loglab

Narval Technical Manual

Olivier Cayrol

LOGILAB S.A.
10, Rue Louis Vicat - 75015 PARIS Alexandre Fayolle

Tél: (+33) 1.45.32.03.12
Web: www.logilab.com
Email: contact@logilab.fr

Narval Technical Manual
by Olivier Cayrol and Alexandre Fayolle

Copyright © 2000-2001 by Logilab

Legal Notice
Copyright © 2000-2001 by L ogilab.

This material may be distributed only subject to the terms and conditions set forth in the Open Publica-
tion License, v1.0 or later (the latest wverson is presently available at
http://www.opencontent.org/openpub/ [http://www.opencontent.org/openpub/]).

Distribution of substantively modified versions of this document is prohibited without the explicit per-
mission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless
prior permission is obtained from the copyright holder.

Abstract

Narval is both alanguage and an interpreter for this language. The language is well suited for writing in-
telligent personal assistants. This document presents its internal architecture and its coding philosophy.
Reading this document is advised to all people wanting to study Narval source code, or just to under-
stand how it works.

http://www.opencontent.org/openpub/

logllab

Table of Contents

LAV = T 01 T SR 1
(TR O] o1 = A o o IO U URURPR 2
1.1. The memory: Notion Of CONEXE NESLING........cccveieirieieereee et eae e es 2
1.2. Difference between recipes and Plans........ccveeveeieeiceese e 3
020 B g o 8ot 10 g (0 I = o -SSR 3
1.2.2. Plan @XECULION.ceiuiitiiteetieieeeeie et ste sttt sttt e et e bbbt bt bt e st e e e e et e sbenbenbesbesbeeneeneeneas 3
IR {0 001 = T = o 4
1.3.1. General DENAVIOUN........ccueiiiiiiiieiee ettt b e b 4
1.3.2. Specia behaviour: the foreach attribute.............cccoooviieieecicee e 4
RS G T ©0 01 (= (N0 = = (= o TS 5
1.4. Running an action OF @tranSItiON.........cccceeueieeresieeseesieeee e ste e e esre e e teeeesneenneeneesneenns 5
1.4.1. Prototype Of @N @CION........ccoiiiieieeie ettt s esaeenee s e e s reenenneens 5
1.4.1.1. Used and CONSUITE INPULS.......cc.eieeiieieeeesieeie e e esieseeseeeesseesseeaesseesseesesseesseesesneessens 6
IO 2 @ 1o = = I] 0 | PRSP 7
1.4.1.3. Single element or list Of ElEMENLS.........cccveieiieiiee e 7
1.4.1.4. Optional and Mandatory INPUES.........ccuereeieiieereererseesseeseeseesseesseseesseessesseesseessessesssessseens 8
1.4.1.5. ArgumentsS Of @N 8CHION........c.cceeiiereereeie e see e ee s e e e teeaesreesseeae s e e sseeneeeneesreenneans 8
1.4.1.6. Constraining the prototype in the SLEP.........ccvieeiiere e 9
1.4.2. Getting inputs before runnNing an aCtioN............ccocueieerieese e 10
1.4.3. Executing the action and fetching the QULPULS............covereiiereeie e 11
1.4.4. Handling aCtion generated EITOIS........cc.ecueieerieieeseesieeee e siesee e esseeee e eteeseesreeneesseesseenes 11
1.4.5. Further execution Of the Plan...........cccceieeii e 11
1.5, EValUating tranSITIONS.......cccueiieieeieseeseeeeee s e etesseesseetesseesteesesseesseessesseesseensesseesseenseeneesseenes 11
1.5.1. CoNitioNS IN ATFANSITION......ccuiiiieiriiiieieierie e e et e e e bbb s 12
1.5.2. BENAVIOUN OF TraNSITION........ciuiiuiiieieiiesie ettt sttt bbb 13
1.5.3. Used and coNSUITEd ElEMENTS.........coiiiiiiieieieses s 14
1.5.4. CONLEXt OF @TraNSITION.iiuiitiiieieieie ettt st b b 14
SRS T . 10] (=SSP PPVRPRPRRRRR 14
1.5.6. Using elements to evaluate tranSItiONS...........ceevueeeerieeiieceeseese e s esee e e ee e eeesneeneeas 14
1.5.7. Further execution Of the Plan...........cccceiieii e 15
1.6. Element selection and condition eValuation..............ccceeeierinenenenineeeee e 15
2. Chosen representations and used tECNNIQUES...........cociiieiiiirereereeeeee e 16
2.1. Description Of the VariouS EleMENTS...........coveeeiieieceseeie e eree et nns 16
2.1.1. DESCIIPLION OF @TECIPE. . c.veiueeiteeeietiesteesteeeesteeste et e s e e teseesseesseeeesseesseeneesseesseensesneesseenseeneees 16
P2 B B 1= o T o) Lo g 1ol = N o = OO 21
2.1.3. Notion of module. Description of the aCtiONS.............ccceveereeiesiese e 23
2.1.4. Description of transform €l@mMENtS..........c.ooveiiieieee e 25
2.1.5. Description of the Other €lEemMENtS..........ccoeiieii e 25
2.2. MEIMOTY SITUCTUIE. ...ttt e st e s st e s sae e e s sneesbneesabeeesbeeesnneeenaneeenas 26
2.2.1. Internal structure Of the MEMOIYccccceiieii et ae e 26
2.2.2. MeMOrY INITIAlIZALION.eeiieeee ettt e e esre e sreesteenaesseeseeneenreenes 27
2.2.3. Building the XML tre€S iN MEMOIYcceieeiieiiseesie e seeseeseeseesseseesseeaesee e eeesseessesnenns 27

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Sége social: 106bis, Rue de Rennes 75006 PARIS

logllab

2.3. Conditions expression and elements SElECHION..........ccoeiiiiierer e

2.4. Evaluation of the fireability of atransition

G S 0T oI = U o TSP PROPR

4. Conclu

S To) o FUTTTT T

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Sége social: 106bis, Rue de Rennes 75006 PARIS

