]

gentleware

just model

Poseidon for UML Users Guide

Dr. Marko Boger
Thorsten Sturm
Erich Schildhauer
Elizabeth Graham

gentleware

just model

Poseidon for UML Users Guide
by Dr. Marko Boger, Thorsten Sturm, Erich Schildhauer, and Elizabeth Graham

Copyright © 2000-2003 Gentleware AG

Table of Contents

1. About Gentleware and Poseidon for UML.........cccveiinenenieneneseee e 1
I I O 10 T g V1 o] OSSOSO 1

7 1 4 010 V7= 11 o] o S PSSS 1

RS T @0 T0] o<1 =11 (0] o SRS 2

1.4. How to getin touCh With US........ccuviiiiie e 2

1.5. New Features in Version 2.0.........ccocevererininienenineseseseseseseseseseeas 3

1.6. AbOUt thiS dOCUMENL.......ccueiieeieceeseeere e 4

2 =T 1110 R PRTRSN 5
2.1. CommuNity EdIitiON........ccceeiiiieie e 5

2.2. Standard EItIQN..........cccoiieiieeiecceece e 6

2.3. Professional EQIitioN..........cccoveeiiiieneneseee e 7

2.4. ENterprise EditioN........ccooiiiiii e 8

2.5. Embedded EditiQn.........cccoiiiiiiiiieeeeeee e 9

2.6. Edition COMPATISON......ccuiiiiiieierie e 9

T e 1T (=0 (U] (SRS 13
4. Installation and FirSt STart ..o 15
4.1. Install using INstallANYWhEr@.........cccoveeieiieeseee e 15

4.2. Install through Java Web Statrt...........ccocvvinininineeceee 15

4.3. Install from @ ZIP fil@.....cooeiieeeeeeeseee e 16

4.4. Environment VariabIes..........coooiiinineeeeee e 17

5. Keys and ReQISIratiON........c.ccvceieeieiieieceesie et 19
5.1. Types and TerminOIOGY.......ccuururererererieeeeseeeeee e 19

5.2. CommuUNIty EAitION.......cooiiiiiieeeesee e 19

5.3, EVAIUALION COPY..iiuriiiiiiiiiiieitie et esiessee et sres e steesreesnneeseesreesnnas 20

5.4. Premium Version PUICNASE.........ccuiriririnininisiseeee s 21

5.5. KEYS fOr PIUG-INS....cc.eiiiiiriiriiiieieiieeeesee e 22

6. A Short Tour of POSeidon fOr UML ..o 23
6.1. Opening the Default EXample.........ccoovviiivin e 23

6.2. Introducing the WOIK Ar€a..........cceecuereeieiieie e 23
6.2.1. The Navigation Pane...........cccoevererirenieneneseeesesesee e 25

6.2.1.1. Changing the Navigation View............ccccceccenvrierenenne. 27

6.2.1.2. Opening Multiple Navigation Panes............cc.cccccueeunene. 28

6.2.2. The Diagram Pane..........ccccceeveveeieseee e 29

6.2.3. The Details Pane.........ccoceveeiereeeseeeseese e 31

6.2.4. The OVEIVIEW Pane ... 32

LS 0C TR\ = Y/ T = U1 o SR 33
6.3.1. Navigating with the Navigation pane..........cccceeevevvrcervecnnnne. 33

6.3.2. Navigating in the Properties Tab.........cccceovirininiericinceee, 35

6.4. MOdify EI@MENTS.....cceiiieeee e 36

6.4.2. Create EIEMENL........ccccco e 38
6.4.3. Delete EIEMENLS........ccoce e 39

7. Working With DIQQramscoceiieiiiieesieee et e e 43
7.1. The Diagram Pane.........ccccouririrerininineeeseses e 43
7.1.1. Diagram Pane ToOIDar........c.ccociiriririnineeee e 43
7. 0. 1.1, SEIECL ..t s 43

7.1.0.2. NOTES ...t 44

7.1.1.3. Drawing TOOIS.......ccccuririririnenenesesiese et 45

7.1.1.4. Toggle Between Editing Modes..........cccceverererinennnne. 46

7.1.1.5. Close Shape........ccoviiiiiciie e 47

4% 0 Y G @ o = 1o | VSR 48

A T A V1Y =Y/ o T 1 R 49

7.1.1.8. Diagram-SpecifiC TOOLS..........ccooererenirerineneseeeeeeees 49

7.2. VIEWING DIagramS......cccceiuireerinieniesiee e sie e st see s ssesseeeeas 50
7.2.1. The Details Pane..........cocoiiriiienieeeeee e 50
A 2 A« To] 1411 o SR 52

7.3. Creating New DiagramS.cccurererererineneseseseseses e eseseseeneas 53
7.4. Creating New EIEMENLS.......cccoiiiieneeesee e 54
7.4.1. Diagram Pane ToOoIbar........ccocovieiiiii e 55
7.4.2. The Rapid BUONS........cccooiiieecieceseee e 56

7.5. Editing EIEMENLS.......ooiiiiiie e 57
7.5.1. Inline Editing Text Values...........ccccoverieneenineeie e 58
7.5.2. Editing via the Details pane...........cccocoveveeiieiiicieesie e 59
7.5.2.1. The PropertiesS Tab........ccccoeveereneerecese e 59

7.5.2.2. The Style Tah.......cccooiriniii e 60

7.5.3. Editing via the Context MeNUL..........ccocvreereneeneseere e 61

7.6. EditiNg DIagramsS......ccciiieiieeiiie ettt 62
L0 T = To =T g (o 1 o o T 62
7.6.2. Changing NamMeESPACES.........ceverererererereseeeee e 63
7.6.3. LAYOUL TUNCHIONS. ..ot s 64
7.6.4. Removing and Deleting Elements..........ccccceoovevieviniiicieenienns 66

7.7, UNAO/REAQ.......ciiriiiiieiiriieeneeee et 68
8. WOrking With MOTEISc.ooiiiiiiree e 69
8.1. Creating NEW MOUEIS........ccooiiieeeeee e 69
8.2. Saving and Loading Models.........cccceiiiiieiieiieceeee e 69
8.3. IMPOItiNG FIlES....o et 71
8.4. IMPOrtiNg MOUEIS......ccoiiiieiieeeee e 72
8.5. EXPOrting MOAEIS.......ccooiiiiiieeseeesee e 73

8.6. Exporting Graphics and Printing.........cccceecveveeviiecieesee e 74

9. A Walk through the DIagrams.........c.ccceevereeiesieeseseesiesee s see e see e eaeseeneens 79

9.1. Use Case DiagramsS.........ccccurererererineseeesiese e 79
9.1.1. Diagram ElemMeNntS........cccocoviiieiiesie e 79
9.1.2. TOOIDAL. ..ot 80

9.2. Class DiagramS........cccuviririirinineneresies e 81
9.2. 1. SEEIEOLYPES.....eiieeeerteeie sttt 82
9.2.2. ASSOCIALIONS.....cveeiiiteeie ittt ee e e 83

9.2.2.1. Navigability........cccoeieeiieiiesee e 85
9.2.2.2. Hiding and Displaying Multiplicity of L......c...cccccevvnene. 85
9.2.2.3. Self-ASSOCIAtIONS.......cccvreeireiere e 86
9.2.3. ALIIDULES ... 86
9.2.4. OPEIAtIONS......ceeitiiieeiiieiteesee e sre e e re s sreeereenreens 88
9.2.5. Diagram ElementS.......cccccovevievenieseee e 89
9.2.6. TOOIDAL.......c i 90

9.3. ODJECE DIAQIaMS.....ccuiieeiirieeieeeesie ettt e e eesneeee s 91
9.3.1. Diagram ElemMeNntS........cccocuviiieiieiie e 91
9.3.2. TOOIDAL......coiiiririe e 91

9.4. ACHIVILY DIQQIAMS......couiiiiiiiriiriieieeieeeeiesee e 92
9.4.1. Diagram Elements........ccccooereiiniineeeee e 93
9.4.2. TOOIDAL. ..ottt e 93

O.5. State DiagramS.......ccivieeriieeerieeeeseeieesteesee e esee e esesseesre e esseaseessesseensens 94
9.5.1. Diagram EIEmMENLS........ccvreririririnereseeeseeeee e 95
9.5.2. TOOIDAL......coieiiee e 96

9.6. SeqUENCE DIagramlS.......cccveiuieiieirieiriesee et see et e et 97
9.6.1. Diagram Elements.......cccccoveeeiieiee s 99
9.6.2. TOOIDAL.......cieeeecece e 100

9.7. Collaboration DIiagrams.........cccceieerereeneneeseeeesiesseeseesseesres e sseense e 100
9.7.1. Diagram ElementS........cccccoviieiiieiie e 101
0.7.2. TOOIDAL........oiiiiiiiieeie s 101

9.8. ComMPONENt DIAgIamsS........ccurererereririeeseseseee s 102
9.8.1. Diagram EIEmMENtS........ccccerireririneeieeeeees s 102
9.8.2. TOOIDAL......coieiiee e 103

9.9. Deployment DIagrams........cceeceeeeresieeseseeseeceesessee e eseesreeseesseenne s 103
9.9.1. Diagram EIEmMENLS........ccciriririnirinireeeseseeeeee s 104
9.9.2. TOOIDAL. ..o e 104

L0, PANES...ccee et n e r e r e nne e 107

10.1. NavIigation Pan@.........cccvieiiiieieeeesie e esee st 107
10.1.2. Add @ tab.....cucoeecececceeeece e 107
10.1.2. Delete atah.....ccocoveeieeeceeeeeee e 108
10.1.3. Delete a diagraml.........cccovereeiiieeiiesee e s 108

(O DI T To [= U g I o= = S 109
10.2.1. Open Diagrams........ccccveererieeieeieeieeeeeee e 109
10.2.2. REMOVE TaDS.......oiiieeieceeieeee e 110

10.2.3. Create Diagrams........ccccceereereereneeniesieesseseessessessseeeessesnsenns 110

10.2.4. Edit DIAgQramsS........cccceerererinieeeeseseseseses e eseeeseenens 111
10.2.5. Change properties of the Diagram Pane..............ccccoeeueenee. 112
10.2.5.1. Grid SEtiNGS.....coiiieiieeriesie e 112
10.2.5.2. Other SEttiNgS.....ccocevivrierieereee e 113

10.3. OVEIVIEW PANE.......oiieieiieee et 113
10.3.1. Birdview Tah.......ccocorieeee e 113
10.3.1.1. Zoom in Birdview ONly.........cccceeeiieiiciveiiesin e 114
10.3.1.2. ZoOM in diagraM.......cccceeeeeieerieeieseeieesreeseesreesee e 114
10.3.1.3. Turn off Birdview in Settings........c.ccecevevrerierierieniennenn 114

10.3.2. CritiqUe tah....c..eeeeeeeeeeee e 115
10.3.2.1. Open @ CritiQUE......ccvevueeieecie et 115
10.3.2.2. Navigate to critiqued area.........c.ccceeeevvevereesieseennn 115
10.3.2.3. SN00ZE CritiQUE.......eruerierieriirierieneeieeieeeeeee e 116
10.3.2.4. TOgQgle CritiQUe.......cooeeeeeeeeieeeeeee e 116
10.3.2.5. Turn off AULOCHEIQUE.......cceeeireerriecie e 116
10.3.2.6. Hide/display Critique Window..............ccccceveereerreennnne. 116

10.4. DEtailS PaANE......c.ccoeecieee ettt 117
10.4.1. Properties Tah.......ccoeeiiieiieece e 117
10.4.2. Style Tah.....oo e 119
10.4.3. TO DO Items Tab......cccceiriniriiire e 120
10.4.4. Documentation Tab.........cccccveeereneene e e 120
10.4.5. Source Code Tab.......cccveeiireeieniere e 120
10.4.6. Constraints Tab.........ccociiiriiiieeee e 122
10.4.7. Tagged Values Tah.........ccccovveiv e 122

11. SEetting PrOPEITIES.....ccueiiirieriieieriererieeee et 125
I I =T =T = RS 125
Y o] o [T T =V o = SRS 125
I8 0 TR 1Y [Yo 11 [o S 127
11.4. Diagram DiSPIay.......c.cueririreriririneseseeese s 127
(ST =1 01V 70 o 0 1 T=T o RS 128
I T O E] T OO P R TRTPRTUPR 130
I8 R A o o[- X S 130
11.8. OPUMIZING ..cuiiiiiiiiieererese e 131
12. Code Generation and Round-trip ENgGINEEring.........ccocevereenesieeneseenenns 133
12.1. Generating COUE.........coiieiieiie it 133
12.2. Fine-tuning code generation..........ccecueeeereeeereseesesee e eeeseeeee e 135
12.3. Reverse-Engineering Code.covereriiirenienieneeeeeeee s 137

13. Documentation Generation (UMLAOC)........ccoivevuererieereereseeseseese e 143

IR 700 L 1Y/ o o oS 143
13.2. Code generation SettiNgS..........cccveeieriiieesee et 143
13.3. Supported jJavadoC tagS........cccvrreereeiir e 144
14, AAVANCEA FEALUIES........ocveeteeceee et et 147
14.1. Constraints With OCL.........ccovceeiiiiereeereee e 147
I O 411 [U= USSR 148
14.3. Searching for Model Elements.........ccccooovevevieveieeie e 148
15. Plug-inS and ProfileS.........couiiiniieeeeee e 151
15.1. The PIUg-IN MANAGEL.......cccciieeeeeeesieeeesiee e 151
15.2. PlUQ IN GUIES. ..ottt et 152
15.2.1. Poseidon C# Code Generation Plugin Guide..................... 152
15.2.1.1. General RUIES.........ccccveceeeeceecee e 152
15.2.1.1.1. Tagged Values.........ccoeeermreeneneeneneenie e 152

15.2.1.1.2. Additional Stereotypes........cccceveevieeviieeieesienns 152

15.2.1.2. Modelling Element Rules..........ccccoveveveeceveecie e, 153
15.2.1.2.1. ClASSES...cceiiiriecteecee ettt see et nnee 153

15.2.1.2.2. INterfacCe......ccceeeeieeee e 154

15.2.1.2.3. StIUCLULE......eeiieeeiee ettt 154

15.2.1.2.4. ENUMEratiON.......cceceeveieeiieeeeseceese et 155

15.2.1.2.5. Delegate.......ccocvinirenenininenesesesesee e 155

15.2.1.2.6. CHEVENL....cccv e 156

15.2.1.2.7. OPErationsS.......cccceccueeiieesiesie e esieeseesee e esneens 156

15.2.2. Poseidon CORBA IDL Code Generation Plugin Guide.....156
15.2.2.1. General RUIES.........cccceeceiiieeeece e 156
15.2.2.2. CORBA INterface.........cceoveveneeinneee e 156
15.2.2.3. CORBA VAIUEL........ocoveirieieieieieeeeeeeee e 156
15.2.2.4. CORBA StrUCL.......cccceririririririsesee e 157
15.2.2.5. CORBA ENUML...cciiiiiiriirininireeeses e 157
15.2.2.6. CORBA EXCEPLIQN......ccceririririieirieeieeeeeeeee e 157
15.2.2.7. CORBA UNION......occeiirinirieieieiseseees e 158

15.2.3. Poseidon VB.Net Code Generation Plugin Guide............. 158
15.2.3.1. General RUIES.........cccoeceieececeee e 158
15.2.3.2. ClaSSES.....ciiiieierieeeeste et eee et 159
15.2.3.3. INTEITACES......oiieeeeeeee e 159
15.2.3.4. MOAUIES ...ttt 159
15.2.3.5. SHUCIUIESottt 159
15.2.3.6. ENUMS....oiii e 160
15.2.3.7. OPEratiONS....cceeieeeeiieeieneeieesiee e 160
15.2.3.8. Operation’s Parameters.........cccceevvevcveieesieesiieeseeseeens 161
15.2.3.9. Visual BasiC Properties........cccoovvveveveernseeseseennenns 161
15.2.3.10. Visual BasiC EVENIS.........cccovevvreeieniere e 161

Vii

15.2.3.11. Attribute & Association ENds........ccccccovveeevieveeeein, 161

15.2.4. Poseidon PHP4 Code Generation Plugin Guide................ 161
15.2.4.1. General RUIES.........cccooeiiiiie e 162
15.2.4.1.1. Tagged Values.........cceveevieiieeiiienie e 162
15.2.4.2. PHP4 Class Modelling Rules..........cccccoeevvvevieieennene. 162
15.2.4.2.1. Class SIgNature........cceoererenererenereseeeeiene 162
15.2.4.2.2. Class Attributes.........ccocevvvenennreneeeeee 162
15.2.4.2.3. Class Operations.........ccccuvuevieeieesensiunsiessienns 163

15.2.5. Poseidon Delphi Code Generation Plugin Guide............... 165
15.2.5.1. ClaSSTI@LS...ccceiiereeierieeeereeee e 165
15.2.5.2. Tagged Values.........ccooeiereeneneneee e 165
15.2.5.3. StEIrEOLYPES...ii ettt 167
15.2.5.4. Modelling Element Rules..........cccocveveviecvveecie e, 168
15.2.5.5. SpecCific RUIES.......cccooiiirerrr e 170
15.2.6. Poseidon Perl Code Generation Guide...........ccccceevereenene 170
15.2.6.1. General RUles.........cccooiiiiiiii e 171
15.2.6.2. ClAaSSES...c.ueiiriiriirierieniisesiee st 171
15.2.6.3. Class AtrBULES..........cccevvecerececece e 171
15.2.6.4. Class Operations.........ccoeeererieeseriensieeseeseesseessesneenne 171
15.2.6.5. ASSOCIALIONS.....oiiiiiiirieieeie e 172
15.2.6.6. AQQregatiQn.........ccccevveveereeieeseeiee e seeesee s 172
15.2.6.7. INNEMTANCE.......coieeeee e 172
15.2.7. Poseidon SQL DDL Code Generation Plugin Guide......... 172
15.2.7.1. Modelling Element Rules..........cccccecviiiivin e, 172
15.2.7.0. 1. ClaSSES....cccesiriiriinirieniesesiese s 172
15.2.7.1.2. ATHDULES....ccveceece e e 173
15.2.7.1.3. Association ENdS........ccccooovveenienennnieenenienens 173
15.2.7.2. Tagged Values............ccceeieeiiieeiiesie s 173
15.2.7.3. Additional Stereotypes.........cccevevvevevieeveseese e 173
15.3. Available PIUg INS.......cooii s 173
15.3.1. JAR IMPOKL...cieiiieee e 173
15.3.2. RoundTrip UML/JAVA.......ccooeiiiiieiee e 174
15.3.3. Statechart-t0-Java.........cccceoereeiiniere e 174
15.3.4. OCL Code Generation.........ccueveeeererieesenieesieeseeseeeseesseeneens 174
15.3.5. Refactoring BrOWSEL..........ccccurirerieeieieieeeee e 174
15.3.6. MDL IMPOIt...ciie e 175
15.3.6.1. Installing and USINgG........cccevvereeiiriiieiiee s 175
15.3.6.2. Supported Diagrams..........ccceeevereereseeneseeseeseeneenns 176
15.3.6.3. Unsupported Features...........cccuvvvrerererierieneeeeeeen 176
15.3.6.4. Display ISSUES.......ccoceriererieneee e 177
15.3.6.5. STAtUS...cceiiiiriciriereree e 177
15.4. Profile Manager.........cccceveeieieerie e e e esee s sae e e sae e nns 177

viii

16. MOre 0N COAE GENEIALION......ceeeeeeee e e e e et e e e e e eee e e e e e e e aeeeeeeeens 179

16.1. The Velocity Template Language...........cccceeerererereneneneseeeeeenes 179
16.1.1. REEIENCES ... e 179

16.1.2. DIFECHIVES ...cueiiiieieeeeeeee et 180

16.1.3. COMMENLS ...ttt e e e e e eeens 181

16.1.4. EXAMPIES. .ot 181

16.2. Working with the Standard Templates..........cccccceeveevieccecieeneenen, 187
16.3. The Code Generation APL.........cccoiiiiieniinieeeee e 188

17, EPIOQUE. ..ottt 189

List of

2-1.

List of

6-1. Poseidon for UML application work area.........c.cccceveveveeieeniesie e, 24
6-2. Navigation Pane in the Stattauto model............cccooveveveececiecce e 26
6-3. Class Diagram 'Container Class Analysis-Packages'..........cccccvvrierenne. 26
6-4. Change a View in the Navigation Pane...........ccoccoeovreenenenenienesre e 27
6-5. Add a Navigation VIiew Tah.........cccceviiiiiii i 28
6-6. Delete a Navigation VIeW Tab..........cccccveviiieie e 29
6-7. The Diagram pane displaying the diagram 'Entity Class Model Overvie30.
6-8. The Details Pane with class 'Reservation’ selected.............ccccoceverennenne. 31
6-9. Class diagram as seen in the Birdview Tah...........ccccoooviiivniieicecceen, 32
6-10. Critiques of the Stattauto example in the ByPriority Tab........................ 32
6-11. The Navigation Pane in a Diagram Centric VIEW..........ccocevverererererenne 34
6-12. Select class 'Reservation’ from Diagram Centric VIeW............cccceeeruenne. 35
6-13. The Details Pane with the class 'Reservation’ selected......................... 36
6-14. The Properties tab with the attribute 'number’ selected............c......... 36
6-15. Change Operation Name in a Diagram...........ccooeveceevereenesieeseeseeseeeeenns 37
6-16. Change Operation Name from the Details Pane..........cccccceeevvrivreennnne 38
6-17. Add a Package to a Diagram with the Rapid Buttans............c.cccceeeueeneee. 39
6-18. Delete an Element from a Model..........cccooiiieniniinneee e 39
6-19. Remove an Element from a Diagram..........ccccecevveieevencenenceseesee e 40
7-1. Adding a note through a context Menu..........cc.ccecevvreninnenneseeeeeeee 45
T-2. ANEW NOTE......eeiiiieiei ettt st et ae e e s e e sbe e eneeenreesneesnnas 45
7-3. Add a Waypoint to a Rectangle..........cccceveeiirciiiiie e 46
7-4. 0Open and ClOSEA LINES......ccccciieieieeie e seesesee e e e see e ae s a7
7-5. Changing OPACILY........eeirerirririeriniererie st 48
7-6. Properties tab displaying class 'Reservation.............ccccceeceverieienieneeene 51
7-7. Properties tab with Operation 'Member’ Selected............ccccccvvcvevveveenen. 51
7-8. Zooming by changing the properties of a diagram.............cccccceevevvereennnne. 53
7-9. Rapid Buttons for a class element...........ccocvevirinninnneeeeeeeeeeee 56
7-10. Additional rapid buttons for a class element.............cccoccevereiienieneeenne 57
7-11. Add a new attribute or operation to a class inline...........ccccccoeeveivevnenen. 58
7-12. Properties tab for @ ClasS.......ccocvvieveiieie e 59
7-13. Style tab fOr @ ClasS.........cccuviriiirire s 60
7-14. Context menu options for @ USe CasSe........cccccevvreenienienieeie e 62
7-15. Selecting multiple elements with the MouSe..........cccccceevieviecceccecceeen, 64
7-16. AddIiNg WayYPOINTS.......cceieieesieeie ettt nesne e ??
7-17. MOVING AGOIMMENTS.....ccviiiiitirieiiisiesiesie et ens 66

Tables

Edition COMPATISOM......ciiiiiiieiiecit et be e snae e 9

Figures

Xi

Xii

8-1. EXPOrt ProjeCt t0 XML.......cooui ettt 74
8-2. Watermarked Community Edition Diagram Graphic..........cc.cceceevrvrenene. 75
8-3. Premium Edition Diagram Graphic Without Watermauk............cccccceeeenee 76
9-1. A USE Case DiagraMl........cceecieiiriiieiiieieesiee e essesseesas e ssesssessaesseessessnees 79
(S B2 SN O =TS B I - To | - .4 S PSS 81
9-3. A Class Diagram making use of Stereotypes.......c.ccooverererenenenesennenne 82
9-4. Stereotype DialOg.....coouiiiirierieesee e e 83
9-5. Properties tab for an ASSOCIAtIQN.........cccvvuriiieiiesie e 84
9-6. Properties tab for an Association End...........cccceoevevieveecesieece e 84
9-7. Highlight hints fOor aSSOCIatioNS.........ccoceiirirerinereseee e 85
9-8. The rapid button for self-associations (lower right).........cccccevvneeienienene 86
9-9. Properties of an Attribute.............oov i 86
9-10. 'Remove Attributes’ SEttNG.......cccccveierieie e 88
9-11. Properties of an OPEratiOn..........ccooerirereririrenese e 88
S R 2 N o o 1Y/ 1 YA B I = To | - o S 92
9-13. A State DIAgramM.......cccuieiiiiie et re e sreeaneas 95
9-14. A SEQUENCE DIAGIamMI.......ccceeiieeeeiieeieesteee e ese e sre et e e eee e eesneeae e 97
9-15. Selecting the action of a stimulus in a sequence diagram..................... 98
9-16. Selecting an operation and attaching arguments.tQ.it............ccccceveenene. 98
9-17. A ComMPONENt DIagramla.....ccccueeiieeiiee e e esieesee e esre e e ere e ee e 102
9-18. A Deployment Diagram..........ccccieeeereeieeieeieeseeseeseeseeseesiesee e see e eeesnas 104
10-1. Grid Settings DIalog..........cevrerererinirieeieeeeeeeeeee e 112
10-2. Properties tab With ZOOM...........ccooiiiiii e 118
10-3. Drill-down Navigation..........cccceiieiiieiie et 118
10-4. Style tab for a class element...........cccevveeeiicce e 119
10-5. Documentation Tab for @ ClasS........ccocvvveieririe e 120
10-6. Source code tab for @ Class........ccoovereieriieeeeeeeee e 121
10-7. New constraint in the Constraints Tahl.........ccoccveienenniensereceee 122
10-8. Syntax Assistant in the Constraints Tab.............cccecevievesiiesesieese e 122
10-9. Documentation stored in the Tagged Values.Tab...........ccccccvvriinenee. 123
11-1. The General Settings tah..........coovreriririireeeee e 125
11-2. The Appearance settings tah..........cccoooe i, 126
11-3. The Modeling Settings tah...........cccceiiriieiieeiee e 127
11-4. The Diagram display settings tah...........ccccooviiiininiiineeee, 128
11-5. The Environment Settings tah...........ccocviriiiiicceeeeeee e 129
11-6. The User settingS tah..........ccov e 130
11-7. The Project settingS tah........c.cccveieii i 131
11-8. The Optimizing tabh..........ccoiiieie e 132
12-1. Code Generation Dialog — JAVa........ccecvrererereneeeeeeeeeeee e 133
12-2. Generated UMLdoC opened in NetSCape.......ccvceevereereneesesienieseenens 134
12-3. IMPOrt FileS DIalog.......ccoveiiiiieiiiciiecie et 138
12-4. Select File Check INterval...........ccooviiiiieeee e 139
12-5. Java Code Generation — SettiNgS........cccovrereriererienieeeeieseeeseeee e ??

