D Sun

microsystems

JavaTest™ Harness User’s Guide

Command-Line Interface

JavaTest Harness, 3.2.2_01

Sun Microsystems, Inc.

4150 Network Circle

Santa Clara, California 95054
U.S.A. 1-650-960-1300

August 2005

O

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license
agreement and applicable provisions of the FAR and its supplements.

Sun, Sun Microsystems, the Sun logo, Java, JavaTest harness, the Duke logo and the Java Coffee Cup logo are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
The PostScript logo is a trademark or registered trademark of Adobe Systems, Incorporated.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject
to the export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end
users, whether direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities
identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially designated nationals lists is
strictly prohibited.

DOCUMENTATION IS PROVIDED "ASIS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun, Sun Microsystems, le logo Sun, Java, JavaTest harness, le logo Duke et le logo Java Coffee Cup sont des marques de fabrique ou
des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Le logo PostScript est une marque de fabrique ou une marque déposée de Adobe Systems, Incorporated.

Les produits qui font I’objet de ce manuel d’entretien et les informations qu’il contient sont regis par la legislation americaine en
matiere de controle des exportations et peuvent etre soumis au droit d’autres pays dans le domaine des exportations et importations.
Les utilisations finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologique et chimiques ou du
nucleaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous
embargo des Etats-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation americaines, y compris, mais de maniere
non exclusive, la liste de personnes qui font objet d"un ordre de ne pas participer, d'une facon directe ou indirecte, aux exportations
des produits ou des services qui sont regi par la legislation americaine en matiere de controle des exportations et la liste de
ressortissants specifiquement designes, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y
COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A APTITUDE A UNE
UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFACON.

o <9 Recoete «‘

Adobe PostScript

Contents

Contents iii
Preface ix

. What is the JavaTest Harness Command-Line Interface? 1
JavaTest Harness Command-Line Interface Features 1
For the New JavaTest Harness User 2

Providing Configuration Information 2

Online Documentation and Context Sensitive Help 2
. Before Starting the JavaTest Harness 3

. Command-Line Summary 4
About the Command-Line Examples 5
Formatting a Command 5
Command Options Format 5
Single String Arguments Format 6
Command File Format 6
Using Command Files 6
Creating a Command File 7
Examples of Using Command Files 7
Example Command File Contents 8
Command Line Using the Example Command File 8

Changing Values After the Example Command File is Set 9

Contents iii

Formating Configuration Values for editJTI or -set 9
Using Newlines Inside Strings 10
Extended Command-Line Examples 11
Example1 11
Example2 12
Example 3 12
Example4 13
Example5 13
Example 6 13
Example 7 13

Index of Available Commands 14

4. Setup Commands 15
Initial Set-up Commands 15
Specifying a Test Suite (testsuite) 16
Detailed Example of testsuite Command 17
Specifying a Work Directory (workdir or workdirectory) 17
Use an Existing Work Directory 17
Create a New Work Directory 18
Replace an Existing Work Directory 19
Specifying a Configuration File (config) 19
Detailed Example of config Command 20
Specifying a Test Suite, Work Directory or Configuration (open) 20
Setting Specific Values 21
Obtaining the Question Tag-Name 22
Setting Specific Configuration Values 22
Detailed Example of Setting Test Suite Specific Values 23
Setting Concurrency (concurrency) 24
Detailed Example of concurrency Command 24
Specifying an Environment File [deprecated] 25
Detailed Example of envFile Command 25
Specifying a Test Environment [deprecated] 26

Detailed Example of envFile Command 26

JavaTest Harness User’'s Guide: Command-Line Interface * November 06, 2006

Specifying Exclude List Files (excludeList) 27
Detailed Example of excludeList Command 27
Using Keywords (keywords) 28
Detailed Example of keywords Command 28
Selecting Tests Based on Previous Results (priorStatus) 29
Detailed Example of priorStatus Command 29
Specifying Tests or Directories to Run (tests) 30
Example of tests Command 30
Increasing the Timeout (timeoutFactor) 30
Detailed Example of timeFactor Command 31

Additional Setup Commands 31

. Task Commands 33

Running Tests (runtests) 33

Detailed Example of runtests Command 34
Monitor Test Progress (verbose) 34

Monitoring Options 34

Detailed Examples of Monitoring Commands 35
Batch (batch) 38

Detailed Example of batch Command 38
Observer (observer) 39
Writing Reports (writereport) 39

Detailed Example of writereport Command 39
Auditing Tests 40

Detailed Example of audit Command 40

. Desktop Commands 41
Using a New JavaTest harness Desktop 41
Specifying Status Colors 42
Detailed Example of Specifying a Status Color 42

. Information Commands 43

Command-Line Help 43

Contents

All Information 43
Topic Information 44
Display the List of Available Topics 44
Word Search Information 45
JavaTest harness Version Information 45

Displaying JavaTest harness Online Help 46

8. Legacy Commands 47

Using Parameter Commands (params) [deprecated] 47

9. Utilities 49
Monitoring Results with HTTP Server 49
HTML Formatted Output 49
Accessing HTTP Server HTML Formatted Output 50
Displaying the HTTP Server Index Page 50
Displaying HTTP Server Harness Page 50
Displaying the HTTP Server Test Result Index Page 51
Displaying the Harness Environment Page 51
Displaying the Harness Interview Page 51
Using HTTP Server to Stop a Test Run 52
Plain Text Output 52
Accessing Version Information 52
Accessing Harness Information 53
Browsing Result (.jtr) Files 54
Browsing Exclude List Files 54
Changing Configuration Values With Edit]TI 55
Edit]TTI Command Format 55
Changing Configuration Values 58
Generating a Log of All Updates 58
Preview Without Change 58
Echo Results of Your Edit 59
Show Paths for Debugging 59
Change Test Suites or Create a New Interview 59
Change the HTTP Port 60

vi JavaTest Harness User's Guide: Command-Line Interface ¢ November 06, 2006

10.

11.

Doing Escapes in a Unix Shell 60

Changing Configuration Values with a Text Editor 62
Moving Test Reports 63

Format of the EditLinks Command 63

Detailed Example of EditLinks Command 64

Troubleshooting 65
JavaTest Harness Exit Codes 65
Problems Using the JavaTest Harness 66
Problems Running Tests 66
Tests with Errors 66
Tests that Fail 67
Problems Viewing Reports 68
Problems Writing Reports 68
Problems Moving Reports 68

Contents

vii

viii JavaTest Harness User's Guide: Command-Line Interface ¢ November 06, 2006

Preface

This manual describes how to use the JavaTest harness command-line interface to
run tests of the test suite, write reports, and audit test results. This User’s Guide is
a PDF version of the JavaTest command-line interface online help. It is provided in
PDF format so that users can conveniently view and print the contents of the
command-line interface online help without starting the JavaTest harness.

There are minor structural differences between the online help and the PDF
document although the basic contents are the same. For example, the contents of
the online help have been resequenced to be more useful in book format; in the
PDF format, page references embedded in the text are hypertext links in the online
help; and, extensive online help navigation links have been removed from the PDF
format.

The JavaTest User’s Guide: Command-Line Interface is one of two User’s Guides that
the JavaTest harness provides for users, the JavaTest User’s Guide: Graphical User
Interface and the JavaTest User’s Guide: Command-Line Interface.

If your test suite provides the JavaTest agent for use in running tests, the JavaTest
Agent Users” Guide may also be included.

Before You Read This Book

In order to fully use the information in this document, you must have thorough
knowledge of the topics discussed in your TCK documentation.

How This Book Is Organized

Chapter 1 describes the features of the JavaTest command-line interface provided
by the JavaTest harness.

Chapter 2 describes the basic topics that the user should be familiar with before
using the JavaTest command-line interface.

Chapter 3 provides a description of the types of commands and command formats
used in the JavaTest command-line interface.

Chapter 4 describes the commands used to setup and modify a configuration used
by the JavaTest harness.

Chapter 5 describes the commands used to perform tests from the command line.
Chapter 6 describes commands used to specify the properties of the JavaTest GUL

Chapter 7 describes the information commands used display JavaTest online
information without starting the JavaTest GUL

Chapter 8 describes the legacy commands that JavaTest supports.
Chapter 9 describes the various special utilites provided by the JavaTest harness.

Chapter 10 provides a basic troubleshooting guide.

X

Using UNIX® Commands

This document may not contain information on basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices.

See one or more of the following for this information:

m Solaris Handbook for Sun Peripherals

m AnswerBook2™ online documentation for the Solaris™ operating environment

m Other software documentation that you received with your system

JavaTest Harness User's Guide: Command-Line Interface * November 06, 2006

Typographic Conventions

This User’s Guide uses the following typographic conventions:

Typeface Meaning Examples
AaBbCcl23 The names of commands, files, Edit your .login file.
and directories; on-screen Use 1s -a to list all files.
computer output % You have mail.
AaBbCcl123 What you type, when % su
contrasted with on-screen Password:
computer output
AaBbCc123 Book titles, new words or terms, Read Chapter 6 in the User’s Guide.

words to be emphasized

Command-line variable; replace
with a real name or value

These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.

Shell Prompts

Examples in this User’s Guide might contain the following shell prompts:

Shell

Prompt

C shell

C shell superuser

Bourne shell and Korn shell

Bourne shell and Korn shell superuser

machine_name$
machine_name#
$
#

Preface

xi

Related Documentation

The following documentation provides additional detailed information about the
JavaTest harness:

Application Title

JavaTest GUI JavaTest Harness User’s Guide; Graphical User Interface

JavaTest Agent (optional) JavaTest Agent User’s Guide

Accessing Sun Documentation Online

The Java Developer Connection™ program web site enables you to access Java
platform technical documentation at http://java.sun.com/ .

Sun Welcomes Your Comments

We are interested in improving our documentation and welcome your comments
and suggestions. Provide feedback to Sun at
http://java.sun.com/docs/forms/sendusmail .html.

xii JavaTest Harness User’'s Guide: Command-Line Interface * November 06, 2006

What is the JavaTest Harness
Command-Line Interface?

The JavaTest harness is a powerful test harness that provides two interfaces, a GUI
and a command-line interface. The command-line interface provides test harness
functionality for configuring and executing tests as well as creating reports without
using the GUI. This allows you to use the JavaTest harness to run tests in build
scripts and other automated processes. See the JavaTest Harness User’s Guide:
Graphical User Interface for a description of the JavaTest harness GUIL

JavaTest Harness Command-Line
Interface Features

Features of the command-line interface include the following capabilities:

m Enables configurable testing - Runs tests on a variety of test platforms (such as
servers, workstations, browsers, and small devices) with a variety of test
execution models (such as API compatibility tests, language tests, compiler tests,
and regression tests).

m Runs tests on small systems - The JavaTest harness supports the use of an agent
(a separate program that works in conjunction with the JavaTest harness) to run
tests on systems that can’t run the JavaTest harness.

m Generates HTML reports - Summarize test runs. HTML reports for the test run
can be generated from the command line

m Audits test runs - Can be performed from the command line

m Provides Web server to monitor test runs in batch mode - Use to monitor and
control test progress while tests are running from the command line.

m Provides extensive online help - Describes how to use the JavaTest harness to
run test suites and evaluate test results. It also provides context sensitive help,
full-text search, keyword search, and can be accessed from the command line
without starting the JavaTest harness GUI

Chapter 1 What is the JavaTest Harness Command-Line Interface? 1

For the New JavaTest Harness User

The JavaTest harness is designed to run test programs on a wide-variety of Java
platforms. To run the tests, the JavaTest harness uses a configuration file that
contains the required information about how the tests are run on a particular test
platform. The JavaTest harness uses a specific work directory to contain all of the
results from running the tests of a testsuite. See the Glossary for detailed
descriptions of the terms test suite, work directory, and configuration file.

Providing Configuration Information

The JavaTest harness uses the GUI Configuration Editor to collect configuration
information (both test environment and parameter values) in a single configuration
file. While it is possible for existing test suites to use environment files (. jte) in
the Configuration Editor, parameter files (. jtp) are no longer used. The JavaTest
harness uses the Configuration Editor to include the parameter values with the
values of the . jte file in a single configuration file (. jt1i).

For backwards compatibility, older test suites can continue to use environment and
parameter files in the command line. See the Glossary for detailed descriptions of
the terms . jte file, . jtp file, and .jti file.

Online Documentation and Context Sensitive
Help

The JavaTest harness provides extensive online documentation that is available
from the command line. To see the available command-line options, type the
following at a system prompt:

java -jar test_suite/lib/JavaTest harness.jar -help

Note — Include the path of the directory where the javatest. jar file is installed
(represented as [test_suite/] in the example). The javatest. jar file is
usually installed in the test suite 1ib directory when the JavaTest harness is
bundled with a test suite.

See Information Commands for detailed information about searching for and
displaying command-line information without starting the JavaTest harness GUI.

2 JavaTest Harness User’'s Guide: Command-Line Interface ¢ November 06, 2006

Before Starting the JavaTest
Harness

Before you start the JavaTest harness on a test system and run tests, you must have
a valid test suite and Java Development Kit 1.4 or later installed on your test
system. See your test suite documentation for information about installing the test
suite and the JavaTest harness on your test system. Refer to http://
java.sun.com/products for information about installing the current Java
Development Kit on your test system.

You must also understand how your test group uses or intends to use the JavaTest
harness in its test system. For example consider the following questions about your
test groups use of the JavaTest harness:

m Does your test group use standard configuration files and templates from a
central location, or does it use individual configuration files customized for each
test run?

m Does your test group use the JavaTest harness and one or more agents to run
distributed tests?

m Does your test group run the JavaTest harness from a central location or from
local installations in the test system?

If you use the JavaTest harness agent to run tests, you must also install the JavaTest
harness agent on the platform being tested. See JavaTest harness Agent User’s Guide
for detailed information about installing the JavaTest harness agent on a test
platform.