27
27

29
30
31

logllab

List of Figures

L1 NAIVAI'SIMEMOIYcciiiieiieciecee e eee st ste s e st tesseesseeseeseesseessesseesseensesseesseensesseesseensesneensens
1.2. Building aplan from @rECIPE......ccueieeiecieeeer e ee et et sreeee e e sreeneeneesreenes
1.3, Plan EXECULION......cetiitiitiiieetieiee ettt sttt ettt bbbt bt se et et et e sb e besbeebenbenne e e e e
1.4. Foreach attribDULE IN @ SEED......ccuieiecee et reenas
1.5. Action With @ CONSUITEA INPUL........coceeieiieiece et sre e
1.6. ACtON With USEA INPULS.....c..eeieiieeiecie et esre e e eneesneenenneas
1.7. Action with alist Of €emMENtSINPUL.........ccceiiiiiiicrr e
1.8. ACION OPLIONAl TNPUL......c.eeiieeeesieeie e ee et et ae e sseeaesse e teenaesseeseeneasseenees
1.9, SIEPWIth @N @rQUIMENT.......c.eiiiecece ettt esteeeeeseesneeaeeneennens
1.10. Genera presentation Of tranSitioNS IN @TECIPE........ceverieiierieeseereeee s e e sre e
1.11. Handling of atransition's conditions by Narval...........cccccceiirieiiieniecieseee e
1.12. Transition behaviour (standard or error handling)..........ccceecereerieciesieere e

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Sége social: 106bis, Rue de Rennes 75006 PARIS

logllab

List of Tables

11
12
13.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9

2.10.
2.11.
2.12.
2.13.
2.14.
2.15.
2.16.
2.17.
2.18.

L] o TU L E SN = o= (= o U 10
Priorities given to elements according to their origin when assigning action inputs.............. 10
Selection order for element condition assignment iN tranSItionS...........coceveeveereeceeceeseeene 14
DesCription Of FECIPE NOUES..........oieeieieeseeiesee et e et e e sae e e seenteeseesreeaeeneensens 16
DesCription Of SEEP NOUES.........ecieiieieee ettt s este e s re e beeneesreenseennens 17
Description Of tranSitioN NOUES.........cceieeiieriee et ee e sre e e e naeenes 18
Description of coNditioN NOTES.........cceieeiieriiee et e e e naeeneas 18
Description Of CONLEXE NOUES........cceeiueieereeieeeese e see et e e ste e s sae e seeste e e sreeseenaensens 19
Description Of MatCh NOUES..........ccieieieeceece et ste e ae e nre s 19
DesCription Of tIME NOUES.........ccueiieiecee ettt e e se e e e sneenaeenes 20
DeSCription Of IN NOUES.......c.oiee et e st e e e e sne e seeneenreenes 20
DeSCription Of QUL NOES...........oiieieiieseee et ee et e e e s e reeneesre s 21
DesCription Of Plan NOUES.......cc.eeiiiieie e e e re e e sreesreeneens 21
Description of &lemMentS NOES..........ccoueieeiieiieere e sre e e e 22
Description Of &lemMeNnt NOUES..........ccviieiiee et naeeneas 23
Description of MOAUIE NOUES..........ccuiiieieie e nen 23
DesCription Of aCtiON NOUES..........cceeiierieseesie et e et e e reesse e sreenseereesreeeeens 24
Description of desCription NOUES.........cccvieeieeeceere e ae e e e e 24
Description Of PrototyPe NOUES..........cccveeiieieeseccie e ee e nns 25

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Sége social: 106bis, Rue de Rennes 75006 PARIS

logllab

Warning

Warning

This document presents with great details how Narval works. It is expected that the reader has
understood the purpose of the application, and some global knowledge of the functionalities.
It is strongly advised to read the User Manual first.

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Sége social: 106bis, Rue de Rennes 75006 PARIS

logllab

Narval Operation

Chapter 1. Narval Operation

1.1. The memory: notion of context nesting

Narvalhas a memory in which it stores elements that it handles. In the memory, elements are
grouped according to the plans that use them. It is thus possible to define a context for each
plan (see Figure 1.1.).

NARVAL

Element Element Elem
Mai o Flan 2 Flein 1
------- Plan 2 Context -

Element

Element h ; Flan 1.1

Element z

i Plon 7 Conttext e
Element B | i Plan 1.1 Context, - \

| !
="' I|Element 1 ||Element 3-}{
Element A| | }’
: . _':-_—--"-—:'_'_'_'_—““"\""“;'_:ElEI'I'lEI'lt 3 | 1.1 Step

Figure 1.1. Narval's memory

The context of a plan is the set of elements handled by the plan, i.e. al the elements created or
used by the steps of the plan or that triggered the transitions of the plan. The memory holds
everything handled by Narval, that is, al the contents of the contexts, as well as general inter-
est elements, such as plans, recipes or, as shown in the example (see Figure 1.1.), amai | box
element which represents the mail box used by Narval. Since it is meant to be shared by sev-
eral plans, this element is held in the memory, and in no specific context. When a plan is run
from within another plan, its context is nested within its parent's context. This is the case in
the example shown in Figure 1.1.) with plan Pl an 1. 1 having a context nested in plan
Plan 1's.

During plan execution, elements are dynamically added to the different contexts (see element
El enent 3 in Figure 1.1.). Elements in memory that have not been used after a given
amount of time may be automatically removed so that the memory size will not grow too
much.

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Sége social: 106bis, Rue de Rennes 75006 PARIS

logllab

Narval Operation

1.2. Difference between recipes and plans

1.2.1. Introduction to recipes

A recipeis a specification of a sequence of steps and transitions necessary to complete a given
task. Recipes represent everything a Narval can do. A recipe is described with steps and tran-
sitions but cannot be executed. This requires the instantiation of a plan.

Recipes are elements stored in Narval's memory.

