 213.244.168.210
DATA www.ds9a.nl IN CNAME 3600 1 ws1.ds9a.nl
Q ws1.ds9a.nl IN CNAME -1 213.244.168.210
END
Q wd1.ds9a.nl IN A -1 213.244.168.210
DATA ws1.ds9a.nl IN A 3600 1 1.2.3.4
DATA ws1.ds9a.nl IN A 3600 1 1.2.3.5
DATA ws1.ds9a.nl IN A 3600 1 1.2.3.6
END

162

Appendix A. Backends in detail

This would correspond to a remote webserver 213.244.168.210 wanting to resolve the IP address of
www.ds9a.nl, and PowerDNS traversing the CNAMEs to find the IP addresses of ws1.ds9a.nl Another
dialogue might be:

Q ds9a.nl IN SOA -1 213.244.168.210
DATA ds9a.nl IN SOA 86400 1 ahu.ds9a.nl ...
END
AXFR 1
DATA ds9a.nl IN SOA 86400 1 ahu.ds9a.nl ...
DATA ds9a.nl IN NS 86400 1 ns1.ds9a.nl
DATA ds9a.nl IN NS 86400 1 ns2.ds9a.nl
DATA ns1.ds9a.nl IN A 86400 1 213.244.168.210
DATA ns2.ds9a.nl IN A 86400 1 63.123.33.135
.
.
END

This is a typical zone transfer.

A.1.1.4. Sample perl backend

#!/usr/bin/perl -w
sample PowerDNS Coprocess backend
#

use strict;

$|=1; # no buffering

my $line=<>;
chomp($line);

unless($line eq "HELO\t1") {
print "FAIL\n";
print STDERR "Recevied ’$line’\n";
<>;
exit;
}
print "OK Sample backend firing up\n"; # print our banner

while(<>)
{
print STDERR "$$ Received: $_";
chomp();
my @arr=split(/\t/);
if(@arr<6) {
print "LOG PowerDNS sent unparseable line\n";
print "FAIL\n";
next;

163

Appendix A. Backends in detail

}

my ($type,$qname,$qclass,$qtype,$id,$ip)=split(/\t/);

if(($qtype eq "A" || $qtype eq "ANY") && $qname eq "webserver.example.com") {
print STDERR "$$ Sent A records\n";
print "DATA $qname $qclass A 3600 -1 1.2.3.4\n";
print "DATA $qname $qclass A 3600 -1 1.2.3.5\n";
print "DATA $qname $qclass A 3600 -1 1.2.3.6\n";
}
elsif(($qtype eq "CNAME" || $qtype eq "ANY") && $qname eq "www.example.com") {
print STDERR "$$ Sent CNAME records\n";
print "DATA $qname $qclass CNAME 3600 -1 webserver.example.com\n";
}
elsif($qtype eq "MBOXFW") {
print STDERR "$$ Sent MBOXFW records\n";
print "DATA $qname $qclass MBOXFW 3600 -1 powerdns\@example.com\n";
}

print STDERR "$$ End of data\n";
print "END\n";
}

A.2. MySQL backend

Warning

This backend is deprecated! Use the Generic MySQL backend which is better in
all respects. It does support master/slave operation, this backend does not. See
Section A.5.

So stop reading here unless you already have a database filled with ’mysql’
records.

164

Appendix A. Backends in detail

Table A-2. MySQL backend capabilities

Native Yes

Master No

Slave Yes

Superslave No

Autoserial Yes

Case Insensitive

Module name mysql

Launch name mysql

The MySQL Backend as present in PDNS is fixed - it requires a certain database schema to function.
This schema corresponds to this create statement:

CREATE TABLE records (
id int(11) NOT NULL auto_increment,
domain_id int(11) NOT NULL,
name varchar(255) NOT NULL,
type varchar(6) NOT NULL,
content varchar(255) NOT NULL,
ttl int(11) NOT NULL,
prio int(11) default NULL,
change_date int(11) default NULL,
PRIMARY KEY (id),
KEY name_index(name),
KEY nametype_index(name,type),
KEY domainid_index(domain_id)
);

Every domain should have a unique domain_id, which should remain identical for all records in a
domain. Records with a domain_id that differs from that in the domain SOA record will not appear in a
zone transfer.

The change_date may optionally be updated to the time_t (the number of seconds since midnight UTC at
the start of 1970), and is in that case used to auto calculate the SOA serial number in case that is
unspecified.

A.2.1. Configuration settings

WARNING! Make sure that you can actually resolve the hostname of your database without accessing
the database! It is advised to supply an IP address here to prevent chicken/egg problems!

165

Appendix A. Backends in detail

mysql-dbname

Database name to connect to

mysql-host

Database host to connect to

mysql-password

Password to connect with

mysql-socket

MySQL socket to use for connecting

mysql-table

MySQL table name. Defaults to ’records’.

mysql-user

MySQL user to connect as

A.2.2. Notes

It has been observed that InnoDB tables outperform the default MyISAM tables by a large margin.
Furthermore, the default number of backends (3) should be raised to 10 or 15 for busy servers.

A.3. Random Backend

Table A-3. Random Backend capabilities

Native Yes

Master No

Slave No

Superslave No

Autoserial No

Case Depends

Module name built in

Launch name random

166

Appendix A. Backends in detail

This is a very silly backend which is discussed in Section C.1 as a demonstration on how to write a
PowerDNS backend.

This backend knows about only one hostname, and only about its IP address at that. With every query, a
new random IP address is generated.

It only makes sense to load the random backend in combination with a regular backend. This can be done
by prepending it to the launch= instruction, such as launch=random,gmysql.

Variables:

random-hostname

Hostname for which to supply a random IP address.

A.4. MySQL PDNS backend

Table A-4. MySQL backend capabilities

Native Yes

Master No

Slave No

Superslave No

Autoserial Yes

Case Insensitive

Module name pdns

Launch name pdns

This is the driver that corresponds to the set of XML-RPC tools available from PowerDNS.

The schema:

CREATE TABLE MailForwards (
Id int(10) unsigned NOT NULL auto_increment,
ZoneId int(10) unsigned NOT NULL default ’0’,
Name varchar(255) NOT NULL default ”,
Destination varchar(255) NOT NULL default ”,

167

Appendix A. Backends in detail

Flags int(11) NOT NULL default ’0’,
ChangeDate timestamp(14) NOT NULL,
CreateDate timestamp(14) NOT NULL,
Active tinyint(4) NOT NULL default ’0’,
PRIMARY KEY (Id),
KEY NameIndex (Name),
KEY ZoneIdIndex (ZoneId)

);

--
-- Table structure for table ’Mailboxes’
--

CREATE TABLE Mailboxes (
Id int(10) unsigned NOT NULL auto_increment,
ZoneId int(10) unsigned NOT NULL default ’0’,
Name varchar(255) NOT NULL default ”,
Password varchar(255) NOT NULL default ”,
Quota int(10) unsigned NOT NULL default ’0’,
Flags int(11) NOT NULL default ’0’,
ChangeDate timestamp(14) NOT NULL,
CreateDate timestamp(14) NOT NULL,
Active tinyint(4) NOT NULL default ’0’,
PRIMARY KEY (Id),
UNIQUE KEY Name (Name),
KEY ZoneIdIndex (ZoneId),
KEY NameIndex (Name)

);

--
-- Table structure for table ’Records’
--

CREATE TABLE Records (
Id int(10) unsigned NOT NULL auto_increment,
ZoneId int(10) unsigned NOT NULL default ’0’,
Name varchar(255) NOT NULL default ”,
Type varchar(8) NOT NULL default ”,
Content varchar(255) NOT NULL default ”,
TimeToLive int(11) NOT NULL default ’60’,
Priority int(11) NOT NULL default ’0’,
Flags int(11) NOT NULL default ’0’,
ChangeDate timestamp(14) NOT NULL,
CreateDate timestamp(14) NOT NULL,
Active tinyint(4) NOT NULL default ’0’,
PRIMARY KEY (Id),
KEY NameIndex (Name)

);

--
-- Table structure for table ’WebForwards’
--

168

Appendix A. Backends in detail

CREATE TABLE WebForwards (
Id int(10) unsigned NOT NULL auto_increment,
ZoneId int(10) unsigned NOT NULL default ’0’,
Name varchar(255) NOT NULL default ”,
Destination varchar(255) NOT NULL default ”,
Type varchar(7) NOT NULL default ’NORMAL’,
Title varchar(255) NOT NULL default ”,
Description varchar(255) NOT NULL default ”,
Keywords varchar(255) NOT NULL default ”,
FavIcon varchar(255) NOT NULL default ”,
Flags int(11) NOT NULL default ’0’,
ChangeDate timestamp(14) NOT NULL,
CreateDate timestamp(14) NOT NULL,
Active tinyint(4) NOT NULL default ’0’,
PRIMARY KEY (Id),
KEY NameIndex (Name),
KEY ZoneIdIndex (ZoneId)

);

--
-- Table structure for table ’Zones’
--

CREATE TABLE Zones (
Id int(10) unsigned NOT NULL auto_increment,
Name varchar(255) NOT NULL default ”,
Hostmaster varchar(255) NOT NULL default ”,
Serial int(10) unsigned NOT NULL default ’0’,
AutoSerial tinyint(4) NOT NULL default ’0’,
Flags int(11) NOT NULL default ’0’,
ChangeDate timestamp(14) NOT NULL,
CreateDate timestamp(14) NOT NULL,
Active tinyint(4) NOT NULL default ’0’,
TimeToLive int(11) NOT NULL default ’0’,
OwnerId varchar(255) NOT NULL default ”,
Master varchar(255) NOT NULL default ”,
PRIMARY KEY (Id),
UNIQUE KEY Name (Name),
KEY NameIndex (Name)

);

It takes a number of parameters:

pdns-dbname

Database name to connect to

169

Appendix A. Backends in detail

pdns-host

Database host to connect to

pdns-password

Password to connect with

pdns-socket

MySQL socket to use for connecting

pdns-user

MySQL user to connect as

pdns-soa-refresh

Pdns SOA refresh in seconds

pdns-max-slave-records

Maximal records to transfer

A.4.1. Notes

It has been observed that InnoDB tables outperform the default MyISAM tables by a large margin.
Furthermore, the default number of backends (3) should be raised to 10 or 15 for busy servers.