13-1. Editing a method documentatiQn.............cccovveveererieseece e 143

13-2. UMLdoc Code Generation — SettiNgS........ccourererererereneeeseseeesiens 144
14-1. A Constraints tah.........cooeoii e 147
14-2. Edit CONSIIAINTS......ciiiiiiieeiesieie et ee s 147
14-3. CritiQUES PaAnE........ccieieieee ettt snee e 148
14-4. FINA DIAlOG. .. .cu ettt 149
14-5. Searching @ Class........cccceiiieiiinere et 149
15-1. The Profile MAnagEL.........cccovuiiiiiiiieiie et ses st 178

List of Examples

16-1. Simple HTML Template........ccccoveiieiieiie e 181
16-2. Simple Java TEMPIALE........cocvi e 185

Xiii

Xiv

Chapter 1. About Gentleware and
Poseidon for UML

According to Greek mythology, the hero Jason built a ship and named it the Argo.
With his comrades, the Argonauts, he left on a quest for the golden fleece.
Poseidon, the god of the seas, protected and safely guided their journey.

About 4000 years later, Jason Robbins started an open source project for a UML
modeling tool and named it ArgoUML. Many others joined him in this adventurous
undertaking, including a group of software developers lead by Marko Boger, who
was at that time a researcher at the University of Hamburg. Together they greatly
advanced the tool. After Jason Robbins shifted his focus to other tasks, the
developer group evolved to become leaders of the project. Under their guidance and
with their advances, ArgoUML became highly popular. They realized the great
demand for a tool like ArgoUML, as well as the amount of work necessary to shape
it into a professionally usable tool. They finally took the risk of starting a company
with the goal of bringing the most usable tool to a broad audience. With respect to
their open-source origin, the company is called Gentleware and their tool is called
Poseidon for UML.

That is who we are and how our quest started. Today, Poseidon for UML is one of
the most popular UML modeling tools on the market. Our special focus is on
usability and on making the job of modeling a joy.

1.1. Our Vision

Software development is a creative process. It requires a deep understanding of the
problems to be solved, the involved users and stake holders and their requirements,
the ability to find the right level of abstraction from reality, and the creativity to

shape a software solution. At the heart of software development is the human being.
Our goal is to provide tools to increase his creativity and productivity. Tom

DeMarco found a word for this: Peopleware. This point of view is engraved in our
name. Gentleware is the connection between humans and the software they develop.
Our main subject is the development of tools for UML, Java, MDA and XML with a
strong focus on usability and high productivity. We also offer training, consulting

and individual solutions.

1.2. Innovation

New tools require new ideas. Innovation drives our development. We want to prove

Chapter 1. About Gentleware and Poseidon for UML

this to our customers through improved usability and productivity. Founded with a
strong university background, Gentleware maintains its ties to the University of
Hamburg. With our roots in academia and the community process of open projects,
we continuously seek dialog with researchers along with the open source
community and users.

1.3. Cooperation

The tools we build are used in a wide range of industries, and the pace of
development is high and always increasing. To stay ahead, we cooperate with
leading experts and companies. Together with our partners we are building a rich set
of development tools and extensions that will fit the needs of our users exactly.

1.4. How to get in touch with us

We are always very happy to get feedback on our tools and services. If you want to
contact us, there are several ways to get in touch.
Email

The easiest way to contact us is via email. We offer different email addresses for
different purposes

General information, feature requests, or suggestions:
info@gentleware.com (mailto:info@gentleware.com)

Customer support (for all versions except the Community Edition):
support@gentleware.com (mailto:support@gentleware.com)
Questions on purchase process, quotes, or volume sales:
sales@gentleware.com (mailto:sales@gentleware.com)

Web Site

For general discussion we have installed an open forum
(http://www.gentleware.com/forum/forum.php3) in which users of Poseidon for
UML can freely discuss topics related to our tools. Typically these are questions on
how to do something, discussions on what other features would be nice, or
comments on what people like or dislike about our tool. Our staff is actively taking
part in these discussions, but you might also get a response from other users.

To order our products you can use the online shop
(http://www.gentleware.com/products/order.php3), which requires a credit card. If

Chapter 1. About Gentleware and Poseidon for UML

you do not have a credit card or you hesitate to use it over the web, send us an email
at sales@gentleware.com (mailto:sales@gentleware.com).

Phone

Our preferred payment method is credit card. However, if you do not have a credit
card or you hesitate to use it over the web, you can also send a fax, send email to
sales@gentleware.com (mailto:sales@gentleware.com) or call us.

There is a fax order sheet (http://www.gentleware.com/products/order.php3)
provided on our web site. Our fax number is +49 40 2442 5331.

You can also contact us by phone at +49 40 2442 5330. However, we ask you to use
this responsibly. Please try to first find an answer to your question on our web pages
(http://www.gentleware.com/support/), the FAQ list, or the Poseidon Users Guide.

Regular Mail

To send us mail or to visit us in person, our address is:
Gentleware AG

Schanzenstrasse 70

20357 Hamburg
Germany

1.5. New Features in Version 2.0

Many of the changes made in version 2.0 were implemented to improve the overall
performance of Poseidon, but are not readily apparent to the user. Modifications of
this sort that are not directly relevant to the User Interface have not been covered in
this manual. A short list of Ul modifications that have been covered:

- The look and feel of the diagrams has been completely revamped. Among these
changes:

Moving an association end to a free area of the diagram creates a new class.
- Waypoints of edges snap to their neighbors’ X and Y coordinates.
Edge adornments move about the edges more intelligently.

Rapid Buttons now include directed associations, attribute creation, and
operation creation.

Chapter 1. About Gentleware and Poseidon for UML

- Diagram storage has been changed to the Diagram Interchange standard, a part of

the UML 2.0 standard. This way, diagrams are written in the XMI 1.2 format, just
like the model itself.

- Diagrams can be exported to pdf format.

- Project files now are saved with a ".zuml" extension. They are zip files containing
a .proj file with project information, and an .xmi file with the model and layout
information. All of this is in accordance with the Diagram Interchange standard.

« Undo and Redo is supported throughout Poseidon and for all actions.

- A new graphics engine has been implemented in order to render superior
graphics, including anti-aliasing.

1.6. About this document

This document describes Poseidon for UML and how to use it. It is intended as a
user guide. It is not a book about UML or Java. Basic knowledge about UML as
well as Java is assumed.

We are working hard to make Poseidon for UML as intuitive as possible. You
should be able to open up Poseidon for UML and start using it without looking into
this documentation. However, you will find it useful to read through this document
to get you up to speed faster and discover useful features earlier.

In the first few chapters we explain everything you need to know in order to install

Poseidon for UML and get started. We then provide a guided tour to introduce you
to the graphical user interface and the modeling capabilities of Poseidon for UML.
In the later sections you will find information about more advanced features.

Chapter 2. Editions

Poseidon for UML is delivered in different editions. This section gives a rough
overview of the editions so that you may decide which of these is most appropriate
for you.

Poseidon for UML is directly based on ArgoUML (version 0.8) and you will find

that what is described here closely resembles ArgoUML. However, Poseidon for
UML is more mature, provides additional features, and is more stable. It is intended
for daily work in commercial and professional environments. ArgoUML, on the

other hand, is open source and lends itself to research, study of architectures, and
extensibility. If you want to get your hands on the code and help advance the open
source project, we greatly encourage you to do so. In that case, we recommend you
to turn to the web site www.argouml.org.

Poseidon for UML is released Mersionsas well as irEditions All Editions are
based on the same source base and therefore carry the same version number. New
versions are released a couple of times per year. This document refers to version 2.0.

The Editions offer different features and come with different levels of support.

2.1. Community Edition

for uml

The Community Edition is the base version. Offered for free, it is the zero-barrier
entry to the world of UML for the individual software developer as well as for large
organizations. It makes learning and using UML a snap and enables the
cost-effective exchange of models.

It is fully usable for modeling UML, and you may use it for any purpose,

commercial or not, for any duration and in any number. It contains all UML

diagrams and all implemented diagram elements. You can create, save, and load
projects, browse existing models, exchange models, generate Java code, export your
diagrams to various formats and much more. You may freely distribute it, put it on

Chapter 2. Editions

local or Internet servers, and distribute it on CDs or DVDs. Gentleware does not
provide support for the Community Edition.

Generally speaking, the Community Edition provides everything you need to learn
and to use UML at a non-professional level. However, there are a few restrictions. A
few features are available in the commercial editions but not in the free Edition.
These features are nice to have to increase your productivity, but are not necessarily
required to build UML models. Perhaps most important, the Community Edition
does not support reverse or round-trip engineering, and it cannot load plug-ins. The
Community Edition also does not support printing, copy and paste to the Windows
clipboard (to copy diagrams to Word or Powerpoint for example), and the zoom is
restricted. The other Editions meet the requirements of professional users.

The Community Edition has the following features:

« Fully implemented in Java, platform independent.
- All 9 diagrams of the UML are supported.
- Compliant to the UML 2.0 standard.

- XMI 1.2 is supported as a standard saving format. XMI 1.0, 1.1 and 1.2 can be
loaded.

- Diagram export as gif, ps, eps and svg.

- Graphic formats jpeg and png supported for JDK 1.4.
- Copy/cut/paste within the tool.

- Drag and drop within the tool.

- Internationalization and localization for English, German, French, Spanish, and
Chinese.

- Code generation for Java.
- Simple installation and updates with Java Web Start.
« Full Undo and Redo.

2.2. Standard Edition

for uml

Chapter 2. Editions

The Standard Edition is the extendable base tool for the professional. It comes with
all features of the Community Edition plus productivity features like printing,
drag-and-drop to the Windows clipboard (copy diagrams to Word or Powerpoint),
and full zoom. Through a plug-in mechanism you can pick and choose from a
growing set of plug-ins that allow you to further extend its functionality.

Additionally, we provide e-mail support for this edition.

The HTML documentation generator allows you to export your models to an
HTML format an share it with others over the web or intranet. The outcome is
similar to Javadoc, but includes all the information of a UML model including the
diagrams. That is why we call it UMLdoc.

Poseidon for UML is constructed in a highly modular way and additional features
can be purchased from our technology partners and added by introducing new
modules as plug-ins. The Standard Edition allows you to load (and unload) plug-ins
at runtime. This functionality turns Poseidon for UML into a highly flexible and
extensible platform of UML tools. The Standard Edition is the foundation for this.

The Standard Edition has some of the following additional features over the
Community Edition:

« Plug-in mechanism to load and unload plug-ins from our technology partners,
even at runtime.

- Comfortable printing with fit-to-page print or multiple page split-up.
- Direct copy to the Windows clipboard, drag-and-drop to Word, Powerpoint, etc.
- HTML documentation generation into UMLdoc.

- Support from the Gentleware help desk via email.

2.3. Professional Edition

for uml

professional edition 2.0

Chapter 2. Editions

The Professional Edition is the high-end version of Poseidon for UML. To meet the
needs of the professional software developer, we have bundled the worlds most

flexible code generation mechanism with a set of productivity features. This Edition
includes round-trip engineering, JAR import, and HTML documentation generation.

One of the most valuable features of Poseidon for UML is its code generation
technology, and the Professional Edition gives you full access to it. The code
generation mechanism is based on a template technology, where the template
defines the syntax of the outcome. This can be Java, C++, XML, HTML or what
ever else you want it to be. The information from the model, like the names of
classes and methods, are provided by Poseidon for UML. This Edition gives you
access to the API and to the templates. As a developer you can edit and change
these templates, even at runtime, and configure the outcome of the code generation
yourself.

Sophisticated round-trip engineering for Java allows you to read in existing Java
code and generate a UML model for it or to continuously synchronize your code

with the model. You can change the generated code or redesign the model and never
lose consistency between the two. With JAR import functionality you can read in
existing libraries and use these in your models.

The Professional Edition has the following features over the Standard Edition:

Template-based code generation with full access.

Round-trip engineering for Java.

JAR import to include existing libraries.

Import of Rational Rose files (.mdl).

2.4. Enterprise Edition

for uml

Team support is provided in the Enterprise Edition. In this edition you will find
version control, multi-user support, client-server architecture, and much more that

Chapter 2. Editions

you might need for model-driven software engineering in larger teams. It supports
multi-model editing and scales to high volume models.

The Enterprise Edition includes all features of the Professional Edition.

2.5. Embedded Edition

for uml

embedded edition 2.0

The Embedded Edition is specifically designed for embedded systems development.
In order to meet the needs of embedded systems engineers, this version bundles the
features of the Professional Edition with optimized code generation for ANSI C and
C++. The code generator has been uniquely created to fit the demanding criteria of
embedded systems, such as memory resource and performance issues. It supports
automatic code generation for UML state diagrams as well as class diagrams.

2.6. Edition Comparison

To give you a quick overview of the features in the different Editions, here is a table
view of the available features:

Table 2-1. Edition Comparison

Feature CE SE PE EE Emb
Community Edition| Standard Edition [Professional EditionEnterprise Edition |Embedded Edition

Simple install J

with Web Start

Platform J J J J J

independent

All 9 diagram J J J J J

types

Chapter 2. Editions

10

Compliant to J J J J J
UML 2.0

XMI supported J J J J J
Export as gif, ps, J J J J J
eps, svg

Jpeg and png for J J J J J
JDK 1.4

Internal J J J J J
Copy/cut/paste

Internal Drag and J J J J J
drop

Internationalizatign J J J J
Sophisticated J J J J J
OCL support

Forward J J J J J
Engineering Java

Undo/Redo Demo J J J J
Reverse J J J J
Engineering Java

Printing J J J J
No watermark in J J J J
graphic export

WMF Graphic J J J J
Export

UMLdoc J J J J
Windows J J J J
Clipboard for

figures

Plugin Support J J J J
Support J J J J
Smooth zoom J J J J
AndroMDA (V) (¥) (¥) (¥)
Autolayout () (¥) () (¥)
RoundTrip J J C++
Changeable Code J J J
Templates

Chapter 2. Editions

Jarimport J J J
MDL-Import J J J
CORBA J J J
IDL-Plugin

Forward J J J
Engineering C#

Forward J J J
Engineering

VB.net

Forward J J J
Engineering PHP

XML-Schema- () (¥) ()
Plugin

Multiuser J
Functionality

Notations:
(¥) — Indicates this item can be added to the Edition via plug-ins

Demo — Indicates this item is limited in its usage (Undo/Redo is limited to 3 steps
saved in history)

11

Chapter 2. Editions

12

Chapter 3. Prerequisites

Poseidon for UML is written entirely in Java and therefore is platform independent.
It runs on almost any modern personal computer. To successfully start and run
Poseidon for UML you need the following:

- Java Runtime Environment or Java Development Kit. JDK 1.4 or higher is
required for Linux, Mac OS X, and Windows Platforms. Poseidon for UML will
not run with JDK 1.2 or older.

« A computer with reasonable memory and CPU power. For memory, 128 MB is
recommended, more is helpful. For CPU, a Pentium Ill or equivalent is
recommended.

- A specific operating system is not required. Poseidon for UML is known to run on
Windows 98, 2000, NT, and XP, on Linux SuSe 6.X, 7.X, Red Hat, and MacOS
X. It has been mostly developed and tested on Linux. However, on Windows
platforms performance is known to be superior due to a faster Java environment.

13

Chapter 3. Prerequisites

14

Chapter 4. Installation and First Start

To install Poseidon for UML, you can choose any one of the following installation
procedures:

- Install Poseidon for UML with InstallAnywhere.

. Install Java Web Start and start Poseidon for UML from the internet — this works
for the Community Edition only.

- Download the compressed file (.zip file) over the internet and locally install
Poseidon for UML.

4.1. Install using InstallAnywhere

The easiest way to install Poseidon for UML is to use the InstallAnywhere
(http://www.installanywhere.com) installer for your platform. If you already have a
recent Java version installed, you can download the installer for your platform that
does not include Java. If you do not have Java installed or if you are not sure of the
version, you can download the installer that includes Java.

The installer will ask you for an installation folder and where you would like your
shortcuts. Free disk space of about 20 MB is required.

Following installation, you can start Poseidon for UML by selecting the icon placed
in the “Start” menu by the installer.

4.2. Install through Java Web Start

Java Web Start is a mechanism provided by Sun Microsystems to automatically
install and start applications from the internet. After Java Web Start is installed, all
you need to do is double-click the provided link. The required files are then
automatically loaded to a cache on your local disk and the program is started. The
first time this may take a little while, but the second time around most information
is taken from the local cache.

The big advantage of this mechanism is that the new version will start automatically
as soon as the program is updated on the server. The program also works when you
are not online — in this case, the local copy from the cache is used.

First, Java Web Start needs to be installed. If you are using JDK 1.4, Web Start may
already have been installed along with the JDK. If not, follow these steps:

15

Chapter 4. Installation and First Start
1. Download the Java Web Start installation file. You can get it from
+ Gentleware AG at http://www.gentleware.com
« Or directly from Sun at http://java.sun.com/products/javawebstart/

You will automatically be provided with a self-installing file for your platform.

2. Close all your browser windows
3. Execute the downloaded file.

4. Open your browser again, then go to http://www.gentleware.com and click on
the icon provided for Java Web Start. After a few moments, the latest release
version of Poseidon for UML (Community Edition) will start up automatically.

4.3. Install from a ZIP file

If you prefer to install Poseidon for UML without an installer, you can download
and install a platform independent zip file. Installation is very simple. In short,
download the file, unzip it, open the created folder and run the start script. Follow
these steps:

1. To locally install Poseidon, you first need to download the corresponding file
over the internet. Make sure that you are connected to the internet, then open
your favorite internet browser and go to http://www.gentleware.com.

2. Navigate to the download area and follow the instructions. You will then have a
single file stored on your local hard drive in the location you indicated.

« The file is compressed using zip format. Move this file to the folder where
you would like to install Poseidon for UML. Then, to decompress it, call the
zip program used on your platform. Here are some examples:

« On Linux or Unix, open a command shell, go to the folder where the
downloaded file is stored (using theé command), and callnzip
PoseidonSE-##.##.zip . The file may be named differently, depending on
the edition you downloaded.

« On Windows, start your Zip program. The Zip program should automatically
start if you double-click on the downloaded file. Then extract the file to a
folder of your choice by selectingxtract and following the instructions.

3. All Poseidon files are extracted into a fold@rseidonForUML_XX_##.##
4. Switch to thelbin - subfolder.

16

Chapter 4. Installation and First Start
5. Run the start script provided for your platform:

+ On Linux or Unix, open a command shell, enter gageidon.sh
command, and press return.

« On Windows, open the file explorer and double-click the start script
poseidon.bat

4.4. Environment Variables

The installation processes described above should enable Poseidon to run properly
on your system. However, some adjustments can be made by using environment
variables in order to make Poseidon fit even better in your personal environment.
Please refer to the instructions of your operating system to see how environment
variables can be set and persisted.

- JAVA_HOME— determines the path to the version of Java Poseidon should use
for itself and the Java related tasks that can be done with it. Please remember that
the code generation feature will need a complete SDK (i.e. a full install of Java
that contains the compiler). If you don’t want to generate and compile code from
Poseidon, a runtime environment (JRE) is sufficient. Setting this variable is
absolutely necessary for starting Poseidon using the batch scripts (poseidon.sh or
poseidon.bat). The installer will search for the installed Java versions and let you
choose which version to use for Poseidon. Once the installer has completed, this
decision can be changed by a re-installation of Poseidon only.

« POSEIDONxx_HOME— determines the path to the folder where Poseidon can
store user related settings and the log files. (Please note that xx stands for the
edition you are using, i.e. CE for Community Edition, SE for Standard Edition
and so on.) By default, Poseidon uses the home folder of the user. Please refer to
the instructions of your operating system to see what folder is used as your home
folder on your system. Some operating systems use rather strange settings for the
home folder in networking environments, so it might be necessary to use a
different folder than the default one. Defining this environment variable lets you
choose a different folder. On Windows using the Standard Edition, you may want
to set POSEIDONSE_HOME t©:/Documents and Settings/yourname

17

Chapter 4. Installation and First Start

18

Chapter 5. Keys and Registration

To use Poseidon for UML you need a valid license key, which is a string of
characters containing encrypted information. Obtaining this key is done through a
simple registration process. Once you have the key, it is only a matter of pasting it
into the application.

There are different types of keys. In this chapter we will explain the differences
between these, how to get them, and what to do with them.

5.1. Types and Terminology

Evaluation Key — provided when an evaluation copy of a Premium Edition is
requested from the website. These keys place a time-limit and functionality-limit on
the application usage.

Serial Number — provided for the Community Edition and purchased copies of
Premium Editions. The Serial Number is a unique identifier and is used to register
the user with the specific copy of the application in order to receive the License Key.

License Key— provided for the Community Edition and purchased copies of
Premium Editions. These keys are made available after the registration data has
been received by Gentleware. Once a License Key is in place, the registration
process is complete. These keys need no further attention, unless the copy is moved
to another machine or is upgraded to another version.

5.2. Community Edition

The Community Edition comes complete with a Serial Number immediately upon
download. This Serial Number must be registered online from within Poseidon or
on the website in order to obtain the License Key required to start Poseidon. The
registration process is painless, and all information collected by Gentleware AG
during the registration process is kept completely confidential. Our privacy policy is
available for your perusal on the website.

To register a copy of the Community Edition:

1. Download and install a copy of the Community Edition.

2. After starting Poseidon for the first time, the License Manager will appear. The
Serial Number will already be provided.

19

Chapter 5. Keys and Registration

3. Click the 'Register’ button. A dialog will appear. Complete the form and click
'Next'.

User Information

The license key will be issued for this user. Values in beld are required.

Salutation

First Hame |Car\

LastHame [carison

E-Mail [carison@snpp.com

company]

Country [united States]

4. To finish the registration process, select either the online option or the web
option (ideal for users who are behind a firewall).

5.3. Evaluation Copy

20

Premium Editions of Poseidon (Standard, Professional, Enterprise, or Embedded)
can be evaluated free-of-charge, but be aware that some functionality is limited, e.g.
saving is limited to eight diagrams. The evaluation key is valid for 15 days after

registration. As with any registration with Gentleware, your information is kept
strictly confidential.

To register an evaluation copy of a Premium Edition:

1. You will receive your Evaluation Key via email after filling out the evaluation
request form and downloading the software from the website.

2. Enter the Evaluation Key in the 'New Key’ box of the License Manager.

M License Manager il

Type | Frodust Editions | Release Expiration-Date Valid
Serial # PE, 5E Sep 17, 2003 & Valid. Please register

Evaluate .. || Buy.. | stat poseidon

Hew Key
To add a new key please enter or paste it in this field and click on Add.

WHE L+ 5n6eyCpVoBes JhondWvi D TETRZFbp 2 56rp] cxEH] FeE0CXVILITAF312/C) dx 266 0bvayZ CulRFAY THG LypSexchi - |
[-]

T | [

‘ Paste fram Clipboard || Add

Chapter 5. Keys and Registration

3.Click 'Add'.

5.4. Premium Version Purchase

Registering a purchased copy of a Premium Edition follows a similar process as an
evaluation copy.

To register a Premium Edition:

1. You will receive your Serial Number via email after downloading the software.

2. Enter the Serial Number in the 'New Key’ box of the License Manager.

Fﬁucense Manager X
Type | Praduct |_Editions | Rel Expiration-Date | alid

Serial # FE. SE Sep 17, 2008 47 \alid. Flease register,
Removs || Begist

Register | ‘ Evaluate “ Buy Start Poseidon

Hew Key

To add a newkey please enter or paste it in thisfield and click on Add.

WRE L+ 5n8eyCp Vo6 IhonsWvi CTETRZFbpZ S 6rp] cXEH] Fe EOCKVOLITAF3 12,/ L] dxZ080bvayZ CurRPAY THGLypoiexckl< |
[+]
LI 1 D

‘ Paste fram Clipboard H Add

3. Click 'Add'.

4. You will now need to register the Serial Number by clicking the 'Register’
button and completing the registration dialogs which follow.

Fﬁucense Manager X
Type | Pradust Editions | Release | Espiration-Date | alid

Serial # PE, SE Sep 17, 2003 7 valid. Please register.

Evaluation API-Dem FE,SE 1x Sep 18, 2004 +# valid

Remou “ Register | ‘ Evaluate “ Buy Start Poseidon
Hew Key
Toaddan

ey key please anter or paste it in thisfield and click an Add

Paste from Clipboard “ Add

21

Chapter 5. Keys and Registration

5.5. Keys for Plug-ins

22

If you want to use additional plug-ins, you will need an additional key specific to

that plug-in. Plug-ins that are free of charge or are in beta-release are delivered with
a valid license key, similar to the Community Edition. For each commercial plug-in
you purchase or want to evaluate, you are sent a Serial Number by email. You need
to register these Serial Numbers to receive the corresponding License Key.

The Professional Edition comes with four plug-ins. They do not need to be
registered separately.