When a plan is built from a recipe (see Figure 1.2.), Narval creates a new pl an element in
memory, which has al the data required for the execution to the steps and transitions found in

the recipe.
NARVAL
Step Step
Make Plan

A | DA
Step Step Element ” Step Step
'I_ P Recipe Element 'I'
Step Plar Step

step Step

Figure 1.2. Building a plan from arecipe

1.2.2. Plan execution

When executing a plan, Narval starts with the first step (see Section 1.3.). After that, the out-
going transitions of this step are evaluated, and if one can be fired, Narval runs the destination
steps of the transition, and so on. Executing a plan is much like walking through a graph.

In the next example, Figure 1.3., after having run the action (label 1), Narval evaluates the
transitions (label 2) and only fires one of them to select the next action (Iabel 3).

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Sége social: 106bis, Rue de Rennes 75006 PARIS

logllab

Narval Operation

NARVA NARVA NARVA
Element Element Element
Flan Flan Flan
1 2 3

Figure 1.3. Plan execution

1.3. Running a step

Three kinds of steps can exist in a recipe, depending on the target, which can be arecipe, an
action or atransformation. However, actions and transformations are handled in avery similar

way

1.3.1. General behaviour

If the step's target is a recipe, Narval creates a new plan from this recipe and executes it
within the context of the parent plan (the context of the new plan is consequently nested
within the current plan's).

When the target is an action or transformation, Narval simply runs the target (see Section
1.4)).

1.3.2. Special behaviour: the foreach attribute

The foreach attribute can only be set on steps whose target is an action or a transformation. It
specifies that the action must be run for each element matching a given pattern (given by the
attribute value). In the example presented on Figure 1.4.), the Send_gr eet i ngs action
takes an email address element as an input (thisis stored in an Enmai | _Ad type element) and
creates an new year greetings email (stored in an Emai | type element). The step representing
this action has a foreach attribute matching Emai | _Ad elements. The action will thus be par-
alelized for each email found in memory (in the example, three times). In the end, the action
will have created three Emai | elements.

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Sége social: 106bis, Rue de Rennes 75006 PARIS

logllab

Narval Operation

NARVAL
atep

Element || Element —] Cond.
E rrail _Ad| [E mzil_Ad - %

Element i >_q Repetition :
E FF'IE1I|_:"3ud E].EIT] El‘lt “:"_ Emﬂll_ﬂﬂ

¥ Email_aAd

Element Flan E—

Ermal | ———— ~|[Send_greetings
Element m ~——f—____Email

E mail E mail

Plan

Figure 1.4. Foreach attributein a step

Important

All the elements matching the foreach attribute value must also match one (and only one) of
the action's input (see Section 1.4.1. and Section 1.4.2.).

1.3.3. Context of a step
The context attribute can only be set on action or transformation steps. This attribute specifies

a memory area (either the whole memory or the context of the current plan) from which ele-
ments will be selected for the action (see Section 1.4.2.).

1.4. Running an action or a transition

Remark

Unless explicitely noted, all that is said about actions is also true for transitions in this sec-
tion. In order to make the text more readable, we shall only speak of actions.

1.4.1. Prototype of an action

Actions used by Narval provide a prototype. In other words, they describe the elements they
require in order to execute correctly and the elements that they produce when the execution
was successful. For instance, the Cat ch_new action which gets new emails in a mail box,
specifies that it needs amai | box element as an input, and that it produces emai | elements
as outputs.

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Sége social: 106bis, Rue de Rennes 75006 PARIS

logllab

Narval Operation

Each action input describes an element type that is required by the action. For each input, it is
possible to specify additional properties.

1.4.1.1. Used and consulted inputs

An input may be marked as used by an action using the use attribute. When an action uses an
input, an element matching the input can only be passed once as an input to the action. Thisis
generally the expected behaviour for an action that transforms an element into another ele-
ment. On the opposite, if the element is not marked as used, it can be used over and over by
plans instantiated from the same recipe. In this case the element is said to be consulted.

If we consider Figure 1.5., action cat ch_newhasanai | box element as an input, and this
input is consulted. When two plans issued from the same recipe are run (labels 1 and 2), the
same mai | box element can be used both times. This is obviously the expected behaviour
since we aways want to fetch emails in the same mailbox.

NARVAL NARVAL Step
Element / Element / hAail koo =
Marlbox E;e; : Mailbox E;"z‘?"ﬁt Action

Regipe a wsed by Flen Reeipe a || | ||Catch_new
Element fram Recipe a
Emall | Element Elem ent
Element Pl | Element Flan 2
Emal [} E il
1 2

Figure 1.5. Action with a consulted input

On the other hand, in Figure 1.6., action Acknowl _mai | which acknowledges reception of
mails takes Enai | elements as inputs, and uses them. As a consequence if, during the first
execution (label 1), the Enai | element number 1 is processed, it is not processed again on
the second execution (label 2), and element number 2 which was not there on the first time is
processed. Once again, this is the expected behaviour, since we want to acknowledge each
mail only once, but we also wish to keep them in memory so that they can be passed to other

plans.
NARVAL ;Step FR— NARVAL 74: Step
Element ¥ Email [incoming] Element ¥Email [incoming]
E mail 1 Element Action Errail 1 Element Action
Fecipe b Acknow| mail wsed by Alen Feeipe b Acknow]_mail
| ||/ Emiail [outgoing] fram Recipeh -1 || Email [outgoing]
Element / Element
Plan 1 Element Plan 2
e Email 2
Emal [7_~ NV S5—— || —//——
Element
E mail
1 2

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Sége social: 106bis, Rue de Rennes 75006 PARIS

logllab

Narval Operation

Figure 1.6. Action with used inputs

1.4.1.2. Outdated inputs

There are times where it is hecessary to make sure that an element will never be reused after
having been passed by an action. This is called outdating the element, and is achieved by
specifying an outdates attribute on the input with the value of 'yes. Thisis like using the use
attribute, except that no other action or transtion will ever be able to use the element.

A common use for thisis emulating global variablesin Narval: if an action outputs an element
of the same type as the outdated input, the effect will asif the new element replaced the origi-
nal one.