A.5. Generic MySQL and PgSQL backends

Table A-5. Generic PgSQL and MySQL backend capabilities

Native Yes - but PostgreSQL does not replicate

Master Yes

Slave Yes

Superslave Yes

Autoserial NO

Case All lower

Module name < 2.9.3 pgmysql

Module name > 2.9.2 gmysql and gpgsql

Launch name gmysql and gpgsql2 and gpgsql

170

Appendix A. Backends in detail

PostgreSQL and MySQL backend with easily configurable SQL statements, allowing you to graft PDNS
on any PostgreSQL or MySQL database of your choosing. Because all database schemas will be
different, a generic backend is needed to cover all needs.

The template queries are expanded using the C function ’snprintf’ which implies that substitutions are
performed on the basis of %-place holders. To place a % in a query which will not be substituted, use
%%. Make sure to fill out the search key, often called ’name’ in lower case!

There are in fact two backends, one for PostgreSQL and one for MySQL but they accept the same
settings and use almost exactly the same database schema.

A.5.1. MySQL specifics

Warning

If using MySQL with ’slave’ support enabled in PowerDNS you must run MySQL
with a table engine that supports transactions.

In practice, great results are achieved with the ’InnoDB’ tables. PowerDNS will silently function with
non-transaction aware MySQLs but at one point this is going to harm your database, for example when
an incoming zone transfer fails.

The default setup conforms to the following schema:

create table domains (
id INT auto_increment,
name VARCHAR(255) NOT NULL,
master VARCHAR(128) DEFAULT NULL,
last_check INT DEFAULT NULL,
type VARCHAR(6) NOT NULL,
notified_serial INT DEFAULT NULL,
account VARCHAR(40) DEFAULT NULL,
primary key (id)

)type=InnoDB;

CREATE UNIQUE INDEX name_index ON domains(name);

CREATE TABLE records (
id INT auto_increment,
domain_id INT DEFAULT NULL,
name VARCHAR(255) DEFAULT NULL,
type VARCHAR(6) DEFAULT NULL,

171

Appendix A. Backends in detail

content VARCHAR(255) DEFAULT NULL,
ttl INT DEFAULT NULL,
prio INT DEFAULT NULL,
change_date INT DEFAULT NULL,
primary key(id)

)type=InnoDB;

CREATE INDEX rec_name_index ON records(name);
CREATE INDEX nametype_index ON records(name,type);
CREATE INDEX domain_id ON records(domain_id);

create table supermasters (
ip VARCHAR(25) NOT NULL,
nameserver VARCHAR(255) NOT NULL,
account VARCHAR(40) DEFAULT NULL

);

GRANT SELECT ON supermasters TO pdns;
GRANT ALL ON domains TO pdns;
GRANT ALL ON records TO pdns;

Zone2sql with the --gmysql flag also assumes this layout is in place.

This schema contains all elements needed for master, slave and superslave operation. Depending on
which features will be used, the ’GRANT’ statements can be trimmed to make sure PDNS cannot
subvert the contents of your database.

When using the InnoDB storage engine, we suggest adding the following lines to the ’create table
records’ command above:

CONSTRAINT ‘records_ibfk_1‘ FOREIGN KEY (‘domain_id‘) REFERENCES ‘domains‘
(‘id‘) ON DELETE CASCADE

This automates deletion of records on deletion of a domain from the domains table.

A.5.2. PostgresSQL specifics

The default setup conforms to the following schema, which you should add to a PostgreSQL database.

create table domains (
id SERIAL PRIMARY KEY,
name VARCHAR(255) NOT NULL,

172

Appendix A. Backends in detail

master VARCHAR(128) DEFAULT NULL,
last_check INT DEFAULT NULL,
type VARCHAR(6) NOT NULL,
notified_serial INT DEFAULT NULL,
account VARCHAR(40) DEFAULT NULL

);
CREATE UNIQUE INDEX name_index ON domains(name);

CREATE TABLE records (
id SERIAL PRIMARY KEY,
domain_id INT DEFAULT NULL,
name VARCHAR(255) DEFAULT NULL,
type VARCHAR(6) DEFAULT NULL,
content VARCHAR(255) DEFAULT NULL,
ttl INT DEFAULT NULL,
prio INT DEFAULT NULL,
change_date INT DEFAULT NULL,
CONSTRAINT domain_exists
FOREIGN KEY(domain_id) REFERENCES domains(id)
ON DELETE CASCADE

);

CREATE INDEX rec_name_index ON records(name);
CREATE INDEX nametype_index ON records(name,type);
CREATE INDEX domain_id ON records(domain_id);

create table supermasters (
ip VARCHAR(25) NOT NULL,
nameserver VARCHAR(255) NOT NULL,
account VARCHAR(40) DEFAULT NULL

);

GRANT SELECT ON supermasters TO pdns;
GRANT ALL ON domains TO pdns;
GRANT ALL ON domains_id_seq TO pdns;
GRANT ALL ON records TO pdns;
GRANT ALL ON records_id_seq TO pdns;

This schema contains all elements needed for master, slave and superslave operation. Depending on
which features will be used, the ’GRANT’ statements can be trimmed to make sure PDNS cannot
subvert the contents of your database.

Zone2sql with the --gpgsql flag also assumes this layout is in place.

With PostgreSQL, you may have to run ’createdb powerdns’ first and then connect to that database with
’psql powerdns’, and feed it the schema above.

173

Appendix A. Backends in detail

A.5.3. Oracle specifics

Generic Oracle support is only available since version 2.9.18. The default setup conforms to the
following schema, which you should add to an Oracle database. You may need or want to add
’namespace’ statements.

create table domains (
id NUMBER,
name VARCHAR(255) NOT NULL,
master VARCHAR(128) DEFAULT NULL,
last_check INT DEFAULT NULL,
type VARCHAR(6) NOT NULL,
notified_serial INT DEFAULT NULL,
account VARCHAR(40) DEFAULT NULL,
primary key (id)

);
create sequence DOMAINS_ID_SEQUENCE;
create index DOMAINS$NAME on Domains (NAME);

CREATE TABLE records (
id number(11) not NULL,
domain_id INT DEFAULT NULL REFERENCES Domains(ID) ON DELETE CASCADE,
name VARCHAR(255) DEFAULT NULL,
type VARCHAR(6) DEFAULT NULL,
content VARCHAR(255) DEFAULT NULL,
ttl INT DEFAULT NULL,
prio INT DEFAULT NULL,
change_date INT DEFAULT NULL,

primary key (id)
);

create index RECORDS$NAME on RECORDS (NAME);
create sequence RECORDS_ID_SEQUENCE;

create table supermasters (
ip VARCHAR(25) NOT NULL,
nameserver VARCHAR(255) NOT NULL,
account VARCHAR(40) DEFAULT NULL

);

This schema contains all elements needed for master, slave and superslave operation. Depending on
which features will be used, ’GRANT’ statements can be trimmed to make sure PDNS cannot subvert
the contents of your database.

Zone2sql with the --gpgsql flag also assumes this layout is in place.

174

Appendix A. Backends in detail

Inserting records is a bit different compared to MySQL and PostgreSQL, you should use:

insert into domains (id,name,type) values (domains_id_sequence.nextval,’netherlabs.nl’,’NATIVE’);

Furthermore, use the goracle-tnsname setting to specify which TNSNAME the Generic Oracle Backend
should be connectiong to. There are no goracle-dbname, goracle-host or goracle-port settings, their
equivalent is in /etc/tnsnames.ora.

A.5.4. Basic functionality

4 queries are needed for regular lookups, 4 for ’fancy records’ which are disabled by default and 1 is
needed for zone transfers.

The 4+4 regular queries must return the following 6 fields, in this exact order:

content

This is the ’right hand side’ of a DNS record. For an A record, this is the IP address for example.

ttl

TTL of this record, in seconds. Must be a real value, no checking is performed.

prio

For MX records, this should be the priority of the mail exchanger specified.

qtype

The ASCII representation of the qtype of this record. Examples are ’A’, ’MX’, ’SOA’, ’AAAA’.
Make sure that this field returns an exact answer - PDNS won’t recognise ’A ’ as ’A’. This can be
achieved by using a VARCHAR instead of a CHAR.

domain_id

Each domain must have a unique domain_id. No two domains may share a domain_id, all records in
a domain should have the same. A number.

name

Actual name of a record. Must not end in a ’.’ and be fully qualified - it is not relative to the name of
the domain!

Please note that the names of the fields are not relevant, but the order is!

175

Appendix A. Backends in detail

As said earlier, there are 8 SQL queries for regular lookups. To configure them, set ’gmysql-basic-query’
or ’gpgsql-basic-query’, depending on your choice of backend. If so called ’MBOXFW’ fancy records
are not used, four queries remain:

basic-query

Default: select content,ttl,prio,type,domain_id,name from records where type=’%s’ and
name=’%s’ This is the most used query, needed for doing 1:1 lookups of qtype/name values. First
%s is replaced by the ASCII representation of the qtype of the question, the second by the name.

id-query

Default: select content,ttl,prio,type,domain_id,name from records where type=’%s’ and
name=’%s’ and domain_id=%d Used for doing lookups within a domain. First %s is replaced by
the qtype, the %d which should appear after the %s by the numeric domain_id.

any-query

For doing ANY queries. Also used internally. Default: select
content,ttl,prio,type,domain_id,name from records where name=’%s’ The %s is replaced by
the qname of the question.

any-id-query

For doing ANY queries within a domain. Also used internally. Default: select
content,ttl,prio,type,domain_id,name from records where name=’%s’ and domain_id=%d
The %s is replaced by the name of the domain, the %d by the numerical domain id.