Chapter 6. A Short Tour of Poseidon
for UML

This chapter introduces all basic concepts of Poseidon for UML by guiding you
through an example model. On our tour, we will touch most features and a great
variety of UML elements. However, this is not intended as a UML reference guide
and thus will not explain all of the details. It will gradually teach you what you can
do with Poseidon for UML and how you can use it for your own purposes.

6.1. Opening the Default Example

Let us start our tour through Poseidon for UML. The product is distributed with an
example project, which we will be looking at during the guided tour. If you want to
follow the tour on your own computer (highly recommended), do the following:

- Start Poseidon.

- From the main menu, selektelp, thenOpen Default Example

This example is based on a car rental scenario where a company $Statéalito

needs to model its business processes and create a corresponding software system.
This is a typical situation for the usage of a CASE tool, but UML as well as

Poseidon for UML are not restricted to this kind of application design. As a general
tool, Poseidon for UML can be used to model any kind of object-oriented software
system, as well as a system that has nothing to do with software at all, such as a
business-workflow system.

6.2. Introducing the Work Area

The work area of Poseidon is separated in five parts. At the top of the window, there
is a main menu and a toolbar that provide access to the main functions. Below this

23

Chapter 6. A Short Tour of Poseidon for UML

are fourpanes:

Figure 6-1. Poseidon for UML application work area.

[} Poseidon for UML Standard Edition - StattAuto. _|ofx|
e Edit Viw Creat

uuuuuuuuu

peEAcAY Sexdanld
[x) Centrio Ovenis

A BBz S B8 0h? cOecL

]
[=13]

Diagram Pane

« Generally the largest pane
- Located in the top right-hand section of the screen

- Displays the various UML diagrams and is the main working screen

Navigation Pane

- Located in the top left-hand section of the screen
- Displays models and model elements based on the selected view

- Provides quick and intuitive movement through the diagrams

Overview Pane

- Located in the bottom left-hand section

- Bird’s-eye view provides another means of navigation and display control

24

Chapter 6. A Short Tour of Poseidon for UML

- Critiques assist in the creation of complete and accurate models and compileable
code

+ Usually the smallest pane

Details Pane

- Located in the bottom right-hand section of the screen

- Displays all information about selected elements, some of which may not be
available in the diagram

- Provides the means to add or change details of an element

- Yet another means of navigation

You can hide and redisplay panes by clicking on the small arrows that are located on
the separation bars between panes, much in the same way you can manipulate panes
in most other GUI applications. This allows you to gain extra room for drawing in

the Diagram pane while the other panes are not needed. You can also resize the
panes to best fit your needs by moving the separation bars with the mouse.

6.2.1. The Navigation Pane

The first pane we will explore is the Navigation pane in the upper left corner. It is
used to access all of the main parts of a model by presenting the elements of the
model in various tree structures. There are many different ways the model
information could be organized into a tree structure; for example, the tree could be
sorted alphabetically by element name, by diagram name, or by model element
type. The classic way to organize them isgackages Poseidon for UML uses the
package structure as the default navigation tree, as do most UML tools. But, as we
will see a little later, Poseidon provides a set of ways to structure this tree — these
tree structures are calletews This is one of the strong points of Poseidon for

UML, providing enormous flexibility for navigation. The default view is called the
Package Centric view.

The root node of the tree is the model itself, in our example it is ca&tetdauto

The first level of the tree is open by default. In the Package Centric view, all
first-level packages are shown, as well as all model elements that are not inside a
specific package. As you can see, each element in the tree is preceded by a little
icon. Element icons have one symbol, diagrams have several of these symbols
combined into one icon. These icons are used consistently throughout the
application.

25

Chapter 6. A Short Tour of Poseidon for UML

26

Some sample icons:

« % Model — The model icon is a colored box, which is also used as a logo for
UML

- B Package— The package icon is a folder

. % Class Diagram— The class diagram icon is a combination of two class icons

You can navigate through the tree by clicking on the icon in front of an element
name, similar to many other applications. Any element you subsequently add to the
model will automatically appear in the corresponding branch of the tree hierarchy,
no matter how it is created.

Right now, your Navigation pane should look like this:

Figure 6-2. Navigation Pane in the Stattauto model.

£ Fackage Centric |

— O stattauto

o= £ | Stattautabodule

% wehicle Rents| Business Process: Use Case Dverview
9= £ Analysis

9= 7] Business Process Model

9 £ Design

— B intermal Business Assosiate

9= 7] de

o B java

— O Use_tase_1

The mode™® Stattauto contains many packages (ecy. Analysis
& Business Process Model ,andZ& Design) as well as a large number of
diagrams® Overview , % Implementation: Overview) eee)

Select the class diagra®s Container Class Analysis-Packages by clicking

on it in the Navigation pane. The selected diagram will then be displayed in the
Diagram pane, which is located to the right of the Navigation Pane. The 'Container
Class Analysis-Packages’ diagram (Figure 6—3) visualizes the dependencies
between the included packagts:Account , &1 Member, & Reservation , B

Vehicle , B1User, andt Rates .

Chapter 6. A Short Tour of Poseidon for UML

Figure 6-3. Class Diagram 'Container Class Analysis-Packages’

Account UL
T
! 1
| 1
! A4
hlember R ati Rates
T
1
1
!
Vehicle

Inside the packages you can find further diagrams, but to quickly browse through
the existing diagrams you need not navigate through the packages themselves. You
can find diagrams directly (and much more quickly) usingdiagram tree.

6.2.1.1. Changing the Navigation View

Let's now take a quick look at the diagram tree, which can be seen in the Diagram
Centric view. At the top of the Navigation pane, there is a drop-down selection box.
Select the Diagram Centric view.

Figure 6-4. Change a View in the Navigation Pane

odule

tal Business Process: Use Case Oversiew

=T BT Pl cess Model
7 pesign
£ Intemal Business Associate
£ de

Now your Navigation pane should look like this:

27

Chapter 6. A Short Tour of Poseidon for UML

[piagram Gentric |

Diagram Centiic | ~]| CB

G P statiauto -
}%,O Activity Diagrams
;)—

tity Class Model Owernien

plementation: Chvensiem

=

This view sorts the model elements according to the diagrams in which they are
included. Of course, this view includes only includes those model elements that are
included in at least one diagram. The organization of this view has the advantage of
quick navigation to any diagram or to the elements they contain. It logically follows
that sometimes the Diagram Centric view and at other times the Package Centric
view is more useful. Take a few moments now to look at the other available views.

6.2.1.2. Opening Multiple Navigation Panes

As we have seen, views offer different advantages for different tasks. But we often
find ourselves switching between these tasks regularly, and constantly changing the
dropdown view selector would be a distraction. To give you several choices of

views at one time, you can create multiple instances of the Navigation pane by
creating additional tabs. The different Navigation panes are accessible through these
tabs, and it is then possible to select a different view for each tab.

To open additional Navigation panes:

1. Click on the@ folder icon (called the 'duplicate tab’) that is located to the right
of the drop-down selection box.

2. A new navigation view will be created behind the current view.

3. Now you can select the Package Centric view from the dropdown menu of one
tab and the Diagram Centric view in the other tab. We will frequently need both
views in the rest of the guided tour.

28

Chapter 6. A Short Tour of Poseidon for UML
Figure 6-5. Add a Navigation View Tab

[biagram Centric

Diagram Centric |~)| (53 %
@ 1 StattAuto o T
Duplicate Tab
@ Activity Diagrams
&~ B Clase Diagrams
I, Collaboration Diagrams
& B Deployment Diagrams
% Sequance Dizgrams
@~ & state Diagrams
@ %, Usecase Diagrams

You can delete the navigation view tabs using the delete button which appears on
the tab, next to the name of the view, whenever the mouse is placed there and two or
more tabs are present.

Figure 6-6. Delete a Navigation View Tab

[biagram Centric

Diagram Centiic [~]| CB
G P stattauto
&= F,q, Arctivity Diagrams
@ Class Diagrams
&, Collab agr

©= B Deployment Diagrams
4 Sequence Diagrams

O, ams

O,

ams

State
Usecase Diagrams

C=3

We will now turn our attention to the diagrams themselves and how to edit them by
looking at the Diagram Pane.

6.2.2. The Diagram Pane

As diagrams are the center of UML, naturally the Diagram pane is the main working
space in Poseidon for UML. It is the primary place for constructing and editing the
diagrams that compose all models. Just as the Navigation pane can display multiple
views, the Diagram pane also makes use of tabs to open additional workspaces.
Let’s take a closer look at some of the functions available in the Diagram pane.

Open the diagrarg= Entity Class Model Overview in the Diagram pane by
clicking on its name in the Navigation pane. Expand the tree for this diagram by
clicking the ’expand trees- icon that appears to the left of the diagram name.

29

Chapter 6. A Short Tour of Poseidon for UML

The Diagram pane to the right should now look like this:

Figure 6-7. The Diagram pane displaying the diagram 'Entity Class Model
Overview'.

< <EntityObject=> <<EntityObje ct=>
User Member

from_de.an g stattatn user enlity) (from de .z g.stattato.w earberentity)
-Resening Member

ol
<<EntityObjects»
Resenvation

(froan de .z g stattato. reserston bty
e i 2

S -Resened Wehicle

0.® <<EntityObjects»

o Wehicle

<<EntityObjest=>
Location

1
(Foa de.i g.stattato.vehick emtity) ome location o de s g stattato. vehicle etity)

This is an overview diagram which provides a high level view of the main entities

of our example. The classes from this diagram happen to be located in different
packages. You can see the package name in parentheses under the class name (e.g.
(from de.amg.stattauto.user.entjtyfror each package in this example, there is

another diagram you can view that shows the classes of that package and how they
relate to each other. In UML, model elements can be represented in different
diagrams to highlight specific aspects in different contexts. Other diagrams covered
later in this guide will give us another perspective.

This diagram shows the most important classes of our example model. It already
tells you quite a bit about this example:

- ItmodelsE Reservations that have (are associated withEaMember and a
B Vehicle

. BVehicles are associated with& Location , andE Locations haveE
Vehicles

- TheB VehicleClass is dependent upon tt& Vehicle

If you select one of these classes in the navigation tree, you will see that the
corresponding class is also selected in the diagram. Similarly, if you select a class in
the diagram it is also selected in the Navigation pane. This is true for all elements:
your selection is synchronized between the different panes.

30

Chapter 6. A Short Tour of Poseidon for UML

Try it for yourself by selecting one of the classes in this diagram from the

Navigation pane. Notice how the class name is highlighted in the Navigation pane,
while the Diagram pane displays the same class with its rapid buttons visible around
it.

6.2.3. The Details Pane

So much more goes into a model than just the shapes representing elements and the
connections between them. But if all of this information were displayed in the
Diagram pane, the diagrams would quickly become cluttered and unreadable. The
Details pane organizes and presents all of these important particulars via tabs.

So let’s now take a closer look at the Details pane, located at the bottom of the
application. Select the claB; Reservation by either clicking on the class itself
in the diagram or clicking on the class hame in the Navigation pane.

Figure 6-8. The Details Pane with class 'Reservation’ selected.

Fropetties | Stle | To Do Mems | Documen tation | Java Source | Censtraints | Tagged Values |

B clas= &= 4 B EB B X Operations Attributes

— [eservation | [+eriterianizhiolenumben
2] il
« » Stereotype [EntityObject |E||é\ 0 Sting
Hamespace [de.amg.stattauto.reservation.entity [=]3] |rectiumben_tumben
none none

Visibility @ public () protected () package () private

Modifiers [] abstract [final [roet [active

Reservation[]."]->de.amg
: [

The Details pane is composed of six tabs. These tabs (sometimes referred to as
panels) display all of the detailed information about the element currently selected,
allow changes to be made to these elements, add related elements, or delete the
element all together. Properties can be changed, documentation can be written, the
resulting code can be previewed and edited, and more. The tabs always reflect the
currently selected model element and are enabled only if they make sense in the
context of the selected element. The Details pane also serves as another mechanism
to navigate through the model.

Tabs available in the Details pane:

- Properties

. Style

31

Chapter 6. A Short Tour of Poseidon for UML

32

- To Do Items

Documentation

Java Source

Constraints

Tagged Values

6.2.4. The Overview Pane

The larger a diagram becomes, the harder it gets to keep track of all of the elements,
especially once they are out of the immediate viewing area. The Overview pane
allows you to keep track of the elements already in the diagram. The pane, located
at the bottom left, provides access to two tabs. First of the two is the 'Birdview’ tab,
which displays a graphic summary of the diagram currently displayed in the
Diagram pane. From this tab you can zoom and/or pan in either the Diagram pane
or the Overview pane. The second tab, called the 'ByPriority’ tab, contains a
collection of critiques that have been compiled by Poseidon.

Figure 6-9. Class diagram as seen in the Birdview Tab

Birdview | ToDo-tems [by Priority] |

T

&

A00%

To directly scale the section displayed in the main diagram area, enable the
checkbox in the lower left-hand corner and use the slider bar to adjust the zoom
factor. To pan and zoom the small diagram in the Birdview tab without disturbing
the Diagram pane, disable this checkbox.

Chapter 6. A Short Tour of Poseidon for UML
Figure 6-10. Critiques of the Stattauto example in the ByPriority Tab

‘ToDa—\tems [by Desision Type] E|247 Items
o= (] Clas Selection

2~ (29 Maming —
o~ [0 Storage

— [Inheritance

(— 9 Containment

t— [Planned Extensions m
5 [StateMachines

[Add guard to (anan)

[Add guard to (anon)

[Add outgaing transitions to State_2
[Add transiti _

[Add trigger or guard to (anon)

[Add trigger or guard to (anon) =]

Click on the tab called 'ByPriority’. This tab contains a collection of critiques that
have been compiled by Poseidon. This is a feature that originates from ArgoUML
and was one of the motivations for Jason Robbins to start the project. Itis a

powerful auditing mechanism that discretely generates critiques about the model
you are building. Critiques can be hints to improve your model, reminders that your
model is incomplete in some areas, or errors that would cause generated code to not
compile.

6.3. Navigation

A UML model can become quite complex as it expands to include more and more
information. Different aspects of the model are important to a variety of people at
particular times. Additionally, there is no one correct approach to viewing a model
and the information it contains. A UML tool should provide comprehesive yet
simple-to-use mechanisms to access and change that information as each individual
requires. Therefore, Poseidon for UML offers various ways of navigating between
model elements to accomodate all of these needs. We will now take a closer look at
some of the most important ones.

6.3.1. Navigating with the Navigation pane

The central mechanism for moving through the models is the Navigation pane,
mentioned above. It organizes the complete UML model into a tree view that
provides access to almost all parts of that model via the opening and closing of

33

Chapter 6. A Short Tour of Poseidon for UML

subtrees. At the top of the Navigation pane you will find a drop-down menu where
you can choose between a number of views.

Views available from the Navigation pane

+ Class Centric

- Diagram Centric

« Inheritance Centric
« Model Index

- Package Centric

. State Centric

Each view organizes the tree structure with its own different focus. By default, the
Package Centric view is displayed. You have already seen how to change the view
in a previous section.

Figure 6-11. The Navigation Pane in a Diagram Centric View.

[piagram centric ‘ B Class Centiic

Diagram Centric [+ (B
@ S stattaute

2= Fpe, Activity Diagrams

ntainer Class Analysis - Fackages
Container Class Analysis Model

T Entity Class Model Queniew

lementation: Dveniew

in Menu Wiew: Design-Class Madel

hMember Identification: Design-Class Model

ckage Dependencies Dveniem
sentation Class Model Cvensiew
¢ Process Object Class Model Dwernvizw

 Ragishation: Design-Class Modal

iele Reservation: Design-Class Model

ion: Entity Class Model

ion: Prasantation Class Model
+Lacation: Entity Class Model

- oration Diagrams

b~ T Deployment Diagrams

B stattaute

|- 1% Sequence Diagrams

o~ £, State Diagrams
2= % Usecase Diagrams

Verify that the current view is the Diagram Centric view. From this view you can see
all of the diagrams contained in the model at one glance. By clicking on one of the
diagram names or icons, the corresponding diagram is shown in the Diagram pane.
The elements contained in that diagram are displayed when the subtree is expanded.

34

Chapter 6. A Short Tour of Poseidon for UML

The first two views (Class Centric and Diagram Centric) are the most commonly
used views. The others are primarily used for more limited cases; for example, to
find out the inheritance structure of the model or the structure of the navigation
paths.

Remember that the Navigation pane displays the complete model, while a single
diagram will only show you specific aspects of it. It is possible that there may be
elements that are not contained in any diagram at all and are therefore only
accessible from the Navigation pane.

Take a look at the Model Index view by selectigpdel Index from the drop-down
menu. The Navigation pane will change to display an alphabetical list of all
elements in the model. This illustrates yet another useful way to locate elements.

6.3.2. Navigating in the Properties Tab

The Properties tab in the Details pane provides a very convenient method of
drill-down navigation. Navigating in such a way is very intuitive due to the

relational nature of the elements and therefore of the navigation between them. It is
easy to visualize moving from a class to a method of that class to a parameter of the
method.

From the Diagram Centric view in the Navigation Pane, open the diagram 'Entity
Class Model Overview’ subtree and select the class 'Reservation’.

Figure 6-12. Select class 'Reservation’ from Diagram Centric View

‘= Entity Class Model Dvendew
|- o— Resemvation <> Reserving Member
— B Location

— B Member

— B Reseration

— B user k

— B wehicle

— B wehicleClass L3
o an

[~ ¢— Vehicle == home location
A

Implementation: D
Main Menu Vienn: Design-Class Model
Member dentification: Design-Class Model

Dendiew =]

35

Chapter 6. A Short Tour of Poseidon for UML

Take a look at the left side of the Properties tab. Listed here are properties of the
class itself which can be modified, such as name and visibility. To the right are
components of the class, elements in and of themselves. These components have

their own properties in their own properties tab.

Figure 6-13. The Details Pane with the class 'Reservation’ selected.

Propetties | Style | TeDolems | Decumentation | Java Souree

Constraints | Tagged Values |

B cla==
Hame

« » Stereotype
Hamespace
Visibility

Modifiers

Dwned Elements

=2t BEEBBX

+ F Y

Dperations

Atributes 3§

|Reservation

+CiiteriatehicleHumber)

0

[EntityDbject

[l

1) : Stiing

[de.am g stattauto.resenation

entity

=]

+setumber_Humber)

@ public

[abstract

() protected () package

[roet

[tinal

) private
[active

N Edends

FHumber: Sting k

Implements

none

Derived

Associations

Double-click on the attribute called 'number’. Notice that the Properties tab has
changed and now displays the properties of the attribute. Notice, also, that the fields
present on the left side have changed to details which are useful for attributes
instead of classes. The right side shows us that this attribute has two accessor
methods, and to modify those methods we need only double-click on their names to
bring up the properties of the selected accessor method.

Figure 6-14. The Properties tab with the attribute 'number’ selected.

Properties | Style | To Do llems | Documen tation | Java Source Tagged Valuss |

B attribute = fE X Type E"z\
e o | e
Multiplicity [=] Aeeessor methods

« % Stereotype = ‘Ill‘zl

Dwner [Reservation |

isibility) public () protected () package (@) private

Modifiers [] static [tinal [transient [] velatile

6.4. Modify Elements

Once we have arrived at a desired element, we may need to make some

36

Chapter 6. A Short Tour of Poseidon for UML

modifications. Poseidon provides several ways of changing information relating to
an element.

6.4.1. Change Element

The quickest and easiest way to change information relevant to an element is to
change it directly in the diagram. Be aware, however, that not all information can be
changed in this way.

At this point in the tour, the Diagram pane should be displaying the class diagram
titled, 'Entity Class Model Overview’ and the Details pane should be displaying
information about the attribute 'number’. This diagram has been set to hide
attributes and operations, so we will change to a new diagram that displays this
information. Select the diagram titled, 'Member Identification: Design-Class
Model’ from the Navigation pane. We will now change the name of an operation
from the class 'MemberldentificationController’.

In the Diagram pane, double-click on the operation 'findMember()’ in the class
'MemberldentificationController’. The Details pane will now display information
about this operation, and the text in the Diagram pane itself is now editable from a
text box. Change the name of the operation to 'searchMember()’ and then press
return or click elsewhere in the diagram.

Figure 6-15. Change Operation Name in a Diagram

<<Actvity Controllers> < <Presentation >»
Memberldentification Controller Me mber Kertification
o de an g safaut menderprematation) | oo o fFone de ang sttt i ember preseatatorn)
-member :Memberldenti cation\/alue Object “memberhumber : Sting
[n: tiont/alue Object] +Cancel()
Hember fonaluebieet) By +Continue()

< ¢alue Objects »

¢ ¢Processbject>> Memb erbie niificaionalue Dbject
Memberk entification Proce ss Object D e e I
{from de.airg shataudmembecprocess) L -——— 3 -Number : $tring
- Lasthame : String
sidentitemb eme mberNumber:3Ting) : Memberldentitoaton'alue Object -FirstHame : String

I
i
bV

<< Entity Object? »

Member
it dle an g Sathuto. menber eatity)
-Number : Sting

-FirstName : String

-LastName : Sring

37

Chapter 6. A Short Tour of Poseidon for UML

38

The name change will be propagated throughout the model, with
'MemberldentificationController.findMember()’ replaced by
'MemberldentificationController.searchMember()’ in every instance.

Another method of changing information is via the Details pane. Select the
operation 'searchMember()’ again. Notice that the Details pane provides lots of
information about this operation. In the 'name’ field, change the name from
'searchMember()’ back to 'findMember()’ and press return or change the focus of
the window by moving the mouse out of the Details pane. The change will now be
reflected back in the diagram.

Figure 6-16. Change Operation Name from the Details Pane

Froperties ‘ Style | ToDoMems | Documen tation | Java Source Tagged Values |

B operation =2 4B BT X Faramef et
retumn

Name [searehMembar |

<« » Steraotypa [] |E||z\

Ouner [MembengentificationCantralier |

focessed Altribute | [=] Raiseq signais

Visibility @ public O protected () package () private none

Modifiers [] abstract []final [roet [Jqueny [] statie

2 @ (] @

6.4.2. Create Element

Creating new elements is just as simple as modifying existing ones. And just like
changing elements, there are several ways to create new ones.

Perhaps we would like to associate a discount program with members. Let’s create a
new package, Discount. In the 'Package Dependencies Overview’ class diagram,
click on theB 'Package’ button from the Diagram pane toolbar. A cross-hair
appears. Click in the Diagram pane to place the new package into the diagram.
Rename this class 'discount’ using one of the methods outlined in the previous
section.

Now that we have the package, we need to associate it with the package 'member’.
We could do this by creating a new association through the toolbar and connecting
the association ends to the classes, or we could speed things up and use the
aptly-named 'Rapid Buttons’. Click on the new package 'discount’. Several buttons
appear around the edges of the package. Click and hold the mouse button down on
the left rapid button. Drag the crosshair that appears onto the package 'member’ and
release the mouse button. An association has now been created.

Chapter 6. A Short Tour of Poseidon for UML

Now perhaps we need to make a connection between 'discount’ and a region
because different discount schemes are offered in different regions.. This will
require the addition of another package and another association. One rapid button
can take care of everything. Select 'discount’ in the diagram. Click (and this time do
not hold) the mouse button on the right rapid button for the package 'discount’. An
new package and an association have been added to the diagram. Rename the new
package region’.

Figure 6-17. Add a Package to a Diagram with the Rapid Buttons

T T
1 1
NES 1
| 1
% u %
discount wehicle

6.4.3. Delete Elements

So after further review, we have decided that the package 'discount’ is a good idea,
but not for this diagram. We have further decided that the 'region’ package is
unnecessary and will not be used elsewhere in the model. Let’s first delete 'region’
completely.

Select the package 'region’ in the Diagram pane. Now press the 'Del’ key. A dialog
box will prompt you before removing the class. Notice that the association has been
deleted as well, as there is no point to an association with only one end.

39

Chapter 6. A Short Tour of Poseidon for UML

40

Figure 6-18. Delete an Element from a Model

X
JAre you sure wou want to remove all selected elements from the model?
region

[EEN | te |
: 1
] 1,
dicount hicl
|
S|
I H
| |
TEQIOn._

The package 'discount’ is a different story. We may need to use this again
elsewhere, so we just want to remove it from this one diagram, not from the entire
model. To remove it from this diagram, select the class in the Diagram pane. Now
cut it from the diagram using either the Cut option from the main toolbar, Cut from
the Edit menu, or the shortcut Ctrl-X. You will encounter a warning here as well,
but it explains that the element is not deleted completely.

Chapter 6. A Short Tour of Poseidon for UML

Figure 6-19. Remove an Element from a Diagram

Are you sure? E X
Are you sure you want to remove all selected elements from the diagram??
The selected elements will not be removed from the model
\ Iesﬂ [B |

T T

1 1

NS 1

1 !

L]
dis count hie!

Notice that the element no longer appears in the Navigation pane under the class
diagram. Change the Navigation pane to display the Model Index view and take a
look at the packages listed there. You will see that, although it is not included in any
current diagrams, the package 'discount’ still exists and is ready to be used in
another diagram.

Take some time now to experiment with the example. Our introductory tour through
the default exampl&tattauto ends here. You received an impression of how the
main tools are used, saw that most operations can be accomplished in more than one
way, and eventually saw that there is a lot more to discover in and about Poseidon
for UML. The next chapters will show you how edit a model and how to create your
own model.

41

Chapter 6. A Short Tour of Poseidon for UML

42

Chapter 7. Working with Diagrams

UML is a graphical language. Therefore, from a users perspective at least, the most
important part of a UML tool is the graphical editor. This chapter introduces the
general features of the diagram editor that are available for all or most of the
diagram types, then takes a detailed look at the graphical editor and explains
Poseidon’s most important functionalities for editing diagrams.

7.1. The Diagram Pane

The graphical editor is embedded in the Diagram pane. This pane, as has been
previously mentioned, is used to display and edit the diagrams of your model.