1.4.1.3. Single element or list of elements

In most cases, an action input is supposed to match only one element at run time. However, it
IS sometimes necessary to specify that an input can be matched by an unknown number of ele-
ments. For instance, in Figure 1.7., action Send_gr eet i ngs2 takes a list of email ad-
dresses (Enmai | _Ad elements) as an input, in order to send to all the persons in the list a new
year greetings email. Please note that this action creates a single enai | regardliess of the
number of Emai | _Ad elements. Thisis quite different from the foreach attribute in a step: in
Figure 1.4., the Send_greetings action step had created one Emai|l for each

Emai | _Ad.
For each input, the list attribute specifies whether a single element or alist of elements must
be used.
. NARVAL Sien
i| Element | .
E rail_Ad 2:%‘
i Email_Ad
{| Element | | | | Action
E ma”_."l:l".d Element Send_greetingsz
[Element | | Fle i ____Email
I . g !
| Email <] Cond.

}Cum:’l.
Cond.

Plan |>tep

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Seége social: 106bis, Rue de Rennes 75006 PARIS

logllab

Narval Operation

Figure 1.7. Action with alist of elementsinput

1.4.1.4. Optional and mandatory inputs

It is also possible for an action to take optional inputs. Optional inputs are not required for the
execution of the step, so if a matching element is not found for the step, this will not prevent
the step from executing properly. This is not the case for mandatory inputs, and if no element
can be found that matches a mandatory input, the action will not be executed and the plan will
be ended with an error.

In the example of Figure 1.8., action Send_gr eet i ngs3 has an optional Si gnat ur e in-
put. If no Si gnat ur e is present in memory, the action will be run anyway.

NARVAL Step |
NARVAL Step =
Element
Cond. " H Cond.
Element || — Step Email_Ad E?l;r;;a{t N Step -
E mail_Ad ¥¥Email Ad[-Signature Sigpatire ¥¥Email_Ad[- Signature
| Action EleITlent Action
Element Element Send_greetings3 Email_Ad Element Send_greetings3
E mail Pt | Email Element Plan 1 Email
Cund.Ncmd. E mail
Step Step
Cond.
Cond. Step
Cond.
Plan

Figure 1.8. Action optional input

1.4.1.5. Arguments of an action

It is also possible to specify arguments for an action explicitly in arecipe. As for elementsin
memory, an argument is an element that can be used by an action when it is run. The main
difference is that the element is statically specified in the recipe instead of having been cre-
ated dynamically at run time. If the argument does not match any input, it is not used.

In the example of Figure 1.9., action Send_gr eet i ngs4 accepts a Text element contain-
ing the greeting to be sent in the email. The step has an argument providing this element ex-
plicitly. This provides a facility for using a generic action that is specialized when the recipe
is written. For instance, in this example, the same action can be used to send greetings in En-
glish or in French.

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Seége social: 106bis, Rue de Rennes 75006 PARIS

logllab

Narval Operation

____NARVAL Step
Element ||
Email_Ad “‘Sstep
’ | || Email Ad [¥ Text
: Action
| | Element Send_greetings4
| Element | Plan 1 Argiments [prorore
Ermal | | \\ o
Email

Figure 1.9. Step with an argument

1.4.1.6. Constraining the prototype in the Step

It is possible to constrain the prototype of an action in the step, if the action prototype pro-
vided ani d attribute for its inputs. The description of the elements can be precised by adding
mat ch statements, and some attributes of the input can be overriden, depending on the value
of the attribute in the action prototype, as shown in the table below.

attribute valuein action overridablein step
optional yes yes
no no
list yes yes
no no
use yes no
no yes
outdates yes no

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Seége social: 106bis, Rue de Rennes 75006 PARIS

logllab

Narval Operation

attribute valuein action overridablein step

no yes

Table 1.1. attribute precedence

This is a very powerful feature, that can be used, for instance, to provide template actions,
which can operate on different types of argument. Which kind of argument precisely is speci-
fied in the recipe as the action is embedded in a step.

1.4.2. Getting inputs before running an action

When Narval is about to run an action step, it first gathers all the elements potentially accept-
able by the action's inputs. Then the elements are assigned to each input according to a num-
ber of priorities: explicit arguments to the step have higher priority than elements that have
validated the incoming transition, which have a higher priority than elements produced by an
input step of that transition, which have a higher priority than elements in the context of the
plan and so on with all the nested contexts up to the memory itself. This ordering enables to
privilege elements that are close to the step.

Rank Element origin

action argument and step context

elements having validated a condition of the transition that has lead to
the step.

elements produced by an incoming step of that transition

context of the step's plan (elements in memory belonging to the context
of that plan)

context of the caller plan (this can be iterated)

global memory

Table 1.2. Priorities given to elements accor ding to their origin when assigning action in-
puts

Keep in mind that a given element can be assigned to only one input.

If the input can be alist of elements, the list is built with elements having the same priority,
for instance only elements having validated the transition leading to the step, or only elements

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Seége social: 106bis, Rue de Rennes 75006 PARIS

-10

logllab

Narval Operation

coming from the context of the plan. It is therefore impossible to build a list with elements
coming, for example, from the context of the action, from the transition and the context of the
plan. The list with the higher priority is used.

If the step has a foreach attribute (see Section 1.3.2.) on a given element type, Narval tries to
assign all the matching elements to a single input. If thisis not possible, Narval stops the exe-
cution of the plan and produces an error element (see below). Foreach attributes must there-
fore specify a subset of elements potentially acceptable by one of the inputs of the action.

If after input assignment one of the inputs is unmatched, Narval stops the plan execution and
produces an er r or element in memory. This element describes the error (which plan was
running, which action was being prepared and which input was missing). Thisis of course not
the case for optional inputs.

1.4.3. Executing the action and fetching the outputs

After having checked that all inputs are available, Narval launches the action using the se-
lected elements as an argument tree. The execution of the action can, of course, use several
external programs. When the execution is over, Narval checks that the elements returned
match the expected outputs described in the action prototype. If an unexpected element is
found or if one output is matched by severa elements Narval terminates the plan and creates
an error element in memory. This element describes the running plan and step, and which
output caused the problem.