The last query is for listing the entire contents of a zone. This is needed when performing a zone transfer,
but sometimes also internally:

list-query

To list an entire zone. Default: select content,ttl,prio,type,domain_id,name from records where
domain_id=%d

A.5.5. Master/slave queries

Most installations will have zero need to change the following settings, but should the need arise, here
they are:

master-zone-query

Called to determine the master of a zone. Default: select master from domains where name=’%s’
and type=’SLAVE’

176

Appendix A. Backends in detail

info-zone-query

Called to retrieve (nearly) all information for a domain: Default: select
id,name,master,last_check,notified_serial,type from domains where name=’%s’

info-all-slaves-query

Called to retrieve all slave domains Default: select id,name,master,last_check,type from domains
where type=’SLAVE’

supermaster-query

Called to determine if a certain host is a supermaster for a certain domain name. Default: select
account from supermasters where ip=’%s’ and nameserver=’%s’);

insert-slave-query

Called to add a domain as slave after a supermaster notification. Default: insert into domains
(type,name,master,account) values(’SLAVE’,’%s’,’%s’,’%s’)

insert-record-query

Called during incoming AXFR. Default: insert into records
(content,ttl,prio,type,domain_id,name) values (’%s’,%d,%d,’%s’,%d,’%s’)

update-serial-query

Called to update the last notified serial of a master domain. Default: update domains set
notified_serial=%d where id=%d

update-lastcheck-query

Called to update the last time a slave domain was checked for freshness. Default: update domains
set notified_serial=%d where id=%d

info-all-master-query

Called to get data on all domains for which the server is master. Default: select
id,name,master,last_check,notified_serial,type from domains where type=’MASTER’

delete-zone-query

Called to delete all records of a zone. Used before an incoming AXFR. Default: delete from
records where domain_id=%d

A.5.6. Fancy records

If PDNS is used with so called ’Fancy Records’, the ’MBOXFW’ record exists which specifies an email
address forwarding instruction, wildcard queries are sometimes needed. This is not enabled by default. A

177

Appendix A. Backends in detail

wildcard query is an internal concept - it has no relation to *.domain-type lookups. You can safely leave
these queries blank.

wildcard-query

Can be left blank. See above for an explanation. Default: select
content,ttl,prio,type,domain_id,name from records where type=’%s’ and name like ’%s’

wildcard-id-query

Can be left blank. See above for an explanation. Default: select
content,ttl,prio,type,domain_id,name from records where type=’%s’ and name like ’%s’ and
domain_id=%d Used for doing lookups within a domain.

wildcard-any-query

For doing wildcard ANY queries. Default: select content,ttl,prio,type,domain_id,name from
records where name like ’%s’

wildcard-any-id-query

For doing wildcard ANY queries within a domain. Default: select
content,ttl,prio,type,domain_id,name from records where name like ’%s’ and domain_id=%d

A.5.7. Settings and specifying queries

The queries above are specified in pdns.conf. For example, the basic-query would appear as:

gpgsql-basic-query=select content,ttl,prio,type,domain_id,name from records where type=’%s’ and name=’%s’

When using the Generic PostgreSQL backend, they appear as above. When using the generic MySQL
backend, change the "gpgsql-" prefix to "gmysql-".

Queries can span multiple lines, like this:

gpgsql-basic-query=select content,ttl,prio,type,domain_id,name from records \
where type=’%s’ and name=’%s’

Do not wrap statements in quotes as this will not work. Besides the query related settings, the following
configuration options are available, where one should substitute ’gmysql’, ’gpgsql’, ’godbc’ or ’goracle’
for the prefix ’backend’. So ’backend-dbname’ can stand for ’gpgsql-dbname’ or ’gmysql-dbname’ etc.

backend-dbname

Database name to connect to

178

Appendix A. Backends in detail

backend-host

Database host to connect to. WARNING: When specified as a hostname a chicken/egg situation
might arise where the database is needed to resolve the IP address of the database. It is best to
supply an IP address of the database here.

backend-port

Database port to connect to.

gmysql-socket (only for MySQL!)

Filename where the MySQL connection socket resides. Often /tmp/mysql.sock or
/var/run/mysqld/mysqld.sock.

backend-password

Password to connect with

backend-user

PgSQL user to connect as

A.5.8. Native operation

For native operation, either drop the FOREIGN KEY on the domain_id field, or (recommended), make
sure the domains table is filled properly. To add a domain, issue the following:

insert into domains (name,type) values (’powerdns.com’,’NATIVE’);

The records table can now be filled by with the domain_id set to the id of the domains table row just
inserted.

A.5.9. Slave operation

The PostgreSQL backend is fully slave capable. To become a slave of the ’powerdns.com’ domain,
execute this:

insert into domains (name,master,type) values (’powerdns.com’,’213.244.168.217’,’SLAVE’);

And wait a while for PDNS to pick up the addition - which happens within one minute. There is no need
to inform PDNS that a new domain was added. Typical output is:

Apr 09 13:34:29 All slave domains are fresh
Apr 09 13:35:29 1 slave domain needs checking
Apr 09 13:35:29 Domain powerdns.com is stale, master serial 1, our serial 0
Apr 09 13:35:30 [gPgSQLBackend] Connected to database

179

Appendix A. Backends in detail

Apr 09 13:35:30 AXFR started for ’powerdns.com’
Apr 09 13:35:30 AXFR done for ’powerdns.com’
Apr 09 13:35:30 [gPgSQLBackend] Closing connection

From now on, PDNS is authoritative for the ’powerdns.com’ zone and will respond accordingly for
queries within that zone.

Periodically, PDNS schedules checks to see if domains are still fresh. The default slave-cycle-interval is
60 seconds, large installations may need to raise this value. Once a domain has been checked, it will not
be checked before its SOA refresh timer has expired. Domains whose status is unknown get checked
every 60 seconds by default.

A.5.10. Superslave operation

To configure a supermaster with IP address 10.0.0.11 which lists this installation as
’autoslave.powerdns.com’, issue the following:

insert into supermasters (’10.0.0.11’,’autoslave.powerdns.com’,’internal’);

From now on, valid notifies from 10.0.0.11 that list a NS record containing ’autoslave.powerdns.com’
will lead to the provisioning of a slave domain under the account ’internal’. See Section 13.2.1 for details.

A.5.11. Master operation

The PostgreSQL backend is fully master capable with automatic discovery of serial changes. Raising the
serial number of a domain suffices to trigger PDNS to send out notifications. To configure a domain for
master operation instead of the default native replication, issue:

insert into domains (name,type) values (’powerdns.com’,’MASTER’);

Make sure that the assigned id in the domains table matches the domain_id field in the records table!

A.6. Oracle backend

Table A-6. Oracle backend capabilities

180

Appendix A. Backends in detail

Native Yes

Master No

Slave No

Superslave No

Autoserial Yes

Module name oracle

Launch name oracle

Oracle backend with easily configurable SQL statements, allowing you to graft PDNS on any Oracle
database of your choosing.

PowerDNS is currently ascertaining if this backend can be distributed in binary form without violating
Oracle licensing. In the meantime, the source code to the Oracle backend is available in the pdns
distribution.

The following configuration settings are available:

oracle-debug-queries

Output all queries to disk for debugging purposes.

oracle-time-queries

Output all queries to disk for timing purposes.

oracle-uppercase-database

Change all domain names to uppercase before querying database.

oracle-database

Oracle database name to connect to.

oracle-home

PDNS can set the ORACLE_HOME environment variable from within the executable, allowing
execution of the daemon from init.d scripts where ORACLE_HOME may not yet be set.

oracle-sid

PDNS can set the ORACLE_SID environment variable from within the executable, allowing
execution of the daemon from init.d scripts where ORACLE_SID may not yet be set.

oracle-username

Oracle username to connect as.

181

Appendix A. Backends in detail

oracle-password

Oracle password to connect with.

The generic Oracle backend can be configured to use user-specified queries. The following are the
default queries and their names:

oracle-forward-query

select content, TimeToLive, Priority, type, ZoneId, nvl(ChangeDate,0) from Records where name =
:name and type = :type

oracle-forward-query-by-zone

select content, TimeToLive, Priority, type, ZoneId, nvl(ChangeDate,0) from records where name =
:name and type = :type and ZoneId = :id

oracle-forward-any-query

select content, TimeToLive, Priority, type, ZoneId, nvl(ChangeDate,0) from records where name =
:name

oracle-list-query

select content, TimeToLive, Priority, type, ZoneId, nvl(ChangeDate, 0), name from records where
ZoneId = :id

A.6.1. Setting up Oracle for use with PowerDNS

To setup a database that corresponds to these default queries, issue the following as Oracle user sys:

create user powerdns identified by YOURPASSWORD;
grant connect to powerdns;

create tablespace powerdns datafile ’/opt/oracle/oradata/oracle/powerdns.dbf’
size 256M extent management local autoallocate;

alter user powerdns quota unlimited on powerdns;

As user ’powerdns’ continue with:

create table Domains (
ID number(11) NOT NULL,

182

Appendix A. Backends in detail

NAME VARCHAR(255) NOT NULL,
MASTER VARCHAR(128) DEFAULT NULL,
LAST_CHECK INT DEFAULT NULL,
TYPE VARCHAR(6) NOT NULL,
NOTIFIED_SERIAL INT DEFAULT NULL,
ACCOUNT VARCHAR(40) DEFAULT NULL,
primary key (ID)

)tablespace POWERDNS;

create index DOMAINS$NAME on Domains (NAME) tablespace POWERDNS;
create sequence DOMAINS_ID_SEQUENCE;

create table Records
(
ID number(11) NOT NULL,
ZoneID number(11) default NULL REFERENCES Domains(ID) ON DELETE CASCADE,
NAME varchar2(255) default NULL,
TYPE varchar2(6) default NULL,
CONTENT varchar2(255) default NULL,
TimeToLive number(11) default NULL,
Priority number(11) default NULL,
CreateDate number(11) default NULL,
ChangeDate number(11) default NULL,
primary key (ID)

)tablespace POWERDNS;

create index RECORDS$NAME on RECORDS (NAME) tablespace POWERDNS;
create sequence RECORDS_ID_SEQUENCE;

To insert records, either use zone2sql with the --oracle setting, or execute sql along the lines of:

insert into domains (id,name,type) values (domains_id_sequence.nextval,’netherlabs.nl’,’NATIVE’);
insert into Records (id,ZoneId, name,type,content,TimeToLive,Priority) select RECORDS_ID_SEQUENCE.nextval,id ,’netherlabs.nl’, ’SOA’, ’ahu.casema.net. hostmaster.ds9a.nl. 2000081401 28800 7200 604800 86400’, 3600, 0 from Domains where name=’netherlabs.nl’;
insert into Records (id,ZoneId, name,type,content,TimeToLive,Priority) select RECORDS_ID_SEQUENCE.nextval,id ,’netherlabs.nl’, ’NS’, ’ahu.casema.net’, 3600, 0 from Domains where name=’netherlabs.nl’;
insert into Records (id,ZoneId, name,type,content,TimeToLive,Priority) select RECORDS_ID_SEQUENCE.nextval,id ,’netherlabs.nl’, ’NS’, ’ns1.pine.nl’, 3600, 0 from Domains where name=’netherlabs.nl’;
insert into Records (id,ZoneId, name,type,content,TimeToLive,Priority) select RECORDS_ID_SEQUENCE.nextval,id ,’netherlabs.nl’, ’NS’, ’ns2.pine.nl’, 3600, 0 from Domains where name=’netherlabs.nl’;
insert into Records (id,ZoneId, name,type,content,TimeToLive,Priority) select RECORDS_ID_SEQUENCE.nextval,id ,’netherlabs.nl’, ’A’, ’213.244.168.210’, 3600, 0 from Domains where name=’netherlabs.nl’;
insert into Records (id,ZoneId, name,type,content,TimeToLive,Priority) select RECORDS_ID_SEQUENCE.nextval,id ,’netherlabs.nl’, ’MX’, ’outpost.ds9a.nl’, 3600, 10 from Domains where name=’netherlabs.nl’;

For performance reasons it is best to specify --transactions too!