Chapter 2 Before Starting the JavaTest Harness

3

Command-Line Summary

You can use commands in the command line or as a part of a product build process
to configure the harness, run tests, write test reports, audit test results, and start the
GUI using specific configuration values.

The JavaTest harness executes the commands from left to right in the sequence that
they appear in the command string. Include commands in the command string as
though you were writing a script. The JavaTest harness does not restrict either the
number of commands or the groups of commands that you can use in a command
string.

> javatest [Setup Commands] [Task Commands] [Desktop Commands] [Information
Commands)

The commands are included as a formatted set in the following sequence:

1. Setup Commands - required by task commands to set values used for the test
run and to set specific values used when performing other tasks. Set-up
commands must precede the task or desktop commands. Setup commands can
be used to set specific values (without a task command) when starting the GUL

2. Task Commands - required to run tests, to write reports, and to audit tests. Task
commands require one or more preceding set-up commands.

3. Desktop Commands - use in place of the task commands to start the GUI with a
new desktop or to specify status colors used in the GUIL Set-up commands are
optional when using Desktop commands.

4. Information Commands - use information commands to display command-line
help, online help, or version information without starting the harness.
Information commands do not require any other commands on the command
line.

For additional information about using the command-line interface, see the
following topics:

About Command-Line Examples
Formatting a Command

Using Command Files

Index of Available Commands

4 JavaTest Harness User’'s Guide: Command-Line Interface ¢ November 06, 2006

About the Command-Line Examples

This section provides many examples of command-line operations in the following
basic sequence:

> javatest [Set-up Commands] [Iask Commands]

In the examples, the following spresentations are used:

m > represents the command prompt. For Unix systems the command prompt may
be either a shell prompt, such as %, or a user defined value. For win32 systems,
the command prompt may be c: or another appropriate drive identifier.

m javatest represents the command or commands that your test suite would use to
start the JavaTest harness. You should start the JavaTest harness from the root
directory of the test suite.

See Setup Commands for commands and examples used to set up or change
specific values in a configuration.

See Task Commands for commands and examples used to perform tasks from the
command line.

Formatting a Command

You can use any one of the following formats to include commands on the
command line:

m Command Options Format
m Single String Areuments Format
m Command File Format

All formats are used to accomplish the same tasks. Use the format that you prefer
or that is easier to use. See Index of Available Commands for a complete listing of
available commands.

Command Options Format

In the command options format, commands are preceded by "-," act as options, and
do not use command terminators. Enclose complex command arguments in quotes.
This format is recommended when long lists of commands are included in a
command line.

Example:

> JavaTest harness -opendefault.jti -runtests

Chapter 3 Command-Line Summary

5

Single String Arguments Format

If you are setting several command options, you may want to use the single string
arguments format. In the single string arguments format, one or more commands
and their arguments can be enclosed in quotes as a single string argument.
Multiple commands and arguments in the string are separated by semicolons.

Example:

> javatest "open default.jti; runtests"

Command File Format

If you are setting a series of commands and options, you can use the command file
format. Using a command file allows you to easily reuse the same configuration.

In the command file format, a file containing a series of commands and their
arguments is included in the command line by preceding the file name with the "@"
symbol.

Example:
> javatest @mycmd . jtb -runtests

Refer to Using Command Files for detailed information about using and creating
command files.

Using Command Files

A command file is a text file that contains one or more commands used by the
JavaTest harness from the command line or as a part of a product build process.
You can place combinations of configuration settings and commands in the
command file and use it to repeatedly perform the following actions:

m Perform test runs
m Write test reports
m Audit test results

The advantage of using the command file format is that it is easy to use a complex,
persistent, repeatable set of commands in a command line.

The commands used in a command file are a formatted set of commands, executed
in the sequence that they appear in the command string. Use the commands in the
command file as you would if you were writing a script. See Formatting a
Command for a description of the formats you can use.

6 JavaTest Harness User’'s Guide: Command-Line Interface ¢ November 06, 2006

Creating a Command File

Use the single string arguments format style to write commands in a text file. See
Formatting a Command for detailed information.

Command files can contain blank lines and comments as well as lines with
commands and their arguments. The following table describes the contents of a
command file.

TABLE 1 Command File Contents

File Contents Description

Comments Comments may begin anywhere on a line, are started by the # symbol,
and stop at the end of the line.
Example:

#File contains commands

Commands Commands are executed in the sequence that they appear in the file (for
example, set-up commands must precede task commands). Commands
used in the file must be separated by a semicolon (;) or a new line
symbol (#). The # symbol acts as a new line character and can terminate
a command.

Examples:
open default.jti; #opens file
-set host mymachine

Command Arguments that contain white space must be placed inside quotes. Use
Arguments \ to escape special characters such as quotes (" ") and backslashes (\).

After writing the commands, save the text file by using a descriptive name and the
extension . jtb. The file name should help you identify the function of each
command file.

Examples of Using Command Files

In the following examples, a command file (mycommandfile . jtb) is used to
override the localHostNamevalue and the tests specified in the existing
configuration.

The following three examples are provided:

m Example Command File Contents
m Command Line Using the Example Command File
m Changing Values After the Example Command File is Set

Chapter 3 Command-Line Summary

Note — If you attempt to run these examples, you must replace mytestsuite . ts,
myworkdir .wd, and myconfig. jti with test suite, work directory, and . jti names
that exist on your system. You must also modify the contents of the example
command file for your configuration file and test suite. Win32 users must change /
file separators to \ to run these examples.

Example Command File Contents

The contents of the example command file, mycommandfile . jtb, are:

#File sets localHostName and tests
set jck.env.runtime.net.localHostName mymachine;
tests api/javax_swing api/java_awt

Note — The -set and -testscommand forms are not used in the command file.
Command files only use the "Single String Arguments Format."

See Setting Specific Configuration Values for additional examples of using the
setcommand. See Specifying Tests to Run for additional examples of using the
testscommand.

Note — See About the Command-Line Examples for a description of the use of >
javatest in the following example. See Command-Line Overview for a description of
the command line structure. See Formatting a Command for descriptions and
examples of the following command formats.

Command Line Using the Example Command File
In the following examples, a test suite (mytestsuite. ts), work directory

(myworkdir .wd), and configuration file (myconfig.jti) are opened, and the
command file (mycommandfile. jtb) is read and executed before running tests.

Command Options Format Example

> javatest —open myconfig.jti @mycommandfile.jtb -runtests

Single String Arguments Format Example

> javatest "open myconfig.jti; @mycommandfile.jtb; runtests"

8 JavaTest Harness User’'s Guide: Command-Line Interface ¢ November 06, 2006

Changing Values After the Example Command File is Set

You can also change values after the command file is set:

Command Options Format Example

> javatest —open myconfig.jti @mycommandfile.jtb -exclude
myexcludelist . jtx -runtests

Single String Arguments Format Example

> javatest "open myconfig.jti; @mycommandfile.jtb; exclude
myexcludelist . jtx; runtests"

Formating Configuration Values for editJTTI or
-set

The following table indentifies the types of questions supported by the JavaTest
harness configuration interview and a description of the format of required to set
the value in the command line.

TABLE 2 Types and Values of jti Questions

Question Type Description and Example of Format

Integer questions Example:
set mytck.port 5000
Note: Localized values can be used in the
value. For example, 5,000 is acceptable in a
US locale.

Floating point questions Example:
set mytck.delay 5.0
Note: The value is evaluated using the
current locale (e.g. European locales should
enter 5,0).

String questions Example:
set mytck.url http://machine/item

String ListQuestion Newline-separated list of values.

File Question Example:
set mytck.filel /tmp/bundle. jar

Chapter 3 Command-Line Summary

10

TABLE 2 Types and Values of jti Questions

File List Question If none of the filenames have embedded
spaces, you can give a space-separated list
of filenames. If any of the filenames in the
list have embedded spaces, use a newline
character to terminate or separate all of the

filenames.
StringListQuestion See String ListQuestion above.
Choice Question Example:

set mytck.cipher 3DES

Note: The value supplied is case sensetive.
This type of question appears in the
Configuration Editor as a set of radio
buttons or single-selection list of choices.

ChoiceArrayQuestion Note: This type of question is rendered in
the Configuration Editor as either a list that
accepts multiple selections or a series of
checkboxes.

InetAddressQuestion The standard textual representation of the
IP Address, as defined by Internet
Engineering Task Force (IETF).

YesNoQuestion Examples:
set mytck.needStatus Yes
set mytck.needStatus No

Note: The values are case sensitive, no is
not acceptable.

Using Newlines Inside Strings

When setting values of configuration questions in the command line, The internal

command parser will accept newlines inside strings if they are preceded by a
backslash.

Depending on the shell you use, this may or may not be possible to enter directly
on the command line.

If you want to set values with embedded newlines, create a JavaTest harness batch
command file, and put the set commands (and any other commands) in that file. In
the batch file, you can enter strings with embedded escaped newlines, as in the
following example:

switch on verbose mode for commands
verbose: commands

open a jti file

open /home/userl/tmp/idemo.llmar04.jti
set a list of files

JavaTest Harness User's Guide: Command-Line Interface * November 06, 2006

set demo.file.simpleFileList /tmp/aaa\
/tmp/bbb\

/tmp/ccc

set a list of strings

set demo.stringList 111\

2222\

3333

On Solaris, using the Korn shell, you can simply put newline characters into strings

and the right thing will happen.
Example:

SJAVA \

-jar image/lib/javatest.jar \
-verbose:commands \

-open /home/userl/tmp/idemo.llmar04.jti \
-set demo.file.simpleFileList /tmp/aaa
/tmp /bbb

/tmp/ccc

Extended Command-Line Examples

This section provides extended examples of command-line operations.

To use the following examples on your system, you must use class paths and
directory names appropriate for your system.

Example 1

java -jar lib/javatest.jar -verbose -testSuite /tmp/myts \
-workdir -create /tmp/myworkdir -config /tmp/my.jti \
-runtests -writereport /tmp/report

This combination of commands does the following, in this order:

—_

. Tells the harness to be verbose during test execution
. Opens the test suite /tmp/myts

. Creates a work directory named / tmp /myworkdir

. Uses my.jti as the configuration settings

. Executes the tests (as specified by the configuration)

AN G ke W N

. Writes a report to /tmp/report/ after test execution

Chapter 3 Command-Line Summary

11

Example 2

java -jar lib/javatest.jar -startHttp -testsuite /tmp/myts \
-workdirectory /tmp/myworkdir -config /tmp/my.jti \
-runtests -writereport /tmp/report -set tck.foo.bar 4096 \
-runtests -writereport /tmp/reportl

This combination of commands does the following, in this order:
1. Tells the harness to start the internal HTTP server

. Opens the test suite /tmp/myts

. Uses a work directory named /tmp/myworkdir

. Uses my.jti as the configuration settings

. Executes the tests (as specified by the configuration)

. Writes a report to /tmp/report/ after test execution

. Changes a configuration value (not written to JTI file)

. Runs tests again

O o N o a1 ks~ WN

. Writes a new report in /tmp/reportl

Example 3

java -cp lib/javatest.jar:lib/comm.jar \
com.sun.javatest.tool.Main \
-Especial.tck.value=1lib/special.txt \

-agentPoolPort 1944 -startAgentPool "testsuite /tmp/myts ; \
workdir /tmp/myworkdir ; config myconfig.jti ; runtests"

This combination mixes two styles of command line arguments (quoted and dash-
style). It invokes the harness by class name, rather than executing the JAR (-jar)
file. An extra item is added to the JVM’s classpath. The following commands are
given to the harness:

1. Sets a particular value in the testing environment (TCK-specific)
. Specifies the agent pool port and starts the agent pool

. Loads the test suite /tmp/myts

. Opens the work directory /tmp/myworkdir

. Uses the configuration in myconfig.jti

N Ul e W N

. Runs the tests

12 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

Example 4

java -jar lib/javatest.jar -configfoo.jti -runtests

This relies on information in the JTI file to do the run. Specifically, it tries to use the
work directory and test suite locations specified in the JTI file. If either of those are
invalid or missing, the harness reports an error. Otherwise, if the configuration (in
the JTI) is complete, the tests are run.

Example 5

java -jar lib/javatest.jar -configfoo.jti -verbose \
-set tck.vall 2002 -runtests

This is the same as Example 4 with the exception that it turns on verbose mode and
changes the answer of one of the questions in the configuration.

Example 6

java -jar lib/javatest.jar -configfoo.jti \
-priorStatus fail,error -timeoutFactor 0.1 \

-set tck.needColor Yes \

-set tck.colorl orange -tests api/java_util -runtests

This example extends Example 4 by setting various Standard Values and the
answer to particular configuration questions.

Example 7

Example for starting the GUI:

java -jar lib/javatest.jar -testsuite /tmp/foo.jti myts \
-workdirectory /tmp/mywd -config /tmp/myconfig.jti

This combination of commands does the following, in this order:

1. Opens the specified test suite

2. Opens the work directory given (assuming it is a work directory)
3. Opens the configuration file given

4. Starts the GUI since no execution action is given

Chapter 3 Command-Line Summary 13

Index of Available Commands

The following table describes all of the commands that can be used in command

mode.

TABLE 3 Index of Available Commands

Command

concurrency

env

envFile or envFiles

excludeList
keywords

open

params

priorStatus

set
tests
testSuite

timeoutFactor

workDir or
workDirectory

runTests
audit

writeReport

Description
Specifies the number of tests that are run concurrently.
Specifies a test environment in an environment file.

Specifies an environment file (.jte) containing test
environments.

Specifies an exclude list file.
Restricts the set of tests to be run based on keywords.

Opens a test suite, work directory, or a configuration .jti
file.

This command is deprecated.

Selects the tests included in a test run based on their outcome
on a prior test run.

Overrides a specified value in a configuration (. jt1i) file.
Creates a list of test directories and/or tests to run.
Specifies the test suite.