7.1.1. Diagram Pane Toolbar

Across the top of the Diagram pane, there is a toolbar that contains a number of
tools you can use to create and modify your UML models. If you have already
worked with a UML tool or a drawing tool capable of creating UML diagrams, you
are probably familiar with the general idea. Each diagram type has a specialized set
of tools in addition to the tools that are common to all diagram types. To display the
name of each individual tool, position your mouse over it and wait a second or so,
the name will appear in a box underneath.

In general, the Diagram pane toolbar changes according to the type of diagram
currently displayed. There are, however, some tools which are available in all or
nearly all of the diagrams:

7.1.1.1. Select

The first tool in the toolbar is called the 'select’ tool, and is the default active tool. It
is used to select, move, and scale diagram elements, as well as modify the element
directly from the diagram. When an element has been selected and is now the
current active element, it will appear with yellow circles (called 'handles’)
surrounding it.

A brief list of functions:

. Select an element— Click on the desired element.

- Move an element— Click and hold the mouse button inside the element, then
drag the element to its new location.

43

Chapter 7. Working with Diagrams

44

. Resize an element— Click and hold the mouse button on an element handle,
then drag the handle.

- Edit an element inline— Double-click on a text element to activate the text edit
box.

Try it Yourself — Resize an Element

1. Select theE Client class from a diagram.
2. Small round yellow handles appear on the corners of the element.

3. Click and hold the mouse button on one of these handles and drag it
around the diagram to resize the class.

7.1.1.2. Notes

Sometimes a diagram requires a bit of extra explanation. This information is not a
part of the final code, yet it helps the viewer better understand the diagram. This
information can be included in a note element. Notes are extra comments that are
included and displayed in a diagram. These notes can be added to any element
including other notes, or they can stand alone in the diagram.

Notes are ignored by the code generator and are therefore never seen in the code
output. They are likewise never seen in the Navigation pane.

To add a note to a diagram:

1. Click the™ Note button in the diagram toolbar.

2. Position the crosshairs in the diagram and click to place the note in the diagram.
At this point it is a freestanding note that is not connected to any element.

To connect a note to an element using the toolbar buttons:

1. Click the® Connect Note button from the toolbar.

2. Place the crosshairs over the note to be connected. Click and hold the mouse
button.

3. Drag the crosshairs to the element to be connected. Release the mouse button.

To connect a note to an element using the rapid buttons:

Chapter 7. Working with Diagrams

1. Click one of the rapid buttons around the note to be attached. Hold the mouse
button down.

2. Drag the crosshairs to the element to be connected.

3. Release the mouse button.

You can either use the 'select’ tool to make the note the current active element and
then begin typing, or double-click to open the editable text field.

Figure 7-1. Adding a note through a context menu

Class_1

F= oemmrm]
g7 Critiques 3

Add 3 B add Attibute
Showm 3 B Add Qperation
Ordering P Add pot

% Cut (=18

@ Copy -

Delete From hiodel Delete

Just as with any other element, notes can be resized with its handles and the color
can be changed through the style panel of the Details pane. This makes it easy to
introduce a color-coding scheme to diagram notations.

Figure 7-2. A new note

e note with style properties added j

Class_1

7.1.1.3. Drawing Tools

The set of tools which appears at the end of the toolbar are for general drawing
purposes. With these tools you can add other graphical elements such as shapes to

45

Chapter 7. Working with Diagrams

46

your diagram. You should keep in mind that, although useful sometimes, these
graphics are not part of UML and therefore they don’t show up in the model tree in
the Navigation pane.

The Drawing Tools:

O Rectangle— Click in the diagram area and drag the mouse to create a
rectangle.

« © Circle — Click in the diagram area and drag the mouse to create an ellipse.

- & Polyline — Click in the diagram area and to create a waypoint. Click again to
create another waypoint and a line between them. A connected line can be added
by clicking to add a third waypoint. Double-click the last waypoint to cease the
addition of lines.

. € Polygon— Click once everywhere the polygon is to have a corner.
Double-click the last corner to close and render the polygon.

7.1.1.4. Toggle Between Editing Modes

Two modes of editing are available for modifying shapes. You can switch between
modes by double-clicking on a shape.

The first is a resize mode, which allows you to change the size of the shape by
dragging the handles (gold circles) that surround the shape. Dragging one of the
corner handles enlarges and shrinks the shape without changing its proportions.
Dragging the side handles expand and compress the shape.

The second editing mode is available for all shapes except circles. It allows you to
add, remove, and move waypoints to change the shape of the element. For example,
you can create a rectangle, double-click on it, and then add a waypoint to create a
new polygon.

Figure 7-3. Add a Waypoint to a Rectangle

Shapes |

A Bhzxete—ee B2 S BE LR 0OCGC

Chapter 7. Working with Diagrams

Shapes |
X Bhiste—ce O o0 BE O 0OCL

L]

7.1.1.5. Close Shape

Once a shape has been drawn with the line tool, it is possible to close the shape
automatically to create a polygon. Select the shape and open the 'style’ tab of the
Details pane. Check the box titled, 'Close Shape’. The shape can be reopened by
unchecking the same box.

Figure 7-4. Open and Closed Lines

Shape sample |

A BRhiE+Te—es+e O i BE O cOcGC

o\,—.

s
aune R
[] Clese Shap. Dpacity
.....................
0 2 & 60 80 100
Fill Lin Font
[y = =
_ ([[]] . [1] ([[]] . [[| ([[]]
L] L] L L)
N ENNRCARREEER - I ENERCENNEEER N EENGCEEEEEER
H NENARRANNEEER I NNENNEENEEN I ENNENNEEEEE
== I DNNNNNENEEEE I NNNNNRNNEENR N ENEENNEEEEER

47

Chapter 7. Working with Diagrams

Shape waample |

A\ BB te—=e-+« He Si BE L 0OGC

7.1.1.6. Opacity

Fill colors can be applied from the 'style’ tab of the Details pane. It may be
advantageous to change the opacity of this fill at times. Fortunately, this is very
easily accomplished. Simply select the figure that will have a different opacity and
use the slider bar within the 'style’ tab of the Details pane.

Figure 7-5. Changing Opacity

K BBz teo—oee =] BE O cOcGL

<}

Font
[<astaut- =] =
[T mE R

48

Chapter 7. Working with Diagrams

eeeeeeeeeeee

A Bhxste—ee B¢ i BE O cOGL

——_

9 = |
Q L
°

[

-

[raetaue =] =
I O | 1] (1[[] O [[(1[1] O [[([[]}

7.1.1.7. Waypoints

Once a line or polygon has been created, the shape can be altered by creating and
moving a waypoint, much in the same way that connections between elements can
be edited. Click on the perimeter and move the resulting gold circle to create an
'elbow’. In this same vein, waypoints can be deleted by selecting and dragging
them over an existing waypoint or endpoint.

7.1.1.8. Diagram-specific Tools

The rest of the tools in the toolbar are specific to the current diagram type. They
allow the creation of diagram elements and operate similar to a stamp. With a single
click on the icon you get a handle to create one corresponding diagram element. If
you double-click, the tool stays selected and you can create a number of diagram
elements, one after the other. The cursor changes to a hair cross with which you can
select the position of the new element. To disable this feature just click on the
'select’ tool.

Some tools are only available in a certain context. In Class Diagrams, the tools to
create a new attribute or a new operation are only available when a class is selected.
Select the desired class and click on the appropriate button to create a new attribute
or operation for your class.

The individual tools are covered in detail in the chapter titled, ’A Walk Through the
Diagrams’.

49

Chapter 7. Working with Diagrams
7.2. Viewing Diagrams

50

Viewing a single diagram is easy. You simply select the diagram you wish to view
from the Navigation pane and the chosen diagram is then displayed in the Diagram
pane. Much more interesting are the relationships between elements and how
specific elements are represented in different diagrams. Each element contributes to
the overall picture of the model. It may occur in only one diagram, or it may be
repeated throughout many diagrams. The element remains constant throughout the
model, with the same characteristics and properties. The only differences it may
have from one diagram to another are in the way it is rendered, such as color and
compartment visibility.

The yellow field behind the diagram elements indicates the actual size of the
diagram. This is important when printing or exporting graphics. The size and shape
of this field will change automatically when moving or adding elements.

Select individual classes or associations in a diagram by single-clicking on them.
Note how they are simultaneously selected in the Navigation and Details panes. The
model can be changed directly from the diagram. For example, double-click on the
class name of any class in a class diagram. The text field now slightly changes its
look and becomes editable, but use caution as the entire field is highlighted and it is
possible at this point to overwrite the entire field (this is similar to selecting and
changing a file name in Windows). Changing the class nhame here perpetuates the
name in the model everywhere this model element is used.

You can also select and change attributes or operations. You need to be aware,
though, that in this case you are not simply editing an ordinary text field, you are
editing text rendered from a number of model elements. As such, your changes will
be propagated throughout the model. Poseidon for UML provides quite powerful
parsers that allow you to change these directly by changing the text lines. This is
referred to as in-place editing. If you are familiar with the notation used in UML,
you can edit almost all of these directly in place.

Though most textual elements can be edited directly in place, another option for
elements that are not so easily edited in the diagram is to use context-sensitive
menus, which you call up by means of a right-click. For associations, for example,
most elements are changeable through Context menus.

There are, however, some details that can conceptually not be changed in place or
where it makes more sense to provide a special graphical user interface. It is for
these purposes that the Details pane is used.

7.2.1. The Details Pane

To explore the facets of the diagram, you can select elements with the select tool
and probe deeper into them. Each time you make a new selection in a diagram, the

Chapter 7. Working with Diagrams

Details pane (bottom right) is updated and shows specific information for the
selected element, as has been previously mentioned. Within this pane, the Properties
tab will be selected by default. It contains all relevant details of the selected model
element and also displays links to other directly related model elements.

The Properties tab of Poseidon for UML has some similarities with an internet
browser. And in a way, a UML model is very similar to hypertext. It is highly
connected and navigation between the connected elements is important. All
relations to other model elements function as a link to the corresponding Properties
tab. Like a browser, this navigation has a history that can be accessed using the
forward anc= back buttons. Since a model is also hierarchical, there is alt@pn
button to access the element at the next higher level. For a class this is the package
or namespace to which it belongs, for example.

Figure 7-6. Properties tab displaying class 'Reservation’

Fropetties | Stle | To Do Mems | Documen tation | Java Source | Censtraints | Tagged Values |

B clas= &= 4 B EB B X Operations Attributes
Name [Resema ton | [rciiteriatvehioleNumben

« » Stereotype ‘Entlty[lhject |E||z‘ e 0

Hamaspace [de.amg.stattauto.reservation.entity |\z||z\ +sethumben_Humber

Visibility @ public () protected () package () private I
Modifiers [] abstract [final [roet [active none none

Reservation[]."]->de.amg
: [

Open the diagram 'Component Model Overview’ and select the class 'Reservation’.
Take a look at some of the fields, likasociations , Operations and

Attributes . All entries in these text fields work like links in a hypertext, which
means that clicking on these links allows you to navigate to the related model
elements. You can navigate from one class to its associations, operations or
attributes and easily access their properties too. Of course, this kind of navigation
works in both directions: e.g. from a class to its operations and back.

Now let us navigate to one of the operations of this class. Clickneber
operation and have a look at its properties.

51

Chapter 7. Working with Diagrams

52

Figure 7-7. Properties tab with Operation '"Member’ Selected.

Properies | Style | To Do Hems | Documenl tation | Java Source Tagged Values |
B operstion =4 RET0ODX (e
retumn
Hame [Member |
« » Sereotype [Finger Itl@
Dwner |Reservation |
Ascessed Aftribute | =] Rased signals
Visibility @ public O protected () package () private [hone |
Modifiers [] abstract []final [roet [Jquery [static
2 @ tial - O ized O

Take an even closer look at the parametergl@hber. The parameters have
properties themselves and therefore their own Properties tab, too.

Click on the parameteeturn . The UML specification treats return types as
special parameters. Thus every operation has a return parameter that by default is
set tovoid . This type can be changed to any other type.

You should now be able to comfortably navigate through the model with the up,
back, and forward buttons of the Properties tab toolbar, which is again similar to a
hypertext browser.

Opening a Tab from the Details Pane in a Separate Window

Screen space is valuable real estate, and this is especially true when working with
large diagrams. Space for diagrams can be increased by closing or shrinking the
Details pane, but this is not really practical when you need to access that
information often. Poseidon allows you to open tabs from the Details pane in
separate windows, freeing up screen space.

To open a tab in a new window, double-click on the name of the tab. The new
window will open on top of Poseidon.

B clas s BB B X Operstions 3 3 3 3 Ahibutes

wame [ooaton |
8 =13

[ra00: Cotiection ‘

hicla.antity =)
protected O package O private
Ol ot Dlactve O Efends et

Chapter 7. Working with Diagrams
7.2.2. Zooming

The zoom factor is a property of the diagram. Your diagrams might get too large to
fit completely into the visible part of the screen. In this case you will want to zoom
out to get a better overview. Or you might want to zoom in on some specific part of
a model to increase readability, for example during a presentation using a projector.

There are several ways to zoom in and out:

- Change the zoom factor of a diagram by clicking on an empty space in the
diagram and using the slider (or the buttons with predefined zoom values) on the
Properties tab in the Details pane.

Figure 7-8. Zooming by changing the properties of a diagram.

B Presentation Class Model Ovenview ‘

R1/8«1t9 S B EE mMOOONAIDSS

[EX

Properties | Style | To Do Hems | | Java Source

Diagram & =

Hame [Member Identification: Design-Class Madal |

Namespace |pesign.lse Case - Implementation Sesandary Use Cases.Member dentification [=13]

« Use the slider in the Birdview tab of the Overview pane. The checkbox indicates
which pane is affected — unchecked means the birdview can be zoomed,
checked means the diagram in the Diagram pane can be zoomed.

« Hold down the CTRL key and use the mouse wheel to zoom in and out.

« Choose a zoom factor from the mentidw—Zoom).

53

Chapter 7. Working with Diagrams
7.3. Creating New Diagrams

54

Creating new diagrams is the core of creating new models. After all, it is the
diagrams that communicate the design. With Poseidon for UML, generating new
diagrams is a very simple process.

Diagrams are considered model elements themselves, therefore you must decide
where the diagram will fit into the hierarchy of the model before you create the
diagram. The Package Centric view of the Navigation pane displays the distinct
hierarchy. New diagrams are created in the topmost package of this hierarchy by
default, but you can also create new diagrams for a specific package. If you select a
specific package and then create a new diagram, the diagram will be created for that
package. If anything else is selected in the Navigation pane, the new diagram will

be created in the topmost package.

Some diagrams are specific to certain model elem&8ate an@- activity

diagrams, for example, are used to design the details of a class or a use case. Such a
diagram needs to be associated with a class or a use case. To do so, you need to
select the class or use case prior creating the new state or activity diagram. Notice
that this association is fixed and cannot be changed later.

New diagrams can be created in several ways:

- Main Toolbar — Click the appropriate button for the corresponding diagram
type.

« Main Menu — Select the diagram type from the 'Create Diagram’ menu in the
main menu.

+ Quick-Key Combinations — Use these shortcuts to create a new diagram:

. Class Diagram —Ctrl-L

. Collaboration Diagram —€trl-B

- Deployment/ Object/ Component Diagram &#l-D
- Sequence Diagram -€trl-Q

. State Diagram —Ctrl-T

. Activity Diagram —Citrl-Y

« Use Case Diagram -Etrl-U

Chapter 7. Working with Diagrams
7.4. Creating New Elements

A new diagram, of course, requires elements in order for it to have significance.
There are several ways to add elements to a diagram, as you will se in the next
couple of sections.

7.4.1. Diagram Pane Toolbar

The diagram pane toolbar contains buttons to create elements that are specific to
that diagram. For example, the button to create an initial state will not appear in a
class diagram toolbar. This reduces the amount of buttons that you must deal with at
one time.

The create buttons for most elements act as stamps, so that the element is placed
wherever you click within a diagram. The exceptions to this are associations. Any
sort of relationships need to exist between two model elements, therefore both of
these elements must be included in the creation process instead of just stamping a
line anywhere.

To create a new association element with the toolbar, select the type of association
and place the cursor over the first element in the relationship. Click and hold the
mouse button, then drag it to the second element in the relationship. Note that for
some of the association types, the order in which the elements are connected affects
the definition of the association.

Try it Yourself — Create new elements with the toolbar

55

Chapter 7. Working with Diagrams

1. Open the class diagranEE User Registration: Design-Class
Model .
2. Select the 'create clasB button from the toolbar. The mouse should
now appear as a crosshair.

3. Place the crosshair to the right of the class 'User’ and click the mouse
button to create the new class.

4. Select the 'generalizatiol™' button from the toolbar. The mouse will
again appear as a crosshair.

5. Place the crosshair in the new class, press and hold the mouse button,
then drag it to 'User’.

* Note that the order in which they are connected determines the direction of
the inheritance.

6. You are now ready to incorporate the new class into the model. Look
through the rest of this guide to learn how to change the name of the class,
color-code it, add elements and operations, and more.

7.4.2. The Rapid Buttons

The toolbar is not the only way to create new diagram elements or associations.
Poseidon for UML provides an intelligent shortcut that can speed up the
development of a diagram. Select a class and wiggle your mouse near the edge of
the class and several additional buttons will appear. They are called Rapid Buttons
and are only available if an element is selected.

These rapid buttons can be used in two ways. You can either click on it to create and
associate a new corresponding model element with appropriate connection in one
step, or keep the mouse button pressed and drag it to an existing model element to
create a new association without creating a new class.

Rapid buttons are available for many diagram elements in each of the editors. Here
is a class example:

56

Chapter 7. Working with Diagrams

Figure 7-9. Rapid Buttons for a class element.

Class 1

For a class element, the rapid buttons to the left and right represent directed
associations, the button on top represents specialization of superclasses, below is
the generalization of subclasses, and self-associations are in the bottom right corner.

Try to click on the rapid button underneath your new class and you will see that a
new subclass appears close to it. If you click and hold the button, you can move the
mouse and place the new element where you want it to be. Or if you click, hold, and
move the cursor over an existing element, only a connection between these elements
is created.

The rapid buttons displayed are some of the more commonly used buttons. To
display additional buttons as rapid buttons, hold down the 'shift’ button while
rolling over the element with the mouse.

Figure 7-10. Additional rapid buttons for a class element.

= Class 1 =
— —
o o

o 4
— —

57

Chapter 7. Working with Diagrams

7.5. Editing Elements

58

Now that new elements have been created, they must be modified in order to be
meaningful to the model.

7.5.1. Inline Editing Text Values

The diagram drawing area in the Diagram pane not only allows for creating,
deleting and moving graphical elements; it is also possible to enter values, such as
names, directly into the elements without using a different pane. Exactly which
element properties can be modified depends upon the specific element. Most of the
elements allow editing of the name of the element at a minimum. For example,
selecting a state from within a state diagram and then typing will immediately open
a small text editor. When editing is finished, the typed text will replace the previous
text in the navigation tree and Properties tab, as well as in the diagram of the
selected state.

Classes and interfaces offer far more options for editing values than just editing

their names. Both of them are constructed of different parts cetiatpartments

The first compartment holds the values for the name, the stereotype and the package
of the class or interface. You can edit the name of the class as described above;
however, stereotypes and packages can only be changed using the Properties tab.
The second and third compartments hold the attributes and operations defined for
the class or interface (in UML, interfaces can have operations only). Inline editing
works the same way here. Select the attribute or operation you want to change and
start typing (or double-click on it to open the inline editor). Press '"CTRL-return’ on

the keyboard or click elsewhere in the application to end the editing.

After editing an attribute or operation, you can directly add another attribute or
operation without leaving the element by hitting 'return’ on the keyboard instead of
'CTRL-return’ after editing the first attribute or operation.

You can also create a new attribute or operation with a rapid button by moving the
mouse to the right side of the compartment and then clicking on the 'create’ button
that appears. As above, 'CTRL-return’ will end the editing and add the new
attribute/operation to the class or interface, and 'return’ on its own will end the
editing and create a new attribute or operation..

The attributes and operations compartments in the diagram can be set to invisible
for the current diagram via the Context menu, or for the entire model via the
'Settings’ dialog from the 'Edit’ menu.

Chapter 7. Working with Diagrams

Figure 7-11. Add a new attribute or operation to a class inline

Class_1
E) [
Click here to create a new attribute inte this ¢lass
]
Class_1
{=]
£

b
Click here to ereate @ new operstion inta this class

7.5.2. Editing via the Details pane

The first tab you will see in the Details pane is the Properties tab.

7.5.2.1. The Properties Tab

There are many modifications that can be made to elements from the Details pane.
You can add attributes and operations, rename elements, change namespaces and
stereotypes, add colors and borders, and much more. This section will outline some
of the most important modifications that can be made. Many of these procedures
can be extrapolated to other editing procedures.

Let's look at a class element, as these are very frequently used elements.

Figure 7-12. Properties tab for a class

Fropeties | Style | To Do Hems | Dosumend tation | Java Source | Censtraints | Tagged Values |

B clas= &= 4 B EB B X Operations # F 3 1 Aftributes
o [Rezemation | [reiteriatveniciznumben
« » Stereotype [EntityObject |\L||é\ 0 Sting
Hamespace [de.amg.stattauto.reservation.entity [3] |+setiumeen_numben
Visibility @ public () protected () package (L) private N Exends Implements
Modifiers [abstract [final [roet [active none none
none
Derived Associations
e Bt Resenation[D "]-+de amg
: [

59

Chapter 7. Working with Diagrams

60

The toolbar across the top of the tab contains buttons for navigation between
elements, creation buttons, and a delete button. These buttons will change
depending on the type of element selected as the current active element.

Below this toolbar are the editable characteristics of the class. The name of the
element can be typed directly into the name field with no restrictions. Likewise,
Visibility and Modifiers can be directly modified from their checkboxes. Note,
however, that these two properties are not displayed in the diagram itself, thus the
changes made will be visible only from the Properties tab (the modifier "abstract’ is
the exception to this). The Stereotype and Namespace must be selected from the
dropdown list of available options. The Owned Elements section is automatically
populated.

All changes made to the class are propagated throughout the model. For instance,
when a hamespace is changed, the navigation tree is updated and the class is moved
from the original package to the new one that was just selected. This change is also
reflected in the Diagram pane: the top compartment of the class will digfpdeny
new_namespaca) place of(from old_namespacgjyvhere old_namespace and
new_namespace refer to the original namespace and most recently selected
namespace. This easy and convenient mechanism for changing namespaces is
provided for nearly all of the elements.

To the left of the editable characteristics are elements which are affiliated with the
selected element. In UML, operations and attributes are considered both an
elements in their own right as well as a characteristics of a class. As they are
elements, they have their own Properties tabs. Therefore, to edit the name or any
other properties of an operation for example, we must go to the Properties tab of
that operation. That is why it is not editable here. The remaining fields are:
Extends , Implements , Associations , andDerived . These properties show
different relations between the focused class and other model elements.

7.5.2.2. The Style Tab

Next we can look at the Style tab, which determines how the element is rendered in
the diagram.

Chapter 7. Working with Diagrams
Figure 7-13. Style tab for a class

CLass_1

ATTRIBUTE_1 INT

Fropetties | Stvle | ToDoMems | JavaSeuree | Documen tation |

Bounds [170.0, 1700, 100.0, 71.0 |

Lines Font
|—| [|| (1]} I |—| [[(][} . ‘ ‘ [| ([][}
|
-

Fill

|COF‘PERPLATE GOTHIC L\GI—B‘ |14 El

The Style tab determines which colors and fonts will be used to display the element.
This is very useful when color-coding diagrams or highlighting aspects of the
diagram. As with the properties tab, not all of the options make sense for every
element. Therefore, only the appropriate style options are available.

Options for the Style tab:

 Fill — Determines the background fill color of the element
. Lines — Determines the border color of the element
- Font — Determines the color and font of the text.

Whereas changes made to an element in the Properties tab are propagated
throughout the model, changes made to the style of an element apply to the current
diagram only.

7.5.3. Editing via the Context menu

The Context menu can be accessed by right-clicking on an element in a diagram.
Entries relevant to the selected element are displayed. Remember that things like
attributes and operations are considered elements in their own right, therefore the
context menu for an attribute will be different than that for the class in which it
occurs. If you do not see what you expect, be sure that you have selected the proper
element to be the active element.

61

Chapter 7. Working with Diagrams

The Show option displays all checked items in the diagram. In the case of a class
element, this includes stereotype, package, and compartment options. Unchecked
items remain hidden from view.

It is also possible to create things like attributes, operations, and dependent edges
when appropriate. These items are listed towards the bottom of the context menu
and, once created, are available for editing in the Properties tab.

Figure 7-14. Context menu options for a Use Case

<< process >»
\ Use_Case_1
: Align 3

Distribute 3

Show »| O Package
@ Copy ot | B Stereotype
% cut i

Delete From Model Delste

State Diagram T

Activity Diagram Ctr-¥

H create attibute

B create operation

+7] Add all dependent Edges

7.6. Editing Diagrams

62

Now that you have learned to add and edit elements to a diagram, it is time to learn
how to refine the appearance of the diagram itself.

7.6.1. Drag and Drop

Some diagrams will be created solely from new elements. But sometimes you will
want to use elements that already exist in the model. You just want to present them
in a different context and show other specific aspects of its role in the overall
architecture.

To do this, you can drag existing elements from the Navigation pane and drop them
in the diagram. These elements will appear with all currently known associations to
other elements already present in the diagram.

Chapter 7. Working with Diagrams

Drag and Drop can also be used to move a class from one package to another. This
can be accomplished by selecting a class in the Navigation pane and dragging it to
the destination package. Once the class has been moved, the description that shows
the origin of the class is immediately updated.

The other possibility is to select elements in a different diagram, copy them by
hitting CTRL-C and pasting them into your new diagram by hitting CTRL-V. To cut
elements from a diagram, use CTRL-X. Of course, you can also use these features
via theEdit menu or theContext menu.

7.6.2. Changing Namespaces

As your model evolves and grows bigger, you might want to restructure your model
organization. Drag-and-Drop and Copy/Cut/Paste functions are surely one way of
doing this. But there is a deeper concept behind the structure of models that you
should be aware of.