1.4.4. Handling action generated errors

Errors can occur during action execution, for instance afile that the action is supposed to read
can be missing. However, we sometimes wish to handle such situations within the plan, and
avoid aborting the execution. Thisis possible if the action produces an er r or element itself.
In that case, Narval checks for the existence of specific transition dedicated to error handling
(see Section 1.5.2.). If such atransition is found in the step's outgoing transitions, and its con-
ditions are matched, it is fired immediately and the execution goes on. Otherwise, the plan is
aborted as described above.

1.4.5. Further execution of the plan

The elements produced as outputs by the step are submitted to following transitions, so that
their conditions can be evaluated.

1.5. Evaluating transitions

In a plan, the transitions control the execution flow. Figure 1.10. shows a recipe with several
transitions. Some have only one incoming step, and only one outgoing step, others have sev-
eral incoming steps or several outgoing steps, or both. In order for atransition with severa in-

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Seége social: 106bis, Rue de Rennes 75006 PARIS

-11

logllab

Narval Operation

coming steps to be fired, all the steps must have been successfully executed. When a transi-
tion has several outgoing steps, the execution of all the stepsis parallelized.

Element
Fecipe
Ste
T2 L
T1
Step Step
Step | J4
T3 Step
T3
step || Step || Step
*TE
Step

Figure 1.10. General presentation of transitionsin a recipe

1.5.1. Conditions in a transition

Each transition can bear one or more conditions allowing to choose which transition will be
fired, and thus what will be the execution path of the plan, according to the elements produced
by the steps that where formerly executed, and the content of the global memory.

A condition checks the presence in memory of an element having a number of specificities. It
becomes true, thus giving a chance to the transition to be fired, only if such an element exists.
On Figure 1.11., one of the transitions checks the existence of an element of type El t 1 and
the other one checks for an element of type El t 2. Since thereisonly an El t 1 element in
memory, only the former transition can be fired, and its outgoing steps will be executed. If
two transitions can be fired at the same time, the transition with the highest priority is fired
(see Section 1.5.5.). In case of atie, the behaviour is unspecified. Such a situation can be
avoided by choosing carefully the conditions of the transitions and by assigning different pri-
orities to transitions that may be simultaneously fireable.

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Seége social: 106bis, Rue de Rennes 75006 PARIS

logllab

Narval Operation

NARVAL Step NARVAL
e Element Cond. Cond. Element
‘| Flan || |ER2 7 "gEI 2| I/ ' Plan
Element i Element ||
S} Elt1 ||
1 2

Figure 1.11. Handling of a transition's conditions by Narval

A transition can have several conditions. Each condition checks for the existence of a differ-
ent element. Therefore, a transition with three conditions can be fired only if its three condi-
tions are matched by three different elements.

1.5.2. Behaviour of transition
The incoming links of atransition can optionally be flagged as error handling links.

Normally thisflag is not set. In this case, the transition can be fired only if the step connected
to thislink has been successfully executed and all the conditions of the transition are satisfied.

If one of the input links is flagged as error handling, the transition can be fired only if the step
connected to this link has produced an er r or element during its execution, and, of course, if
all the conditions of the transition are matched.

In Figure 1.12., on the left panel, an action has generated an Err or element (see Section
1.4.4.). This causes the transition on the error handling link to be activated, regardless of other
transitions. On the left panel, since no error has occurred in the step, the normal link is acti-
vated, and the other transition is eval uated.

NARVAL Step NARVAL
Element on Error; 1t
Error Element| | . f %% (}| _ |Element
Plan Step i | Plan
Element Element ||
Elt1 Elt1 !

Figure 1.12. Transition behaviour (standard or error handling)

1.5.3. Used and consulted elements

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Seége social: 106bis, Rue de Rennes 75006 PARIS

logllab

Narval Operation

Just as for action inputs (see Section 1.4.1.1.), it is possible to specify that a condition will
'use' its matching element, so that the same element will not be able to match a condition of
the transition more than once. For instance, if the first transition of a plan can be fired if an
emai | element is available, and this element is used by the condition, the plan will be run
only once for each email.

1.5.4. Context of a transition

Just as for steps (see Section 1.3.3.), it is possible to specify a context for a transition condi-
tion. This forces Narval to look for elements in a given memory area, either the global mem-
ory or the context of the running plan, and to use these elements first to match the condition.
(see Section 1.5.6.).

1.5.5. Priorities

When several conditions are available after a step, a priority can be set on these transitions, so
that Narval can break ties when selecting which transition to fire (the one with the highest pri-
ority is used). This enables having a default condition that will be fired if no other transition
can befired, or to solve situations where several transitions could be fired simultaneously.

1.5.6. Using elements to evaluate transitions

When Narval must evaluate atransition, it first gathers all the elements that match each condi-
tion. Then it assigns an element to each condition, using the same algorithm as for action in-
put assignment (see Section 1.4.2.). This privileges the elements that are closer to the transi-
tion.

Assignment order Element location

1

transition context

elements produced by incoming steps

current plan memory context

context of caller plans

gl |l WD

global memory

Table 1.3. Selection order for element condition assignment in transitions

An element can be assigned to at most one condition. If after condition assignment, a condi-
tion is still not matched, the transition is not fireable. If no transition in the plan isfireable, ex-
ecution of the plan is suspended until another plan adds a new element in the memory that

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Seége social: 106bis, Rue de Rennes 75006 PARIS

-14

logllab

Narval Operation

makes a transition fireable, and thus enables the plan execution to be resumed.
1.5.7. Further execution of the plan

When a transition is fired, Narval prepares the outgoing steps for execution and sends them
the elements having matched the transition conditions.

1.6. Element selection and condition evaluation

When an action is executed, Narval checks that the input elements given to the action and the
output elements produced by the action match the action prototype. To evaluate a transition,
Narval looks in memory for elements matching the description given in the condition. Simi-
larly, to build the context of a step or of atransition, or to implement the foreach evaluation of
a step, Narval selects elements in memory. In all cases, the same matching algorithm is used:
only elements having at least the required patterns are eligible. For instance, the transition
leading to an email forwarding action step lets through only mails sent by M. Dupont, without
considering the email subject or body. Thisis done by writing a condition saying that we want
an emai | element having the sender ="M Dupont " property. Each condition can spec-
ify several properties of an element and several conditions specify different elements. Thisis
avery powerful tool to specify constraints pertaining to the execution flow of the steps, by re-
straining the prototype of the actions.