Increases the amount of time the JavaTest harness waits for a
test to complete

Opens an exiting work directory, creates a new work directory,
or replaces an existing work directory with a new work
directory.

Runs tests in command mode.
Audits test results in command mode.

Writes test reports in command mode.

JavaTest Harness User's Guide: Command-Line Interface * November 06, 2006

Setup Commands

Before you can perform a task from the command line, you must first use setup
commands to specify a configuration.

After setting up a configuration, you can then modify the values in the
configuration for your specific requirements. These changed values override but do
not change values in the configuration file. You can use configuration templates
from a central resource to run tests on different test platforms and configurations.

Note — See About the Command-Line Examples for a description of use of >
javatest in the following example.

The setup commands are used in the following sequence in the command line:

> javatest [Initial Setup Commands] [Set Specific Values] [Additional Setup
Commands] [Task Commands]

Setting specific values and additional setup commands are optional.

The task command at the end of the example is also optional. If a task command is
not included, the JavaTest harness uses the specified configuration and any changes
set on the command line to open the GUL

For additional information about using setup commands see the following topics:

m Initial Setup Commands
m Setting Specific Values
m Additional Setup Commands

Initial Set-up Commands

Before you can perform tasks from the command line, you must first set up a
configuration for the JavaTest harness to use. You can set up a configuration by
performing at least one of the following:

Chapter 4 Setup Commands 15

1. Specify an existing configuration (. jt1i) file. You are not required to specify
either a test suite or a work directory.

2. Specify an existing work directory and a configuration file. You are not required
to specify a test suite.

3. Open a test suite, create an empty work directory, and specify a configuration
file.

After setting up a configuration, you can then change specific values for your
specific requirements. See Setting Specific Values for the commands used to modify
the values in the configuration.

You can include commands in any combination on the command line provided the
intital set-up commands are specified before any other commands in the command
line.

You can use any of the following commands to set up a configuration for the
JavaTest harness to use when performing tasks:

m config - Used to specify an existing configuration file. See Specifying a
Configuration for a detailed description of this command.

m workDirectory or workDir - Used to specify an existing work directory or to
create a new work directory. See Specifying a Work Directory for a detailed
description of this command.

m testSuite - Used to specify a test suite. See Specifying a Test Suite for a
detailed description of this command.

m open - Used to specify a test suite, work directory, configuration file, or
parameter file. See Specifying a Test Suite, Work Directory or Configuration for a
detailed description of this command.

Specifying a Test Suite (testsuite)

To specify the test suite, use the testsuite command:

> javatest ... ~testsuite path/filename [work directory command] [configuration
command] ... [task command] ...

See About the Command-Line Examples for a description of the use of > javatest.

When you want to specify a test suite, include the commands in the following
sequence:

1. Specify the test suite (testsuite path/filename)

2. Set up a configuration

3. Include a Task Command such as runtests (optional).

See Command-Line Overview for a description of the command line structure.

16 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

Detailed Example of testsuite Command

In the following example, mytestsuite, myworkdir .wd, and myconfig . jti represent
file names that might exist on your system.

Command Options Format Example:

> javatest -testsuite mytestsuite -workdir myworkdir.wd -config
myconfig.jti -runtests

See Formatting a Command for descriptions and examples of other command
formats that you can use.

Specifying a Work Directory (workdir or
workdirectory)

Each work directory is associated with a test suite and stores its test result files in a
cache. You can use the work directory command to:

m Use an Existing Work Directory
m Create a New Work Directory
m Replace an Existing Work Directory

See Shortcuts to Initialize a Configuration for information about specifying a work
directory in the command line.

Use an Existing Work Directory

To use an existing work directory for the test run, include either the workdir or
workdirectory command in the command line:

> javatest ... -workdir path/filename ... [task command] ...

See About the Command-Line Examples for a description of the use of > javatest in
the example.

See Command-Line Overview for a description of the command line structure.

See Formatting a Command for descriptions and examples of the following
command formats.

Chapter 4 Setup Commands 17

Create a New Work Directory

To create a new work directory for the test run, use the -create command option:

> javatest ... -workdir -create path/filename [configuration command] ... [task
command] ...

See About the Command-Line Examples for a description of use of > javatest in the
example.

The new work directory must not previously exist. You can also use an existing
work directory as a template to create a new work directory for the test run. To use
an existing work directory as a template, put the template in the command line
before the create command.

When creating the command string, include the commands in the following
sequence:

1. Specify the test suite (optional)

. Specify an existing work directory (optional)

. Include the workdir or workdirectory -create path/filename command

. Set specific values (optional)

2
3
4. Specify a configuration file
5
6

. Include the runtests command (optional). The results of the test run are
written to the new work directory.

See Command-Line Overview for a description of the command line structure.

Detailed Example of Creating a New Work Directory

In the following example, myworkdir .wd and myconfig . jti represent file names
that might exist on your system.

Command Options Format Example:

> javatest —-workdir myworkdir.wd -create testrun.wd -config
myconfig.jti -runtests

When the tests are run, the JavaTest harness uses the work directory (testrun .wd)
created by the command line, even if the configuration file (myconfig. jti) was
created using another work directory.

See Formatting a Command for descriptions and examples of other command
formats that you can use.

18 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

Replace an Existing Work Directory

When you replace an existing work directory with a new work directory, the
JavaTest harness:

1. Deletes the existing work directory and its contents.

2. Creates the new work directory using the same name (if the old directory was
successfully deleted).

To replace an existing work directory with a new work directory, use the -
overwrite command option.

> javatest ... -workdir -overwrite path/filename ... [task command] ...
or

> javatest ... -workdir -create -overwrite path/filename ... [task command]

The -create command option is optional when the -overwrite command is
used.

See Command-Line Overview for a description of the command line structure.

Detailed Example of Replacing an Existing Work Directory

In the following example, myconfig.jti represents a configuration file name that
might exist on your system.

Command Options Format Example:

> javatest —-workdir -overwrite testrun.wd -config myconfig.jti -
runtests

The JavaTest harness uses the work directory testrun .wd created by the command
line when the tests are run, even if myconfig.jti was created using another work
directory.

See Formatting a Command for descriptions and examples of other command
formats that you can use.

Specifying a Configuration File (config)

To specify the configuration file the the JavaTest harness uses to run tests, use the
configcommand.

Chapter 4 Setup Commands 19

> javatest ... -config path/filename ... [task command] ...

See About the Command-Line Examples for a description of > javatest in the
example.

The configuration file may contain default values for the test suite (which contains
the tests to be run) and the work directory (which is where to put the results).

Test suite and work directory values in the configuration file can be overridden
with the testsuite and workdirectory commands. If the configuration file is a
template and does not contain default values for the test suite and work directory,
those values must be specified explicitly with the testsuite and workdirectory
commands.

See Command-Line Overview for a description of the command line structure.

Detailed Example of config Command

In the following example, myconfig.jti represents a configuration file name that
might exist on your system.

Command Options Format Example:

> javatest -config myconfig.jti -runtests

See Formatting a Command for descriptions and examples of other command
formats that you can use.

Specifying a Test Suite, Work Directory or
Configuration (open)

To specify a test suite, work directory, or a configuration . jt1i file, use the open
command:

... open path/filename ...

Note — See About the Command-Line Examples for a description of the use of >
javatest in the following example. See Command-Line Overview for a description of
the command line structure. See Formatting a Command for descriptions and
examples of the following command formats.

Command Options Example:
> javatest ... —open path/filename ... [task command] ...

Single String Arguments Example:

20 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

> javatest ... ; open path/filename ; ... [task command] ...
Command File Example:
> javatest @mycmd . jtb ... [task command] ...

In addition to any other commands, for this example the mycmd . jtb command
file must contain the command:
"open path/filename;"

Refer to Using Command Files for detailed information about creating and
using command files.

Setting Specific Values

After you set a configuration (see Initial Set-up Commands) you can specify
individual values for a test run that override those in the configuration file.

Note — Values that you specify in the command string override but do not change
the values specified in the configuration file.

You can use the following commands to specify individual values for a test run:

m set - used to set any value in a configuration file. See Setting Test Suite Specific

Values for a detailed description of this command.

m concurrency - used to change the concurrency value set in the configuration
file. See Setting Concurrency (concurrency) for a detailed description of this
command.

m envFile - used to specify or change the environment file name set in the
configuration file. This option only applies to legacy test suites that use

environment (.jte) files. See Specifying an Environment File (envFile or envFiles)
for a detailed description of this command.

m envFiles - used to specify or change the environment file names set in the
configuration file. This option only applies to legacy test suites that use

environment (.jte) files. See Specifying an Environment File (envFile or envFiles)
for a detailed description of this command.

m env - used to specify or change the environment name set in the configuration
file. This option only applies to legacy test suites that use environment (.jte) files.
See Specifying a Test Environment (env) for a detailed description of this
command.

m excludeList - used to specify or change the exclude list set in the
configuration file. See Specifying Exclude List Files (excludeList) for a detailed
description of this command.

Chapter 4 Setup Commands 21

m keywords - used to specify or change the keyword values set in the
configuration file. See Using Keywords (keywords) for a detailed description of
this command.

m priorStatus - used to specify or change prior status values set in the
configuration file. See Selecting Tests Based on Previous Results (priorStatus) for
a detailed description of this command.

m tests - used to specify or change the tests specified in the configuration file.
See Specifying Tests or Directories to Run (tests) for a detailed description of this
command.

m timeoutFactor - used to specify or change the test timeout value specified in
the configuration file. See Increasing the Timeout (timeoutFactor) for a detailed
description of this command.

Obtaining the Question Tag-Name

The following three ways can be used to obtain a configuration question tag-name:

m Question Tag - Start the JavaTest harness GUI, open the configuration editor,
and load the configuration file used to run tests. Choose View -> Question Tag
in the configuration editor menu bar. The configuration editor displays the fag-
name at the bottom of the question pane. Navigate through the configuration
until you locate the question whose value must be changed. Use the question
tag-name in the command line.

m Control and T - Start the JavaTest harness GUI, open the configuration editor,
and load the configuration file used to run tests. Click on text in question pane
and then press the Control and T keys. The configuration editor displays the tag-
name at the bottom of the pane. Navigate through the configuration until you
locate the question whose value must be changed. Use the tag-name in the
command line.

m Question Log - Start the JavaTest harness GUI and load the configuration file
that will be used to run tests. Choose Configure -> Show Question Log in the
Test Manager menu bar to view the Question Log of the current configuration.
The Question Log displays the tag-name for each question in the configuration
and its value.

m Report Question Log - Start the JavaTest harness GUI and choose Create Report
in the Test Manager menu bar. Check the Question Log option to generate a
Question Log of the current configuration. View the report and click the
Confioguration link. The Question Log displays the tag-name for each question
in the configuration and its value.

Setting Specific Configuration Values

You can use the setcommand to override a specific value in the current
configuration (. jt1i) file:

> javatest ... [initial set-up commands] ... -set question-tag-name ... [task command]

22 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

See About the Command-Line Examples for a description of use of > javatest in the
example.

You can also use -set -file input-file-name or -set -f input-file-name to import
a Java properties file containing the values of multiple configuration questions. A
hand edited configuration file can be used as an input file.

> javatest ... [initial set-up commands] ... -set -file input-file-name ... [task
command] ...

The JavaTest harness uses the values in the input file to override the values in the
configuration. Any values in the input file that are not used in the configuration are
ignored.

Values changed by the setcommand are only used for the session and override but
do not change the configuration file. To change a configuration file, use the
Configuration Editor window provided by the JavaTest harness GUL

When creating a command string to set specific values in a configuration, include
the commands in the following sequence:

1. Set up a configuration

2. Specify configuration values (set question-tag-name value)
3. Include the runtestscommand (optional).

See Command-Line Overview for a description of the command line structure.

To use the setcommand, you must identify the question-tag-name associated with
the value in the configuration file that you are changing. In the command line,
following the setcommand, enter the question-tag-name and its new value:

A value can only be changed if its fag-name exists in the initialized configuration
file. If the configuration does not include the tag-name you must use the
Configuration Editor in the JavaTest harness GUI to include the question and value
in the configuration file.

See Obtaining the Question tag-name for detailed information about the tag-name
for the question. See Formating Configuration Values for edit]TI or -set for detailed
information about formatting the values. See Detailed Examples for examples of
using the set command and the tag-name.

Detailed Example of Setting Test Suite Specific Values

In the following example, myconfig.jti represents a file name that might exist on
your system.

Command Options Example:

> javatest -config myconfig.jti -set jckdate.gmtOffset 8 -runtests

Chapter 4 Setup Commands 23

See Formatting a Command for descriptions and examples of other command
formats.

Setting Concurrency (concurrency)

If you are running the tests on a multi-processor computer, you can use
concurrency to speed up your test runs. Use the concurrencycommand to specify
the number of tests to run concurrently:

> javatest ... [initial set-up commands] ... -concurrency number ... [task command]

See About the Command-Line Examples for a description of the use of > javatest in
the example.

Unless your test suite restricts concurrency, the maximum number of threads
specified by the concurrency command is 50. See your test suite documentation
for additional information about using concurrency values greater than 1.

When creating a command string to specify the number of tests to run
concurrently, include the commands in the following sequence:

1. Set up a configuration

2. Specify the concurrency value (concurrency number)
3. Include the runtests command (optional).

See Command-Line Overview for a description of the command line structure.

Detailed Example of concurrency Command

In the following example, myconfig.jti represents a file name that might exist on
your system and value represents a numeric value from 1 to 50 that you might use.

Command Options Format Example:
> javatest -config myconfig.jti -concurrency value -runtests

See Formatting a Command for descriptions and examples of other command
formats.