UML has the notion ohamespaceshat define a structure for a model. This

structure is not necessarily the same as the structure of your diagrams. Remember

that model elements can be represented in several diagrams but can only have one

namespace. And since diagrams can be created at very different points in the model
structure (that is in different namespaces), model elements do not always share the

namespace of that diagram.

A namespace is an abstraction of model elements that can contain further model
elements. A typical example for a namespace is a package. Classes as well as
diagrams are usually contained in a package, or to put it differently, their namespace
is the package they are included in. Any model element that is not directly owned

by another model element (like an operation that is owned by a class) has such a
namespace.

To find out what namespace a model is in, look at the Properties tab in the Details
pane. Any element either has a namespace or an owner. You can change the
namespace by clicking on the little button to the right of the text field. This opens a
drop-down menu with all namespaces you can move it to. For example, if you
decide a class should not belong to the package you created it in, you can simply
change its namespace to be a different package from the Properties tab.

In some cases, changing the namespace for one element does not only effect this
element but others as well. This is a convenience feature that was intentionally built
in, believing that this is what the user intends to do in most cases. But this might not
always be the case. If you change the namespace of a diagram, then all model
elements in that diagram are assigned the new namespace as well. Also, if you
change the namespace of a package, all included elements will likewise be moved
to the new namespace.

63

Chapter 7. Working with Diagrams

64

Since packages are the most important type of namespace, there is another
convenience feature for it. You can change a model element’'s namespace by
dragging it with the mouse onto the figure of a package within a diagram.

7.6.3. Layout functions

You already know that you can layout your diagram by using the select tool. But
there are a number of other ways to rearrange your diagrams.

Select and Move Elements

A selected class can be moved not only by using the mouse, but also by means of
the arrow keys. The elements get nudged in the direction of the selected arrow key.
Holding down the SHIFT key while pressing the arrows causes the elements to
move in larger increments.

You can easily select several elements by holding down the SHIFT key while you
select further elements, or by clicking somewhere in the empty space of the drawing
area and dragging the mouse over elements. A blue rectangle appears and all
elements that are completely enclosed in it will be selected.

Figure 7-15. Selecting multiple elements with the mouse.

< <entitys > de v ryAddr

Addre ss

-strest : String
—city : String

Movements always apply only to the selected elements. If you want to select all
elements in a diagram, use the hot key: CTRL-A.

Arrange Elements

Another set of useful options that are accessible from the main menu are the
arrangement options. These are a powerful set of tools to assist with the layout of a
diagram. They are divided into two groups: align and distribute. The align tools
move elements to a specified axis.

TheAlign Tools include:

Chapter 7. Working with Diagrams

- ™ Align Tops — Aligns the tops of the selected elements along the same
horizontal axis

- On Align Bottoms — Aligns the bottoms of the selected elements along the same
horizontal axis

- E Align Lefts — Aligns the left sides of the selected elements along the same
vertical axis

- o Align Rights — Aligns the right sides of the selected elements along the same
vertical axis

- & Align Horizontal Centers — Aligns the centers of the elements along the
same vertical axis

- =8 Align Vertical Centers — Aligns the centers of the elements along the same
horizontal axis

- F Align to Grid — Aligns the top-left corner of the element with the snap grid

The distribute tools adjust the spacing of the elements without regard to their
alignment.

TheDistribute Tools include:

- it Distribute Horizontal Spacing — Distributes elements so that there is the
same amount of white space between the vertical edges of the selected elements

- it Distribute Horizontal Centers — Distributes elements to that there is the
same amount of space between the centers of elements along a horizontal axis

- = Distribute Vertical Spacing — Distributes elements so that there is the same
amount of white space between the horizontal edges of the selected elements

- =l Distribute Vertical Centers — Distributes elements so that there is the same
amount of space between the centers of elements along a vertical axis

Both groups of tools may be used alone or in conjunction with another tool of a
different type. For example,

The layout process is supported by a grid. It you want a finer or a coarser grid than
the default or if you want the grid to be displayed in a different manner, you can
change this in th&iew menu.

Changing the Shape of Relationships

You can also change the layout of the edges. By default, Poseidon for UML always
tries to draw a straight line without bends but you can easily add waypoints: Select
an edge and move the mouse perpendicular to the edge. At first the edge simply
moves, too. But as soon as a straight edge is no longer possible, a waypoint is
automatically added. You can add several waypoints by clicking on the edge so that

65

Chapter 7. Working with Diagrams

66

you can wire your diagrams as you prefer. To remove a waypoint, just move it over
another waypoint or an endpoint and it disappears.

Figure 7-16. Adding Waypoints.

In Poseidon for UML version 2.0, waypoints have changed from blue boxes to
yellow circles. Despite the change in appearance, they function in the same way.

Moving Adornments

You can also move adornments as you can move elements. Simply select the
adornment and drag it around. You will notice a little dotted red line that indicates
to which association this adornment belongs. Roles and multiplicities are attached
to the association ends in the same manner.

Figure 7-17. Moving Adornments.

n
redica CreditCard
.*c 1

0.1

In version 2.0, the adornments move in a slightly different (and more intelligent)
manner. Previously, an adornment might obscure an edge. Adornments now 'hop’
over edges, automatically providing a cleaner look to the diagrams.

7.6.4. Removing and Deleting Elements

With drawing tools like Visio or Powerpoint, deleting an element from a diagram
simply removes the figure from that single location. With full-blown UML

Chapter 7. Working with Diagrams

modeling tools this is different. You are always working on a single, consistent
model. The different diagrams and the elements contained within them are just
components of views rendered from this single model, even if the diagrams are
constantly used as a means to change the model. The consequence of this is that
modifications to any element within a diagram are applied to the element, not to the
diagram. As such, a change made to the element will be seen throughout the entire
model.

It then follows that selecting an element and then pressing delete means that the
element itself is deleted, meaning that it no longer exists within the model and is
removed from all aspects of the model. Note that there is a big difference between
deleting an element from a model and removing an element from a diagram.

This leads us to use different terminology with different meanings: Youletate

an element from the mode] which means that the element is removed entirely and
is no longer available in the Navigation pane or in any of the diagrams, or you can
justremove its figure from the current diagram you are working with. These are
very different things, and different commands are used to achieve them.

To completely remove an element from the model:

. Use the delete buttc?® in the Properties tab

- Select an element or part of an element in the diagram and hit 'delete’ on the
keyboard

. Select 'Delete from Model’ in the Context menu

To remove an element’s representation from the current diagram:

- Select an element or part of an element in the diagram and use CTRL-X to cut
the item

. Select 'Cut’ from the Context menu

Or the entry 'Delete from Model’ in the context menu; but be careful, this means
that it will be removed from the current diagram as well as from all other
diagrams. Once an element is deleted, there is no way to get it back again.
Additionally, all connections to other elements, such as associations or
inheritances, are completely removed.

The element, as part of the model, remains untouched in other diagrams and it also
remains in the tree in the Navigation pane. For elements that are connected to other
elements through, for example, an association or inheritance, removing the first
element (e.g. a class) means that the association is no longer valid and therefore the
second element (e.g. the association) is also removed from the diagram, but is
likewise still accessible from the navigation pane or other diagrams.

67

Chapter 7. Working with Diagrams

If you want to remove an element but not the connections it has to other elements,
you can detach it by selecting the connection and dragging the handle at the end of
it to another elemerieforeyou remove the element.

7.7. Undo/Redo

Sometimes when working with your models, you might have done something you
did not really intend to do. If this happens, the possibility to undo what you did can
be very valuable. Poseidon for UML offers such an undo mechanism. The Undo
function is not limited to the last change you made — you can undo all the steps
you took prior to that, and you can even redo the things you just undid.

To Undo or Redo actions

« Main Menu — Select Undo or Redo from the Edit menu

« Main Toolbar — Click the 3 Undo or e Redo button on the main toolbar
+ Quick-Keys — Use the quick-key CTRL-Z for undo or CTRL-W for redo

68

Chapter 8. Working with Models

By now you have learned how to navigate an existing model, how to work with
existing diagrams and how to add new diagrams. Now let’s take it to the next level
and look at what you can do with whole models in Poseidon for UML.

8.1. Creating new Models

Creating new models is very simple. At startup, Poseidon for UML opens with an
empty model. This model contains one Class Diagram that is immediately
displayed in the Diagram pane. You can start working on this model right away.

To create a new model:
« Main Toolbar — Click the ™ "New Project’ button on the main toolbar.

- Main Menu — Select 'New Project’ from the File menu.

8.2. Saving and Loading Models

Saving the models you created in Poseidon for UML is routine, but there are a few
things that should be mentioned about saving and the format used.

Open Standards Support

Poseidon for UML supports open standards extensively, and this is also true for the
saving format. UML is standardized by the Object Management Group (OMG). Part
of the official UML specification by the OMG (http://www.omg.org) is a

mechanism for the exchange of models between different tools. This mechanism is
based on XML and has special extensions and rules to better represent
object-oriented structures as well as metadata. The OMG has specified a concrete
application of XML for this purpose that is called the XML Metadata Interchange,
or XMl for short. Poseidon for UML makes use of this format. In fact, while most
other tools can only import or export XMI, Poseidon for UML uses XMI, as
specified by the Diagram Interchange standard, as the default saving and loading
mechanism.

Introducing the .zuml File

The previous version of UML had no standards for storing the graphical
information of a diagram. This made exchanging a model between tools very
difficult. UML 2.0 has solved this issue with the inclusion of Dmgram

69

Chapter 8. Working with Models

Interchange standard which specifies exactly how graphics are to be stored and
rendered. Gentleware was at the forefront of the development of this standard and is
therefore uniquely able to implement it in Poseidon.

Now diagrams are written in the XMI 1.2 format, the same format used to store the
model itself in both UML 1.x and UML 2.0. Poseidon creates a project file with a
".zuml’ extension, which is a .zip file containing a .proj file with project information,
and an .xmi file with the model and layout (Diagram Interchange) information. This
method of storage is supplementary to the previous method, meaning that projects
created with previous versions of Poseidon (.zargo files) or other tools will open in
Poseidon version 2.0, but diagram information will be converted before it is opened.

To Save a Model:

- Main Menu — Select 'Save Project’ or 'Save Project As..." from the main menu

+ Quick-Key — Use the quick-key CTRL-S to save a project

To Load a Model

« Main Menu — Select 'Open Project’ from the main menu

+ Quick-Key — Use the quick-key CTRL-O to open a project

You can also import XMI that was created by other UML tools.
Components Of A .zargo File

Poseidon 1.x saves projects with a .zargo extension. These files can be opened in
Poseidon 2.0, but new projects created with Poseidon 2.0 cannot be saved in this
format. The following section briefly explores these files.

The current version of XMl is, by itself, not sufficient to save all aspects of a UML
model. It can be used to transport the names and properties of all model elements,
but diagram information (layout, colors, etc.) is not included, therefore this
information has to be stored in a different format. Poseidon 1.x uses another XML
application, called PGML, which is a predecessor to SVG, the Scalable Vector
Graphics format, standardized by the W3C.

Finally, some internal information about the model needs to be stored. This is done
in yet another XML-based format with the endirggo . All of the files mentioned

are zipped together into just one compressed file with the enghingp . This is

actually just a regular ZIP file; you can decompress it using any ZIP tool or the Java
JAR tool. Usually you don’t have to worry about all this. But sometimes, if for
example, you want to access the XMl file to exchange it with other tools, you may
need to unzip this file and have a closer look inside.

70

Chapter 8. Working with Models

Poseidon 1.5 and 1.6 use a different XMI format than previous Poseidon versions
(up to version 1.4.1). Support for XMI 1.1 and 1.2 as well as UML 1.4 was added,
and all .zargo files that were created with older Poseidon versions are converted
when necessary, and there is no need to care at all about the different versions.
Gentleware also works on better import functionality so that the XMI generated by
other CASE tools can be imported smoothly.

8.3. Importing Files

Poseidon provides a slick dialog to assist with the importation of source code.
Several options are available when importing this code:

General Tab

Descend directories recursively— Easily add all files below the selected
directory

Skip CVS and SCCS directories— Ignore version control files

Confirm guessed accessor methods- A dialog appears to verify that methods
are indeed accessor methods

[1mport Files X
] @ = @ EE
[LayoutcontralPanel java General | Java
ava] Listbemo java
. [¥] Descend directories recursively.
[#] Skip CVS and SCCS directories.
[] Confirm guessed sccessor mathads
[swingsetzapplet java
[TabbedPanebemo.java
[TooiTippemo.java
[Treebemojava
Dateiname [sre |
Dateitye: |Java source Cava) -]
Open ‘ | Cancel |

Java Tab

- Java attributes modelled as— Select either attributes or associations
- Arrays are modelled — Select either as data types or with a multiplicity of 1..n

- Create diagrams (slows down import}— Unchecking this box will speed up
importation.

71

Chapter 8. Working with Models

x|
5 @ BE

r{{ﬁlmport Files
Suchen in ‘uj stc Iz” |@
) AquaTheme java) LayeutControlPansl.java General | Java |

|_] BezieranimationPanel java _| ListDeme.java

Jdava attributes modelled as

|_] Buttonbemo.java |) optienPanebemo java

| charcoalTheme jawa [Pemuterjaus O UmL attributas @ UML assoctations
) Codeviewerjava [ProgressBaibemo.java P o meddlied

] coleiChosserbemajava || RubyThema.java ® o

|_] combeBoxtemo.java [) semliPanebemo.java B e D G Ty
] ContiastTheme.java [stidebema.jaua (B Gt A e (e

] DemeoMaduls java) splitbanebeme java T

] DirectionPanal.java) swinggetz java I |
|_) EmeraldTheme java [) swingSetzapplet java

) ExampleFileFilterjava [) TabbedPanebemo.jsva
) ExampleFilevizwjava) Tablebeme java

] FilaChaosarDama java) TeniTipbeme.java

] HtmIDemo.java [) Treebemo java

) IntemalFrameDemo.java

Dateiname: [AquaTheme.jsva |

Dateityp ‘Java sourse (Cjava) El

| Open | Cancel

Here is an example of what an imported Java class looks like in the Navigation Pane
and in the Diagram pane, as well as showing a bit of the source code:

d Edition - Untitled (=13

File Edit View Create Diagram Arange Critigue Generation Plugins

BE0AE 2C XD

Help

B3 Package centic ‘ Shapes |
-~ ES]
el T
o3 IEBEES =l BB G e
& S mosel
B shapes
B java Aqua Theme
7 Javax -primary1:Coloi)IResource= new ColorUIResource(102, 153, 153)
=] “primary2:Color)IResource= new ColorUIResource(128, 192, 192)
o B primanc1 -primary3:Colorl)|Resource= new ColorUIResource(159, 235, 235)
2= B primangz +gethiam e{):String
o~ B primans #getP rimaryl (x:ColorUIResource
— B getiame #getP imary2 (1 ColorUIResource
(= A — #getP imary3(:C olorUIR esource
— B getPriman2
— B getPrimans
L T aceessor getPrimanyigy
[=scesorgetPrmanzl Properties | Style | ToDoltems | Documentation | Java Sourse | Constraints | Tagged Waluss |
— accessor getPrimand() =
SE* Java class "AgquaThems. java™ generated from Poseidon for UMD
Poseidon for ML is developed by
% Geperated with velocity
27
import java.awt.¥:

import jawva.util.*;

Birdwiew ByFriority ‘ import javax.swing.®:
. A import javax.swing.border.®;

import javax.swing.plaf.*;
import javax.swing.plaf.metal.®;

I : 5 oN
<[QL 'O [T |
O — 20%) 90:1 |INSERT |

72

Chapter 8. Working with Models
8.4. Importing Models

Models can be imported directly into other models. This allows for the merging of
two or more sub-models into one or the importing of models from different formats.
For example, Poseidon for UML 1.6 can import files stored in MDL format — the
file format used by Rational Rose. This feature is available in the Professional
Edition.

To Import Sub-Models:

« Main Menu — Select 'Import Files’ from the main menu
+ Quick-Key — Use the quick-key CTRL-I to import files.

Keep in mind that importing an XMl file means that no layout, color, or style
information is included, as the XMI format simply does not contain this kind of
data. You will have to create your own diagrams by dragging elements from the
Navigator to the Diagram pane.

To Import XMI Files Created By a Different Tool:

- Main Menu — Select 'Open Project’, change the file chooser to XMI, then
select the XMl file

8.5. Exporting Models

The XMI File Type

For the interoperability of different UML tools, it is important to be able to export
models from a proprietary to a common format. UML defines a standard exchange
format for UML models called XMI, which Poseidon for UML uses as the default
saving format. This means that every time you save a model it is stored in an XMl
file. However, since XMl is a quite wordy xml format and lacks layout information,
Poseidon compresses this file, and zips it together with other project information.
This file has the name of your project and the ending .zuml. To get to the XMl file,
unzip this file with the compression software of your choice.

From version 2.1 on, it is possible to include diagram data in an XMl file by
selecting this option during the export process.

Advantages of XMI

Such a standard interchange format has a number of applications. It not only makes
sense to be able to replace one tool by another or to exchange models with people

73

Chapter 8. Working with Models

74

using other tools, it also makes sense for chains of tools. The following example
well illustrates this value addition:

Some tools are especially well prepared for capturing models designed in
cooperative sessions on the white-board. The model is sketched on the white-board,
the gestures are tracked and transformed to UML model elements, and a laptop in
conjunction with a projector places the newly-created diagram back onto the
white-board. This demonstrates and facilitates a creative and cooperative style of
working on a model as a team.

Different tools from other vendors are specialized on generating code. They might
not even have a graphical user interface, they simply read in a model and produce
code for a specific type of application or platform. Such tools can be connected to
Poseidon using the XMI format. However, the XMI standard is not implemented
equally well among different tools. Poseidon for UML is known to produce one of

the cleanest XMl files for its models, and many tools have chosen to support our
variant of XMI. However, the interchange might not work with all other tools. The
Diagram Interchange standard should alleviate some of these issues once other tools
implement the standard.

To Export a Project

1. Open the File menu and select 'Export Project to XMI'.

2. The Export Project dialog will open. To the right, select or deselect 'Save with
diagramdata’.

3. Select a location and file name, then click 'Save’.

Figure 8-1. Export Project to XMl

MExpDrt Project to XMI: testfile

Speichem In: |§| |£| |Q| @|E|

@ Save with diagramdata

Dateiname: |samp|e_pr0ject |

Dateityp: |Xru1L Metadata Interchange &.xmi) E|

Sawve | | Cancel |

Chapter 8. Working with Models
8.6. Exporting Graphics and Printing

Another option that you will find useful is the export of diagrams as graphics.
Whether you want to use your diagrams in other documents, in a report, a web site,
or a slide show, you can export them in a range of different formats depending on
your needs.

Formats

The currently available formats are JPG, CompuServe Graphics Interchange (GIF),
Portable Networks Graphics (PNG), Portable Document Format (PDF), Postscript
(PS), Encapsulated Postscript (EPS), Scalable Vector Graphics (SVG), and
Windows Meta File (WMF).

The first six are well known for their respective areas of usage, but for our purposes
the most promising format is SVG. There are not many applications that support it
yet, but in the near future this is likely to change to be the standard format of choice
for web content as well as for text documents. If you want to try to exporting and
viewing diagrams in SVG, there is a browser plug-in (for the Internet Explorer)
available from Adobe. There also is an appropriate graphics tool called Batik,
available from the Apache project.

Export a Diagram to a Graphic File:

- Main Menu — Select 'Save Graphics...’ from the File menu.

Beginning with Poseidon for UML version 2.0.4, graphics generated from the
Community Edition contain a watermark that appears in the background of the
exported graphic file but does not affect any of the diagram information.
Watermarks are not generated from any of the Premium Editions. Figures 8—1 and
8—2 depict the same diagram, but 8-1 was saved from the Community Edition and
8-2 was created in the Professional Edition.

75

Chapter 8. Working with Models
Figure 8-2. Watermarked Community Edition Diagram Graphic

Initial State [erroneous reservation request]

v

[cancel] |: Receive Reservation Re quest }

[0K] [ne vehicles available]

(Check Vehicle Availability)

[t least one vehicle available]

Qﬂ(Select Vehide)

Cancel

[OK] | [vehicle no longer availakle]

(Reserve Vehicle)

Cancelled Reserved

Figure 8-3. Premium Edition Diagram Graphic Without Watermark

Initial State [erroneous reservation request]

v

[cancel] |: Receive Reservation Regquest }

[OK] [no vehicle s available]

(Check Wehicle Availability)

[at leagt one vehicle available]

Qﬂ(Select Vehide)

Cancel
[OK] | [vehicle no longer available]
(Reserve Vehicle)
Cancelled Reserved

76

Chapter 8. Working with Models

Printing

You can also directly print diagrams to a printer. In the Page Setup dialog, you can
specify how many diagrams to print per page — this allows you to place several
diagrams on each print, e.g. 2x2. The Print function (CTRL-P) prints the current
diagram. The Print Diagrams function calls up a window for you to select which
diagrams to print. You can navigate through the diagram tree and select any number
of diagrams by pressing the CTRL key and clicking the relevant entries. These
printing functions are not available in the Community Edition.

77

Chapter 8. Working with Models

78

Chapter 9. A Walk through the
Diagrams

There is a lot to say about when to use which diagram type when developing a
design, and what the role of it should be. The different answers to this are referred
to as the design process or design method. This document is not intended to
describe a concrete design process. Poseidon for UML can be used for any such
process. Instead, in this chapter we will look at the various diagram types and how
the corresponding model elements are created or edited in Poseidon. For many of
these diagrams, a short example has already been given in the default model
Stattauto , which we looked at in Chapter 6.

9.1. Use Case Diagrams

The first diagram to look at is tF.: Use Case diagram. The main ingredients for

this type of diagram arase caseandactors together they define thelesthat

users can play within a system. They are associated to the tasks, thase aeses
they are involved in. It is often used in early stages of the design process to collect
the intention requirements of a project.

If you are not well-acquainted with UML yet, remember that a use case is not just a
bubble noted in the diagram. Along with this bubble, there should be a description

of the use case, a typical scenario, exceptional cases, preconditions etc. These can
either be expressed in external texts using regular text processing tools,
requirements tools or file cards. It can be and is often refined using other diagrams
like a% sequence diagram or &xactivity diagram that explain its main scenarios.

The basic description of a use case can also be inserted in the Documentation tab of
the Details pane.

Figure 9-1. A Use Case Diagram.

79

Chapter 9. A Walk through the Diagrams

80

9.1.1. Diagram Elements

* Actors — Also referred to as Roles. Name and stereotype of an actor can be
changed in its Properties tab.

T Inheritance — Refinement relations between actors. This relation can carry a
name and a stereotype.

© Use cases— These can have Extension Points.
= Extension Points— This defines a location where an extension can be added.

« Associations— Between roles and use cases. It is useful to give associations
speaking names.

T Dependencies— Between use cases. Dependencies often have a stereotype to
better define the role of the dependency. To select a stereotype, select the
dependency from the diagram or the Navigation pane, then change the stereotype
in the Properties tab. There are two special kinds of dependencies: <<extend>>
and <<include>>, for which Poseidon offers own buttons (see below).

¢ Extend relationship — A uni-directional relationship between two use cases.
An extend relationship between use case B and use case A means that the
behavior of Bcan beincluded in A.

i, Include relationship — A uni-directional relationship between two use cases.
Such a relationship between use cases A and B means, that the behavier of B
alwaysincluded in A.

0O System border— The system border is actually not implemented as model
element in Poseidon for UML. You can simply draw a rectangle, send it to the
background and use it as system border by putting all corresponding use cases
inside the rectangle.

9.1.2. Toolbar

Select

Package

Actor

Use Case
Generalization
Dependency
Association

= Directed Association
= Aggregation

=3 [10 M I

I

Chapter 9. A Walk through the Diagrams

+ Composition
% Include
Extend

= Extension Point
“= Collaboration
Classifier Role
Note
Connect Comment to Element
Ellipse
Rectangle
Polygon
Polyline

-7 9 —

MA@l 000

9.2. Class Diagrams

Class diagrams= are probably thenost important diagramef UML. They can be

used for various purposes and at different times in the development life cycle. Class
diagrams are often applied to analyze the application domain and to pin down the
terminology to be used. In this stage they are usually taken as a basis for discussing
things with the domain experts, who cannot be expected to have any programming
nor computer background at all. Therefore they remain relatively simple like this
typical example, th= Entity Class Model Overview Class Diagram.

Please note that graphical elements have been added to this diagram simply to
highlight different regions.

Figure 9-2. A Class Diagram.

= =EntityObjest=> <<EntityObject>>
User Mz mber

e am g statarkn wser £nbty) o dle zur g shattao.m earber ntity)
-Reseming Member

0.

<<EntityObjest=>

Reservation

o de.zi g.stattato. e e naton emtly)
T e

e -Reserved Vehicle

0. <<EntityObjest=>

Location 0.1 o Wehicle

<<EntityObject=>

(o de.ar g.statanio.velick eatity) -hems location roa de i g.stattanio.velick emtity)

81

Chapter 9. A Walk through the Diagrams

Once the domain has been established, the overall architecture needs to be
developed. Class Diagrams are used again, but now implementation-specific classes
are expressed in addition to the terms of the domain.

If a class is shown in a diagram of a different package, the(fexn
package.subpackages)displayed just under the class name in the diagram. You can
turn it off with the Context menu of the class. Move the mouse over the class,
right-click, and selecDisplay — Hide Package display.

9.2.1. Stereotypes

One of the general patterns of an architecture is the
Model-View-Controller-Pattern, or theBoundary-Control-Entity-Schemaas it is
often rephrased in the UML community. According to this, an architecture is
constructed in three layers.

First, theBoundary is responsible for representing information to the user and
receiving his interactions. Users of the system interact with this layer only. The next
layer,Control, contains the rules on how to combine information and how to deal
with interaction. It is responsible for transferring control based on the input received
from the Boundary layer. And finally, thentity layer holds the data and is
responsible for its persistence. To which layer a class belongs is expressed using
corresponding stereotypes. You obtain these in the Properties tab of each class. An
example for the usage of stereotypes is shown below.