183

Appendix A. Backends in detail

A.7. Generic SQLite backend (2 and 3)

Table A-7. Generic SQLite backend capabilities

Native Yes

Master Yes

Slave Yes

Superslave Yes

Module name gsqlite and gsqlite3

Launch name gsqlite and gsqlite3

This backend retrieves all data from a SQLite database, which is a RDBMS that’s embedded into the
application itself, so you won’t need to be running a seperate server process. It also reduces overhead,
and simplifies installation. At http://www.sqlite.org you can find more information about SQLite.

As this is a generic backend, built on top of the gSql framework, you can specify all queries as
documented in Generic MySQL and PgSQL backends.

SQLite exists in two incompatible versions, numbered 2 and 3, and from 2.9.21 onwards, PowerDNS
supports both. It is recommended to go with version 3 as it is newer, has better performance and is
actively maintained. To use version 3, choose ’launch=gsqlite3’.

A.7.1. Compiling the SQLite backend

Before you can begin compiling PowerDNS with the SQLite backend you need to have the SQLite utility
and library installed on your system. You can download these from http://www.sqlite.org/download.html,
or you can use packages (if your distribution provides those).

When you’ve installed the library you can use: ./configure --with-modules="gsqlite" or ./configure
--with-modules="gsqlite3" to configure PowerDNS to use the SQLite backend. Compilation can then
proceed as usual.

SQLite is included in most PowerDNS binary releases.

A.7.2. Setting up the database

Before you can use this backend you first have to set it up and fill it with data. The default setup

184

Appendix A. Backends in detail

conforms to the following schema:

create table domains (
id INTEGER PRIMARY KEY,
name VARCHAR(255) NOT NULL,
master VARCHAR(128) DEFAULT NULL,
last_check INTEGER DEFAULT NULL,
type VARCHAR(6) NOT NULL,
notified_serial INTEGER DEFAULT NULL,
account VARCHAR(40) DEFAULT NULL

);

CREATE UNIQUE INDEX name_index ON domains(name);

CREATE TABLE records (
id INTEGER PRIMARY KEY,
domain_id INTEGER DEFAULT NULL,
name VARCHAR(255) DEFAULT NULL,
type VARCHAR(6) DEFAULT NULL,
content VARCHAR(255) DEFAULT NULL,
ttl INTEGER DEFAULT NULL,
prio INTEGER DEFAULT NULL,
change_date INTEGER DEFAULT NULL

);

CREATE INDEX rec_name_index ON records(name);
CREATE INDEX nametype_index ON records(name,type);
CREATE INDEX domain_id ON records(domain_id);

create table supermasters (
ip VARCHAR(25) NOT NULL,
nameserver VARCHAR(255) NOT NULL,
account VARCHAR(40) DEFAULT NULL

);

This schema contains all elements needed for master, slave and superslave operation.

After you have created the database you probably want to fill it with data. If you have a BIND zonefile
it’s as easy as: zone2sql --zone=myzonefile --gmysql | sqlite powerdns.sqlite, but you can also use
AXFR (or insert data manually).

To communicate with a SQLite database, use either the ’sqlite’ or ’sqlite3’ program, and feed it SQL.

185

Appendix A. Backends in detail

A.7.3. Using the SQLite backend

The last thing you need to do is telling PowerDNS to use the SQLite backend.

in pdns.conf
launch=gsqlite # or gsqlite3
gsqlite-database=<path to your SQLite database> # or gsqlite3-database

Then you can start PowerDNS and it should notify you that a connection to the database was made.

A.8. DB2 backend

Table A-8. DB2 backend capabilities

Native Yes

Master No

Slave No

Superslave No

Autoserial Yes

Module name db2

Launch name db2

PowerDNS is currently ascertaining if this backend can be distributed in binary form without violating
IBM DB2 licensing.

The DB2 backend executes the following queries:

Forward Query

select Content, TimeToLive, Priority, Type, ZoneId, 0 as ChangeDate, Name from Records where
Name = ? and type = ?

Forward By Zone Query

select Content, TimeToLive, Priority, Type, ZoneId, 0 as ChangeDate, Name from Records where
Name = ? and Type = ? and ZoneId = ?

186

Appendix A. Backends in detail

Forward Any Query

select Content, TimeToLive, Priority, Type, ZoneId, 0 as ChangeDate, Name from Records where
Name = ?

List Query

select Content, TimeToLive, Priority, Type, ZoneId, 0 as ChangeDate, Name from Records where
ZoneId = ?

Configuration settings:

db2-server

Server name to connect to. Defaults to ’powerdns’. Make sure that your nameserver is not needed to
resolve an IP address needed to connect as this might lead to a chicken/egg situation.

db2-user

Username to connect as. Defaults to ’powerdns’.

db2-password

Password to connect with. Defaults to ’powerdns’.

A.9. Bind zone file backend

Table A-9. Bind zone file backend capabilities

Native Yes

Master Yes

Slave Yes

Superslave No

Autoserial No

Module name none (built in)

Launch bind

The BindBackend started life as a demonstration of the versatility of PDNS but quickly gained in
importance when there appeared to be demand for a Bind ’workalike’.

The BindBackend parses a Bind-style named.conf and extracts information about zones from it. It makes

187

Appendix A. Backends in detail

no attempt to honour other configuration flags, which you should configure (when available) using the
PDNS native configuration.

--help=bind

Outputs all known parameters related to the bindbackend

bind-example-zones

Loads the ’example.com’ zone which can be queried to determine if PowerDNS is functioning
without configuring database backends. This feature is no longer supported from 2.9.21 onwards.

bind-config=

Location of the Bind configuration file to parse.

bind-check-interval=

How often to check for zone changes. See ’Operation’ section.

bind-enable-huffman

Enable Huffman compression on zone data. Currently saves around 20% of memory actually used,
but slows down operation somewhat.

A.9.1. Operation

On launch, the BindBackend first parses the named.conf to determine which zones need to be loaded.
These will then be parsed and made available for serving, as they are parsed. So a named.conf with
100.000 zones may take 20 seconds to load, but after 10 seconds, 50.000 zones will already be available.
While a domain is being loaded, it is not yet available, to prevent incomplete answers.

Reloading is currently done only when a request for a zone comes in, and then only after
bind-check-interval seconds have passed after the last check. If a change occurred, access to the zone is
disabled, the file is reloaded, access is restored, and the question is answered. For regular zones,
reloading is fast enough to answer the question which lead to the reload within the DNS timeout.

If bind-check-interval is specified as zero, no checks will be performed until the pdns_control reload
is given.

188

Appendix A. Backends in detail

A.9.2. Pdns_control commands

bind-domain-status domain [domain]

Output status of domain or domains. Can be one of ’seen in named.conf, not parsed’, ’parsed
successfully at <time;>’ or ’error parsing at line ... at <time>’.

bind-list-rejects

Lists all zones that have problems, and what those problems are.

bind-reload-now domain

Reloads a zone from disk NOW, reporting back results.

A.9.3. Performance

The BindBackend does not benefit from the packet cache as it is fast enough on its own. Furthermore, on
most systems, there will be no benefit in using multiple CPUs for the packetcache, so a noticeable
speedup can be attained by specifying distributor-threads=1 in pdns.conf.

A.9.4. Master/slave configuration

A.9.4.1. Master

Works as expected. At startup, no notification storm is performed as this is generally not useful. Perhaps
in the future the Bind Backend will attempt to store zone metadata in the zone, allowing it to determine if
a zone has changed its serial since the last time notifications were sent out.

Changes which are discovered when reloading zones do lead to notifications however.

A.9.4.2. Slave

Also works as expected. The Bind backend expects to be able to write to a directory where a slave
domain lives. The incoming zone is stored as ’zonename.RANDOM’ and atomically renamed if it is
retrieved successfully, and parsed only then.

In the future, this may be improved so the old zone remains available should parsing fail.

189

Appendix A. Backends in detail

A.9.5. Commands

pdns_control offers commands to communicate instructions to PowerDNS. These are detailed here.

rediscover

Reread the bind configuration file (named.conf). If parsing fails, the old configuration remains in
force and pdns_control reports the error. Any newly discovered domains are read, discarded
domains are removed from memory.

Note: Except that with 2.9.3, they are not removed from memory.

reload

All zones with a changed timestamp are reloaded at the next incoming query for them.

A.10. ODBC backend

Table A-10. ODBC backend capabilities

Native Yes

Master Yes (experimental)

Slave Yes (experimental)

Superslave No

Autoserial Yes

The ODBC backend can retrieve zone information from any source that has a ODBC driver available.

Note: This backend is only available on PowerDNS for Windows.