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Seége social: 106bis, Rue de Rennes 75006 PARIS

logllab

Chosen representations and used techniques

Chapter 2. Chosen representations and
used techniques

Narval uses numerous techniques lying on the XML data description language and the Python

programming language. The following sections will describe Narval majors implementation
choices.

2.1. Description of the various elements

2.1.1. Description of arecipe

A recipe is described using an XML tree. This tree contains a root node (the cookbook
node) and below several child nodes. Each node can have attributes. The recipe XML treeis
described below. A real recipe might, of course, have severa st ep nodes and several
t ransi t i on nodes. Node ordering is unimportant.

recipe

Recipes can appear as atop level element in Narval's memory. When serialized, they are
usually stored in cookbook Nodes.

Content model

step+,transition*

A recipe may consist of asingle st ep element, which will be both the start and end step.
In most cases, more than one steps will be used, and these steps will be connected by
t ransi ti on elements. The order of the child nodesis not important.

Attributes

group Mandatory. The name of the recipe group. This relates the recipe to a cook-
book, and thus provides a namespace for the recipe, in which we are sure
that no other recipe will have the same name.

name Mandatory. The name of the recipe itself. When used as the target of a step
or astart plan command, the recipe will be refered to as 'group.name.

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Seége social: 106bis, Rue de Rennes 75006 PARIS

-16

logllab

Chosen representations and used techniques

Attributes

start_step Mandatory. The value of this attribute should be the id of the start step of
the recipe

end_step Mandatory. The value of this attribute should be the id of the final step of
the recipe

restart Optional, defaultsto 'no’. Should be 'yes if plansinstanciated from this
recipe should restart after the end step has been compl eted.

decay Optional. Gives the number of seconds after which plans instantiated from

this recipe will be forgotten

eid Optional. Element identifier in Narval's memory. Thisisan internal at-
tribute that should not be set when writing arecipe.

Table 2.3. Description of recipe nodes

step

Steps encapsulate the behavioural unitsin arecipe, which can beact i ons,
t ransf or mat i ons or other r eci pes.

Content mode

arguments?,context?,input* ,output*

Comments: abasic step is empty. If the target is an action or atransformation, explicit ar-
guments can be provided in an ar gunent node; the cont ext child node can be used to
specify the context in which the arguments will be fetched; i nput and out put nodes can
be used to provide restrictions to the prototype of the action or transformation. The order of
the child nodes is not important.

Attributes

id Mandatory. The identifier of the step. Must be unique within arecipe

type Mandatory. The type of the target of the step. Must be one of ‘recipe, 'ac-
tion', ‘transform'’

target Mandatory. The name of the target of the step, generaly of the form
‘group.name’.

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Seége social: 106bis, Rue de Rennes 75006 PARIS

-17

logllab

Chosen representations and used techniques

Attributes

foreach Optional. See Section 1.3.2. for more information

state Thisinternal attributeis only valid for stepsin pl an elements. It specifies
the current state of the step. Possible values are todo, ready, running, end,
done, history, impossible, failed, error

Table 2.4. Description of step nodes

transition

Transitions are used to control the execution flow in the recipe. They can express condi-
tional execution, or synchronization

Content model

in+,out+,condition,time? context?

i n and out elements point to stepsin the recipe, respectively the incoming and outgoing
steps of the transition. The condi t i on node specifies the elements that will trigger the
transition. t i me provides transitions that are time-triggered, and cont ext givesinforma
tion about where to look for elements that could match the conditions.

Attributes

id Mandatory. The identifier of the transition. Must be unique within arecipe

priority Optional, defaultsto 0. Used to break ties when determining which transi-
tion should be fired: the one with the highest priority is used.

state This attribute is only valid for transitionsin pl an elements. It specifies the
current state of the transition. Possible values are wait-step, wait-time, wait-
condition, fireable, fired, fail, impossible

Table 2.5. Description of transition nodes

condition

A condition isaset of mat ch nodes, that should all be matched by the same element in or-
der for the condition to be true.

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Seége social: 106bis, Rue de Rennes 75006 PARIS

-18

logllab

Chosen representations and used techniques

Content model

match+

Attributes

use optional, defaults to no. Possible value are yes, no. If useisyes, then an ele-
ment will only be able to match the condition once.

Table 2.6. Description of condition nodes

context

The context of a step or atransition specifies elements from which Narval should select ar-
guments to a step or triggers to atransition.

Content mode

match+

The descriptions of the elements belonging to the context.

Attributes

from Mandatory. Specifies whereto ook for the elements described by the match

nodes. Possible values are memory and plan.

Table 2.7. Description of context nodes

match

amat ch describes a number of el ements using an XPath expression

Content model

#PCDATA

The XPath expression describing the matched elements. Elements for which the XPath

evaluates to true, anon empty list of nodes, a non empty string or a non zero numeric value
are matching elements.

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Seége social: 106bis, Rue de Rennes 75006 PARIS

-19

logllab

Chosen representations and used techniques

Table 2.8. Description of match nodes

time

t i me nodes are used to describle a date, for instance the date when a condition can be
fired. The syntax isinspired from crontab entries. Each attribute is a comma separated list
of values or "*' (default value). Each value can be an integer between min and max (given
below) or arange, such as a-b.

Content model

EMPTY

Attributes

seconds min =0 max =59

minutes min = 0 max = 59

hours min =0 max = 23

monthdays min=1max =31

months min =1 max = 12

years min = -10000 max = 10000
yeardays min =1 max = 366

weekdays min = 0 max = 6 (0 is monday)

Table 2.9. Description of time nodes

in

ani n node has areference to astep in aplan or recipe.