Figure 9-3. A Class Diagram making use of Stereotypes.

<<EntityObject>> << EnttyObject?>
User Member

from de.am g statisubo userentiy) fronw de amg.statiaud irem berentiy)
f\ -

<+Process Object»

UserReseration Process Object

L
<<Component Herces »

S Companent <<EntityObject>>
<4Pracess Object?? =
DObject [de At Q StaREwo. pomert) Resenation

(o oo amg. Nadaub ool emity)

T -

W

<< EntityObject? > << EntityObject? >
Location hide

ifoir de.ang. Saltaut. wehick entiv) ifoir de.ang. Saltaut. wehick entiv)

<<ProcassObject>>

Iemberkertitcation Process Object

82

Chapter 9. A Walk through the Diagrams

The code generation functionality of Poseidon for UML can distinguish between
different stereotypes for the same element type. In this way it can select the

appropriate template for generation based on both of these factors. Stereotypes can
be displayed for nearly every element type.

Poseidon supports multiple stereotypes for single elements. Adding, editing, and

removing these stereotypes is accomplished via a dialog that is accessible from the
Details pane.

To access the Stereotype dialog:

1. Select the element the stereotype applies to from the diagram, Details pane, or
Navigation pane.

2. Open the Properties tab for this element in the Details pane.
3. Right-click in the Stereotype box.

4. Select 'Edit’ from the menu.

Once this dialog is open, altering and applying stereotypes is quite simple. The
buttons with the arrows allow you to add and remove stereotypes from the element.
The 'Add’ box below the list of stereotypes will create new stereotypes, but will not
automatically add them to the element. Removal of stereotypes from an element is
only possible through this dialog. Selecting a stereotype and clicking the delete

button will remove the stereotype from the model completely, not just from the
selected element.

Figure 9-4. Stereotype Dialog

@ Select needed elements

Available: « # Stereotypes Selected: « » Stereotypes

Const event
Constant
CORBACoRstant | 55 |
NOT NULL -
FRIMARY KEY | |
property —
readonhy
aniteh

UNIQUE

r—

| Apphy | Cancel

83

Chapter 9. A Walk through the Diagrams

84

9.2.2. Associations

Associations are very important in UML. They have properties in and of
themselves, as well as consisting of other model elements. Every association has
two — association ends that are model elements in their own right, as defined in the
UML specification. Figure 9—4 shows the Properties tab for an association, in this
case between Account and Member. Notice that there is no stereotype or name for
this association, but they could conceivably exist. Also note that the association is
part of theDesign.Use Case - Implementation.User Registration

namespace.

Figure 9-5. Properties tab for an Association.

Properies | Style | To Do Hems | Documenl tation | Java Source | Tagged Valuss
o Assaciation &= § K Association Ends
" ‘ members aceount
LA account holder

« » Sleraotype [

Namespace [Design.Use Case - Implementstion. User Registration

Modifiers [abstract []final [roet

An association end can also be given a name, and like an association it doesn’t
require one. If an association end does not have its own name, the class name at that
end of the association is displayed. Look to the left hand side of Figure 9-4. In this
case, both association ends have been named. Like hypertext, they link to the
association end properties, not to the class properties.

Figure 9-6. Properties tab for an Association End.

Propetties | Style | TeDolems | Decumentation | Java Souree Tagged Values |

— Assaciation End 2 = — Modifiers [navigable

Name [aceoun tholder | seope [classifier

<« » Steraotypa [[=]3] graering @ unordered (O ordered

Type ‘Analysls Container Class Madel.Member.Member | aggregation () none () aggregation () compasition

Multiplicity ‘1 E” Changeability (& changeable () frozen (O add only

Association ‘Analysis.Cun(amErClass Model Analysis.Container Class MudE\Accounl.Accounl...l wisibility (@ public O protested () paskage () private

Associations can be specialized to-raggregation or *~composition. To do this,
navigate to one of the association ends and change the aggregation type from none
to either aggregation or composition. They can also be created directly from the

Chapter 9. A Walk through the Diagrams

toolbar, using the- 'Create Aggregation’ button or th+ 'Create Composition’
button.

9.2.2.1. Navigability

The navigability of associations is similarly changed, using the association ends
properties. The check box titled 'navigable’, when checked, meamards the

class that this association end points Tdis is a bit counter-intuitive at first, so
further explanation is warranted:

Associations can be modeled as navigable in both directions, navigable in only in
one direction, or without any navigability. In most cases, navigability is indicated by
arrows in the diagrams. The one exception is the default association, an association
which is navigable in both directions. In this case arrows are omitted. The
navigability of an association occurs at the beginning of the arrow, not at the end.
You can easily navigate to the opposite association end using the navigation button
=~ in the Properties tab.

When you first create an association, it is navigable in both directions. The UML
standard requires that both arrows are hidden in this case, so it looks just the same
as an association with no arrows at all. To distinguish these two cases, the arrows of
both its ends show up in grey, if necessary, when you select an association.

Figure 9-7. Highlight hints for associations.

9.2.2.2. Hiding and Displaying Multiplicity of 1

When a multiplicity of 1 is set, some UML authors recommend hiding the 1,
whereas others like to show the 1. To suit your needs, you can set the single
multiplicity to be displayed or hidden. This can only be set diagram-wide in order to
avoid confusion.

To change the display setting for single multiplicity:

1. Select the diagram where you want to change the setting.

85

Chapter 9. A Walk through the Diagrams
2. Go to the Style tab.

3. Activate or deactivate the 'Show association multiplicity of 1’ check box.

9.2.2.3. Self-Associations

Associations usually connect two different classes. But they can also be drawn from
one class to itself. Simply use the rapid button in the lower right corner of the class.

Figure 9-8. The rapid button for self-associations (lower right).

—<delivery}\%r

Address
-street : String
Sl|-city - string

[£]

9.2.3. Attributes

Every class can have attributes that express some of its properties. In UML, every
attribute has a name and a type. The type can be any other DataType, Class or
Interface that is in the model. You can select the type from a combo box of all
available types. If the type you need is not in the list, you can create it elsewhere,
and then select it from the list.

Figure 9-9. Properties of an Attribute.

Propetties | Style | To Doltems | Decumen tation | Java Seuree | | Tagged values |

B attibute = ¢ T X Type [rns =13
e e it e
EMReRy ‘1 E” Aooessor methods

<« » Steraotypa [key |E||z\

Owiner ‘R eeeee tion ‘

Visibility) public () protected () package (@) private

Modifiers [] statie [tinal [transient [] velatile

86

Chapter 9. A Walk through the Diagrams

Attribute Properties

- Visibility — The visibility of an attribute expresses which other classes can
access it. The options are:

Public + Accessible to all objects

Protected # Accessible to instances of the
implementing class and its subclasses.

Private — Accessible to instances of the
implementing class.

Package ~ Accessible to instances of classes

within the same package.

- Modifiers — You can also set whether the attribute is write-only by checking the
final check box. An attribute can also batic (class scope instead of instance
scope) ottransient or volatile. An initial value can be given as a Java expression.

» Multiplicity — The multiplicity field determines how many references the class
has to this attribute.

« Accessor Methods— You can create the appropriate accessor methods for this
attribute with a simple click. Just hit the buttZ2y’Add Accessors’ in the
Properties tab of the Details pane, and in the list below you will see a list of
methods. This list depends on the multiplicity and the state of the final check box.
If the multiplicity is 0..1 or 1..1, oneetAttribute and ongyetAttribute
method are created. If final is checked, it is only gleeAttribute method that
is created. If you chose a multiplicity that has a numerical upper bound (and not
1), array access methods are displayed. If you give a multiplicity with unlimited
upper bound (also known as ..* or ..n), accessors favautil.Collection
are created.

When you create a new attribute, these methods are created automatically if you
checked 'Create accessors for new attribute&dit—Settings. Every time you
change the name or the multiplicity of the attribute, the access methods will
change accordingly.

If you prefer to have only some accessor methods, right-click on one of the
entries in the list 'Accessor Methods’. Then, select 'Delete’. The operation will
be removed from the list and thus, will not be marked as accessor any more. You

87

Chapter 9. A Walk through the Diagrams

will be asked if you want to remove this relation only or if you want to delete the
operation completely. Whether this dialog appears or not is determined by your
settings, which can be accessedlit—Settings. The 'Modeling’ tab is

displayed in Figure 9-9. Notice the 'When removing attributes’ drop-down list.
The default option is to ask before deleting the accessor operation. You can also
choose to always keep the operations or to delete them directly without asking.
This depends on your preference and your style of working with accessor
methods.

Figure 9-10. 'Remove Attributes’ Setting

x|
General | Appearance | Modeling | Diagram display | Emvironment | user |
[#] #ooessor methods copy documentation of attribute
[#] Ak before ovenariting documentation
[#] Immediately create acoessors for new atributes (CTRL inverts on the fly)
When removing attributes: |[Delete acoessor operations, ask before (]

[Create slassifierfeaturs 2P accessor oparations
o

elete accessor operations, ask before

Delete accessor operations, do not as

9.2.4. Operations

Figure 9-11. Properties of an Operation.

Fropetties | Stle | To Do Mems | Documen tation | Java Source Tagged Values |

B operation == Barameters
return

Name usarRegistration | liogin

<« » Steraotypa [[=]3] [passwera

Dwner [userReservationProsessObject |

Aceesse d Attribute | [=] Raised signals

Visibility @ public () protected () package () private none

Modifiers [] abstract []final [roet [Jqueny [] statie

L @ tial O @

88

Chapter 9. A Walk through the Diagrams

For every operation, you can set several UML properties. Among them are

visibility, scope (class or instance), and concurrency (with designators like
sequential, synchronized, and concurrent). You can set an operation to be final, be a
guery, abstract, or a root method (with no parent).

In the field 'Accessed Attribute’, you can define whether this operation should be
marked as an accessor method for an attribute. The primary use of accessor methods
is to modify the attribute internally and to control access to the modifications
externally. You can choose a modified attribute (if the operation is an accessor
method created by Poseidon, an attribute is already selected) or select none if you
want to decouple an accessor method from its attribute.

The two lists on the right of the Properties tab are used to refine the operation’s
signature. In the list of parameters, the first parameter return is always there. This
defines a return type for this operation. Similarly, you can add parameters that may
be given a name, a type and the modifier final’. The final modifier is a special case
that we introduced to handle Java.

The last list, 'Raised signals’, is used to define whether this operation throws
exceptions. Select 'Add...’ from the context menu, enter a name and select a type
for the thrown exception. As you know, only the type of the exception (not the
name) is relevant for code generation. If you need more exception types, simply
create the corresponding class in your model (&gilException in your
packaggavax.mail). Your exception type must end inException in order

to be visible in the type list of exceptions.

You can define a constructor by setting the stereotyoeeate>>. When you do

this, the name of the operation is automatically set to the class name, and the return
type is also of the class. The Java code generation respects this fact by correctly
generating a constructor signature.

9.2.5. Diagram Elements

- B Packages— Packages are used to structure the model. Placed into Class
Diagrams, they illustrate the hierarchy explicitly. Classes can then be nested
inside them, or they can be used exclusively to express the interdependencies of
the packages. These diagrams are sometimes referred to as package diagrams, but
in Poseidon you do not need to make a difference here and can combine them at
will.

- 7 Dependencies— Exist between packages, and express that classes within one
package use classes from the package on which it depends.

- < Collaborations — EXxist between objects. Additionally you have to associate a
i Classifier Role to this collaboration to illustrate what role a special element

89

Chapter 9.

A Walk through the Diagrams
plays in that collaboration.

B Interfaces — Restricted to contain operations only, no attributes. Operations
are abstract and have no implementation from within the interface. The class
which implements the interface is also responsible for implementing the
operations.

B Classes— Classes are the most important concept in object-oriented software
development, and in UML as well. Classes hold operations and attributes and are
related to other classes via association or inheritance relations. A class has a few
properties of its own, such as name, stereotype and visibility, but the more
important aspect is its relation to other classes.

T Inheritance relations — Relations between interfaces or between classes.
They are not allowed between an interface and a class.

T Implementation relations — Relations which exist only between interfaces
and classes.

= Association Relations— Relations between classes.

9.2.6. Toolbar

90

Select

Class

Package

Actor
Generalization
Dependency
Association

= Directed Association
= Aggregation

+ Composition
Interface
Realization

< Collaboration
Classifier Role
Attribute
Operation

Note

Connect Note to Element
Circle

Rectangle

= = M P D e

I

Rl R e

o o

Chapter 9. A Walk through the Diagrams

€ Polygon
S Polyline

9.3. Object Diagrams

Object diagrams show classes at the instance level.

Since objects are not on the same conceptual level as classes, although very closely
related, they are expressed in separate diagrams. On the other hand, objects are on
the same conceptual level as instances of components and instances of nodes. That's
why Poseidon for UML combines the functionality for creating object diagrams,
component diagrams and deployment diagrams into a single editor. Therefore, to
create an object diagram, use the editor forshgeeployment diagram

This may not seem very intuitive at first, but we found it to be very useful. Objects,
component instances and node instances can thus be used conjunctively. You can
still restrict yourself to use only objects and their links in a deployment diagram.

The diagram elements and toobar options are provided here for quick reference. A
much more comprehensive look at the editor is provided in the sectif1 on
deployment diagrams.

9.3.1. Diagram Elements

- & Nodes and2 Instances of Nodes— Nodes represent the hardware elements
of the deployment system.

« €] Components and&l Instances of Components— Components stand for
software elements that are deployed to the hardware system.

« ™ Links — Links are used to connect instances of nodes or objects.

- 7 Dependencies— Dependencies exist between components and can be
specified by utilizing predefined or user-defined stereotypes.

« < Associations— Associations are used to display communication relations
between nodes. They can be specified by utilizing predefined or user-defined
stereotypes.

« O Objects, E ClassesH Interfaces— Components and nodes can include
objects, classes or interfaces.

91

Chapter 9. A Walk through the Diagrams
9.3.2. Toolbar

Select

Node

Instance of a Node
Component

Instance of a Component
Dependency

Class

Interface

Association

Directed Association
Aggregation
Composition

Object

Link

Note

2 Connect comment to element
Circle

Rectangle

Polygon

Polyline

S PP R Q-

117 0

0 [t (¥

L

Aol O 10

9.4. Activity Diagrams

%o Activity diagrams are often used to model business processes. They simply and
quite plainly showhow things workand so function as a good aid to discussions of
aspects of the workflow with the domain experts. These are less abstract than the
often used object-orienteé state diagrams.

The following example shows Fra activity diagram that depicts the rules and the
process of paying an order. In the following examdeftsale will not accept an
order if you have overdue payments open, will only allow payment by invoice if
your e-mail and home address have been verified, and a few other rules. Take a
closer look for yourself in order to become more familiar with the notation.

Figure 9-12. An Activity Diagram.

92

Chapter 9. A Walk through the Diagrams

9.4.1. Diagram Elements

- @ |nitial States and® Final States— Indicate the beginning and end of the

observed process.

© Action States— Specific activities which comprise the process. They must be
executed in a specified chronological order. Sometimes you may want to split the
sequence. Therefore, you have two different possibilities: Branches (choice) and
Forks (concurrency).

< Branches— These divide the sequence into several alternatives specified by
different conditions (guards).

Forks and% Joins— Forks divide the sequence into concurrent
sub-sequences. Joins merge the sub-sequences.

® Synchronization States— Used in concurrent sub-sequences to synchronize
producer-consumer relations.

— Transitions — The ingredient that keep states active and the model elements
together. Each transition can be givgunardsls], triggers *, andactions as
properties to describe its behavioral details.

O Object Flow States— Objects are inputs or outputs of activities and are
accordingly connected by transitions to them.

T Dependencies— Always possible between any model elements.

9.4.2. Toolbar

A Select

Action State

Object Flow State
Transition

Initial State

Final State
Synchronization State
Branch

Fork

O® @ @ 1 O

b B

93

Chapter 9. A Walk through the Diagrams

-
|«

Join

Note

Connect comment to element
Circle

Rectangle

Polygon

Polyline

@ 7

A oal 000

9.5. State Diagrams

94

Business process models do not lend themselves to implementation in an
object-oriented way. If you go the UML way, you will break down the business
process and express it in terms of states for each object involved in the process.

Let's take a short look at the States themselves. In the editors toolbar you find three
different symbols:

. © State

In a state diagram, each state has at least two compartments, the top one always
keeping the name of the state. The name usually is an adjective describing the
recent object.

The states properties are a lot more meaningful and complex than they are in the
activity diagrams. Not only does a state have ingoing and outgoing transitions,
but also different actions or activities that are to be taken with it.

- O Composite State

Composite States make visual use of the second compartment that encloses
refinements of the given state. Enclosed states don’t have to have an initial state.
Ingoing as well as outgoing transitions might be connected directly to one of
them. When the corresponding object is in the composite state, it is exactly in one
of the sub-states (OR relation).

If you find yourself needing to change a simple state to a composite state, you
have to delete the former and again add the new state via the toolbar.

- B Concurrent State

Chapter 9. A Walk through the Diagrams

Concurrent States are, like the above, refinements and are therefore focused in the
second compartment. When the corresponding object enters the concurrent state,
all initial sub-states are enabled at once (AND relation).

Figure 9-13. A State Diagram

Submit bember Number

Continue / member = findhember()

Enror [member == nul]

Ok [ek&] / s aveMember(mamber)

Back

9.5.1. Diagram Elements

® |nitial States and® Final States— Indicate the beginning and end of the
observed process.

« © Action States— Specific activities which comprise the process. They must be
executed in a specified chronological order. Sometimes you may want to split the
sequence. Therefore, you have two different possibilities: Branches (choice) and
Forks (concurrency).

- < Branches— These divide the sequence into several alternatives specified by
different conditions (guards).

- 7 Forks and% Joins— Forks divide the sequence into concurrent
sub-sequences. Joins merge the sub-sequences.

« @ Synchronization States— Used in concurrent sub-sequences to synchronize
producer-consumer relations.

95

Chapter 9. A Walk through the Diagrams

- — Transitions — The ingredient that keep states active and the model elements
together. Each transition can be givgunardsl«l, triggers *, andactions as
properties to describe its behavioral details.

« U Object Flow States— Objects are inputs or outputs of activities and are
accordingly connected by transitions to them.

- T Dependencies— Always possible between any model elements.

- © Choicesand® Junctions— Both elements are used in sequential systems to
define decision points. The difference between them is that choices are dynamic
and junctions are static.

« ® Shallow History and® Deep History — History states are used to memorize
past active states so that you can return to a marked point and don’t have to start
again from the beginning. A deep history allows you to return from any sub-state,
whereas a shallow one only remembers the initial state of a composite state.

9.5.2. Toolbar

Select
Simple State

Composite State
Concurrent State
Transition

Initial State

Final State
Synchronization State
Deep History

Shallow History
Choice

Junction

Fork

Join

Note

Connect comment to element
Circle

Rectangle

Polygon

Polyline

J D 0 e

o Eeree

g4 e

@ 7

M oal 000

96

Chapter 9. A Walk through the Diagrams
9.6. Sequence Diagrams

A % sequence diagram is an easily comprehensible visualization of single scenarios
or examples of business processes with regard to their behavior in time. It focuses
onwhenthe individual objects interact with each other during execution. The
diagram essentially includes a timeline that flows from the top to the bottom of the
diagram and is displayed as a dotted line. The interaction between objects is
described by specifying the different kinds of messages sent between them.
Messages are called stimuli. They are displayed as arrows; the diverse arrowheads
stand for different kinds of messages (see below).

The following diagram shows a typical example:

Figure 9-14. A Sequence Diagram.

K 4 O+ = 00O N A)S S sequence biagram: surfslogin

[Caien=] ‘ webse | ‘ Togincerl: ClientController ‘ ‘ client : Client
T T T

Objects

After creating or changing objects, they are automatically arranged in the Diagram
pane. You can specify which of the objects is to have control by enabling the
corresponding check box 'Focus of control’ in the Properties tab. Afterwards, you'll
see how the graphical representation of this object changes: it gets a thick border
and its lifeline is no longer a dashed line but a solid rectangular area.

Self messages

In Poseidon, all stimulus types, except create stimuli, can be created as self stimuli.
In the case of a stimulus to itself, the arrow starts and finishes on the object’s
lifeline. A self stimulus is created by selecting the desired stimulus on the toolbar

97

Chapter 9. A Walk through the Diagrams

and then double-clicking on the object’s lifeline at the position you want the
stimulus to be placed.

Selecting an operation

A call stimulus is regarded as a procedure call and can be connected with any
operation provided by the receiving object, depending on its type. This is achieved
by connecting the stimulus with an action that will cause the class operation to be
called. The following two figures show an example for selecting an operation and
attaching actual arguments to the call.

Figure 9-15. Selecting the action of a stimulus in a sequence diagram.

k40O ++ea— 00O\ AS)S S seauence biagram: surfgiogin

[(ae] webse ‘ ‘ loginCurl - Cliem Contraller ‘ ‘ clier : Client
T T T

[Properties | Style | Documentation | | Tagged Values |

= smass (][I

After selecting the stimulus in the diagram, the Details pane shows the properties of
the stimulus. It is there that you have to open the dispatched action field displayed
in the Details pane, which is directly below the name field of the stimulus. This
causes the Details pane to change the view to the properties of the action.

98

Chapter 9. A Walk through the Diagrams

Figure 9-16. Selecting an operation and attaching arguments to it.

| K4 O —wos—e 000 NATYS S [seauence disgram: suteiogin

[ae] ‘ mabits | ‘ loginEurt: CliemConrol ‘ ‘ client: Cliznt
T T T
I I I
catlog : navigate o |]]

| |

Properties | Style | Documentation Tagged Values |

A Callaction (&=

[iogin

The properties of the action allow you to select an operation and edit the arguments
attached to the procedure call. The set of possible operations includes all operations
of the receiving object’s class, as well as any operations inherited from direct and
indirect superclasses or interfaces. If an operation is selected, the name of the action
is updated according to the name of the operation and the given values of the
arguments. An empty argument value is displayed as an 'x’. Keep in mind that you
cannot edit the name field while an operation is selected.

Activations

An activation shows the period of time during which an object will perform an
action, either directly or through a subordinate procedure. It is represented as a tall
thin rectangle with the top aligned with its point of initiation and the bottom aligned
with its point of completion.

Now, let’'s consider how Poseidon deals with starting and terminating activations.
When an object receives a stimulus, an activation is created that starts at the tip of
the incoming arrow. When an object sends a stimulus, an existing activation is
terminated at the tail of the outgoing arrow. There are two exceptions: First, an
outgoing send stimulus does not terminate an existing activation, because it
represents an asynchronous message. Second, if an object has explicitly set the
focus of control, its activation will continue during the whole lifetime.

99

Chapter 9. A Walk through the Diagrams
9.6.1. Diagram Elements

100

- Objects — Elements responsible for sending and receiving messages.

— Call stimuli — Represents a synchronous message, which means that it is
regarded as a procedure call.

— Send stimuli— lllustrates an asynchronous message, which means that it is
regarded as a signal. As such, the sender doesn’t wait for an answer from the
receiver.

« Return stimuli — Represents the return statement of a call stimulus.

+= Create stimuli — Used to create a new object at a certain point in the
sequence. The created object will then be placed at this specific point and not at
the top of the Diagram pane.

- + Destroy stimuli— Used to destroy an object at a specific point in the

sequence. The lifeline of the destroyed object will then end with a cross at this
point and not at the bottom of the Diagram pane.

9.6.2. Toolbar
X Select
o Object

Call Stimulus
Create Stimulus
Destroy Stimulus
Send Stimulus
Return Stimulus
Note

Connect comment to element
Circle

Rectangle
Polygon

Polyline

o D

M oal 000

Chapter 9. A Walk through the Diagrams

9.7. Collaboration Diagrams

. Collaboration diagrams are also a means for representing the interaction between
objects. Unlike®s sequence diagrams, however, they do not focus on the timeline of
interaction, but on the structural connections between collaborating objects. Of
central interest are the messages and their intent, when cre&icgliaboration

diagram. The chronological order of messages is represented by numbers preceding
each message.

9.7.1. Diagram Elements

« & Objects— In collaborations, objects represent different roles — these are
specified as Classifier Roles in Poseidon for UML.

- = Associations— Associations illustrate the connections between collaborating
objects. Messages are then placed along them.

- = Messages— Just like in sequence diagrams, messages are used to describe the
interaction between objects. The numbers in front of the given names represent
the chronological order of messages. Using the corresponding buttons in the

toolbar of the Properties tab, you can specify an acﬂ rior the message, and
you can change the direction of the mess ,'—_:,e

9.7.2. Toolbar
X Select
0o Object
™ Link

o D

A oa 00

Call Stimulus
Create Stimulus
Destroy Stimulus
Send Stimulus
Return Stimulus
Note

Connect comment to element
Circle

Rectangle
Polygon

Polyline

101

Chapter 9. A Walk through the Diagrams
9.8. Component Diagrams

102

After a while, clusters of classes that strongly interact and form a unit will start to
peel out from the architecture. To express this, the corresponding clusters can be
represented as components. If taken far enough, this can lead to a highly reusable
component architecture. But such an architecture is hard to design from scratch and
usually evolves over time. As mentioned above, component diagrams are, like
object diagrams, edited with tt%2deployment diagram editor and therefore the
corresponding model elements are explained in that section.

Figure 9-17. A Component Diagram.

9.8.1. Diagram Elements

& Nodes and2 Instances of Node — Nodes represent the hardware elements
of the deployment system.

« £l Components and& Instances of Components— Components stand for
software elements that are deployed to the hardware system.

« ™ Links — Links are used to connect instances of nodes or objects.

T Dependencies— Dependencies exist between components and can be
specified by utilizing predefined or user-defined stereotypes.

Chapter 9. A Walk through the Diagrams

- ¢ Associations— Associations are used to display communication relations
between nodes. They can be specified by utilizing predefined or user-defined
stereotypes.