The ODBC backend needs data in a fixed schema which is the same as the data needed by the MySQL
backend. The create statement will resemble this:

CREATE TABLE records (
id int(11) NOT NULL auto_increment,

190

Appendix A. Backends in detail

domain_id int(11) default NULL,
name varchar(255) default NULL,
type varchar(6) default NULL,
content varchar(255) default NULL,
ttl int(11) default NULL,
prio int(11) default NULL,
change_date int(11) default NULL,
PRIMARY KEY (id),
KEY name_index(name),
KEY nametype_index(name,type),
KEY domainid_index(domain_id)
);

To use the ODBC backend an ODBC source has to be created, to do this see the section Installing
PowerDNS on Microsoft Windows, Chapter 3.

The following configuration settings are available:

odbc-datasource

Specifies the name of the data source to use.

odbc-user

Specifies the username that has to be used to log into the datasource.

odbc-pass

Specifies the user’s password.

odbc-table

Specifies the name of the table containing the zone information.

The ODBC backend has been tested with Microsoft Access, MySQL (via MyODBC) and Microsoft
SQLServer. As the SQL statements used are very basic, it is expected to work with many ODBC drivers.

A.11. XDB Backend

No longer part of PowerDNS.

191

Appendix A. Backends in detail

A.12. LDAP backend

Warning

This documentation has moved to its own page
(http://wiki.linuxnetworks.de/index.php/PowerDNS_ldapbackend). The information
in this chapter may be outdated!

The main author for this module is Norbert Sendetzky.

He also maintains the LDAP backends documentation
(http://wiki.linuxnetworks.de/index.php/PowerDNS_ldapbackend) there. The information below may be
outdated!

Table A-11. LDAP backend capabilities

Native Yes

Master No

Slave No

Superslave No

Autoserial No

A.13. OpenDBX backend

Warning

The full OpenDBX documentation can be found on its own page
(http://www.linuxnetworks.de/doc/index.php/PowerDNS_OpenDBX_Backend). The
information in this chapter may be outdated!

The main author for this module is Norbert Sendetzky.

192

Appendix A. Backends in detail

Table A-12. OpenDBX backend capabilities

Native Yes

Master Yes

Slave Yes

Superslave Yes

Autoserial Yes (since 2.9.22)

A.14. Geo backend

Warning

This section is a subset of the full documentation which can be found in
modules/geobackend/README of the PowerDNS distribution.

The main author for this module is Mark Bergsma.

Table A-13. Geo backend capabilities

Native Partial

Master No

Slave No

Superslave No

Autoserial No

The Geo Backend can be used to distribute queries globally using an IP-address/country mapping table,
several of which are freely available online or can be acquired for a small fee.

This allows visitors to be sent to a server close to them, with no appreciable delay, as would otherwise be
incurred with a protocol level redirect. Additionally, the Geo Backend can be used to provide service
over several clusters, any of which can be taken out of use easily, for example for maintenance purposes.

The Geo Backend is in wide use, for example by the Wikimedia foundation, which uses it to power the

193

Appendix A. Backends in detail

Wikipedia global load balancing.

More details can be found here
(http://wiki.powerdns.com/cgi-bin/trac.fcgi/browser/trunk/pdns/modules/geobackend/README), or in
modules/geobackend/README, part of the PowerDNS Authoritative Server distribution.

194

Appendix B. PDNS internals

PDNS is normally launched by the init.d script but is actually a binary called pdns_server. This file is
started by the start and monitor commands to the init.d script. Other commands are implemented using
the controlsocket.

B.1. Controlsocket

The controlsocket is the means to contact a running PDNS daemon, or as we now know, a running
pdns_server. Over this sockets, instructions can be sent using the pdns_control program. Like the
pdns_server, this program is normally accessed via the init.d script.

B.1.1. pdns_control

To communicate with PDNS over the controlsocket, the pdns_control command is used. The init.d
script also calls pdns_control. The syntax is simple: pdns_control command arguments. Currently this
is most useful for telling backends to rediscover domains or to force the transmission of notifications.
See Section 13.3.

Besides the commands implemented by the init.d script, for which see Section 2.3, the following
pdns_control commands are available:

ccounts

Returns counts on the contents of the cache.

notify domain

Adds a domain to the notification list, causing PDNS to send out notifications to the nameservers of
a domain. Can be used if a slave missed previous notifications or is generally hard of hearing.

notify-host domain host

Same as above but with operator specified IP address as destination, to be used if you know better
than PowerDNS.

purge

Purges the entire Packet Cache - see Chapter 9.

purge record

Purges all entries for this exact record name - see Chapter 9.

purge record$

Purges all cache entries ending on this name, effectively purging an entire domain - see Chapter 9.

195

Appendix B. PDNS internals

purge

Purges the entire Packet Cache - see Chapter 9.

purge record

Purges all entries for this exact record name - see Chapter 9.

rediscover

Instructs backends that new domains may have appeared in the database, or, in the case of the Bind
backend, in named.conf.

reload

Instructs backends that the contents of domains may have changed. Many backends ignore this, the
Bind backend will check timestamps for all zones (once queries come in for it) and reload if needed.

retrieve domain

Retrieve a slave domain from its master. Done nearly immediatly.

set variable value

Set a configuration parameter. Currently only the ’query-logging’ parameter can be set.

uptime

Reports the uptime of the daemon in human readable form.

version

returns the version of a running pdns daemon.

B.2. Guardian

When launched by the init.d script, pdns_server wraps itself inside a ’guardian’. This guardian
monitors the performance of the inner pdns_server instance which shows up in the process list of your
OS as pdns_server-instance. It is also this guardian that pdns_control talks to. A STOP is
interpreted by the guardian, which causes the guardian to sever the connection to the inner process and
terminate it, after which it terminates itself. The init.d script DUMP and SHOW commands need to
access the inner process, because the guardian itself does not run a nameserver. For this purpose, the
guardian passes controlsocket requests to the control console of the inner process. This is the same
console as seen with init.d MONITOR.

196

Appendix B. PDNS internals

B.3. Modules & Backends

PDNS has the concept of backends and modules. Non-static PDNS distributions have the ability to load
new modules at runtime, while the static versions come with a number of modules built in, but cannot
load more.

Related parameters are:

--help

Outputs all known parameters, including those of launched backends, see below.

--launch=backend,backend1,backend1:name

Launches backends. In its most simple form, supply all backends that need to be launched. If you
find that you need to launch single backends multiple times, you can specify a name for later
instantiations. In this case, there are 2 instances of backend1, and the second one is called ’name’.
This means that --backend1-setting is available to configure the first or main instance, and
--backend1-name-setting for the second one.

--load-modules=/directory/libyourbackend.so

If backends are available in nonstandard directories, specify their location here. Multiple files can
be loaded if separated by commas. Only available in non-static PDNS distributions.

--list-modules

Will list all available modules, both compiled in and in dynamically loadable modules.

To run on the commandline, use the pdns_server binary. For example, to see options for the gpgsql
backend, use the following:

$ /usr/sbin/pdns_server --launch=gpgsql --help=gpgsql

B.4. How PDNS translates DNS queries into backend
queries

A DNS query is not a straightforward lookup. Many DNS queries need to check the backend for
additional data, for example to determine of an unfound record should lead to an NXDOMAIN (’we
know about this domain, but that record does not exist’) or an unauthoritative response.

Simplified, without CNAME processing and wildcards, the algorithm is like this:

197

Appendix B. PDNS internals

When a query for a qname/qtype tuple comes in, it is requested directly from the backend. If present,
PDNS adds the contents of the reply to the list of records to return. A question tuple may generate
multiple answer records.

Each of these records is now investigated to see if it needs ’additional processing’. This holds for
example for MX records which may point to hosts for which the PDNS backends also contain data. This
involves further lookups for A or AAAA records.

After all additional processing has been performed, PDNS sieves out all double records which may well
have appeared. The resulting set of records is added to the answer packet, and sent out.

A zone transfer works by looking up the domain_id of the SOA record of the name and then listing all
records of that domain_id. This is why all records in a domain need to have the same domain_id.

When a query comes in for an unknown domain, PDNS starts looking for SOA records of all subdomains
of the qname, so no.such.powerdns.com turns into a SOA query for no.such.powerdns.com,
such.powerdns.com, powerdns.com, com, ”. When a SOA is found, that zone is consulted for relevant
NS instructions which lead to a referral. If nothing is found within the zone, an authoritative
NXDOMAIN is sent out.

If no SOA was found, an unauthoritative no-error is returned.

In reality, each query for a question tuple first involves checking for a CNAME, unless that resolution
has been disabled with the skip-cname option.

PDNS breaks strict RFC compatibility by not always checking for the presence of a SOA record first.
This is unlikely to lead to problems though.

198

Appendix C. Backend writers’ guide

PDNS backends are implemented via a simple yet powerful C++ interface. If your needs are not met by
the PipeBackend, you may want to write your own. Before doing any PowerDNS development, please
visit the wiki (http://wiki.powerdns.com).

A backend contains zero DNS logic. It need not look for CNAMES, it need not return NS records unless
explicitly asked for, etcetera. All DNS logic is contained within PDNS itself - backends should simply
return records matching the description asked for.

Warning

However, please note that your backend can get queries in aNy CAsE! If your
database is case sensitive, like most are (with the notable exception of MySQL),
you must make sure that you do find answers which differ only in case.

Warning

PowerDNS may instantiate multiple instances of your backend, or destroy existing
copies and instantiate new ones. Backend code should therefore be thread-safe
with respect to its static data. Additionally, it is wise if instantiation is a fast
operation, with the possible exception of the first construction.

C.1. Simple read-only native backends

Implementing a backend consists of inheriting from the DNSBackend class. For read-only backends,
which do not support slave operation, only the following methods are relevant:

class DNSBackend
{
public:

virtual bool lookup(const QType &qtype, const string &qdomain, DNSPacket *pkt_p=0, int zoneId=-1)=0;
virtual bool list(int domain_id)=0;
virtual bool get(DNSResourceRecord &r)=0;
virtual bool getSOA(const string &name, SOAData &soadata);
};

199

Appendix C. Backend writers’ guide

Note that the first three methods must be implemented. getSOA() has a useful default implementation.

The semantics are simple. Each instance of your class only handles one (1) query at a time. There is no
need for locking as PDNS guarantees that your backend will never be called reentrantly.