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Seége social: 106bis, Rue de Rennes 75006 PARIS

-20

logllab

Chosen representations and used techniques

Content model
EMPTY

Attributes

idref Mandatory. The identifier of the step.

Table 2.10. Description of in nodes
out

anout node has areference to astep in aplan or recipe.

Content mode
EMPTY

Attributes

idref Mandatory. The identifier of the step.

Table 2.11. Description of out nodes

Recipes are specified in XML files stored on the disk. When starting Narval, these files are
read and recipes are stored in the memory.

2.1.2. Description of a plan

A plan lookslike arecipe. It is also described as an XML tree. Plans have additional attributes
allowing plan execution control. The plan tree is described below.

plan

Plans can appear as atop level element in Narval's memory. Plans are instances of recipes,
that Narval isableto run.

Content model

step+,transition* ,elements

The steps and transitions are initially copied from the recipe from which the plan was in-

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Seége social: 106bis, Rue de Rennes 75006 PARIS

-21

logllab

Chosen representations and used techniques

Content model

stanciated. The el enment s node is used to store references to the elements used by the

plan, which make up the context of the plan. Only Narval can create plans.

Attributes

recipename | Mandatory. The name of the recipe from which the plan was instanciated.

start_step Mandatory. The value of this attribute should be the id of the start step of
the plan

end_step Mandatory. The value of this attribute should be the id of the final step of
the plan

restart Optional, defaultsto 'no'. Should be 'yes' if the plan should restart after the
end step has been completed.

decay Optional. Gives the amount of time after which the will be forgotten

eid Optional. Element identifier in Narval's memory.

parent_plan | Optional. The eid of the plan of in which the current plan is embedded as a
step.

parent_step | Optional. Theid of the step of which the current plan is the target.

state Specifies the current state of the plan. Possible values are ready, running,
failed, end, failed-end, done

Table 2.12. Description of plan nodes
elements
anel ement s nodeisacontainer for alist of element nodes.

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Seége social: 106bis, Rue de Rennes 75006 PARIS

-22

logllab

Chosen representations and used techniques

Content model

element*

Table 2.13. Description of elements nodes
element

an el enent node has areference to an element in Narval's memory.

Content model

EMPTY

Attributes
eid

Mandatory. The identifier of the element in memory.

Table 2.14. Description of element nodes

Plans don't have to be specified in XML files as Narval builds them in memory from the

recipes. However, Narval can save the content of its memory in afile. Therefore, plans might
appear inthisfile.

2.1.3. Notion of module. Description of the actions.

Actions are grouped in modules. A module is a Python file containing the actions code. In this

file, thereisaso an XML tree describing all the actions of the module and their prototype (i.e.
their inputs and their outputs). Thistree is described below.

module

nodul e nodes hold listsof act i on nodes

Content model

action*

Attributes

name

Optional. The name of the module. If provided, must be the name of the

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Seége social: 106bis, Rue de Rennes 75006 PARIS

-23

logllab

Chosen representations and used techniques

Attributes

python file (without the .py extention)

version Optional.

Table 2.15. Description of module nodes

action

act i on nodes describe away for Narval to do something, generally using python code.

Content model

description* ,input* ,output*

The input and output nodes are the prototype of the action.

Attributes

name Mandatory. The name of the action.

group Optional. If provided, must be the name of module

func Mandatory. The name of the python function implementing the action

ed Optional. Element identifier in Narval's memory. Thisisan interna at-
tribute that should not be set when writing a module

Table 2.16. Description of action nodes

description

descri pti on nodeshold a short description of what an action does. All actions and
transformations should provide at least an english description. Beware that if your descrip-

tion uses non-ascii characters, the encoding of the XML document must be set accordingly.

Content model

#PCDATA

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Seége social: 106bis, Rue de Rennes 75006 PARIS

-24

logllab

Chosen representations and used techniques

Attributes

lang Mandatory. The iso notation for the language of the description

Table 2.17. Description of description nodes

When Narval executes a plan and has to run an action, it firstly gets the action name in the
plan XML tree. This name is compound of the module name followed by the action name (for
example, Enmai | . cat ch_new refers to the cat ch_new action of the Emai | module).
Narval loads the corresponding module and runs the Python function associated with the ac-
tion (in previous example, Narval loads Emai | . py Python module).

The behaviour of the modulesis further described in the modules programmer handbook.

2.1.4. Description of transform elements

Transformsin Narval conform to the XSLT specification. In order to be processed by Narval,
tough, they must include some information about their prototype in a prototype node, which
has to be a child of the root node of the transformation. Since this node is not in the XSLT
namespace, it will beignored by the tranformation engine.

prototype

pr ot ot ype nodes hold the prototype of a transformation.

Content model

description* ,input* ,output*

Table 2.18. Description of prototype nodes

More information is available in the Module Programmer Handbook.

2.1.5. Description of the other elements

Each element in the memory is described using an XML tree. For example, an enai | ele-
ment can be represented as below.

<enui | >
<t 0>
<nane>. .. </ nane>
<emai | _addr>...</enmil _addr>
</to>
<frone
<nane>. .. </ nane>
<emai | _addr>. .. </enuni |l _addr>
</frompr
<subj ect >... </ subj ect >

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Seége social: 106bis, Rue de Rennes 75006 PARIS

logllab

Chosen representations and used techniques

<signature>...</signature>
<body

mul ti part
>

<part

type
>

</part>
</ body>
</ enui | >

)

Description of anenai | element.
)

Recipient data.
©®)

Sender data.

©)

Name of the recipient or the sender.

(4)

Email address of the recipient or the sender.

(6)

Email subject.

(7)

Email signature.

) _
Email body.
© _ | | |
Specifies the email has several parts (i.e. attached files).
(10)
Emall part.
(11)
Type of the part (text or file).

Each new type of elements Narval handles must have an XML description included in the cor-
rect DTD1.

2.2. Memory structure

2.2.1. Internal structure of the memory

Narval memory is organized as an XML tree. The various elements are attached to the root
node (menor y). Each element in the memory has got an id number called ei d.