« U Objects, B ClassesE Interfaces— Components and nodes can include
objects, classes or interfaces.

9.8.2. Toolbar

Select

Node

Instance of a Node
Component

Instance of a Component
Dependency

Class

Interface

Association

Directed Association
Aggregation

+ Composition

2 Object

~ Link

G Note

® Connect comment to element
Circle

Rectangle

Polygon

Polyline

ol

{70 m

T

Noa O 0

9.9. Deployment Diagrams

Finally the way the individual components are deployed to a hardware system can
be described using ti% deployment diagram. Because we decided to merge the
different diagram types, the editor contains a wide set of elements to be used (see
also: Object diagrams Component diagrar?@)Deponment diagrams are defined

on two levels: object or instance level and class level. For this reason, Poseidon for
UML provides both nodes and instances of nodes.

103

Chapter 9. A Walk through the Diagrams

104

Figure 9-18. A Deployment Diagram.

9.9.1. Diagram Elements

& Nodes and2 Instances of Nodes— Represent the hardware elements of the
deployment system.

- £l Components and& Instances of Components— Represent software
elements that are deployed to the hardware system.

« ™ Links — Used to connect instances of nodes or objects.

- T Dependencies— Exist between components and can be specified by utilizing
predefined or user-defined stereotypes.

- < Associations— Used to display communication relations between nodes.
They can be specified by utilizing predefined or user-defined stereotypes.

« O Objects, E ClassesH Interfaces— Components and nodes can include
objects, classes or interfaces.

9.9.2. Toolbar

Select

Node

Instance of a Node
Component

Instance of a Component
Dependency

Class

5B e R e

(0

]

]

L0 (T

L

Aol O 0

Interface
Association

Directed Association
Aggregation
Composition

Object

Link

Note

Connect comment to element
Circle

Rectangle

Polygon

Polyline

Chapter 9. A Walk through the Diagrams

105

Chapter 9. A Walk through the Diagrams

106

Chapter 10. Panes

10.1.

The panes in Poseidon for UML divide the application workspace into 4 sections,
each with a specific purpose. They make the process of modelling easier by
providing quick access to all parts of the project. These panes can be resized and
hidden as you require.

Navigation Pane

As a model grows, its complexity likewise increases. It becomes more and more
necessary to have different organizations of the model to facilitate easy navigation.
This is what the Navigation pane has been designed to do; present the elements of a
model in different arrangements based on pre-determined criteria. Poseidon calls
these arrangements 'views'.

Each view positions the elements within the model hierarchy differently. Views are
not required to display all of the elements of a model, only those which pertain to
their organization schema. The one similarity between all of the views is the root
node, which is always the model itself. In the case of the default example, this
would be 'Softsale’.

The views offered by Poseidon are as follows:

+ Class Centric

- Diagram Centric

« Inheritance Centric
« Model Index

- Package Centric

. State Centric

10.1.1. Add a tab

Adding a tab allows you to view several navigation views at one time. You can add

107

Chapter 10. Panes

as many tabs as you like to the Navigation pane, up to the number of views, that is.

To add a tab to the Navigation pane:

1. Click the' @ Add Tab button. A new tab will appear in front.

2. Select a different view for this tab from the dropdown list.

10.1.2. Delete a tab

Deleting a tab is equally as easy.

3] e) B -
Modal Index | B Clas canm_l‘ J & sce
WT‘ = Close this tab

@ S softsale
AllMainGlassestve riew
BCE Schema
packageDverien
E7 peployment

To delete a tab:

1. Move the mouse to the right side of the name of the tab. A 'close’ button with
an X’ on it will appear.

2. Click this button to close the tab.

10.1.3. Delete a diagram

Deleting a diagram in Poseidon removes the diagram itself completely from the
model, but leaves the the elements contained within that model intact.

There are two ways to delete a diagram, through the Edit menu and through the
context menu.

108

Chapter 10. Panes

To delete a diagram using the Edit menu:

1. Select a diagram in the Navigation pane.

2. Select 'Remove Diagram’ from the Edit menu. A dialog will appear to prevent
unintended deletion of the diagram.

Are you sure? X|
Are you sure you want to remove the selected diagram™?

All contained elements will not be removed from the model.

[yes | [o |

To delete a diagram through the context menu:

1. Select the diagram in the Navigation pane.

2. Right-click on the diagram name and select 'Remove Diagram’. The same
dialog box mentioned above will appear.

10.2. Diagram Pane

The Diagram Pane is the area used to do most of the diagram creation and
modification. It is generally the largest pane.

This section covers some of the functions available from the diagram pane, as well
as changing the settings of this pane. Chapter 7, 'Working with Diagrams’, provides
a more extensive look at all of the functions available. Chapter 9, titled 'A Walk
Through the Diagrams’, contains detailed information about the diagrams
themselves.

10.2.1. Open Diagrams

All existing diagrams are listed in the Navigation pane. To open one of these
diagrams, simply click on the name of the diagram. The diagram will open in its

109

Chapter 10. Panes

own tab in the diagram pane to the right.

[biagiam centic

Diagram Centric |~ (3

e
Activity Diagrams
Class Diagrams
Class Diagram 1
Class Diagra[g az5 iagram 1
Class Diagram 2

The number of diagrams which can be open at one time is set to 5 by default. This
number can be changed in the Appearance tab of the Settings dialog. Unchecking
the 'max number of tabs’ box removes any limits to the number of tabs.

MSettings : X|
General Appearance [Moadeling | Diagram display | Environment | User |
Lock And Feel |Poseidon Alloy) E|

|z| Showtips on program start
|z| Show bird view perspective |z| Adjust birdview to diagram size
[#] Show Te Do (Critics) Pane

|z| Ferform autematic critiquing
|z| Tabsin diagram wiew [max. number of tabs
Diagram Size Z000 * 2500

| 0K | | Apply ‘ | LCancel

10.2.2. Remove Tabs

To remove the a tab from the Diagram pane, move the mouse over the tab to be

deleted. A 'delete’ button with an X’ will appear. Click the button and the tab will
be removed from the pane.

] B_ BeE sehemE
B 9 | B Eclsthistab

110

Chapter 10. Panes
10.2.3. Create Diagrams

There are two ways to create a new diagram. The first is through the main toolbar.
Simply click one of the create diagram buttons. The new diagram will be placed in
the navigation tree to the left. Where it is placed depends on what was selected in
the Navigation pane prior to the creation of the new diagram. By default, new
diagrams are placed in the top level of the model, which can be easily seen in the
package centric view. A diagram can be created elsewhere by first selecting the
package in which it should be placed, then clicking the create button.

An alternative to the create buttons on the main toolbar is the create diagram menu
from the main menu. All of the items available in this menu also have quick-keys
assigned to them.

10.2.4. Edit Diagrams

Of course, central to any model is the collection of diagrams. They provide a means
to communicate ideas to the viewer in a format which is easily comprehensible.
And as they are responsible for clearly relating important aspects of the system,
they must also be completely accurate. Poseidon makes it easy to modify the
diagrams as the model progresses in development.

Adding Elements

There are two methods for placing new elements within a diagram: through the
Diagram pane toolbar and through the rapid buttons. The toolbar contains miniature
representations of all of the elements available in that particular diagram. Adding
elements to a diagram in this manner is very straightforward, simply click on the
element in the toolbar and then click in the diagram workspace. Creating elements
through the rapid buttons is not only quick (as the name implies), but also has the
advantage of creating a relationship to the new element from this one step.

Editing Elements

Perhaps the simplest way to edit an element is to edit it directly in the diagram. This
is known as Inline Editing. Double-click on the aspect of the element that you
would like to change, and the characteristic will be editable in a text box.

You can also edit an element in the Diagram pane through the context menus.
Right-click on the element or characteristic to display the context menu to see what
is editable from this menu for the particular element.

Some characteristics, however, are available for editing only from the Details pane.
Open the Details pane for an element by selecting it from the Diagram pane or the
Navigation pane. Navigate to the desired characteristic (such as a return type for a
class operation) by double-clicking on the characteristic in the left side of the

Properties tab. Some of the characteristics may require navigating through several

111

Chapter 10. Panes

112

layers of characteristics. The Properties tab also provides navigation buttons which
function similar to a web browser.

10.2.5. Change properties of the Diagram Pane

10.2.5.1. Grid Settings

The first thing you may notice about the Diagram Pane is the grid that is drawn over
the drawing area. By default, the drawing area displays this grid. The visible grid is
only a collection of lines, they have no functions of their own.

A second grid, called the snap grid, is invisible to the user. When this option is
enabled, diagram elements align themselves along the intersections of this grid
which are closest to the element (in a process called snapping) to aid with element
positioning.

To make elements snap to the visible grid, set the visible and snap grids to be the
same size. The settings shown in Figure 10—1 will have the visible grid drawn every
20 pixels, and the elements will be able to snap to intermediate positions of the
visible grid.

You can change the properties of both grids from the Grid Settings dialog in
View—Adjust Grid...

Figure 10-1. Grid Settings Dialog

(D Dots (@) Lines

] Snap

Grid Settings

+ Visible — Determines whether the visible grid is drawn at all.

Spacing and line appearance are also set for the visible grid here.

Chapter 10. Panes

- Snap— Determines whether the elements placed in the diagram will be forced
to align to a snap grid.

The pixel dropdown sets the spacing of the snap grid.

10.2.5.2. Other Settings

The grid is not the only setting that can be changed for the Diagram pane.

- Display/Hide Tabs— Hide or redisplay diagram tabs at the top of the pane with
the Appearance Tab in the Settings Dialog.

« Number of Tabs Displayed— Set the maximum number of tabs with the
Settings Dialog, Appearance Tab.

- Display/Hide Information About Elements — Hide or redisplay information
such as operations or attributes from the Settings Dialog, Diagram Display Tab.

- Resize the Drawing Area— Drag the pane separation bars to the desired size.
The arrows on the bars open and close the panes completely.

- Enlarge/Reduce the Diagram— Change the zoom factor in the Properties tab
for the diagram or hold the CTRL key while turning the mouse wheel.

10.3. Overview Pane

Especially when working with large models, the Overview pane is quite helpful for
keeping track of the big picture of the model.

10.3.1. Birdview Tab

Blirdview | ToDo-ltems [by Priority] |

113

Chapter 10. Panes

114

Screen space is limited, and it is often impractical to view an entire diagram at one
time. Scrolling around or zooming in and out repeatedly is time-consuming,
inefficient, and generally annoying. The Birdview tab resolves these issues by
maintaining a snapshot of the entire diagram that can be quickly referenced while
working on a diagram.

10.3.1.1. Zoom in Birdview only

Perhaps you would like to keep track of a smaller section of the diagram, and then
later decide to view the entire diagram again. This is easily done by adjusting the
zoom factor in the Birdview tab.

To change the zoom factor of the Birdview tab:

1. Uncheck the box in the lower left corner of the pane.
2. Use the slider bar to change the zoom factor.

3. The scroll bars can be used to position the view as required.

10.3.1.2. Zoom in diagram

The Birdview tab provides the means to resize the diagram in the Diagram pane as
well. The view in the Birdview tab remains unchanged while the diagram itself is
enlarged or reduced.

To change the zoom factor of the diagram in the Diagram pane:

1. Check the box in the lower left corner of the pane.
2. Use the slider bar to change the zoom factor.

Note that the zoom factor is set for each diagram individually. A zoom factor set for
one diagram will not be applied to subsequently displayed diagrams.

10.3.1.3. Turn off Birdview in settings

The Birdview, while helpful, can slow down the performance of Poseidon. At times,
it may be useful to turn off the Birdview option. This can be set in the Appearance
Tab of the Settings dialog.

Chapter 10. Panes

r{(] Settings - il
Genaral Appearance [Modeling | Diagram display | Environment | User |
Look And Feel [Possidon catloy) =]
@ Showtips on program start
Show bird view perspeactive @ Adjust birdview to diagram size
[#] Show Te Da (Critics) Pane
@ Perform automatic critiquing
@Tabsin diagram wiew @max. number of tabs EI
Diagram Size g
| DK] | Apply | | Lancel

10.3.2. Critique tab

The second tab in the Overview pane, called To-Do-Items, is a collection of

critiques. This is a feature that originates from ArgoUML and was one of the
motivations for Jason Robbins to start the project. It is a powerful auditing
mechanism that discretely generates critiques about the model you are building.
Critiques can be hints to improve your model, reminders that your model is
incomplete in some areas, or errors that would cause generated code not to compile.

10.3.2.1. Open a Critique

Critiques are arranged within this tab in a variety of ways. The following options
are available for viewing critiques:

by Decision Type

by Knowledge Type
by Offenders

- by Posters
« by Priority

To view the details of a critique, simply click on the critique. The details will be
displayed in the 'To Do Items’ tab of the Details pane, located to the right of the
Overview pane.

115

Chapter 10. Panes
10.3.2.2. Navigate to critiqued area

You can move directly from a critique to the diagram where the issue occurs by
double-clicking on the critique name in the Overview pane. The appropriate
diagram will then be opened in the Diagram pane.

10.3.2.3. Snooze Critique

The ™ Snooze critique button temporarily turns off a single critique. The critique
will return without a user specifically re-enabling it.

10.3.2.4. Toggle Critique

The® Toggle critique button allows you to turn off and on single critiques. This
feature is available in the Standard and Professional editions of Poseidon.

10.3.2.5. Turn off Autocritique

Critiquing can be turned off completely from the Appearance tab of the Settings
dialog. Uncheck the box titled, 'Perform Automatic Critiquing’ to disable critiques.
The tab will still be visible in the Overview pane, but no critiques will be listed.

MSettings X|
General Appearance [Moadeling | Diagram display Envirenment | User |
Look And Feel [Fosaigon cailoy) =]

@ Show tips on program start
@ Show bird view perspactive @ Adjust birdview to diagram size

[#] Show Ta Da (Critics) Fane

Ferform automatic eritiquing
[¥]°T abs in diagram view @ max. number of tabs
Diagram Size 3000 * |zs00

10.3.2.6. Hide/display Critique window

The Critique tab can be hidden regardless of whether critiquing has been enabled or
disabled. To hide the tab, uncheck the box titled, 'Show To Do (Critics) Pane’.

116

Chapter 10. Panes

r{(] Settings - il
Genaral Appearance [Modeling | Diagram display | Environment | User |
Look And Feel [Possidon catloy) =]
@ Showtips on program start
@ Show bird view perspective @ Adjust birdview to diagram size
Show To Do (Crities) Pane
erform automatic critiquing
@Tabsin diagram wiew @max. number of tabs EI
Diagram Size g
| DK] | Apply | | Lancel

10.4. Details Pane

The Details pane provides access to all of the aspect of the model elements. Within
this pane, you can view and modify properties of the elements, define additional
properties, and navigate between elements.

The pane is composed of six tabs:

- Properties

. Style

- To Do Items

-« Java Source

- Documentation
- Tagged Values

The following sections investigate these tabs in greater detail.

10.4.1. Properties Tab

The most important tab is tiHeroperties tab, which is selected by default. The
Properties tab looks a little different for each different type of model element. So far
in this tour we have selected packages, diagrams and classes. All of these elements
have only one common property, the property 'name’. It makes sense that this
would be the only field in this tab which is duplicated for all of the elements.

117

Chapter 10. Panes

118

An important property, the zoom factor, becomes visible in the Details pane when a
diagram name is selected in the Navigation pane. You can use the slider to change
the zoom factor interactively or use the buttons to set it to pre-selected zoom factors
(The range of zoom factors is limited in the Community Edition). To access this
property, select a diagram in the Navigation pane or click on empty space in the
Diagram pane.

Figure 10-2. Properties tab with Zoom

g Prasentation Class Model Oveview |
ki1 DDB«-=7TT/! BT BE mMOO0ONAQSS

nmen e

[EX J [

Fropeties ‘ Style ‘ To Do ems ‘ | Java Source

Diagram & =

Hame ‘Mamhar\dantmcatmn Design-Class Madel |

amespace [pesign.Use Case - Implementation. Secandary Use Cases.Member Identification \B\ 1)

| TE % ‘ | 100 % | ‘ 126 % | | 150 % ‘ | Wind owy

But the real power and importance of the Properties tab becomes apparent for
complex model elements like classes or methods. For these, the Properties tab
becomes an important tool to view and change the model details. As a general rule,
properties that can be changed are placed to the left. On the right, related model
elements are displayed. By clicking on the related model elements, you can
navigate to them and change their properties. This way, you can drill down from a
package to a class to a method to its parameters and so forth.

Chapter 10. Panes
Figure 10-3. Drill-down Navigation

Praparties | sty | B
Class e= 1 BE BB X Operations 3 T 3 3 Attibutes ')
Hame Class_1 | +operation_101 Lattribute_1 - int

« Stereotype [HYNE

Namespace [emeder 13 =1z] N, Extends Implements

Visibility @ public () protected (O package () private nene none |
Modifiers [] abstract [|=tsiic []final [T roat [] active Derived Associations

wned Elements |n0ne | ‘ one | |':‘“§—1"':‘“§—2 |

L 7

10.4.2. Style Tab

- Offers possibilities for defining colors and certain other display characteristics of
selected elements

- Style can be changed for a single element, or for several selected elements at a
time

Figure 10-4. Style tab for a class element

Froperies | Style l To Do ltems l Java Source Documentation l

Bounds [120.0, 120.0, 1050898, 101.0 |

Fill Lines Font

[[L[] [[L[] . o [| L | []
e C e C —
i INRRCENNERER i INRRCENNERER | W T TP P
H DNRRRRRERER § INRRRRNNERER H EEEEEEEEEEEE
(| H EEEEEEEEEEEE
[ciaat O o

If, for example, you wanted all your classes in a diagram to have fill color green you
can select all the elements (using the mouse, or by pressing CTRL-A) and then use
the color chooser to change their color to green. You can also change the line color.

119

Chapter 10. Panes

In addition, you can specify whether you want attribute or operation compartments
to be shown or hidden.

10.4.3. To Do Items Tab

- Displays the critique selected in the Overview pane
. Sets the activity of the critique via the Toggle and Snooze buttons

The To Do Items tab is not functional in this Beta version.

10.4.4. Documentation Tab

» Contains a WYSIWYG editor, where you can easily add your own
documentation for model elements

« You can also use javadoc tags, li@author , @seeand others

Figure 10-5. Documentation Tab for a class

Froperies | Style | To Do ltems Jawa Source | Documentation Tagged Yalues |
biy === O] (2i= =@ coor
Java-Doc Tag | Documen tation
(Eauthor Thorsten Sturm
Represents ...
P (e OtherClasses
| [~
uthaor
wersion
exception
throws
since
serial
serialField [~]

The Documentation tab provides a mechanism for adding your own freeform text as
well as supported JavaDoc tags to the generated code. This information is stored as
tagged values and can be previewed in the Java Source tab. Any entries made via the
editor on the left side of the tab are placed in paragraph tags by default and are
displayed before the JavaDoc entries.

120

Chapter 10. Panes
10.4.5. Source Code Tab

- Available for different elements, based upon the target language selected

- Shows the code generated by Poseidon

Figure 10-6. Source code tab for a class

Froperies | Style | Tao Do ltems Source code Documentation Canstraints Tagged Yalues

Language |Java IE‘

Celphi
CSharp

Java

SEE T ErocessReservation. java™ generated from Poseidon Ffor ML,

= POUB Net ML iz developed by <3 HREF="kttp: www. gentleware. con'"=Gentlewares AAx.
* GePer-l th <A HREF="hitp: rjakarta.apache. org/reloci by Merelocibye A bemplate angine.
*4
0L
packay e e tattauto.reservation.presentation;

CorbalbL
import jawva.lang.String;
import jawva.util.=*;
import java.util.Date;

[|]

At the start this code just represents the skeleton that has to be filled with content.
For example, method names and the corresponding parameters may already present
and defined, but the method body might still be empty. With most of the target
languages, you can use this editor to fill in the body. With round-trip engineering

you can also use any other external editor or IDE. Note also that documentation
entered in the Documentation tab is included in the generated code.

The editor in Poseidon will not allow you to change all of the code. The sections of
code which are highlighted in blue are 'read-only’ in the Poseidon editor. Text
highlighted in white may be edited, deleted, and appended. This functionality
originates from a NetBeans project and is the result of a plug-in.

New in version 2.1 is the ability to select the target language of the source code. The
list of available languages is dependent upon the list of enabled plugins and profiles.
Each language must have both the plugin and profile specific to that language
enabled.

The same diagrams may be used to generate code in different languages. Any code
written in the 'your code here’ sections is available only in the language selection in
which it was written. For example, any code manually entered into the editable
section of this tab while Java is the selected language will not be seen if the
language is changed to C# or Perl.

121

Chapter 10. Panes

122

Should there be ambiguity, a second dropdown will appear next to the language
selection dropdown in order to determine the correct option for the implementation.

10.4.6. Constraints Tab

- Holds the OCL constraints for the given element

Figure 10-7. New constraint in the Constraints Tab

Properies | Style | To Do ltems | Documentation Java Source Constraints IW|
& ﬁ'_f @ w I“I!F I:l Syntax Assistant

I= Walid | Constraint Mame | Constraint Body
nenConstraint context Client

Since many people find OCL difficult to learn we have provided an assistant that
helps you with the syntax of the OCL language. The syntax of the constraint and its
consistency with the model can be checked for correctness.

Figure 10-8. Syntax Assistant in the Constraints Tab

Properies | Style | Ta Do ltems | Dacumentation | Java Source | Canstraints Tagged Waluas |
Dﬁﬁ E ﬁﬁ EF @S\;ntaxﬂssistant

|Genera| IE”lBasic Operators lEHNumbers E”Strings |E|||Elooleans IE”lCollections IE”
Edit constraint Basic Operators
context Client IS

pre constraint nam

=

2=

== |

Chapter 10. Panes
10.4.7. Tagged Values Tab

- Edit different pairs of names and values that you might want to use in order to
enhance your model with specific characteristics.

« This is a general mechanism of UML that can be extended for special purposes

Figure 10-9. Documentation stored in the Tagged Values Tab

Properties | Style | To Do ltems Documentation Jawa Source Constraints Tagged Yalues

Tag | Walue
documentation <p=Represents | <fprdp=f@see OtherClasses<fpr<p=@author Thorsten Sturm<spe

For example, if you need special information for external processing of the model
you can add this information here. This is also where Poseidon stores any
documentation entered in the Documentation tab.

123

Chapter 10. Panes

124

Chapter 11. Setting Properties

11.1.

The behavior of Poseidon is defined by a number of properties. You can adjust the
behavior of Poseidon to your personal needs by changing the corresponding
properties using the settings dialog. Once the settings dialog is open (choose
Settings from the Edit menu), you will see a number of tabs.

General

Figure 11-1. The General settings tab.

[settings = x|
General | Appearance Medsling | Diagram display | Envirenmen t | User | Project |
Language ‘English‘ United States E|
[# Re-Open Last Project on Startup

oK I| Apply H Cancel

- Language— This is the language used for the Poseidon user interface. You can
switch the interface to a different language by choosing your preferred language
from this selection list. Poseidon currently supports English, German, French,
Spanish, Italian and Chinese. By default, the system language is used — or
English, if the system language is not available. In other words, if you start
Poseidon on a Spanish system, for example, the program will start in Spanish —
but on a Swedish system the program will start in English, as Swedish is not
currently supported.

- Re-Open Last Project on Startup— If checked, Poseidon opens the most
recently used project on startup.

125

Chapter 11. Setting Properties

11.2. Appearance

Figure 11-2. The Appearance settings tab.

M Settings

126

General | Appearance | Modeling | piagram dispiay | Emvironmen t | user | Project |
Look And Feel Poseidan (Alloy) =]
[#] Show tips on program start

[#] Show bird view perspective [#] Adjust birdview ta diagram size

[#] Show Ta Do (C

aK Il Apply H Cancel

Look and Feel— Determines the look and feel of the Poseidon user interface.
You can change the interface appearance by choosing an entry from this list. The
list of options is determined by the operating system under which Poseidon is
running.

Show tips on program start— If checked, alip of the Day dialog appears
when you start up the program.

Show bird view perspective— If checked, the Overview pane shows the
bird’s-eye perspective. The speed of Poseidon increases when the bird’s-eye
perspective is disabled.

Adjust birdview to diagram size — If checked, the bird’s-eye view is scaled to
show all elements of the currently selected diagram.

Show To Do (Critics) pane— If checked, the Overview pane displays the
ToDo/Critics tab.

Perform automatic critiquing — If checked, suggestions and possible conflicts
or flaws will be automatically logged in the ToDo/Critics tab.

Tabs in diagram view — If checked, the diagram view shows the most recently
viewed diagrams as tabs over the Diagram pane. This allows for faster navigation
between the diagrams.

max. number of tabs— If checked, the maximum number of tabs in the
Diagram pane is limited to the specified value.

Chapter 11. Setting Properties

11.3. Modeling

Figure 11-3. The Modeling settings tab.

General | Appearance Modeling | Diagram display | Environmend t | User | Project |

[#] #ccessor methods copy documentation of attribute
[#] &k before ovenuriting documentation

[#] Immediately create accessors for new attributes (CTRL invers on the fly)

When remeving attributes: |Delete accessor operations, ask before

oK I| Apply H Cancel

« Accessor methods copy documentation of attribute— If checked, the
documentation of the attribute is passed to its accessor methods.

+ Ask before overwriting documentation— If unchecked, Poseidon will prompt
before overwriting existing documentation of an attribute with the documentation
of its accessor methods.

- Immediately create accessors for new attributes— If checked, accessor
methods (get/set) will be automatically created when a new attribute is created.

- When removing attributes — Defines what to do with associated accessor
methods when an attribute is removed from the model. The possible options are
to keep the methods in place, to delete them but ask first (this is the default
setting), or to delete them immediately.

127

Chapter 11. Setting Properties

11.4. Diagram Display

128

Figure 11-4. The Diagram display settings tab.

[[] Hide accessor methods

[[] Hide operations’ parameters

[] Hide private class features

[] 4dd dependent edges when adding a node

oK I| Apply H Cancel

The Diagram Display tab contains properties regarding the display of information
within the diagrams. Currently, most of the properties refer to Class Diagrams only.