Some examples, a more formal specification is down below. A normal lookup starts like this:

YourBackend yb;
yb.lookup(QType::CNAME,"www.powerdns.com");

Your class should now do everything to start this query. Perform as much preparation as possible -
handling errors at this stage is better for PDNS than doing so later on. A real error should be reported by
throwing an exception.

PDNS will then call the get() method to get DNSResourceRecords back. The following code
illustrates a typical query:

yb.lookup(QType::CNAME,"www.powerdns.com");

DNSResourceRecord rr;
while(yb.get(rr))

cout<<"Found cname pointing to ’"+rr.content+"’"<<endl;
}

Each zone starts with a Start of Authority (SOA) record. This record is special so many backends will
choose to implement it specially. The default getSOA() method performs a regular lookup on your
backend to figure out the SOA, so if you have no special treatment for SOA records, where is no need to
implement your own getSOA().

Besides direct queries, PDNS also needs to be able to list a zone, to do zone transfers for example. Each
zone has an id which should be unique within the backend. To list all records belonging to a zone id, the
list() method is used. Conveniently, the domain_id is also available in the SOAData structure.

The following lists the contents of a zone called "powerdns.com".

SOAData sd;
if(!yb.getSOA("powerdns.com",sd)) // are we authoritative over powerdns.com?
return RCode::NotAuth; // no

yb.list(sd.domain_id);
while(yb.get(rr))

cout<<rr.qname<<"\t IN "<<rr.qtype.getName()<<"\t"<<rr.content<<endl;

200

Appendix C. Backend writers’ guide

Please note that when so called ’fancy records’ (see Chapter 14) are enabled, a backend can receive
wildcard lookups. These have a % as the first character of the qdomain in lookup.

C.1.1. A sample minimal backend

This backend only knows about the host "random.powerdns.com", and furthermore, only about its A
record:

/* FIRST PART */
class RandomBackend : public DNSBackend
{
public:
bool list(int id) {
return false; // we don’t support AXFR

}

void lookup(const QType &type, const string &qdomain, DNSPacket *p, int zoneId)
{
if(type.getCode()!=QType::A || qdomain!="random.powerdns.com") // we only know about random.powerdns.com A
d_answer=""; // no answer

else {
ostringstream os;
os<<random()%256<<"."<<random()%256<<"."<<random()%256<<"."<<random()%256;
d_answer=os.str(); // our random ip address

}
}

bool get(DNSResourceRecord &rr)
{
if(!d_answer.empty()) {
rr.qname="random.powerdns.com"; // fill in details
rr.qtype=QType::A; // A record
rr.ttl=86400; // 1 day
rr.content=d_answer;

d_answer=""; // this was the last answer

return true;
}
return false; // no more data

}

private:
string d_answer;

};

/* SECOND PART */

class RandomFactory : public BackendFactory
{
public:

201

Appendix C. Backend writers’ guide

RandomFactory() : BackendFactory("random") {}

DNSBackend *make(const string &suffix)
{
return new RandomBackend();

}
};

/* THIRD PART */

class RandomLoader
{
public:
RandomLoader()
{
BackendMakers().report(new RandomFactory);

L<<Logger::Info<<" [RandomBackend] This is the randombackend ("__DATE__", "__TIME__") reporting"<<endl;
}

};

static RandomLoader randomloader;

This simple backend can be used as an ’overlay’. In other words, it only knows about a single record,
another loaded backend would have to know about the SOA and NS records and such. But nothing
prevents us from loading it without another backend.

The first part of the code contains the actual logic and should be pretty straightforward. The second part
is a boilerplate ’factory’ class which PDNS calls to create randombackend instances. Note that a ’suffix’
parameter is passed. Real life backends also declare parameters for the configuration file; these get the
’suffix’ appended to them. Note that the "random" in the constructor denotes the name by which the
backend will be known.

The third part registers the RandomFactory with PDNS. This is a simple C++ trick which makes sure
that this function is called on execution of the binary or when loading the dynamic module.

Please note that a RandomBackend is actually in most PDNS releases. By default it lives on
random.example.com, but you can change that by setting random-hostname.

NOTE: this simple backend neglects to handle case properly!

202

Appendix C. Backend writers’ guide

C.1.2. Interface definition

Classes:

Table C-1. DNSResourceRecord class

QType qtype QType of this record

string qname name of this record

string content ASCII representation of right hand side

u_int16_t priority priority of an MX record.

u_int32_t ttl Time To Live of this record

int domain_id ID of the domain this record belongs to

time_t last_modified If unzero, last time_t this record was changed

Table C-2. SOAData struct

string nameserver Name of the master nameserver of this zone

string hostmaster Hostmaster of this domain. May contain an @

u_int32_t serial Serial number of this zone

u_int32_t refresh How often this zone should be refreshed

u_int32_t retry How often a failed zone pull should be retried.

u_int32_t expire If zone pulls failed for this long, retire records

u_int32_t default_ttl Difficult

int domain_id The ID of the domain within this backend. Must be
filled!

DNSBackend *db Pointer to the backend that feels authoritative for a
domain and can act as a slave

Methods:

void lookup(const QType &qtype, const string &qdomain, DNSPacket *pkt=0, int zoneId=-1)

This function is used to initiate a straight lookup for a record of name ’qdomain’ and type ’qtype’.
A QType can be converted into an integer by invoking its getCode() method and into a string with
the getCode().

The original question may or may not be passed in the pointer p. If it is, you can retrieve (from
1.99.11 onwards) information about who asked the question with the getRemote(DNSPacket *)

203

Appendix C. Backend writers’ guide

method. Alternatively, bool getRemote(struct sockaddr *sa, socklen_t *len) is
available.

Note that qdomain can be of any case and that your backend should make sure it is in effect case
insensitive. Furthermore, the case of the original question should be retained in answers returned by
get()!

Finally, the domain_id might also be passed indicating that only answers from the indicated zone
need apply. This can both be used as a restriction or as a possible speedup, hinting your backend
where the answer might be found.

If initiated succesfully, as indicated by returning true, answers should be made available over the
get() method.

Should throw an AhuException if an error occured accessing the database. Returning otherwise
indicates that the query was started succesfully. If it is known that no data is available, no exception
should be thrown! An exception indicates that the backend considers itself broken - not that no
answers are available for a question.

It is legal to return here, and have the first call to get() return false. This is interpreted as ’no data’

bool list(int domain_id)

Initiates a list of the indicated domain. Records should then be made available via the get()
method. Need not include the SOA record. If it is, PDNS will not get confused.

Should return false if the backend does not consider itself authoritative for this zone. Should throw
an AhuException if an error occured accessing the database. Returning true indicates that data is or
should be available.

bool get(DNSResourceRecord &rr)

Request a DNSResourceRecord from a query started by get() of list(). If this functions returns
true, rr has been filled with data. When it returns false, no more data is available, and rr does not
contain new data. A backend should make sure that it either fills out all fields of the
DNSResourceRecord or resets them to their default values.

The qname field of the DNSResourceRecord should be filled out with the exact qdomain passed to
lookup, preserving its case. So if a query for ’CaSe.yourdomain.com’ comes in and your database
contains dat afor ’case.yourdomain.com’, the qname field of rr should contin
’CaSe.yourdomain.com’!

Should throw an AhuException in case a database error occurred.

204

Appendix C. Backend writers’ guide

bool getSOA(const string &name, SOAData &soadata)

If the backend considers itself authoritative over domain name, this method should fill out the
passed SOAData structure and return a positive number. If the backend is functioning correctly, but
does not consider itself authoritative, it should return 0. In case of errors, an AhuException should
be thrown.

C.2. Reporting errors

To report errors, the Logger class is available which works mostly like an iostream. Example usage is as
shown above in the RandomBackend. Note that it is very important that each line is ended with endl as
your message won’t be visible otherwise.

To indicate the importance of an error, the standard syslog errorlevels are available. They can be set by
outputting Logger::Critical, Logger::Error, Logger::Warning, Logger::Notice,
Logger::Info or Logger::Debug to L, in descending order of graveness.

C.3. Declaring and reading configuration details

It is highly likely that a backend needs configuration details. On launch, these parameters need to be
declared with PDNS so it knows it should accept them in the configuration file and on the commandline.
Furthermore, they will be listed in the output of --help.

Declaring arguments is done by implementing the member function declareArguments() in the
factory class of your backend. PDNS will call this method after launching the backend.

In the declareArguments() method, the function declare() is available. The exact definitions:

void declareArguments(const string &suffix="")

This method is called to allow a backend to register configurable parameters. The suffix is the
sub-name of this module. There is no need to touch this suffix, just pass it on to the declare method.

void declare(const string &suffix, const string ¶m, const string &explanation, const string &value)

The suffix is passed to your method, and can be passed on to declare. param is the name of your
parameter. explanation is what will appear in the output of --help. Furthermore, a default value can
be supplied in the value parameter.

205

Appendix C. Backend writers’ guide

A sample implementation:

void declareArguments(const string &suffix)
{

declare(suffix,"dbname","Pdns backend database name to connect to","powerdns");
declare(suffix,"user","Pdns backend user to connect as","powerdns");
declare(suffix,"host","Pdns backend host to connect to","");
declare(suffix,"password","Pdns backend password to connect with","");

}

After the arguments have been declared, they can be accessed from your backend using the mustDo(),
getArg() and getArgAsNum() methods. The are defined as follows in the DNSBackend class:

void setArgPrefix(const string &prefix)

Must be called before any of the other accessing functions are used. Typical usage is
’setArgPrefix("mybackend"+suffix)’ in the constructor of a backend.

bool mustDo(const string &key)

Returns true if the variable key is set to anything but ’no’.

const string& getArg(const string &key)

Returns the exact value of a parameter.

int getArgAsNum(const string &key)

Returns the numerical value of a parameter. Uses atoi() internally

Sample usage from the BindBackend, using the bind-example-zones and bind-config parameters.

if(mustDo("example-zones")) {
insert(0,"www.example.com","A","1.2.3.4");
/* ... */

}

if(!getArg("config").empty()) {
BindParser BP;

BP.parse(getArg("config"));
}

206

Appendix C. Backend writers’ guide

C.4. Read/write slave-capable backends

The backends above are ’natively capable’ in that they contain all data relevant for a domain and do not
pull in data from other nameservers. To enable storage of information, a backend must be able to do
more.