2.2.2. Memory initialization

[1] Document Type Definition (DTD): Description of the content of an XML file, in particular the elements and the at-
tributes that might appear in thisfile.

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Seége social: 106bis, Rue de Rennes 75006 PARIS

- 26

logllab

Chosen representations and used techniques

When Narval starts, it fills its memory using the $NARVAL _HOME/ dat a/ menory. xm .
This XML file contains a tree representing the initial memory. It might contain general data
such as the user's name, the user's email address, his electronic mailbox, etc.

This file also contains st art - pl an elements permitting recipes instantiation and plans
starting when initializing Narval.

During its initialization, Narval loads the recipes in its memory. The recipes are described in
XML fileslocated inthe. nar val / r eci pes/ directory.

2.2.3. Building the XML trees in memory
The various XML trees described above are built in memory either from an XML file during

initialization, or dynamically during execution. For building these trees, Narval uses the DOM
level 2 programming interface.

2.3. Conditions expression and elements selection

As described above, the elements selection and the conditions eval uation are computed thanks
to an unique matching algorithm. Such as algorithm searches the memory for elements corre-
sponding to a pattern. Each pattern is described in a mat ch node (in the recipes and actions
XML trees). Inserting several nodes allows the description of several patterns and, thus, the
selection of elements of different kinds. Inside the mat ch node, the pattern definition is ex-
pressed using the X Path language.

For instance, a condition waiting for an ermai | element whose subject isHi t her e is ex-

pressed in XPath as follow: emai | [@ubj ect ="H there"].As XPath syntax is very
powerful, conditions might be much more complicated.

2.4. Evaluation of the fireability of a transition

When Narval evaluates the transitions of a plan in order to know which ones are fireable and
to decide which one will be fired, it first classifies the transitions in three groups: the transi-
tions that are impossible to fire, the undetermined transitions and the potentially fireable tran-
sitions.

The impossible-to-fire transitions are the ones with an input step that has failed or has already
been used by a previous evaluation (step inthef ai | ed state or the hi st or y state). A tran-
sition flagged as error handling that has a correctly executed input step or a transition not
flagged as error handling that has afailed input step are also impossible to fired.

The undetermined transitions are the ones with an input step being still executed (which does
not allow knowing the result of the step).

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Seége social: 106bis, Rue de Rennes 75006 PARIS

logllab

Chosen representations and used techniques

The potentially fireable transitions are the other ones. The conditions of each of these transi-
tions must be checked in order to know if it can be fired.

If al the transitions of a currently executed plan are impossible to fire, the plan fails and an
error element is set in the memory. If a transition flagged as error handling is potentially
fireable but can't be fired because of unsatisfied conditions, the plan also fails. In the other
cases, the plan execution continues. Further execution can be immediate thanks to a poten-
tially-fireable transition having all its conditions satisfied, or postponed as the plan waits for
its undetermined transition to become impossible or potentially fireable, or for its potentially
fireable transitions to have their conditions satisfied.

Whatever could be the state of the other transitions, as atransition isfireable, it isfired.

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Seége social: 106bis, Rue de Rennes 75006 PARIS

-28

logllab

Known Bugs

Chapter 3. Known Bugs

A web page covering the known bugs of Narval should be available very soon now, if it is not
aready there.

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Sége social: 106bis, Rue de Rennes 75006 PARIS

-29

logllab

Conclusion

Chapter 4. Conclusion

This documentation provides a skipping through of Narval code, exposing the main notions,
describing the software and explaining major design choices. The interested reader should
read now the source code of Narval, that is carefully commented, allowing the understanding
of its exact detailed behaviour.

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Sége social: 106bis, Rue de Rennes 75006 PARIS

-30

logllab

Glossary

Glossary

Narval

Action Conceptually elementary transformation that Narval can do with elements.
Arguments Set of fixed elements used by an action.

Element Applicative computing entity found in memory that can be handled by an ac-

Error handling
Memory

Plan

Recipe
Repetition

Step

Transition

tion. An email, aWeb page, aplan or arecipe are elements.

See Transition.

Storage place of the elements in which they can be accessed by the actions.
Instance of arecipe allowing its execution.

Sequence of steps linked by transitions, describing afunctionality of Narval.
See Step.

Basic brick of arecipe that can be either an action or an other recipe.

A step can have arepetition behaviour: it is then executed in parallel as much as
necessary in order to compute the element set on which the repetition is done
(the step is said to have a repetition behaviour on these elements type).

Link between a set of origin steps and a set of destination steps, that can have a
condition on elements found in memory. Each of the input can be flagged as er-
ror handling. If not set, the step linked with this input must be correctly exe-
cuted to have the transition fireable. If set, the step linked with this input must
generatean er r or element to have the transition fireable.

Computing Languages used in Narval

Document Object

Model (DOM)
Python

Interface for accessing XML trees, defined by the W3C. See

http://www.w3c.org/DOM/ [http://www.w3c.org/DOM/].

Programming language. See http://www.python.org/ [http://www.python.org/].

eXtensible Markup Data tagging language defined by the W3C. See http://www.w3c.org/ XML/
Language (XML) [http://www.w3c.org/XML/].

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Sége social: 106bis, Rue de Rennes 75006 PARIS

-31

http://www.w3c.org/DOM/
http://www.python.org/
http://www.w3c.org/XML/

logllab

Glossary -32

XML Path Lan- Nodes selection language used in XML trees, defined by the W3C. See
guage (XPATH) http://www.w3c.org/TR/xpath.html [http://www.w3c.org/TR/xpath.html].

eXtensible XML trees transformation language, defined by the W3C. See
Stylesheet Lan- http://www.w3c.org/TR/xslt.html [http://www.w3c.org/ TR/xslt.html].

guage Transforma-

tion (XSLT)

LOGILAB - SA. au capital de 50 000 Euros - NAF: 741G - SRET: 432 746 196 00026 -
Agrément de formation: 11753417375 - Sége social: 106bis, Rue de Rennes 75006 PARIS

http://www.w3c.org/TR/xpath.html
http://www.w3c.org/TR/xslt.html