24 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

Specifying an Environment File
[deprecated]

This command only applies to older test suites that use environment files (. jte)
instead of configuration (.jt1i) files. Use the envFile command to specify an
environment file (. jte) containing test environments that the JavaTest harness
must use to run the test suite:

> javatest ... [initial set-up commands] ... ~envFile path/filename ... [task command]

See About the Command-Line Examples for a description of the use of > javatest in
the following example.

When creating a command string to specify an environment file, include the
commands in the following sequence:

1. Set up a configuration

2. Specify an environment file (envFile path/filename)
3. Include the runtests command (optional).

See Command-Line Overview for a description of the command line structure.

Detailed Example of envFile Command

In the following example, myenvFile . jte represents a file name that might exist on
your system.

Command Options Format Example:
> javatest —envFile myenvFile.jte -runtests

See Formatting a Command for descriptions and examples of other command
formats that you can use.

Chapter 4 Setup Commands 25

Specifying a Test Environment
[deprecated]

This command is only used for test suites with environment (. jte) files containing
multiple environments. You can use the env command with the envFiles
command to specify a specific test environment contained in an environment file:

> javatest ... [initial set-up commands] ... —envFile path/filename -env
environment-name ... [task command] ...

See About the Command-Line Examples for a description of the use of > javatest in
the following example.

When creating a command string to specify a specific test environment, include the
commands in the following sequence:

1. Set up a configuration

2. Specify a test environment (env environment-name)
3. Include the runtests command (optional).

See Command-Line Overview for a description of the command line structure.

Detailed Example of envFile Command

In the following example, path/filename represents a file name that might exist on
your system and environment-name represents an environment name that exists in
the environment file.

Command Options Format Example:
> javatest —envFile path/filename -env environment-name -runtests

See Formatting a Command for descriptions and examples of other command
formats that you can use.

26 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

Specifying Exclude List Files (
excludeList)

Test suites normally supply exclude list files which contain the list of tests that the
harness is not required to run. Exclude list files conventionally use a . jtx
extension. Once you have set up a configuration, you can use an excludeList
command to specify the exclude list for your test run:

> javatest ... [initial set-up commands] ... ~excludeList path/filename ... [task
command] ...

The -excludeList path/filename command can be used multiple times to specify
multiple exclude lists for a test run.

See About the Command-Line Examples for a description of the use of > javatest.

The exclude list that you specify in the command line overrides any exclude list
specified in the configuration file without changing the configuration file.

When you want to specify an exclude list, include the commands in the following
sequence:

1. Set up a configuration

2. Specify the exclude list (excludeList path/filename)

3. Include a Task Command such as runtests(optional).

See Command-Line Overview for a detailed description of the command line
structure.

Detailed Example of excludeList Command

In the following example, myconfig.jti and myexcludelist . j tx represent file
names that might exist on your system.

Command Options Format Example:
> javatest —config myconfig.jti -exclude myexcludelist.jtx -runtests

See Formatting a Command for descriptions and examples of other command
formats that you can use.

Chapter 4 Setup Commands 27

28

Using Keywords (keywords)

The test suite may provide keywords that you can use on the command line to
restrict the set of tests to be run. Use the keyword command to specify the
keywords used to filter the tests that are run.

> javatest ... [initial set-up commands] ... ~keywords expression ... [task command] ...

See About the Command-Line Examples for a description of the use of > javatest in
the following example.

Refer to the test suite documentation for a list of supported keywords.

When creating a command string that specifies keywords, include the commands
in the following sequence:

1. Set up a configuration

2. Specify keywords used (keywords expression)

3. Include a Task Command such as runtests (optional).

See Command-Line Overview for a detailed description of the command line
structure.

Detailed Example of keywords Command

In the following example, myconfig. jti and myexcludelist . jtx represent file
names that might exist on your system.

Command Options Format Example:

> javatest -config myconfig.jti -keywords interactive -runtests

See Formatting a Command for descriptions and examples of other command
formats that you can use.

JavaTest Harness User's Guide: Command-Line Interface * November 06, 2006

Selecting Tests Based on Previous
Results (priorStatus)

Tests can be selected for a test run based on their prior test status. Use the
priorStatus command to run tests based on their results from a previous test
run:

> javatest ... [initial set-up commands] ... -priorStatus fail,error .. [task
command] ...

See About the Command-Line Examples for a description of the use of > javatest in
the example.

The status-arguments that can be used are "pass,” "fail," "error," and "notRun." If you
use more than one argument, each argument must be separated by a comma.

When creating a command string to specify the prior test status, include the
commands in the following sequence:

1. Set up a configuration

2. Specify the prior test status (priorStatus status-arguments)

3. Include a Task Command such as runtests (optional).

See Command-Line Overview for a detailed description of the command line
structure.

Detailed Example of priorStatus Command

In the following example, myconfig.jti represents a configuration file name that
might exist on your system.

Command Options Format Example:
> javatest -config myconfig.jti -priorStatus fail,error -runtests

See Formatting a Command for descriptions and examples of other command
formats that you can use.

Chapter 4 Setup Commands 29

Specifying Tests or Directories to Run (tests)

You can specify one or more individual tests or directories of tests for the JavaTest
harness to run. The JavaTest harness walks the test tree starting with the sub-
branches and/or tests you specify and then executes all tests that it finds (unless
they are filtered out).

You can use the tests command to specify one or more individual tests or
directories of tests:

tests path/filename

When creating a command string, include the commands in the following
sequence:

1. Set up a configuration

2. Specify tests or directories of tests (tests path/filename)
3. Include the runtests command (optional).

See About the Command-Line Examples for a description of the use of > javatest.

Example of tests Command

In the following example, path/filename represents a file name that might exist on
your system.

Command Options Format Example:
> javatest ... [initial set-up commands] ... -tests path/filename ... [task command] ...

See Formatting a Command for descriptions and examples of other command
formats that you can use.

Increasing the Timeout (timeoutFactor)

Each test in a test suite has a timeout limit. The JavaTest harness waits for a test to
complete for the duration of that limit before moving on to the next test. You can
use the timeoutFactor command to change the timeout limit:

> javatest ... [initial set-up commands] ... -timeoutFactor number ... [task
command] ...

See About the Command-Line Examples for a description of the use of > javatest in
the example.

30 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

Each test’s timeout limit is multiplied by the time factor value. For example, if you
specify a value of 2.0, the timeout limit for tests with a 10 basic time limit becomes
20 minutes. See Formatting a Command for descriptions of the command formats.
Note that the format of the value input for the timeout factor is dependant on the
locale.

When creating a command string to change the timeout limit, include the
commands in the following sequence:

1. Set up a configuration

2. Specify the timeout limit (timeoutFactor number)
3. Include the runtests command (optional).

See Command-Line Overview for a detailed description of the command-line
structure.

Detailed Example of timeFactor Command

In the following example, myconfig.jti and myexcludelist . jtx represent file
names that might exist on your system.

Command Options Format Example:
> javatest -config myconfig.jti -timeoutFactor 2.0 -runtests

See Formatting a Command for descriptions and examples of other command
formats that you can use.

Additional Setup Commands

In most cases, you use the command line to perform functions that are also
available through the GUIL. However, you can also use the command line to specify
how the JavaTest harness starts.

When starting the JavaTest harness, you can include additional commands in the
command line to:

Include all system properties in test execution environments.

Set an environment variable that you want inherited in every test environment.
Set the agent pool port number.

Set the agent pool timeout.

Start the active agent pool.

The JavaTest harness uses a new desktop when you include GUI commands in the
command line.

Chapter 4 Setup Commands 31

32

The following table describes the commands used in the command line to specify
how the JavaTest harness starts.

TABLE 4 JavaTest Harness Commands

Command Function
-EsysProps Includes all system properties in test execution environments.
-Ename=value Sets an environment variable that is inherited in every test

environment created.

The -Ename=value command tunnels in values from the
external shell. The method used in previous versions of the
JavaTest harness to tunnel in values from the external shell is
now deprecated.

-agentPoolPort port Set the Agent Pool Port Number
Use this command only when you are configuring the JavaTest
harness and the agent to use a port other than 1907.

-agentPoolTimeout Set the Agent Pool Timeout
#seconds Sets the number of seconds that the JavaTest harness waits
between tests for an available agent before reporting the test
result as an error. The default value of 180 seconds is usually
sufficient. You can also set this value in the GUI if you are not
running the JavaTest harness from the command line.

-startAgentPool Start the Active Agent Pool
If you use an active agent and run the JavaTest harness from
the command line, you must add -startAgentPoolto the
command string to start the Agent Pool.

JavaTest Harness User's Guide: Command-Line Interface * November 06, 2006

Task Commands

In the command line, after setting up a configuration, you can include commands
to perform tasks such as run tests, write reports, and audit tests. See Set-up
Commands for detailed information about setting up a configuration.

Information about the following task commands can be found in the following
topics:

m Running Tests

m Writing Reports

m Auditing Tests

Running Tests (runtests)

Use the runtests command to run the tests specified in the configuration.
> javatest [Monitor option] [Setup commands] ... -runtests ...

See About the Command-Line Examples for a description of the use of > javatest in
the example.

You can also use the runtests command as part of a sophisticated command
sequence that resembles and functions as a script. You can include command files
and multiple commands in the same command string to programmatically perform
repeated, multiple test runs of different configurations without starting the
JavaTest harness GUI.

See Using Command Files for detailed information about creating and using
command files.

A Monitor option can be set in the command line to display test progress
information during the test run. See Monitor Test Progress Option for detailed
information about setting this option.

When creating the command string to run one or more tests, include the commands
in the following sequence:

Chapter5 Task Commands 33

1. Monitor Test Progress Option (optional) use the command line to monitor a test
run.

2. Set up a configuration (required) set the specific values required to run the tests.

3. Include the runtests command.

See Command-Line Overview for a detailed description of the command-line
structure.

Detailed Example of runtests Command

In the following example, myconfig. jti represents a configuration file name that
might exist on your system.

Command Options format example:
> javatest -config myconfig.jti -runtests

See Formatting a Command for descriptions and examples of other command
formats that you can use.

Monitor Test Progress (verbose)

Including the verbose command and optional monitoring options in a run
command allows the user to monitor test progress from the command line. This
command uses stdout to display the specified levels of monitoring test run
progress. This monitoring function is not available in the GUL

Monitoring Options

The monitoring options are specified in the command line as a comma-separated
list following the -verbose option. A colon is used to separate the -verbose
command from the options. Ordering and capitalization within the list are ignored.
Whitespace within the list is prohibited.

If you do not specify a level, the progress option is automatically used.
> javatest -verbose: Monitor option [Setup commands] ... -runtests ...

See About the Command-Line Examples for a description of the use of > javatest in
the example.

34 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

See Examples of Monitoring Output for detailed examples of the command line.

The following table describes monitoring options specified in the command line.

TABLE 5 Monitoring Options

Option Description

comma Traces the individual JavaTest harness commands as they are executed. This

nds includes options given on the command line, commands given in command
strings, and commands given in command files.

no- Do not prefix entries with the data and time stamp. Normally, each logical line of

date output will print the month, day, hour, minute and second.

non- Print non-passing (error, fail) test names and their status string. The status string

pass includes the status (error, fail) and the reason for the failure/error.

max Output the maximum possible amount of output. This includes all the options
which are individually available. If this option is present, only the no-dateand
quietflags have any additional effect.

quiet Suppress any output from the verbose system. It may be useful to temporarily
deactivate monitoring while debugging, without removing other levels coded
into a script. -verbose:stop, progress, quiet results in no output, as does -
verbose:quiet, stop, progress. This option takes precedence over all other
options. It does not suppress the pass/fail/error statistics printed at the end of
the test run.

start Prints the test name when it goes into the the harness’ engine for execution.
Note: On some test suites, this may only indicate that the test has been handed to
the plug-in framework, not that it is actually executing.

stop Prints the test name and status string (see non-pass) when a test result is
received by the harness.

progr Prints a progress summary, which indicates pass/fail/error/not-run numbers. If

ess any of the max, non-pass, stop, or stop options were specified, each

summary may be printed on it’s own line. If not, the summary will be updated
on the current line. The progress information is printed /updated each time a test
result is reported to the harness.

Detailed Examples of Monitoring Commands

The following are examples of monitoring commands and their resulting command
line output.

1. An example of the default monitoring output:

>

java -jar lib/javatest.jar -verbose -open foo.jti -runtests

Ilfooll .

14:24:33 Sept 14 - Pass: 12 Fail: 0 Error: 1 Not-Run: 33
14:24:30 Sept 14 - Finished executing all tests, wait for

Chapter5 Task Commands

14:21:31 Sept 14 - Harness starting test run with configuration

35

36

cleanup. ..
14:26:31 Sept 14 - Harness finished test run.

2. An example of the start monitoring output:

> java -jar lib/javatest.jar -verbose:start -open foo.jti -
runtests

14:21:31 Sept 14 - Harness starting test run with configuration
"foo".

14:24:39 Sept 14 - Running foo/bar/index#idl

14:24:30 Sept 14 - Test run stopped, due to failures, errors,
user request. Wait for cleanup...

14:26:31 Sept 14 - Harness finished test run.

3. An example of the start and stop monitoring output:

> java -jar lib/javatest.jar -verbose:start,stop -open foo.jti -
runtests

14:21:31 Sept 14 - Harness starting test run with configuration
"foo".

14:24:31 Sept 14 - Running foo/bar/index#idl

14:24:32 Sept 14 - Finished foo/bar/index#idl Fail. Invalid
index did not throw exception.

14:26:33 Sept 14 - Running foo/bar/index#id2

14:27:34 Sept 14 - Finished foo/bar/index#id2 Pass.

14:28:35 Sept 14 - Running foo/bar/index#id3

14:29:36 Sept 14 - Finished foo/bar/index#id3 Error. Cannot
invoke JVM.

14:30:30 Sept 14 - Finished executing all tests, wait for
cleanup. ..

14:30:31 Sept 14 - Harness finished test run.