Before diving into the details of the implementation some theory is in order. Slave domains are pulled
from the master. PDNS needs to know for which domains it is to be a slave, and for each slave domain,
what the IP address of the master is.

A slave zone is pulled from a master, after which it is ’fresh’, but this is only temporary. In the SOA
record of a zone there is a field which specifies the ’refresh’ interval. After that interval has elapsed, the
slave nameserver needs to check at the master ff the serial number there is higher than what is stored in
the backend locally.

If this is the case, PDNS dubs the domain ’stale’, and schedules a transfer of data from the remote. This
transfer remains scheduled until the serial numbers remote and locally are identical again.

This theory is implemented by the getUnfreshSlaveInfos method, which is called on all backends
periodically. This method fills a vector of SlaveDomains with domains that are unfresh and possibly
stale.

PDNS then retrieves the SOA of those domains remotely and locally and creates a list of stale domains.
For each of these domains, PDNS starts a zonetransfer to resynchronise. Because zone transfers can fail,
it is important that the interface to the backend allows for transaction semantics because a zone might
otherwise be left in a halfway updated situation.

The following excerpt from the DNSBackend shows the relevant functions:

class DNSBackend {
public:

/* ... */
virtual bool getDomainInfo(const string &domain, DomainInfo &di);

virtual bool isMaster(const string &name, const string &ip);
virtual bool startTransaction(const string &qname, int id);
virtual bool commitTransaction();
virtual bool abortTransaction();
virtual bool feedRecord(const DNSResourceRecord &rr);
virtual void getUnfreshSlaveInfos(vector<DomainInfo>* domains);
virtual void setFresh(int id);

/* ... */
}

207

Appendix C. Backend writers’ guide

The mentioned DomainInfo struct looks like this:

Table C-3. DomainInfo struct

int id ID of this zone within this backend

string master IP address of the master of this domain, if any

u_int32_t serial Serial number of this zone

u_int32_t notified_serial Last serial number of this zone that slaves have seen

time_t last_check Last time this zone was checked over at the master
for changes

enum {Master,Slave,Native} kind Type of zone

DNSBackend *backend Pointer to the backend that feels authoritative for a
domain and can act as a slave

These functions all have a default implementation that returns false - which explains that these methods
can be omitted in simple backends. Furthermore, unlike with simple backends, a slave capable backend
must make sure that the ’DNSBackend *db’ field of the SOAData record is filled out correctly - it is used
to determine which backend will house this zone.

bool isMaster(const string &name, const string &ip);

If a backend considers itself a slave for the domain name and if the IP address in ip is indeed a
master, it should return true. False otherwise. This is a first line of checks to guard against reloading
a domain unnecessarily.

void getUnfreshSlaveInfos(vector<DomainInfo>* domains)

When called, the backend should examine its list of slave domains and add any unfresh ones to the
domains vector.

bool getDomainInfo(const string &name, DomainInfo & di)

This is like getUnfreshSlaveInfos, but for a specific domain. If the backend considers itself
authoritative for the named zone, di should be filled out, and ’true’ be returned. Otherwise return
false.

bool startTransaction(const string &qname, int id)

When called, the backend should start a transaction that can be committed or rolled back atomically
later on. In SQL terms, this function should BEGIN a transaction and DELETE all records.

bool feedRecord(const DNSResourceRecord &rr)

Insert this record.

bool commitTransaction();

Make the changes effective. In SQL terms, execute COMMIT.

208

Appendix C. Backend writers’ guide

bool abortTransaction();

Abort changes. In SQL terms, execute ABORT.

bool setFresh()

Indicate that a domain has either been updated or refreshed without the need for a retransfer. This
causes the domain to vanish from the vector modified by getUnfreshSlaveInfos().

PDNS will always call startTransaction() before making calls to feedRecord(). Although it is
likely that abortTransaction() will be called in case of problems, backends should also be prepared
to abort from their destructor.

The actual code in PDNS is currently (1.99.9):

Resolver resolver;
resolver.axfr(remote,domain.c_str());

db->startTransaction(domain, domain_id);

L<<Logger::Error<<"AXFR started for ’"<<domain<<"’"<<endl;
Resolver::res_t recs;

while(resolver.axfrChunk(recs)) {
for(Resolver::res_t::const_iterator i=recs.begin();i!=recs.end();++i) {

db->feedRecord(*i);
}

}
db->commitTransaction();
db->setFresh(domain_id);
L<<Logger::Error<<"AXFR done for ’"<<domain<<"’"<<endl;

C.4.1. Supermaster/Superslave capability

A backend that wants to act as a ’superslave’ for a master should implement the following method:

class DNSBackend
{

virtual bool superMasterBackend(const string &ip, const string &domain, const vector<DNSResourceRecord>&nsset, string *account, DNSBackend **db)
};

This function gets called with the IP address of the potential supermaster, the domain it is sending a
notification for and the set of NS records for this domain at that IP address.

209

Appendix C. Backend writers’ guide

Using the supplied data, the backend needs to determine if this is a bonafide ’supernotification’ which
should be honoured. If it decides that it should, the supplied pointer to ’account’ needs to be filled with
the configured name of the supermaster (if accounting is desired), and the db needs to be filled with a
pointer to your backend.

Supermaster/superslave is a complicated concept, if this is all unclear see Section 13.2.1.

C.5. Read/write master-capable backends

In order to be a useful master for a domain, notifies must be sent out whenever a domain is changed.
Periodically, PDNS queries backends for domains that may have changed, and sends out notifications for
slave nameservers.

In order to do so, PDNS calls the getUpdatedMasters() method. Like the
getUnfreshSlaveInfos() function mentioned above, this should add changed domain names to the
vector passed.

The following excerpt from the DNSBackend shows the relevant functions:

class DNSBackend {
public:

/* ... */
virtual void getUpdatedMasters(vector<DomainInfo>* domains);
virtual void setNotifed(int id, u_int32_t serial);

/* ... */
}

These functions all have a default implementation that returns false - which explains that these methods
can be omitted in simple backends. Furthermore, unlike with simple backends, a slave capable backend
must make sure that the ’DNSBackend *db’ field of the SOAData record is filled out correctly - it is used
to determine which backend will house this zone.

void getUpdatedMasters(vector<DomainInfo>* domains)

When called, the backend should examine its list of master domains and add any changed ones to
the DomainInfo vector

bool setNotified(int domain_id, u_int32_t serial)

Indicate that notifications have been queued for this domain and that it need not be considered
’updated’ anymore

210

Appendix C. Backend writers’ guide

211

Appendix D. Compiling PowerDNS

D.1. Compiling PowerDNS on Unix

Note: For now, see the Open Source PowerDNS site (http://wiki.powerdns.com/). ./configure ; make
; make install will do The Right Thing for most people.

PowerDNS can becompiled with modules built in, or with modules designed to be loaded at runtime. All
that is configured before compiling using the well known autoconf/automake system.

To compile in modules, specify them as --with-modules="mod1 mod2 mod3", substituting the desired
module names. Each backend has a module name in the table at the beginning of its section.

To compile a module for inclusion at runtime, which is great if you are a unix vendor, use
--with-dynmodules="mod1 mod2 mod3". These modules then end up as .so files in the compiled
libdir.

Starting with version 2.9.18, PowerDNS requires ’Boost’ to compile, it is available for most operating
systems. Otherwise, see the Boost website (http://www.boost.org).

If your operating system does not have a Boost package, you don’t need to compile all of boost just for
PowerDNS. PowerDNS only uses Boost include files, so there is no need to install all of boost. Just untar
the Boost distribution file and point instruct ./configure to find it, perhaps like this:

$ CXXFLAGS=-I/home/bert/download/boost_1_33_0 ./configure ...

D.1.1. AIX

Known to compile with gcc, but only since 2.9.8. AIX lacks POSIX semaphores so they need to be
emulated, as with MacOS X.

212

Appendix D. Compiling PowerDNS

D.1.2. FreeBSD

Works fine, but use gmake. Pipe backend is currently broken, for reasons, see Section A.1. Due to the
threading model of FreeBSD, PowerDNS does not benefit from additional CPUs on the system.

The FreeBSD Boost include files are installed in /usr/local/include, so prefix
CXXFLAGS=-I/usr/local/include to your ./configure invocation.

D.1.3. Linux

Linux is probably the best supported platform as most of the main coders are Linux users. The static
DEB distribution is known to have problems on Debian ’Sid’, but that doesn’t matter as PowerDNS is a
native part of Debian ’Sid’. Just apt-get!

D.1.4. MacOS X

Did compile at one point but maintenance has lapsed. Let us know if you can provide us with a login on
MacOS X or if you want to help.

D.1.5. OpenBSD

Compiles but then does not work very well. We hear that it may work with more recent versions of gcc,
please let us know on <pdns-dev@mailman.powerdns.com>.

D.1.6. Solaris

Solaris 7 is supported, but only just. AAAA records do not work on Solaris 7. Solaris 8 and 9 work fine.
The ’Sunpro’ compiler has not been tried but is reported to be lacking large parts of the Standard
Template Library, which PowerDNS relies on heavily. Use gcc and gmake (if available). Regular Solaris
make has some issues with some PowerDNS Makefile constructs.

When compiling, make sure that you have /usr/ccs/bin in your path. Furthermore, with some
versions of MySQL, you may have to add "LDFLAGS=-lz" before ./configure.

213

Appendix D. Compiling PowerDNS

D.2. Compiling PowerDNS on Windows

By Michel Stol (<michel@powerdns.com>).

D.2.1. Assumptions

I will assume these things from you:

You have the PowerDNS sources.

There’s not much to compile without the source files, eh? :)

You are using Microsoft Visual C++. If you get it to compile using a free compiler, please let us know!

From the day that we began porting the UNIX PowerDNS sources to Microsoft Windows we used
Microsoft Visual C++ as our development environment of choice.

We used Visual C++ 6.0 to compile all sources (both standard version and SP5). Other versions
(including Visual C++ .NET) are untested.