4. An example of the no-date, start, and stop monitoring output:

> java -jar lib/javatest.jar -verbose:no-date,start,stop -open
foo.jti -runtests

Harness starting test run with configuration "foo".

Running foo/bar/index#idl

Finished foo/bar/index#idl Fail. Invalid index did not throw
exception.

Running foo/bar/index#id2

Finished foo/bar/index#id2 Pass.

Running foo/bar/index#id3

Finished foo/bar/index#id3 Error. Cannot invoke JVM.

Test run stopped, due to failures, errors, user request. Wait

JavaTest Harness User's Guide: Command-Line Interface * November 06, 2006

for cleanup...
Harness finished test run.

5. An example of the non-pass monitoring output:

> java -jar lib/javatest.jar -verbose:non-pass -open foo.jti -
runtests

Harness starting test run with configuration "foo".

Running foo/bar/index#idl

Finished foo/bar/index#idl Fail. Invalid index did not throw
exception.

Running foo/bar/index#id2

Finished foo/bar/index#id2 Pass.

Test run stopped, due to failures, errors, user request. Wait
for cleanup...

Harness finished test run.

6. An example of the progress and non-pass monitoring output:

> java -jar lib/javatest.jar -verbose:progress,non-pass -open
foo.jti -runtests

14:23:39 Sept 14 - Harness starting test run with configuration
"foo".

14:24:39 Sept 14 - Pass: 12 Fail: 0 Error: 0 Not-Run: 33

14:25:32 Sept 14 - Finished foo/bar/index#idl Fail. Invalid
index did not throw exception.

14:26:39 Sept 14 - Pass: 12 Fail: 1 Error: 0 Not-Run: 32

14:27:39 Sept 14 - Pass: 12 Fail: 1 Error: 0 Not-Run: 32

14:30:36 Sept 14 - Finished foo/bar/index#id3 Error. Cannot
invoke JVM.

14:32:39 Sept 14 - Pass: 12 Fail: 1 Error: 1 Not-Run: 31

14:33:01 Sept 14 - Test run stopped, due to failures, errors,
user request. Wait for cleanup...

14:33:10 Sept 14 - Harness finished test run.

7. An example of the no-date and max monitoring output:

> java -jar lib/javatest.jar -verbose:no-date,max -open foo.jti
-runtests

Harness starting test run with configuration "foo".

Running foo/bar/index#idl

Finished foo/bar/index#idl Fail. Invalid index did not throw
exception.

Pass: 0 Fail: 1 Error: 0 Not-Run: 33

Running foo/bar/index#id2

Finished foo/bar/index#id2 Pass.

Pass: 1 Fail: 1 Error: 0 Not-Run: 32

Test run stopped, due to failures, errors, user request. Wait

Chapter5 Task Commands 37

for cleanup...
Harness finished test run.

Batch (batch)

The batch command is a legacy command that is used to run tests from the
command line or as part of a build process. If a task command is not included in
the command line, the JavaTest harness begins running tests automatically. The
batch command has been superceeded by the runTests command.

The batch command is also used in the command line to close the JavaTest
harness when all commands have been processed. If the batchcommand is used,
the JavaTest harness GUI will not start unless explicitly started by another
commands in the command string.

If the GUI is started in batch mode (such as by using the monitorAgent
command), the JavaTest harness displays a dialog after all commands are executed
that allows the user to cancel the automatic shutdown and to use the JavaTest
harness GUI in normal mode.

In its legacy format, the batch command was required to precede the other
commands. In the present format, the batch command can be specified in any
location on the command line.

> javatest ... -batch ... [Setup commands] ... [task command] ...

See About the Command-Line Examples for a description of use of > JavaTest
harness in the example.

See Command-Line Overview for a description of the command-line structure.

Detailed Example of batch Command

In the following example, myconfig.jti represents a configuration file name that
might exist on your system.

Command Options Format Example:
> javatest -batch -config myconfig.jti

See Formatting a Command for descriptions and examples of other command
formats that you can use.

38 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

Observer (observer)

The observer command is an advanced command that allows you to register
com.sun.javatest.Harness.Observer for monitoring a test test run. For
example, an observer can monitor the progress of each test run and implement
custom behavior such as sending email if a test in a test run fails. See the API

documentation for details or contact the harness development team for help in
using an observer.

Writing Reports (writereport)

Use the -writereport command in the command line as a separate command or as
part of a series of task commands (such as run tests and audit test results). Use a
web browser to view the reports.

Because the JavaTest harness executes commands in their command-line sequence,
you must identify the work directory before the -writereport command and
provide the report directory as an option after the command:

> javatest ... -workdir mywork-directory -writereport myreport-directory

See About the Command-Line Examples for a description of the use of > javatest in
the example.

See Command-Line Overview for a detailed description of the command line
structure.

Detailed Example of writereport Command

In the following example, myworkdirectory represents a work directory name that
might exist on your system.

Command Options Format Example:
> javatest ~-workdirectory myworkdirectory -writereport myreport-directory

See Formatting a Command for descriptions and examples of other command
formats that you can use.

Chapter5 Task Commands 39

40

Auditing Tests

You can audit test results by using -audit as a separate command or as part of a
series of task commands (such as to run tests and write test reports). The results of
the audit are sent to the terminal.

Because the JavaTest harness executes commands in their command-line sequence,
you must identify the work directory before the —audit command.

> javatest ... -workdirectory mywork-directory —audit

See About the Command-Line Examples for a description of the use of > javatest in
the example.

See Command-Line Overview for a description of the command line structure.

Detailed Example of audit Command

In the following example, mywork-directory represents a work directory name that
might exist on your system.

Command Options Format Example:
> javatest —-workdirectory mywork-directory —audit

See Formatting a Command for descriptions and examples of other command
formats that you can use.

JavaTest Harness User's Guide: Command-Line Interface * November 06, 2006

Desktop Commands

In most cases, command-line options perform functions that are also available
through the GUI. However, there are several situations in which using command-
line options to specify how the JavaTest harness starts is either uniquely useful or
necessary.

When starting the JavaTest harness you can use options in the command line to
perform the following tasks:

m Use a new desktop when starting the JavaTest harness GUI
m Specify Status Colors if you prefer to use colors in the GUI that are different
from the defaults

Using a New JavaTest harness Desktop

When starting the JavaTest harness, include -newDesktop in the command string
to start the JavaTest harness GUI without using a previous desktop. The JavaTest
harness ignores any previous desktop information and opens the JavaTest harness
Quick Start wizard.

Note — The JavaTest harness uses a new desktop when you include GUI options in
the command line. Using this option preserves any preferences set for the desktop.
Use the following example to start the JavaTest harness with a new Desktop.

> javatest -newDesktop

See About the Command-Line Examples for a description of the use of > javatest.

Chapter 6 Desktop Commands 41

Specifying Status Colors

The JavaTest harness allows you to specify the status colors used in the GUI. This
property is set on the command line as a system property when starting the
JavaTest harness GUI. Status colors set this way are added to the user preferences
and restored in subsequent sessions.

The user can specify each status color by using system properties in the following
format:

-Djavatest.color.passed=color-value ...
-Djavatest.color. failed=color-value ...
-Djavatest.color.error=color-value ...

-Djavatest.color.notrun=color-value ...
-Djavatest.color. filter=color-value ...

The color-value used must be an RGB value parsable by the java.awt.Color class
(octal, decimal or hex).

The value portion of the color property must be explicitly defined. The value
portion of the property accepts hex values, prefixed by either a pound character (#)
or a zero-x (0x).

Values can also be specified in octal, in which case the value begins with a leading
zero and must be two or more digits.

The following are possible formats for setting color integers:
#ffaa66 (hex)
0xffaab6 (hex)
0111177 (octal)

Detailed Example of Specifying a Status Color

You might need to escape the pound character in hte following example for the
command to work on your platform.

42 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

Information Commands

The JavaTest harness command-line interface allows you to display command-line
help, online help, or version information without starting the harness.

> javatest [Information Command]

Including an information command at the end of the command line causes the
JavaTest harness to display JavaTest harness information without starting the GUI.

The following topics provide detailed information about the commands that can be
used to display JavaTest harness information:

m Displaying JavaTest Harness Command-Line Help
m Displaying JavaTest Harness Online Help
m Display JavaTest Harness Version Information

Command-Line Help

The JavaTest harness allows you to display the command-line interface in the
following forms:

m All information
m Topic information
m Word search information

All Information

To display all of the information in command-line help, include -help all at the
end of the command line.

> javatest ~help all

See About the Command-Line Examples for a description of the use of > javatest.

Chapter 7 Information Commands 43

Topic Information

To display only the command-line help for specific topics, include -help and the
name of the topic at the end of the command line.

> javatest ~help topic name

See About the Command-Line Examples for a description of the use of > JavaTest
harness.

The following table lists the available command-line help topics.

TABLE 6 Options Used to Display Command-Line Information

Topic Function

Desktop Displays information about the command-line options for
starting the JavaTest harness graphical user interface.

JavaTest harness Agent Displays information about the command-line options for the
JavaTest harness Agent.

Batch Mode Displays information about the command-line options for
running tests in batch mode.

Configuration Displays information about the command-line options for
setting up and changing a configuration.

Environment Displays information about the command-line options for
adding values into JavaTest harness environments.

HTTP server Displays information about the command-line options for the
JavaTest harness HTTP server.

Options Displays information about the command-line options
accepted on the command line.

Files Displays information about the types of files accepted as
command-line arguments.

Display the List of Available Topics

To display the list of help topics provided by command-line help, include -help, -
usage, or -? at the end of the command line.

> javatest ~help

See About the Command-Line Examples for a description of the use of > JavaTest
harness.

44 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

Word Search Information

The JavaTest harness allows you to search the full command-line help for a specific
word or phrase and then displays only the information containing that word or
phrase.

To display command-line help information containing a specific word or phrase,
include -help and the word or phrase at the end of the command line.

> javatest ~help word or phrase

See About the Command-Line Examples for a description of the use of > javatest.

> javatest ~-help audit test
The console displays the following output:

Audit Options for auditing test results
—audit [-showEnvValues] [-showMultipleEnvValues]
Audit the test results defined in the current
configuration

For complete details and examples, see the JavaTest
harness online help. You can access

this directly from the command line with "-onlineHelp

.", or you can

start the JavaTest harness and use the Help menu. The
online help is also

available in PDF format in the JavaTest harness
documentation directory.

Copyright (C) 2005 Sun Microsystems, Inc. All rights
reserved.
Use is subject to license terms.

JavaTest harness Version Information

To display the version, location, and build information of the installed copy of the
JavaTest harness, include the -version command at the end of the command line.

> javatest -version

Chapter 7 Information Commands 45

See About the Command-Line Examples for a description of the use of > javatest.

Displaying JavaTest harness Online
Help

Without opening the JavaTest harness GUI, the JavaTest harness allows you to
display JavaTest harness online help. To display the JavaTest harness online help,
include the -onlinehelp command at the end of the command line.

> javatest —onlinehelp

See About the Command-Line Examples for a description of the use of > javatest.

46 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

Legacy Commands

The JavaTest harness command-line interface supports the commands used in
previous versions of the JavaTest harness. In most cases using the current
commands is preferred, however, if you are running a test suite that uses a
parameter file you can continue to use options in the command line to specify
parameter values. These commands are deprecated and may be removed from
future versions of the JavaTest harness.

See Using Parameter Commands for a detailed description of these Legacy
Commands.

Using Parameter Commands (params)
[deprecated]

If you are running a test suite that does not use a parameter file, use the current
commands instead of the -params command and option.

If you are running a test suite that uses a parameter file (. jtp), you can specify
different parameter values by including -params and the appropriate parameter
command in the command line.

> javatest ... -params [command] [value] [Task Commands] ...

See About the Command-Line Examples for a description of the use of > javatest.

Chapter 8 Legacy Commands

47

48

The following table describes the parameter commands.

TABLE 7 Parameter Commands

Command

-t testsuite
or
-testsuite festsuite

-keywords keyword-expr

-status status-expr

-exclude exclude-list-file

-envFile environment-

file

-env environment

-concurrency number

-timeoutFactor
number

-r report-directory
or
-report report-directory

-w work-directory
or
-workDir workDirectory

Description

Specifies the test suite.

Restricts the set of tests to be run based on keywords
associated with tests in the test suite.

Includes or excludes tests from a test run based on their status
from a previous test run. Valid status expressions are error,
failed, not run, and passed.

Specifies an exclude list file. Exclude list files contain a list of
tests that are not to be run. Exclude list files conventionally
use the . jtxextension and are normally supplied with a test
suite.

Specifies an environment file that contains information used
by the JavaTest harness to run tests in your computing
environment. You can specify an environment file for the
JavaTest harness to use when running tests.

Specifies a test environment from an environment file.

Specifies the number of tests run concurrently. If you are
running the tests on a multi-processor computer, concurrency
can speed up your test runs.

Increases the timeout limit by specifying a value in the time
factor option.

The timeout limit is the amount of time that the JavaTest
harness waits for a test to complete before moving on to the
next test. Each test’s timeout limit is multiplied by the time
factor value.

For example, if you specify a value of 2, the timeout limit for
tests with a 10 basic time limit becomes 20 minutes.

Specifies the directory where the JavaTest harness writes test
report files. If this path is not specified, the reports are written
to a directory named report in the directory from which you
started the JavaTest harness.

Specifies a work directory for the test run. Each work
directory is associated with a test suite and stores its test result
files in a cache.

JavaTest Harness User's Guide: Command-Line Interface * November 06, 2006

Utilities

The JavaTest harness allows you to use additional utilities to remotely monitor and
control a test run, browse result (. jtr) files without starting the harness, browse
exclude list files without starting the harness, change responses in a configuration
file without starting the harness, and move test reports.

Information about performing tasks by using additional utilities can be found in
the following topics:

Monitoring Results with HTTP Server

Browsing Result (. jtr) Files

Browsing Exclude List Files

Changing Configuration Values with Edit]TI
Changing Configuration Values with a Text Editor
Moving Test Reports

Monitoring Results with HTTP Server

The JavaTest harness provides a web server that you can use to remotely monitor
and control a test run. The HTTP Server provides the following two types of
output:

s HTML Formatted Output for users to remotely monitor batch mode test runs in
a web browser.
m Plain Text Output for use by automated testing frameworks.

HTML Formatted Output

The HTML formatted output is provided as human readable pages (these pages are
subject to change in future releases of the JavaTest harness), allowing users to
remotely monitor batch mode test runs in a web browser and stop test runs that are
not executing as expected. The following topics describe the HTML formatted
output:

Chapter 9 Utilities 49

Server Index Page

Server Harness Page

Server Test Result Index Page
Harness Environment Page
Harness Interview Page

Stop a Test Run

Accessing HTTP Server HTML Formatted Output

1. Use the following command on the command line to activate the web server.
> javatest -startHttp -runTests [options]

See About the Command-Line Examples for a description of the use of > javatest.

2. Copy the URL reported to the console.

Example:

JavaTest harness HTTPd - Success, active on port 1903
JavaTest harness HTTPd server available at http://
129.145.162.75:1903/

3. Launch a web browser and enter or paste the URL in the browser URL field.

Example:
http://129.145.162.75:1903/

Displaying the HTTP Server Index Page

The root of the web server provides an index page that only lists the handlers
registered with the internal web server; not all available URLs on the server. You
can also display the HTTP Server Index page by including /index.htmlat the end
of the URL in the browser URL field.

Example:
http://129.145.162.75:1903/index.html

Each JavaTest harness has it’s own handler, identified by a unique number as the
second component of the URL.

Displaying HITP Server Harness Page

When the JavaTest harness is running tests, the harness page displays the following
information:

m Name and location of the current test suite.
m Location of the work directory.

50 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

m Link to view the environment information provided to the JavaTest harness and
used in the current test run. Displays an HTML formatted view of the current
environment.

m Link to view the configuration interview used by the JavaTest harness in the
current test run. Displays a formatted view of the interview settings.

m Link to view the current test results. Displays the Test Result Index page.

In addition to the list of registered handlers, the page also prints the UTC/GMT
date on which that page was generated (subject to the system clock on the machine
which JavaTest harness is running) and provides the JavaTest harness version
number and build date.

You can display the HTTP Server Harness page by choosing its link on the index
page or by including /harnessat the end of the URL in the browser URL field.

Example:
http://129.145.162.75:1903 /harness

Displaying the HTTP Server Test Result Index Page

The Test Result Index page displays the following information:

m Work directory
m The total number of tests in the test suite.

The total number of tests is also a link to view the current test results. The test
results are displayed in a two-column table, by test name and status message.

You can display the Test Result Index page by choosing its link on the harness
page.

Displaying the Harness Environment Page

The Harness Environment page displays the environment information provided to
the JavaTest harness and used in the current test run. The environment information
is displayed in an HTML table and provides a view of the current settings.

You can display the Harness Environment page by choosing its link on the harness
page or by including /harness/envat the end of the URL in the browser URL
field.

Example:
http://129.145.162.75:1903/harness/env

Displaying the Harness Interview Page

The Harness Interview page displays the configuration interview provided to the
JavaTest harness and used in the current test run.

Chapter 9 Utilities 51

You can display the Harness Interview page by choosing its link on the harness
page or by including /harness/interviewat the end of the URL in the browser
URL field.

Example:
http://129.145.162.75:1903 /harness/interview

Using HTTP Server to Stop a Test Run

If you want to remotely terminate a test run, include /harness/stopat the end of
the URL in the browser URL field.

Example:
http://129.145.162.75:1903 /harness/stop

To stop the test run, you must click the STOP button on the page displayed in the
browser.

Plain Text Output

The HTTP server provides plain text output that can be used for automated
monitoring of the JavaTest harness during test runs. The plain text output does not
include HTTP headings or HTML formatting and is intended for use by automated
testing frameworks, not for viewing in web browsers. Consequently, future releases
of the JavaTest harness will attempt to maintain the content formatting and URLs
of this output.

The following two types of JavaTest harness information can be accessed by
automated testing frameworks:

m Version Information
m Harness Information

Accessing Version Information

The HTTP Server Version page displays version information about the JavaTest
harness. You can display the HTTP Server Version page by choosing its link on the
index page or by including /version at the end of the URL in the browser URL
field.

Example:
http://129.145.162.75:1903/version

A dump of the version information is provided.

Example:
JavaTest harness 3.0.3 Built on 06 Feb 2002

52 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

Accessing Harness Information

The following strings access specific information about the JavaTest harness:

/harness/text/config

Currently provides, in java.util.Properties format, the Test Suite name
location and work directory of the current harness configuration values.

Example:
testsuite.path=/export/scratch/sampleJCK-compiler-13a
testsuite.name=J2SE Sample Compiler 1.3a TCK (JCK)
workdir=/export/scratch/wdscl3a

/harness/text/tests

Provides in java.util.Properties format the initial tests used for the
current test run.

Example:
urlO=api/java_lang

urll=api/java_util
/harness/text/stats

Provides, in java.util.Properties format, the current count of test results

in each state (pass, fail, error, not run). Whitespace is not present in the output:

Example:
Passed.=0
Failed.=151
Error.=54
Not_run.=1

For performance reasons, the Not_run number usually equals the concurrency
setting in batch mode and matches the "not run" number shown in the GUI
when in GUI mode (Current Configuration view filter).
harness/text/results

Provides alternating lines of test name, test status.

Example:

lang/FP/fpl005/fpl00506ml/fpl00506ml.html

Error. context undefined for hardware.xFP_ExponentRanges
lang/FP/fpl005/fpl00506m2/fpl00506m2.html

Error. context undefined for hardware.xFP_ExponentRanges
vm/classfmt/atr/atrnew003/atrnew00301lml/atrnew00301ml.html
Failed. unexpected exit code: exit code 1
vm/classfmt/atr/atrnew003/atrnew00302ml/atrnew00302ml.html
Failed. unexpected exit code: exit code 1
vm/classfmt/atr/atrnew003/atrnew00303ml/atrnew00303ml.html
Failed. unexpected exit code: exit code 1

/harness/text/state

Chapter 9 Utilities

53

Indicates whether JavaTest harness is currently running. It will return one of the
following;:

running=true
running=false

m /harness/text/env

Provides, in java.util.Properties format, the current environment settings for the
test run.

Example:

command. testExecute=com.sun.jck.lib.ExecJCKTestOtherJVMCmd

/work/jdkl.3.1/bin/java -classpath StestSuiteRootDir/classes
-Djava.security.policy=$testSuiteRootDir/lib/jck.policy

StestExecuteClass StestExecuteArgs

context.nativeCodeSupported=true

description=bar

jniTestArgs=-loadLibraryAllowed

nativeCodeSupported=true

platform.expectOutOfMemory=true

Browsing Result (.jtr) Files

Included in the javatest.jar file is a servlet that allows you to use a web browser to
view .jtr files.

To view . jtr files in your web browser, you must configure your web server to
use the JavaTest harness Resul tBrowser servlet:

com.sun.javatest.servlets.ResultBrowser

Refer to your server documentation for information about configuring it to use the
JavaTest harness ResultBrowser servlet. Typically, you configure the web server
to direct . jtr files to the servlet for rendering.

Browsing Exclude List Files

Included in the javatest.jar file is a servlet that allows you to use a web browser to
view . jtx files.

54 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

To view . jtx files in your web browser, you must configure your web server to
use the JavaTest harness ExcludeBrowser servlet.

com.sun.javatest.servlets.ExcludeBrowser

Refer to your server documentation for information about configuring it to use the
JavaTest harness ExcludeBrowser servlet. Typically, you configure the web server
to direct . jtx files to the servlet for rendering.

Changing Configuration Values With
Edit]TI

The JavaTest harness provides the EditJTI utility for you to use in changing the
values in a configuration file from the command line. You can also make changes in
a configuration by using the appropriate set command (see Command-Line
Summary for detailed information).

While you can use EditJTI to change the order of commands in a configuration
file, the dependencies between questions can introduce errors into the the
configuration. You should use the configuration editor window in the JavaTest
harness GUI when making major changes in a configuration.

If your changes to a configuration introduce errors, you can use the JavaTest
harness GUI configuration editor window to troubleshoot and repair the
configuration.

Edit]TI Command Format

The Ed1tJTI command loads a configuration (. jti) file, and applies a series of
changes specified on the command line. See Formating Configuration Values for
edit]TI or -set for detailed information about formatting the values.

You can save the changes in the original configuration file or save the changes in a
new configuration file. You can also use EAitJTI to generate an HTML log of the
questions and responses as well as write a quick summary of the questions and
responses to the console. The Ed1tJTI utility provides a preview mode.
Configuration files are normally backed up before being overwritten.

Example:
java -cp lib/javatest.jar com.sun.javatest.EditJTI [OPTIONS]
[EDIT COMMANDS] original configuration file

OPTIONS

Chapter 9 Utilities 55

The following are the available options:

-help, -usage or /?

Displays a summary of the command line options.
-classpath classpath or -cp classpath

Overrides the default classpath used to load the classes for the configuration
interview. The default is determined from the work directory and test suite
specified in the configuration file. The new location is specified by this
option.

-log log-file or -1 log-file

Generates an HTML log containing the questions and responses from the
configuration file. The log is generated after edits are applied.

-out out-file or -o out-file

Specifies where to write the configuration file after the edits (if any) are
applied. The default setting is to overwrite the input file if the interview is
edited.

-path or -p

Generates a summary to the console output stream of the sequence of
questions and responses from the configuration file. The summary is
generated after edits are applied.

-preview or -n

Does not write out any files, but instead, preview what would happen if this
option were not specified.

-testsuite test-suite or -ts test-suite

Overrides the default location used to load the classes for the configuration
interview. The default is determined from the work directory and test suite
specified in the configuration file. The new location is determined from the
specified test suite.

-verbose or -v

Verbose mode. As the edit commands are executed, details of the changes are
written to the console output stream.

COMMANDS
Two different types of commands are supported.

tag-name=value

56 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

Sets the value for the question whose tag is tag-name to value. It is an error if
the question is not found. The question must be on the current path of
questions being asked by the interview. To determine the current path, use
the -pathoption. See Obtaining the Question tag-name.

/search-string/replace-string/

Scans the path of questions being asked by the interview, looking for
responses that match (contain) the search string. In such answers, replace
search-string by replace-string. Note that changing the response to a question
may change the subsequent questions that are asked. It is an error if no such
questions are found.
If you use /in the search string, you use some other character (instead of /) as
a delimiter.
For example:

| search-string | replace-string |
Regular expressions are not currently supported in search-string, but may be
supported in a future release.

Depending on the shell in use, quote the commands to protect characters in
them from interpretation by the shell.

RETURN CODE

The following table describes the return codes generated when a program
exits.

TABLE 8 Exit Return Codes

Code

0

Description

The operations were successful; the
configuration file is complete and ready to
use.

The operations were successful, but the
configuration file is incomplete and is not
yet ready to use for a test run.

There was a problem with the command-
line arguments.

An error occurred while trying to perform
the copy.

SYSTEM PROPERTIES

Two system properties are recognized.
EditJTI.maxIndent

Used when generating the output for the -path option, this property
specifies the maximum length of tag name after which the output will be line-
wrapped before writing the corresponding value. The default value is 32.

Chapter 9 Utilities 57

EditJTI.numBackups

Specifies how many levels of backup to keep when overwriting a
configuration file. The default is 2. A value of 0 disables backups.

Changing Configuration Values

When using Ed1tJTI to change the values in a configuration, you can use either of
the following command formats:

m Use tag=value for direct replacement of values. You must know the tag-name for
the question that sets the value.

m Use /old pattern/new pattern/ to replace all occurrences (strings) of an old pattern
to a new pattern. This format replaces all occurrences in the file.

When using the /old pattern/new pattern/ format, the separator can be any character.
However, it is recommended that the string be enclosed in quotes to avoid shell
problems.

"|/java/jdk/1.3/|/java/jck/1.4/|"

Note — To run the following examples of changing configuration values, you must
replace myoriginal . jti with a . jti file name that exists on your system. Win32
users must also replace the / file separators with \ file separators to run these
examples.

Example:
java -cp [jt_dir/lib/]javatest.jar com.sun.javatest.EditJTI -o
mynew.jti "|/java/jdk/1.3/|/java/jck/1.4/|" myoriginal.jti

Generating a Log of All Updates

You can use the -1 option to generate a log of all updates to the . jt1i file which
can be used later.

Example:

java -cp [jt_dir /1ib/] javatest.jar com.sun.javatest.EditJTI -o
mynew.3ti -1 myeditlog.html "|/java/jdk/1.3/|/java/jck/1.4/]|"
myoriginal . jti

Preview Without Change

You can use the -n option to preview but not perform updates to the jti file.

58 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

Example:

java -cp [jt_dir/1ib/] javatest.jar com.sun.javatest.EditJTI -n -
omynew.jti -1 myeditlog.html "|/java/jdk/1.3/|/java/jck/1.4/]|"
myoriginal . jti

Echo Results of Your Edit

You can include the -v option to echo results of your edit.

Example:

java -cp [jt_dir /1ib/] javatest.jar com.sun.javatest.EditJTI -n -
v -omynewl.jti -1 myeditlog.html "|/java/jdk/1.3/|/java/jck/1.4/
| * myoriginal . jti

Show Paths for Debugging

The -p option can be used to show the path during debugging. Using -p options
in the command string displays how the path is changed by your edit.