You are using Microsoft Windows NT, 2000 or XP

I will assume that the system where you want to compile the sources on is running Microsoft
Windows NT, 2000 or XP. These are the operating systems that where found running PowerDNS for
Windows.

Note: You probably can compile the sources on other Windows versions too, but that is
currently untested.

You are using an English Windows version.

Troughout this document I will use the English names for menu items, names etc., so if you are
running a non-English Windows or MSVC version you have to translate those things yourself. But I
don’t think that would be a big problem.

D.2.2. Prequisites

Although we tried to keep PowerDNS for Windows’ dependencies down to a minimum, you will still
need some programs and libraries to be able to compile the sources.

214

Appendix D. Compiling PowerDNS

D.2.2.1. pthreads for Windows

The pthreads for Windows library is a Windows implementation of the POSIX threads specification,
which is used a lot in UNIX programs.

PowerDNS uses pthreads too, and to ease the porting process we decided not to reinvent the wheel, but to
use pthreads for Windows instead.

D.2.2.1.1. Getting pthreads for Windows

Pthreads for Windows is available from anonymous ftp at ftp://sources.redhat.com/pub/pthreads-win32/.
You should download the latest pthreads-YYYY-MM-DD.exe file.

Note: PowerDNS for Windows was tested with the snapshot of 2002-03-02 of the library.

For more information you can visit the pthreads for Windows homepage at
http://sources.redhat.com/pthreads-win32/

D.2.2.1.2. Installing pthreads for Windows

To install the pthreads for Windows library you have to locate your pthreads-YYYY-MM-DD.exe file
and start it.

After starting the executable a self-extractor dialog will show up where you can specify where to extract
the contents of the file. When you selected a location you can press the Extract button to extract all
content to the target directory.

The library is now installed, we still have to tell Visual C++ where it’s located though, more on that later.

D.2.3. Nullsoft Installer

For our installation program we used Nullsoft’s Installer System (NSIS). We used NSIS because it’s easy
to use, versatile and free (and it uses SuperPiMP™ technology, but they refuse to tell us what it is ;)). If
the name Nullsoft rings a bell, it’s because they’re the guys who made winamp
(http://www.winamp.com/).

215

Appendix D. Compiling PowerDNS

D.2.3.1. Getting the Nullsoft Installer

The Nullsoft Installer can be downloaded at their website, which is located at
http://www.nullsoft.com/free/nsis/. The file that you should download is called nsisXXX.exe (where
XXX is the latest version).

Note: You can find the NSIS documentation at that website too.

D.2.3.2. Installing the Nullsoft Installer

Installing NSIS is easy. All there is to it is locating the installer and execute it. Then just follow the
installation steps.

D.2.4. Setting up the build-environment

Before starting Microsoft Visual C++ and compile PowerDNS for Windows, you first have to set up your
build environment.

D.2.4.1. Make Microsoft Visual C++ recognize *.cc and *.hh (optional)

All PowerDNS source files are in the form name.cc, and all header files in the form name.hh. These
extensions aren’t recognized by MSVC by default, so you might want to change that first.

Note: Only perform this step if you want to be able to edit the *.cc and *.hh files in MSVC.

Caution

If you decide to perform this step, remember that it requires modification of the
Windows registry, always make a backup before modifying!

Ok, after that word of caution we can now proceed. You have to follow these steps:

1. Start the registry editor by entering regedit.exe in the run prompt (Start->Run...).

2. Right click on HKEY_CLASSES_ROOT and select New->Key. A new key will appear, change that
key to “.cc”, then change the default value to “cppfile”

216

Appendix D. Compiling PowerDNS

Then perform the same step for “.hh” (use “hfile” instead of “cppfile”).

3. Go to HKEY_CURRENT_USER\Software\Microsoft\DevStudio\6.0\Build

System\Components\Platforms\Win32 (x86)\Tools\32-bit C/C++ Compiler for

80x86. And add “;*.cc” to the Input_Spec value (so that it becomes “*.c;*.cpp;*.cxx;*.cc”).

Note: If you happen to use another platform (like alpha) to compile the sources, you have to do
the step above for that platform.

4. Go to HKEY_CURRENT_USER\Software\Microsoft\DevStudio\6.0\Search. And add
“;*.cc;*.hh” to the FIF_Filter value (so that it becomes
“*.c;*.cpp;*.cxx;*.tli;*.h;*.tlh;*.inl;*.rc;*.cc;*.hh”).

5. Finally change HKEY_CURRENT_USER\Software\Microsoft\DevStudio\6.0\Text
Editor\Tabs/Language Settings\C/C++. And add “;cc;hh” to the FileExtensions value
(so that it becomes “cpp;cxx;c;h;hxx;hpp;inl;tlh;tli;rc;rc2;hh;cc”).

6. Close the registry editor.

Now should MSVC properly recognize the files as being C++.

D.2.4.2. Setting Microsoft Visual C++’s directories

MSVC needs to locate some include files, libraries and executables when it has to build PowerDNS for
Windows. We are now going to tell MSVC where to find those.

To enter the directory dialog you have to go to Tools->Options...->Directories.

D.2.4.2.1. Setting the pthreads directories

When you are in the directory dialog you can add the pthreads for Windows directory.

First add the include directory, to do this you have to select Include files from the Show directories for:
combobox. Then press the New button and browse to the include directory of pthreads (ie.
C:\pthreads\include).

Then switch to Library files and add the library directory (ie. C:\pthreads\lib) using the same
method as above.

217

Appendix D. Compiling PowerDNS

D.2.4.2.2. Setting the Nullsoft Installer directory

While still being in the directory dialog, switch to Executable files and add the Nullsoft Installer
directory (ie. C:\Program Files\NSIS) to the list.

D.2.5. Compilation

Finally, after all the reading, installing and configuring we are ready to start compiling PowerDNS for
Windows.

D.2.5.1. Starting the compilation

To start the compilation you first have to open the PowerDNS workspace (powerdns.dsw) using
explorer or from the File->Open Workspace... menu in MSVC.

After you opened the workspace you can start compiling. Check all the checkboxes in the Build->Batch
Build... menu and press the Build button.

Now cross your fingers and go make some coffee or tea while compiling PowerDNS for Windows. :)

D.2.5.2. Yay! It compiled

Congratulations, you have now compiled PowerDNS for Windows!

All the release builds of the binaries are in the Release directory (including the generated installer). The
debug builds are in the, guess what, Debug directory.

Now you can start installing PowerDNS, but that’s beyond the scope of this document. See the online
documentation (http://downloads.powerdns.com/documentation/html/) for more information about that.

D.2.5.3. What if it went wrong?

If the compilation fails, then try reading this article again, and again to see if you did something wrong.

If you are pretty sure that it’s a bug, either in the PowerDNS sources, the build system or in this article,
then please send an e-mail to <pdns-dev@mailman.powerdns.com> describing your problem. We
will then try to fix it.

218

Appendix D. Compiling PowerDNS

D.2.6. Miscellaneous

Some miscellaneous information.

D.2.6.1. Credits

Michel Stol would like to thank these people:

Bert Hubert

For writing the wonderfull PowerDNS software and learning me stuff that I’d otherwise never had
learned.

PowerDNS B.V.

For being great colleagues.

The pthreads-win32 crew (see the pthreads-win32 CONTRIBUTORS file).

For easing our porting process by writing a great Windows implementation of pthreads.

The guys over at Nullsoft.

For creating the Nullsoft Installer System (NSIS), and Winamp, the program we use every day to
make a lot of noise in the office.

D.2.6.2. Contact information

If you have a comment, or a bug report concerning either this document or the PowerDNS sources you
can contact <pdns-dev@mailman.powerdns.com>

For general information about PowerDNS, the pdns server, express, documentation etc. I advice you to
visit http://www.powerdns.com/

If you are interested in buying PowerDNS you can send a mail to <sales@powerdns.com> or you can
visit the PowerDNS website at http://www.powerdns.com/pdns/

If you want to praise my work, ask me to marry you, deposit $1.000.000 on my bank account or flame
me to death, then you can mail me at <michel@powerdns.com> :)

D.2.6.3. Legal information

Microsoft, Visual C++, Windows, Windows NT, Windows 2000, Windows XP and Win32 are either
registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

219

Appendix D. Compiling PowerDNS

Other product and company names mentioned herein may be the trademarks of their respective owners.

220

Appendix E. PowerDNS license (GNU General
Public License version 2)

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program",
below, refers to any such program or work, and a "work based on the Program" means either the Program
or any derivative work under copyright law: that is to say, a work containing the Program or a portion of
it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation
is included without limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program (independent of having been made
by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to
the absence of any warranty; and give any other recipients of the Program a copy of this License along
with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and the
date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the
terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you

221

Appendix E. PowerDNS license (GNU General Public License version 2)

provide a warranty) and that users may redistribute the program under these conditions, and telling the
user how to view a copy of this License. (Exception: if the Program itself is interactive but does not
normally print such an announcement, your work based on the Program is not required to print an
announcement.) These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part of a whole which is a work
based on the Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and every part regardless of
who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no
more than your cost of physically performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies
the executable.

222

Appendix E. PowerDNS license (GNU General Public License version 2)

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of the
source code, even though third parties are not compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and
will automatically terminate your rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses terminated so long as such parties
remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. These actions are prohibited
by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any
work based on the Program), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recipients’
exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program by all those who
receive copies directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding those countries, so that distribution is

223

Appendix E. PowerDNS license (GNU General Public License version 2)

permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and "any later version", you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published
by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copyrighted by
the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

224

Appendix F. Further copyright statements

F.1. AES implementation by Brian Gladman

Since version 3.1.5, PowerDNS contains AES code by Brian Gladman, to which the following applies:

Copyright © 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.

LICENSE TERMS

The free distribution and use of this software is allowed (with or without changes) provided that:

1. source code distributions include the above copyright notice, this list of conditions and the following
disclaimer;

2. binary distributions include the above copyright notice, this list of conditions and the following
disclaimer in their documentation;

3. the name of the copyright holder is not used to endorse products built using this software without
specific written permission.

DISCLAIMER

This software is provided ’as is’ with no explicit or implied warranties in respect of its properties,
including, but not limited to, correctness and/or fitness for purpose.

225