Example:

java -cp [jt_dir/1ib/] javatest.jar com.sun.javatest.EditJTI -n -
o mynew.jti -1 myeditlog.html -p "|/java/jdk/1.3/|/java/jck/1.4/
| "myoriginal . jti

Change Test Suites or Create a New Interview

The following example uses the -ts option to create an empty interview derived
from the test suite (mytestsuite. ts). This is only recommended for very simple test
suites.

Example:

java -cp [jt_dir /1ib/] javatest.jar com.sun.javatest.EJditJTI -o
mynew.jti -1 myeditlog.html -ts mytestsuite.ts "|/java/jdk/1.3/]|/
java/jck/1.4/|" myoriginal . jti

If a change is made that is not in the current interview path, the interview will be
invalid and the tests cannot be run.

Generally, you should not use EAitJTI to change the interview path, but only the
values on the existing path. If you are in doubt about the current interview path,
open the configuration editor window in the JavaTest harness GUI and use it to
change the values. The configuration editor window displays the current interview
path for that question name/value pair.

Chapter 9 Utilities 59

Change the HTTP Port

You can use Edit JTI to change the HTTP port and either overwrite the original
configuration file or create a new configuration file. Examples of both are provided
below.

Note — To run the following examples, you must use a .jti file that exists on
your system and include httpPort in your current interview path. If your current
interview path does not include httpPort you will not be able to change its value
from the command line. To view the current interview path, open your . jti file in
the Configuration Editor. See Obtaining the Question tag-name for detailed
information about the tag-name for the question.

Change the HTTP Port and Overwrite Original Configuration File

The following example changes the HTTP port used when running tests and
overwrites original configuration file (myoriginal . jti in this example).

java -cp [jt_dir /1ib/] javatest.jar com.sun.javatest.EditJTI
httpPort=8081 myoriginal . jti

Change the HTTP Port and Create a New Configuration File

The following example changes the HTTP port used when running tests and writes
the changed configuration to a new configuration file (myoutput . jti in this
example). The original configuration file (myoriginal . jti in this example) remains
unchanged.

java -cp [jt_dir /1ib/] javatest.jar com.sun.javatest.EditJTI -o
myoutput.jti httpPort=8081 myoriginal . jti

Doing Escapes in a Unix Shell

The following example uses the syntax for doing escapes in a Unix shell. Changes
to the original configuration file (myoriginal . jti in this example) are written to a
new configuration file (my-newconfig. jti in this example).

In the following example, myoriginal . jti represents a configuration file name that
might exist on your system. Win32 users must also replace the \ file separators
with / to run these examples.

To change a value in the command line, use the tag-name for the question that sets
the value. See Obtaining the Question tag-name for detailed information about
viewing the tag-name for the question.

60 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

java -cp [jt_dir/1ib/] javatest.jar com.sun.javatest.EditJTI -o
my-newconfig.jti tck.serialport.midPort=/dev/term/a
tck.connection.httpsCert="\"CN=<Somebody>, OU=<People>,
O=<Organisation>, L=<Location>, ST=<State>,

C=US\ " "myoriginal . jti

Chapter 9 Utilities 61

10

Changing Configuration Values
with a Text Editor

62

The JavaTest harness allows you to use a text editor from within a script (such as
sed) to change responses in a configuration file and then launch the JavaTest
harness to run tests.

The configuration file is a standard JavaTest harness properties file in which double
backslashes and escaped new lines are required. If you edit this file in a text editor,
you must also remove the checksum for JavaTest harness to accept it when running
tests.

Checksums are used by the JavaTest harness to ensure that a configuration used to
run tests is complete. By removing the checksum, you risk introducing errors in the
configuration used to run tests.

We recommend that you test your changes in the configuration editor window
before applying them in a text editor. The configuration editor checks the value and
displays the correct set of related questions. See Configuring a Test Run in the
JavaTest Harness User’s Guide: Graphical User Interface for detailed information about
the configuration editor window.

The relationship between the questions in a configuration depends on the test suite
and the interdependance of the questions. A change in the value of one question
may change subsequent, related configuration questions and values. If your
response changes the set of required configuration values, the configuration editor
window displays the incomplete configuration and provides you with a new set of
required configuration questions.

After you have tested your changes and are satisfied with the results, you can use
the text editor to apply them to the configuration. Remove the checksum from the
configuration file before using the changed configuration to run tests.

JavaTest Harness User's Guide: Command-Line Interface * November 06, 2006

Moving Test Reports

JavaTest harness reports contain relative and fixed links to files that break when the
test reports are moved. To prevent this, the JavaTest harness provides an
EditLinks command-line utility in the main JavaTest harness jar file,

javatest. jar, for you to use when moving JavaTest harness reports.

The EditLinks utility checks all files with names ending in .html for HTML
links beginning with file names you specified in the EditLinks command. These
links are rewritten using the corresponding replacement name from the
EditLinks command and are copied to the new location. EditLinks copies all
other files to the new location without change.

Format of the EditLinks Command

Example:
java -classpath [jt_dir/1ib/] javatest.jar
com.sun.javatest.EditLinks OPTIONS file...

OPTIONS
The available OPTIONS are as follows:
-e oldPrefix newPrefix

Any links that begin with the string oldPrefix are rewritten to begin with
newPrefix. Note that only the target of the link is rewritten, and not the
presentation text. The edit is effectively transparent when the file is viewed in
a browser. Multiple -eoptions can be given. When editing a file, the options
are checked in the order they are given.

For example, if the argument

-e /work/ /java/jck-dev/scratch/12Jun00/jck-1lab3/

is used on a file that contains the following segment:

/work/api/
java_lang/results.jtr
the text shown bold below will match:

/work/api/java_lang/
results.jtr
and the resulting new file will contain the following;:

<a href="/java/jck-dev/scratch/12Jun00/jck-1lab3/api/
java_lang/results.jtr">/work/api/java_lang/results.jtr</
a>

-ignore file

When scanning directories, ignore any entries named file. Multiple -ignore
may be given.

Chapter 10 Changing Configuration Values with a Text Editor 63

For example, -ignore SccCs’ will cause any directories named SCCS to be
ignored.

-o file

The output file or directory. The output may only be a file if the input is a
single file; otherwise, the output should be a directory into which the edited
copies of the input files will be placed.

file...

The input files to be edited. If any of the specified files are directories, they
will be recursively copied to the output directory and any HTML files within
them updated.

RETURN CODE

The following table describes the return codes that the program displays
when it exits.

TABLE 9 Exit Return Codes

Code Description
0 The copy was successful.
1 There was a problem with the command

line arguments.

2 There was a problem with the command
line arguments.

3 An error occurred while performing the
copy.

Detailed Example of EditLinks Command

In the following example, fest12_dir.wd and myworkdir.wd represent file names that
might exist on your system. Win32 users must also replace the \ file separators
with / to run these examples.

java -cp [jt_dir/1ib/] javatest.jar com.sun.javatest.EditLinks -e
/work/ /java/jck-dev/scratch/12Jun00/jck-1lab3/ -o
testl2_dir.wd myworkdir.wd

64 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

11

Troubleshooting

The JavaTest harness provides information in the following topics that you can use

to troubleshoot problems:

JavaTest Harness Exit Codes
Using the JavaTest Harness

Running Tests
Writing Reports
Moving Reports

JavaTest Harness Exit Codes

When the JavaTest harness exits, it displays an exit code that you can use to

determine the exit state. The following table contains a detailed description of the

exit codes.

TABLE10 JavaTest Harness Exit Codes

Exit Code
0
1
2

Description

If tests were executed, all tests passed.

One or more tests were executed and failed.

One or more tests were executed and had
errors.

There was a problem with the command-
line arguments.

JavaTest harness internal error.

Chapter 11 Troubleshooting

65

Problems Using the JavaTest Harness

If the JavaTest harness fails, you can use the harness. trace file in your work
directory to troubleshoot the problem. The harness. trace file is a plain-text file
that contains a log of JavaTest harness activities during the test run. It is written in
the work directory, is incrementally updated, and is intended primarily as a log of
JavaTest harness activity.

Problems Running Tests

The goal of a test run is for all tests in the test suite that are not filtered out to have
passing results.

If the root test suite folder contains tests with errors or failing results, you must
troubleshoot and correct the cause to satisfactorily complete the test run. See
Troubleshooting a Test Run in the JavaTest Harness User’s Guide: Graphical User
Interface for information about the resources that the JavaTest harness provides for
troubleshooting.

Tests with Errors

Tests with errors are tests that could not be executed by the JavaTest harness. These
errors usually occur because the test environment is not properly configured. Use
the GUI Test tabbed panes and configuration editor window to help determine the
change required in the configuration.

The following is an example of how the GUI Test Manager tabbed panes and the
configuration editor window can be used to identify and correct a configuration
error:

1. Use the test tree to identify the folder(s) containing test(s) that have errors.
2. Click the folder icon to open its Summary tab in the Test Manager window.
3. Click the Error tab to display the list of tests in the folder that has errors.
4

. Double-click a test in the list to display it in the test tree and view its detailed
test information.

66 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

. Click the Test Run Messages tab to display detailed messages describing what
happened during the running of each section of the test. The contents of each
output section vary from test suite to test suite. Refer to your test suite
documentation for detailed descriptions of the test section messages when
troubleshooting a test run.

. Click the Configuration tab to display a two column table of the name/value

pairs that were derived from the configuration file and used to run the test. The

names in the table identify test environment properties used by the JavaTest

harness to run the test. The values displayed were used to run the test. Refer to
your test suite documentation for detailed descriptions of the name/value pairs

for your test.

. Choose Configure > Show Question Log to view the Question Log of the

current, saved configuration. Use the question log to identify the configuration

value that is incorrect and its configuration question.

. Press F2, choose Configure > Change Configuration from the menu bar, or click

the button on the tool bar to open the configuration editor window.

. Search the configuration file for the specific characters or character strings that
must be changed.

10. Click the Done button to save your changes to the configuration file and rerun

the tests.

Tests that Fail

Tests that fail are tests that were executed but had failing results. The test or the
implementation may have errors.

The following is an example of how the GUI Test Manager tabbed panes can be
used to identify and correct a test failure:

—_

= W N

. Use the test tree to identify the folder(s) containing test(s) that had errors.
. Click the folder icon to open its Summary tab in the Test Manager window.
. Click the Error tab to display the list of tests in the folder that had errors.

. Double-click a test in the list to display it in the test tree and view its detailed
test information.

. Click the Test Run Messages tab to display detailed messages describing what
happened during the running of each section of the test. The contents of each
output section vary from test suite to test suite. Refer to your test suite
documentation for detailed descriptions of the test section messages when
troubleshooting a test run.

Chapter 11 Troubleshooting

67

Problems Viewing Reports

The JavaTest harness does not automatically generate reports of test results after a
test run. You must generate test reports either from the command line or from the
JavaTest harness GUI.

Problems Writing Reports

You use filters to write test reports for a specific set of test criteria. See Creating
Reports in the JavaTest Harness User’s Guide: Graphical User Interface. Verify that you
are using the appropriate filter to generate reports of test results.

68

Problems Moving Reports

Test reports contain relative and fixed links to other files that may be broken when
you move reports to other directories.

You must update these links when moving reports to other directories. The
JavaTest harness provides an EditLinks utility that updates the links in the reports
for you when moving reports.

JavaTest Harness User's Guide: Command-Line Interface * November 06, 2006

Chapter 11 Troubleshooting 69

Glossary

. jtb Files
See command file.
. jte Files

See environment files.

.jti Files

See configuration file.

. jtp Files

See parameter files.
.jtr File

See test result files.
. jtx Files

See exclude list.

Audit

The JavaTest harness includes an audit tool that you can use to analyze the
test results in a work directory. The audit tool verifies that all tests in a test
suite ran correctly and identifies any audit categories of a test run that had
€erToTS.

You can use the GUI or the command-line interface to audit a test run.

70 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

Batch Mode

You can use either the -batch mode option or the current -run command to
run tests from the command line or as part of a build process. Unless you are
running tests from the command line and are using the GUI to monitor the
test run, the -batch mode option is no longer required.

Class

The prototype for an object in an object-oriented language. A class might also
be considered a set of objects that share a common structure and behavior.
The structure of a class is determined by the class variables that represent the
state of an object of that class and the behavior is given by a set of methods
associated with the class.

Command File

You can place routinely used configuration settings in a command file and
include it in a command line. The command file is an ASCII file containing a
lengthy series of commands and their arguments used in the command-line
interface to modify specific configuration values before running tests.

You can use command files to configure and run tests, write test reports, and
audit test results either from the command line or as a part of a product build
process. Using a command file allows you to repeatedly use a configuration
without retyping the commands each time a test run is performed.

It is recommended that a descriptive name and the extension . jtb are used
to help identify the function of each command file.

Configuration

Information about the computing environment required to execute a test
suite.

In the GUI, you can use the Configuration Editor to collect or modify
configuration information or to load an existing configuration. See
Configuration Editor. The Configuration Editor collects the following two
types of data in an configuration file:

Test environment
Standard Values

In the command-line interface, you can perform the following tasks:

Use the EAitJTI utility to modify configuration information (see
EditJTI).

Chapter 11 Glossary 71

72

m Set specific configuration values in the command line when starting the

JavaTest harness.

Configuration File

Contains all of the information collected by the configuration editor about
the test platform.

The JavaTest harness derives the configuration values required to execute
the test suite from environment entries in a configuration file (.jti).

Use the Configuration Editor or Edit]TI to change configuration values in a
.jti file.

You can also set specific values in the command line.
Configuration Value
A value specified by the user for the purpose of configuring a test run.

Configuration values are derived from environment entries in a
configuration file and used by test suite specific plugin code to execute and
run tests.

For test suites prior to the JavaTest harness, version 3.0, the configuration
value is read from an environment file (. jte).

For JavaTest harness, version 3.0 (or later) test suites, the configuration value
is derived from the configuration file (.jt1).

Use the Configuration Editor or EditJTI to change the configuration
values in the . jti file.

You can also set specific configuration values in the command line.
Current Configuration

The configuration containing the test environment and standard values
currently loaded in the test manager or specified in the command line for use
in running tests and displaying test status.

JavaTest Harness User's Guide: Command-Line Interface * November 06, 2006

Edit] TI

The JavaTest harness provides an Edit]TI utility that you can use from the
command line to edit the values entered in a configuration file without
opening the JavaTest GUIL The Edit]TI utility is the batch command
equivalent of the JavaTest Configuration Editor.

Environment

See Test Environment.

Environment Entry

A name-value pair derived from a configuration file and used by test suite
specific plugin code to execute and run tests. These name-value pairs provide
information (configuration values) about how to run tests of a test suite on a
particular platform.

For test suites prior to the JavaTest harness, version 3.0, the name-value pairs
are read from an environment file (. jte).

For JavaTest harness, version 3.0 (or later) test suites, the name-value pairs
are derived from the configuration file (.jti).

Environment Files

Contain one or more test environments used by test suites prior to the
JavaTest harness version 3.0. Environment files are identified by the . jte
extension in the file name.

Error

The test is not filtered out and the JavaTest harness could not execute it. There
are no test results for tests having errors. Errors usually occur because the test
environment is not properly configured.

In the GUI, the JavaTest harness displays error icons for tests with errors and
for folders containing any tests with errors. Folders marked with error icons
can also contain tests and folders that are Failed, Not Run, Passed, and
Filtered out.

Exclude List

Exclude list files (*. jtx), supply a list of invalid tests to be filtered out of a
test run by the test harness. The exclude list provides a level playing field for
all implementors by ensuring that when a test is determined to be invalid,

Chapter 11 Glossary 73

74

then no implementation is required to pass it. Exclude lists are maintained by
the technology specification Maintenance Lead and are made available to all
technology licensees.

In the GUI, use the configuration editor to add or remove exclude lists from a
test run. In the command line, you can specify an exclude list in the
command.

To view the contents of an exclude list, choose Configure -> Show Exclude
List from the Test Manager menu bar. Exclude lists can only be edited or
modified by the test suite Maintenance Lead.

Fail

Test results determined by the JavaTest harness that do not meet passing
criteria.

In the GUI, the JavaTest harness displays Failed icons for tests that the test
suite has determined have failing results and for folders containing any tests
with fail results. Folders marked with Failed icons can also contain tests and
folders that are Not Run, Passed, and Filtered out.

Filtered Out

Folders and their tests that are excluded from the test run by one or more test
run filters.

In the GUI, Filtered Out folders and tests are identified in the test tree by grey
E:folder and Dtest icons.

Filters

A facility in the JavaTest harness that accepts or rejects tests based on a set of
criteria. There are two types of filters in the JavaTest harness, view filters and
run filters. View filters are set in the Test Manager to display the results for
specific folders and tests and to create test reports. Run filters are set in the
Configuration Editor or are specified as commands in the command-line to
specify which tests are run.

JavaTest Harness User's Guide: Command-Line Interface * November 06, 2006

HTTP Server

Software included in the JavaTest harness that services HTTP requests used
to monitor a test run from a remote work station.

Interview File

See configuration file.

JTI

Standard file extension for a configuration file. See configuration file.

Keywords
Special values in a test description that describe how the test is executed.

Keywords are provided by the test suite for use in the Configuration Editor
or command line as a filter to exclude or include tests in a test run.

Multiple Document Interface

A window style in which the JavaTest harness desktop is a single top-level
window that contains all JavaTest harness windows opened to perform a
task.

Use the Preferences dialog box to select the MDI window style. See JavaTest

Harness Preferences.

Chapter 11 Glossary

75

Observer

An optional class instantiated from the command line to observe a test run.
The class implements a specific observer interface.

Parameter Files

Files used prior to the JavaTest harness, version 3.0, to configure how the
JavaTest harness runs the tests on your system. Parameter files have the file
name extension of .jtp.

Use of parameter files is deprecated, however, the JavaTest harness provides
support for those test suites that use parameter files.

Pass
Test results determined by the JavaTest harness to meet passing criteria.

The JavaTest harness displays Passed icons for tests that the test suite has
determined have passing results and for folders containing only tests with
passing results.

Port Number

A number assigned to the JavaTest harness that is used to link specific
incoming data to an appropriate service.

Prior Status

A filter used to restrict the set of tests in a test run based on the last test result
information stored in the test result files (. jtr) in the work directory.

Use the configuration editor or command line to enable the Prior Status filter
for a test run.

76 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

Report Directory
The directory in which the JavaTest harness writes test reports.

The location of the report directory is set in the GUI or from the command
line by the user when generating test reports.

Standard Values

The Quick Set mode of the Configuration Editor displays the standard values
of a configuraion.

System Properties

Contains environment variables from your system that are required to run the
tests of a test suite.

Because the JavaTest harness cannot directly access environment variables,
you must use command-line options to copy them into the JavaTest harness
system properties.

Chapter 11 Glossary 77

Test Description

Machine readable information that describes a test to the JavaTest harness so
that it can correctly process and run the related test. The actual form and type
of test description depends on the attributes of the test suite. When using the
JavaTest harness, the test description is a set of test-suite-specific name-values
pairs.

Each test in a test suite has a corresponding test description that is typically
contained in an HTML file.

Test Environment

A collection of configuration values derived from environment entries in
the configuration file that provide information used by test suite specific
plugin code about how to execute and run each test on a particular platform.

When a test in a test suite is run, the JavaTest harness gives the script a test
environment containing environment entries from configuration data
collected by the configuration editor. See configuration.

Prior to the JavaTest harness, version 3.0, the environment entries were read
from an environment file. Use of environment files is deprecated. However,
the JavaTest harness continues to provide support for those test suites that
use environment files. See environment file.

Test Manager

The JavaTest harness window used to configure, run, monitor, and manage
tests from its panels, menus, and controls.

The Test Manager window is divided into two panes. It displays the folders
and tests of a test suite in the tree pane on the left and provides information
about the selected test or folder in the information panes on the right.

A new Test Manager window is used for each test suite that is opened.
Test Result Files

Contains all of the information gathered by the JavaTest harness during a test
run.

The test result files (. jtr) are stored in a cache in the work directory
associated with the test suite.

You can view the test result files in a web browser configured to use the
JavaTest harness Resul tBrowser servlet.

Test Run Filters

Include or exclude tests in a test run. Tests are included or excluded from test
runs by the following means:

» Exclude lists

78 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

= Keywords
m Prior status

Test run filters are set using the Configuration Editor or the command-line
interface.

Test Script

A script used by the JavaTest harness, responsible for running the tests and
returning the status (pass, fail, error) to the harness. The test script must
interpret the test description information returned to it by the test finder. The
test script is a plug-in provided by the test suite. In the GUI, the Test Manager
Properties dialog box lists the plug-ins that are provided by the test suite.

Test Suite

A collection of tests, used in conjunction with the JavaTest harness, to verify
compliance of the licensee’s implementation of the technology specifications.

A test suite must be associated with a work directory before the JavaTest
harness can run its tests.

Work Directory

A directory associated with a specific test suite and used by the JavaTest
harness to store files containing information about the test suite and its tests.

Until a test suite is associated with a work directory, the JavaTest harness
cannot run tests.

Chapter 11 Glossary 79

80 JavaTest Harness User’s Guide: Command-Line Interface ¢ November 06, 2006

Index

Symbols
jtp file, 47
jtr files, 54
jtx file, 48
jtx files, 54

A

agent pool
setting port number, 32
setting timeout, 32
starting, 32

audit tests command, 39

B

batch command, 38
browsing
Exclude List files, 54
test result files, 54

C

command
audit tests, 39
batch, 38
concurrency, 24
config, 19
env, 25
envFiles, 24
excludelist, 26
keywords, 27
observer, 38
open, 20
priorStatus, 28
runtests, 33
examples, 34
set, 22
examples, 23
status colors, 41
tests, 29
testSuite, 16
timeoutFactor, 30
writereport, 39

command file, 3,6
commands
EditLinks, 62
information, 42
initial set-up, 15
parameter, 47
setup, 14
task, 32
workDir, 17
create, 17
overwrite, 18
workdir, 17
workDirectory
create, 17
overwrite, 18
workdirectory, 17
concurrency command, 24
config command, 19
configuration file
changing values in, 55
configuration values
setting, 21
create work directory, 17

E

EditJTI command format, 55
EditLinks command format, 62
env command, 25
envFiles command, 24
environment variable

setting, 32
example

runtests command, 34

81

examples P
creating a new work directory, 18
replacing a work directory, 19
set command, 23

parameter commands, 47
parameter file, 47

Exclude List file, 48 prior test status, 28
Exclude List files, 54 priorStatus command, 28
exclude lists
specifying, 26 R
excludeList command, 26 remotely monitor and control a test run, 49
replace existing work directory, 18
F reports
file moving, 62
jtp, 47 writing, 39
jtx, 48 runtests command, 33
command, 3,6
formatting configuration values, 9 S
servlet
H JavaTest ExcludeBrowser, 55
HTTP Server, 49 JavaTest ResultBrowser, 54

set command, 22
examples, 23

I setting
increasing the timeout, 30 agent pool port number, 32
Information Commands, 42 agent pool timeout, 32
initial set-up commands, 15 environment variable, 32

system properties, 32
J setting concurrency, 24

setting specific configuration values, 21

JavaTest

setup commands, 14

ExcludeBrowser servlet, 55 additional, 31

ResultBrowser servlet, 54

specify
a work directory, 17
K configuration file, 19
keywords command, 27 directories of tests, 29

tests to run, 29
work directory

M existing, 17
monitor a test run specifying a test environment, 25
remote, 49 specifying an environment file, 24
monitor test progress, 34 specifying exclude lists, 26
starting agent pool, 32
O status colors command, 41
observer command, 38 system properties
open command, 20 setting, 32
option
verbose, 34 T

Task Commands, 32

82 JavaTest Harness User's Guide: Command-Line Interface ¢ November 06, 2006

test result files, 54
tests command, 29
testSuite command, 16
timeoutFactor command, 30
troubleshooting, 64
exit codes, 65
reports
moving, 68
viewing, 67
writing, 68
running tests, 66
tests that fail, 67
tests with errors, 66
running the JavaTest harness, 65

U

using keywords, 27
utilities
Edit]TI, 55

\"

verbose option, 34

W
web server

JavaTest, 49
work directory

create new, 17

replace existing, 18

specify, 17

existing, 17

writereport command, 39
writing reports, 39

Index 83

84 JavaTest Harness User's Guide: Command-Line Interface ¢ November 06, 2006

	JavaTestTM Harness User’s Guide
	Preface
	Before You Read This Book
	How This Book Is Organized
	Using UNIX® Commands
	Typographic Conventions
	Shell Prompts
	Related Documentation
	Accessing Sun Documentation Online
	Sun Welcomes Your Comments

	What is the JavaTest Harness Command-Line Interface?
	JavaTest Harness Command-Line Interface Features
	For the New JavaTest Harness User
	Providing Configuration Information
	Online Documentation and Context Sensitive Help

	Before Starting the JavaTest Harness
	Command-Line Summary
	About the Command-Line Examples
	Formatting a Command
	Command Options Format
	Single String Arguments Format
	Command File Format

	Using Command Files
	Creating a Command File
	Examples of Using Command Files
	Formating Configuration Values for editJTI or -set

	Extended Command-Line Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	Index of Available Commands

	Setup Commands
	Initial Set-up Commands
	Specifying a Test Suite (testsuite)
	Specifying a Work Directory (workdir or workdirectory)
	Specifying a Configuration File (config)
	Specifying a Test Suite, Work Directory or Configuration (open)

	Setting Specific Values
	Obtaining the Question Tag-Name
	Setting Specific Configuration Values

	Setting Concurrency (concurrency)
	Detailed Example of concurrency Command

	Specifying an Environment File [deprecated]
	Detailed Example of envFile Command

	Specifying a Test Environment [deprecated]
	Detailed Example of envFile Command

	Specifying Exclude List Files (excludeList)
	Detailed Example of excludeList Command

	Using Keywords (keywords)
	Detailed Example of keywords Command

	Selecting Tests Based on Previous Results (priorStatus)
	Detailed Example of priorStatus Command
	Specifying Tests or Directories to Run (tests)
	Increasing the Timeout (timeoutFactor)

	Additional Setup Commands

	Task Commands
	Running Tests (runtests)
	Detailed Example of runtests Command

	Monitor Test Progress (verbose)
	Monitoring Options
	Detailed Examples of Monitoring Commands

	Batch (batch)
	Detailed Example of batch Command

	Observer (observer)
	Writing Reports (writereport)
	Detailed Example of writereport Command

	Auditing Tests
	Detailed Example of audit Command

	Desktop Commands
	Using a New JavaTest harness Desktop
	Specifying Status Colors
	Detailed Example of Specifying a Status Color

	Information Commands
	Command-Line Help
	All Information
	Topic Information
	Word Search Information

	JavaTest harness Version Information
	Displaying JavaTest harness Online Help

	Legacy Commands
	Using Parameter Commands (params) [deprecated]

	Utilities
	Monitoring Results with HTTP Server
	HTML Formatted Output
	Plain Text Output

	Browsing Result (.jtr) Files
	Browsing Exclude List Files
	Changing Configuration Values With EditJTI
	EditJTI Command Format

	Changing Configuration Values with a Text Editor
	Moving Test Reports
	Format of the EditLinks Command
	Detailed Example of EditLinks Command

	Troubleshooting
	JavaTest Harness Exit Codes
	Problems Using the JavaTest Harness
	Problems Running Tests
	Tests with Errors
	Tests that Fail

	Problems Viewing Reports
	Problems Writing Reports
	Problems Moving Reports

	Glossary
	Index