- Hide accessor methods— If checked, accessor methods will not be displayed in
the operation compartment.

- Hide operation’s parameters— If checked, parameters will not be displayed.
Operations with parameters will then be displayed &igerationl(...)

- Hide private class features— If checked, private attributes and operations will
not be displayed.

- Hide package class features— If checked, package attributes and operations
will not be displayed.

- Hide protected class features— If checked, protected attributes and operations
will not be displayed.

 Hide public class features— If checked, public attributes and operations will
not be displayed.

- Add dependent edges automatically— If checked, dependent edges are added
to a node which has been created via cut-and-paste or drag-and-drop. No dialog
or warning is used.

Chapter 11. Setting Properties

11.5. Environment

Figure 11-5. The Environment settings tab.

5 lE s m 1T oD
& 8 2 & = 8

Startup folder
Impert elasspath |

Te

mporary Files folder

oK I| Apply H Cancel |

The Environment tab contains properties regarding the local environment and the
directories used for loading and saving files.

Poseidon Home folder— The folder Poseidon stores user-related information
into, e.g. log files and the saved properties. This property cannot be changed.

Project folder — Projects are loaded from and saved into this preferred folder.

Export folder — Exported files (like graphics) are saved into this preferred
folder.

Java Home folder— The folder in which the currently-used version of Java is
installed. This property usually points to the runtime part of the installation, even
if the used Java is a SDK installation. This property cannot be changed.

User Home folder— The folder your operating system uses as your personal
folder. This property cannot be changed.

User folder — The folder into which Poseidon is installed. This property cannot
be changed.

Startup folder — The folder your system points to at the startup of Poseidon.
This property cannot be changed.

Import Classpath — Additional classpath that is used when importing source
code or jar files.

Temporary Files folder — The folder used when any temporary files are created.

129

Chapter 11. Setting Properties

11.6. User

Figure 11-6. The User settings tab.

x|

General | Appearanse Modeling | Diagram display | Enviranmend t | User | Project |

Full Name | |

Email Address | |

User information was set during key registration.

aK ll Apply H Cancel

The User tab contains properties regarding information about the user. These
properties cannot be changed from the settings dialog, because they are part of the
product registration. They can be changed using the license manager, but any
change would require a new registration of the product.

« Full Name — Full name of the user who registered this copy of Poseidon.

- E-mail Address— E-mail address of the user who registered this copy of
Poseidon. The presented email address must be a real one, or registration of
Poseidon will fail.

130

Chapter 11. Setting Properties

11.7. Project

Figure 11-7. The Project settings tab.

General | Appearance | Modeling | Diagram display | Envirenmen 1| Usar | Project

‘Llntltled |

3

T
E
E
& 3
S o
H
f
B
3

200 |

[I Tl T R
Z

ast modifying version [2.0.0 |
rojectdescription
eqistersd Profilas DEFAULT

oK l| Apply H Cancel

The Project tab contains properties regarding information about the project

+ Projectname— Name under which the current project has been saved. If the
project has not yet been saved, this will be 'Untitled’.

- Creating Version — The version of Poseidon which was used to create the
project originally.

- Last Modifying Version — The version of Poseidon which was last used to edit
the project.

« Projectdescription — A short, user-defined description of the current project.

- Registered Profiles— The Profiles registered for this project.

131

Chapter 11. Setting Properties

11.8. Optimizing

Figure 11-8. The Optimizing tab.

| Qptimizing

This panel bundles all settings that can be used to speed up Poseidons on slower computers.

D Optimize dragging in diagrams

Pre-create caches for loaded diagrams l:l

The Optimizing tab contains options to increase the speed of Poseidon.

- Optimize dragging in diagrams —

- Pre-create caches for loaded diagrams—

132

Chapter 12. Code Generation and
Round-trip Engineering

12.1. Generating Code

UML wouldn’t be worth all the sophisticated work if all it came down to was pretty
vector graphics. When analyzing and designing a software system, your final goal
will be to generate well-implemented code.

Poseidon for UML provides a very powerful and flexible code generation
framework, based on a template mechanism. It is currently used to generate Java
and HTML code, but it is flexible enough to generate any kind of programming
language, or other output, such as C++ or XML.

Java code generation is usually based on the classes of a model and other
information displayed in the respective Class Diagrams. Additionally, Poseidon can
generate setter and getter methods for the fields of each class.

By default, associations between classes in UML are bi-directional; that is,
associations allow navigation between classes in both directions. For the common
object-oriented programming languages, these need to be transformed into separate
uni-directional associations. If one of these is set, the other should be set
accordingly. The code for managing bidirectional as well as unidirectional
associations is also generated automatically.

For generating the corresponding HTML documentation for your model you need
the UMLdoc feature, which is available in every editiexcepthe Community

Edition. The look and feel of the generated documentation is very similar to
Javadoc. Poseidon for UML allows you to specify Javadoc information directly in
your model (in the Documentation tab). This information, like comments to your
classes or methods, is included in the code. But Javadoc alone gives a view on the
code only, not on the model. For example, you do not see your diagrams. With this
feature you get the same information as with Javadoc, in addition to all diagrams
from your model. This includes Class Diagrams, your use case diagrams, sequence
diagrams etc. This is valuable information that you would want in your
documentation.

Both kinds of generation can be invoked from the generation menu. Select
Generate Classes of Model and a dialog will appear. Here you can select or
deselect model elements from the tree, specify an output and a template folder,
indicate if the destination folder should be cleared and select eitler for code
generation oHTMLandUMLdoc for the documentation generation.

133

Chapter 12. Code Generation and Round-trip Engineering

134

Figure 12-1. Code Generation Dialog — Java.

-~ Generation RS

ety ‘/Ex!fﬂw/s(aﬁ/vuss H:]
Template Folder ‘/uxv/\nm\/Srt/gen(\eware/pmeidnn/hh H:]
Kind of generation
@ Java
O HTML

@ Basic, no additians

© umLgor
[Compile generated source [Clear destination folder [Remember current node selection

Generate H Apply H Settings H Close

Generator/Compliler output

After the generation is finished, you will get a corresponding message in the
Generator/Compiler output . Now you can open the HTML documentation in
your favorite browser. UMLdoc generates an HTML page for the model overview,
each package and each classifier (actors, use cases, classes, interfaces). They are
connected by hyperlinks, so that you can easily navigate through the whole
document.

Chapter 12. Code Generation and Round-trip Engineering
Figure 12-2. Generated UMLdoc opened in Netscape.

=[]

File Edit VYiew Go Communicator Help

T4 ¢ 3 & 2 @ @ & B &

i Back Fowad Reload Home Search Nefscape Print Securty Shop Stop

5| ¢ Bookmarks 4 Looation [File: /tap/0Ldoc findex. heul /| @ whats Related

| Netscape.de (4 Channels (14 Linux ¢ Offline Startseite g SUSE, The Linux Experts ¢ Suse Linux Knowledge Pottal ¢ Computing ¢ Guick Buddies

2| overview Classifier Tree Index Help Poseidon for UML™
Wsoftsale Tmases sto Enazs e
B boni SYIMARY. PACKAGE| GLAZE| DITTAFAST ACTON | USEOASE DTASHAMS: CLAZE|DSLLAD | BIFLO | E0) STATE | STIY|V5E SASE
B3 clients
~ B Account
B Address. Package ordering
B Client a
B ClientController |
-8 CredirCard
B EMail
7 orderine
S5l
~ B Countr
B Deduction
-8 Inveice
B Order

=

oy

Class diagrams of package ordering

All Classifiers

0 00 00 00 00 00
omomm
Ekkgﬁ

EE 2
E— - | |

B ClientController
5 Cowtrylnformation invcica Deduction
5 CregitCard
B Customer

5 CustomerCard
& Deduction

B DigitalProduct Class Diagram Summary

S EMal ordering

B Eaming g &

Sentit s PETTIY

Fig.: Class diagram ortering

¥]
=]) |=])

= S %0 59 (@ N2

You'll find the generated java files in the specified output folder, sorted by packages.

12.2. Fine-tuning code generation

There are several possibilities to fine-tune the appearance of the generated Java
source code. Among them are the creation of accessor methods for attributes, the
types for collection attributes, and the list of import statements in the files.

. Accessor methods

From Poseidon 1.4 on, you can create accessor methods for attributes
automatically. This way, you can fine-tune the code so that some attributes have
accessors, some not. In previous versions of Poseidon, you could only have
setters/getters for all attributes, or for none.

In Edit — Settings, there is a check box called 'Generate accessor methods for
attributes’. Check this box to have accessor methods created for every attribute

135

Chapter 12. Code Generation and Round-trip Engineering

136

that is created. If the attribute has a multiplicity of 1..1 or 0..1, two simple
getAttribute() andsetAttribute() methods are created. For attributes

with a finite multiplicity, an array is generated, and the accessor methods include
addAttribute() andsetAttribute(). For an unbounded multiplicity, a
Collection is generated, and the appropriate access methods like

addAttribute() andremoveAttribute() are produced.

You can fill the bodies of these access methods according to your business logic.
Also, you can hide the display of accessors by setting the check box 'Hide
accessor methods’ iBdit—Settings—\View.

Additionally, you can generate the standard accessor methods for your attributes
at code generation time. These will be visible only in the generated code, not in
your Poseidon project.

Collection types

Poseidon up to version 1.3.1 used the type Vector whenever an association had a
multiplicity of ..*.

From version 1.4 on, the rules are:

1. Create an attribute of the element’s type if the multiplicity is 0..1 or 1..1.

2. Create &ollection type attribute if the multiplicity has an upper bound of
*

3. Create an array of the element’s type if the multiplicity has an upper bound
that is not 1 and not * (that is, it is a number).

In Code Generation--Settings, you can define what type of collection
should be used for Collection types. The defauknsyList, but you can
enter any type (e.g., Vector) that implemeatslection. Accessor methods
are programmed againGbllection

Future versions of Poseidon, you will be able to distinguish between ordered,
unordered and sorted attributes, and you will be able to give different kinds of
implementation types such aseeSet for unorderedArrayList for ordered
andVector for sorted attributes.

Import statements

Import statements can be added to classes in two ways: By drawing dependencies
or by entering tagged values.

The graphical way is to draw a dependency from the class to the class or package
that you want to import. An appropriate import statement will be generated:
Eitherimport package.* orimport package.Class

Chapter 12. Code Generation and Round-trip Engineering

The second way (that does not clutter up your diagrams) is to add a Tagged Value
calledJavalmportStatement to the class. Then enter a number of imports,
separated with colons. Qualified names can be given in Java syntax. For example,
importjava.lang.reflect.* andjava.io.lOException by setting the

tagged valugavalmportStatement to

java.lang.reflect.*:;java.io.lOException

- Modifying templates (Developer and Professional Editions)

More advanced customizaton of the generated code is possible if you are using
one of the Premium Editions. Modification of the templates that are used for code
generation is possible with these editions. We cover this topic briefly in a separate
chapter and more deeply in a separate document that is distributed with these
editions and online under http://www.gentleware.com/support/developer
(http://www.gentleware.com/support/developer/index.php3).

- Javadoc Tags

You may not want certain operations to be reverse engineered. Any operations
with the Javadoc tag '@poseidon-generated’ will be excluded from the reverse
engineering process.

12.3. Reverse-Engineering Code

Software engineers often run into the problem of having to re-engineer an existing
project for which only code but no models are available. This is where
reverse-engineering comes into play; a tool analyzes the existing code and
auto-generates a model and a set of Class Diagrams for it.

Poseidon for UML can do this for Java programs, where source code is available
and is in a state where it can be compiled without errors. With the corresponding

JAR Import function (available only in the Professional and Enterprise editions), it
even works with JAR files of compiled Java classes.

To launch this process, go to thaport Files menu and direct the file chooser to

the sources’ root package. It will then analyze this as well as all sub-packages. The
outcome is a model containing the corresponding packages, all the classes, their
complete interface, their associations, as well as one Class Diagram for each
package. Note that the path that you select here will be automatically adopted by the

137

Chapter 12. Code Generation and Round-trip Engineering

12.4.

138

generation dialog. The next time you open the code generation dialog, this path will
be displayed as output folder by default.

If the imported file uses classes that are part of the JDK, these classes will be
created in the model as required, so you may see some apparently empty classes in
the packaggva in your model. This is of no concern and is done solely to have a
smaller model. But these classes are necessary to have a consistent project. All
classes that the imported files use must be present in the model.

Additionally, you can give an import classpath. This is necessary to make the model
complete if a file references classes that are not imported themselves. Here you can
specify one or more jar files, each entry separated by a colon. If you want to import
files that make use dbo.jar , anotherfoo.jar andstillanotherfoo.jar ,

then it should look similar to this:

folder/subfolder/foo.jar:anotherfolder/anotherfoo.jar:stillanotherfoo.jar

Figure 12-3. Import Files Dialog.

> 0E @ @ EE

ner; ava

ccccc

mmmmm

LELLLLLELLLELEBLLLELED
tii353383137§3828883¢

Classes that are needed to make the model complete but are not present in the
package structure are created on demand. If you give an import classpath but the
imported file does not use any classes from it, then no additional classes will show
up in your model.

Round-Trip Engineering

Generating code and reverse engineering that same code still does not make

Chapter 12. Code Generation and Round-trip Engineering

round-trip engineering. Reverse-engineering generates a new model from existing
code, but it does not by itself reconnect the existing code to an existing model. This
feature is only available in the Professional Edition, which contains the RoundTrip
UML/Java Plug-in. It is one of the most recommended and highly sophisticated
features provided by Poseidon for UML.

Generate a UML model from your existing code, change the model, re-generate the
code, change the code and so on. All generated Java code files are watched, so that
changes you have made with an external editor are imported into Poseidon’s model
of your project. Use your favorite source code editor to edit method bodies, add or
remove methods and member variables. Poseidon keeps track of all changes, and all
your project data is in one place — in Poseidon.

Please note that the round-trip plug-in is primarily an import tool; it imports

changes in the source code for you and updates the model as necessary. Automatic
code generation in the background is not yet implemented, but will be in one of the
next minor releases.

How to use this feature:

. Create or load a model in Poseidon

- Setthe interval after which Poseidon checks for file modifications

Figure 12-4. Select File Check Interval.

FEEEL YT T B

T oragram ~camric G
Diagram-centric [2]| (53 B
softsale
o

- Generate the code (the generation window will automatically pop up if you load a
model)

« Use your preferred editor to modify the code (especially the method bodies),
modify identifier names, add or remove methods and/or variables

- Save the file in your editor
And the changes will appear in Poseidon!
Some words on how to handle accessor methods:

You should unset the check b&@enerate accessor methods after you have
generated accessors once. Otherwise, they would be generated again, and would
clutter up your classes. The preferred way to create set/get methods is by adding

139

Chapter 12. Code Generation and Round-trip Engineering

140

them in an attribute’s Properties tab, and by checkingate accessor methods
for new attributes in the dialogEdit—Settings.

Figure 12-5. Java Code Generation — Settings.

o] [emer]

In the code generation settings dialog, you have the ability to specify an additional
classpath for compilation.

You might temporarily have non-compiling source code that you do not want to
import into Poseidon right away. For these instances, you can temporarily disable
the automatic import with the button next to tingport sources button. It will

turn to red, showing that automatic round-trip is disabled.

&

By clicking it again, it will turn back to green, designating that round-trip is enabled
again.

)

When the round-trip plug-in is running and you have imported files, Poseidon asks
if you would like to keep these source files and the model in sync.

When you load a new model, Poseidon asks you if you want to generate the source
code now or if you want to import existing source code. Choose the first alternative
if the you want to ensure that the source code you have reflects the current model.
Using the latter choice (import), you can synchronize the code and model even if

Chapter 12. Code Generation and Round-trip Engineering

you have changed the source code while Poseidon was not running and thus could
not keep track online of the changes you did to the source.

=+ Roundtrip: Matching model and code

e Source code folder:

|.¥Ext.igwfstam’knes(erhEmp H ” Update J

Wrong Tolder? You cah change it

In the source code folder
Jext/gwfstafffkoester/temp
are the following source files:

fext/gw/stafffkoesterjtemp/products /Product. java

fextfgw/staff fkoesterjtemp/products /Software. java

et gw/staff fkoester/temp/products /Music. java

fext/gw/staff fkoesterjtemp/products /PhysicalProduct java
; Dinitalp .

Dou you want to

1) generate source code because the model is up-to-date?

(50 you can ke sure that the source code mirrors the model.)

23 import the source code because the sources are up-to-date?

(Al changes in the sources will be imported into the model.)

11 Owerwrite suur(es] ‘ 2) Check sources I | 31 lgnore sources

Note that a folder for the source code is always set in Poseidon. This may not be the
one that is suitable for your new project. To change it, select 'Update’ and view the
contents of another folder. This way, you can make sure that after opening a project,
you can either update the project with the correct source code (and select option 2),
or generate fresh code if the project is the latest version (select option 1).

141

Chapter 12. Code Generation and Round-trip Engineering

142

Chapter 13. Documentation
Generation (UMLdoc)

13.1.

To add documentation to a model element, select the documentation tab in the
Details pane. When you have imported Java source code, the javadoc contained in
the source code is likewise imported and viewed in the documentation tab. When
working with text based IDEs, you put your javadoc in doc commemts*().

When using Poseidon’s HTML editor, this is not necessary. The doc comments are
added automatically to your source code when you generate it.

Figure 13-1. Editing a method documentation.

| Properties | styie | Tobottems | JavasSource | Documen tation | Tagged Values
3 = = — =
hiy E== i=iz =@ coler
Jaua-Doo Tag | Dosumen tation |
@retum a List which contains all possible moves

Insert new tap [¥

Does ...

This method returns a list of all possible moves

sssss

(@pararn board board to calculate afl possible moves

UMLdoc

The UMLdoc Plug-in generates HTML documentation files, that look similar to
Javadoc. But it includes your UML diagrams as jpeg images, and offers an

improved navigation. Currently UMLdoc generates documentation for models,
packages, classes, interfaces, operations, methods, associations, actors, use cases,
extend and include relationships.

UMLdoc is also capable of generating external links. Any types from Java will be
automatically linked to Sun’s Java site, and other links can be created utilizing the
@link tag. Additionally, any URL included in the documentation will be
automatically detected and the link will be activated without requiring any other
notation.

143

Chapter 13. Documentation Generation (UMLdoc)

13.2. Code generation settings

The code generation settings dialog of UMLdoc provides the following settings:

Generate author docs

If you disable this setting, @author tags are skipped in the output.

Generate class doc for

Here you can select for which classes documentation should be generated. You
can enable/disable the documentation output of public, protected and private
classes.

External Link Base

The site noted here will be used as the base link for all external links within the
document. The default points to Sun’s Java site, and this site can be restored
after modifications by clicking 'Set Default’.

Generate External Links

With this option enabled, @link destinations that are external will be activated
within the document.

Figure 13-2. UMLdoc Code Generation — Settings.

13.3. Supported javadoc tags

144

Currently UMLdoc generates output for the following javadoc tags, all unknown
tags are skipped and do not produce output.

Chapter 13. Documentation Generation (UMLdoc)
@authofauthor name]
Adds the specified author name to the model element documentation, output is
only produced if you have selected tBenerate authors dogption in the
UMLdoc code generation settings.
@deprecateftext]
Adds a comment indicating that this APl should no longer be used (even
though it may continue to work).
@exception, @throw@xception type] [description]

Adds an exception description to the method documentation.

{@link package.class#member lapel
Inserts an in-line link with visible text that points to the documentation for the
specified package, class, or member name of a referenced class.
@paramparam name] [description]

Adds a parameter description to the method documentation.

@return[description]

Adds a return parameter description to the method documentation.

@sedreference]

Adds a "See Also" heading with a link or text entry that points to a reference.

@serial[description]
Adds a comment indicating a default serializable field. The optional
description should explain the meaning of the field and list the acceptable
values.

@serialDatddescription]
Documents the sequences and types of data written by the writeObject method
and all data written by the Externalizable.writeExternal method.

@serialFieldname] [type] [description]
Documents an ObjectStreamField component of a Serializable class’
serialPersistentFields member.

@sincelrelease name]

Adds a description indicating that this change or feature has existed since the
software release specified.

145

Chapter 13. Documentation Generation (UMLdoc)
@version[version]

Adds a version to the method documentation. A doc comment may contain at
most one @version tag.

146

Chapter 14. Advanced Features

14.1. Constraints with OCL

UML is basically a graphical language. As a graphical language it is very suitable

for expressing high-level abstractions for architectures, workflows, processes etc.
But for expressing very detailed and fine-grained things like algorithms, equations
or constraints, textual languages just tend to be more convenient.

The current UML recognizes this and comes with a supplementary textual language
to express constraints. This language is called the Object Constraint Language, or
abbreviated OCL.

Since OCL is noted as text, it is simple to support, and many UML tools do it just
that way. You can simply enter lines of text in certain fields reserved for constraints.
In Poseidon for UML you can do that in the Constraints tab on the Details pane, as
shown in the figure below.

Figure 14-1. A Constraints tab.

But also because it is text, it is quite difficult to tell — just by looking at it —
whether syntax and semantics are used correctly. Poseidon does help you there
extensively, and to our knowledge is best at doing this. The Constraints tab on the
Details pane holds an OCL editor that comes with its own syntax assistance mode,
which you have to enable first.

147

Chapter 14. Advanced Features

Figure 14-2. Edit Constraints.

ext LoyaltyProgram inv customersAgeGEZl : membership -» forall { customer . age »= 21)

14.2. Critigues

148

Before we start generating code, lets first check if our model is as well-formed as it
should be. There are certain design rules for software that are generally
acknowledged by developers. The implementation of these kinds of rules into
Poseidon for UML is in fact one of its finest features. This feature of cognitive
support, which acts like a built in auditor, is called 'critique’.

When activated in the critiques menu, the critiques are constantly analyzing and
criticizing your design. The Critiques pane in the bottom left corner of the working
area shows three priority nodes.

Figure 14-3. Critiques Pane.

3 High
9 Medium
o Low

Broadening and improving this feature is part of each development cycle of
Poseidon.

Chapter 14. Advanced Features

14.3. Searching for Model Elements

When your models start to grow, you will want a nice mechanism to search for
elements. Poseidon offers a powerful search tool that is not just based on text but on
model information. It allows you to look for specific types of elements. The search
tool is invoked from theedit menu, by selectingind... or by directly pressing key

F3.

Figure 14-4. Find Dialog

Type in the name of the element you are looking for (you can also use the asterisk
as a wildcard), and specify the type of element you are looking for. If you are
looking for a class, this type would be Class.

149

Chapter 14. Advanced Features
Figure 14-5. Searching a Class

[Retated Elements:
Type Name in Diagram | Descri ption

For each search, a new tab is created so that you can access older search results.
You can also restrict the search space to be the result of an earlier search. Selecting
one entry from the results list provokes tiratated Elements are also shown.
Double-click on one entry in the results list whereas effects that the element is
selected in the Navigation pane.

150

Chapter 15. Plug-ins and Profiles

15.1.

With Poseidon’s plug-in interface it is possible to add extended functionality that is
well beyond what is implemented in the core product. The Standard Edition of
Poseidon for UML comes with this plug-in feature. Development teams from
Gentleware AG as well as technology partners
(http://www.gentleware.com/Partner/index.php3) are working on plug-ins that meet
specific designer and developer needs. The following sections give a brief overview
of the most recent plug-ins that are available for shipping (or will be soon). For
information on how to install a plug-in, please see the separate documentation
(http://www.gentleware.com/products/documentation/) available on the Gentleware
Web site.

The Plug-in Manager

The Plug-in Manager is provides an easy interface to install, manage, and uninstall
plug-ins. The left side displays all installed plug-ins, while the right side displays
details about the selected plug-in.

The plug-in displayed in the figure below is named Uml-1.4. It contains all of the
information used by Poseidon to render the diagrams. This includes items such as
the appearance of the elements and relationship definitions.

Installed Flugins Details

Enabled [trus =]

File name [cProgrammeP aseidonsE2uibWmIplugin ar |

Code name [com.gentieware.poszidan.umit4 |

Vewion (Specification) (2.0 |

Version (Implementation) [1 |

Dependencies

Details available in the Plug-in Manager:

- Enabled— This dropdown allows you to determine whether or not a plug-in is
used by Poseidon.

- File Name— Displays the location where the plug-in is installed. This field is
not editable.

« Code Name— Displays the code name of the plug-in.

151

Chapter 15. Plug-ins and Profiles

- Version (Specification)— Displays the version number of the plug-in.
« Version (Implementation) — Displays the internal build number of the plug-in.

- Dependencies— Lists the plug-ins from which it uses functions.

15.2. Plug In Guides

152

The Professional Edition of Poseidon comes with four options for code generation
and one for documentation generation (UMLDoc). Java code generation is the
default setting, but you can also choose to generate CORBA IDL, Visual Basic

.NET or C# code. To do this, you have to activate the plugin that supports the
desired language. (Via Plugins -> Plugins Panel). When you do this, a set of
stereotypes becomes available that can be used to control the result of the code
generation. The next sections describe what stereotypes and tagged values you can
use to control the output of code generation.

15.2.1. Poseidon C# Code Generation Plugin
Guide

15.2.1.1. General Rules

15.2.1.1.1. Tagged Values

These tagged value keys are supported when the value is set to 'true’ within the
appropriate context:

internal

- protected internal
- volatile

- override

. sealed

« extern

« internal

. virtual

Chapter 15. Plug-ins and Profiles
15.2.1.1.2. Additional Stereotypes

. <<event>
.« <<readonly>

« <<delegate>

15.2.1.2. Modelling Element Rules

15.2.1.2.1. Classes

. Uses the standard UML 'Class’

« Supports single inheritance only

Class Signature

 Additional visibilities for class signatures are set when the tagged values below
are 'true’:

1.internal

2.sealed

Class Attributes

- Additional visibilities for class attributes are set when the tagged values below
are 'true’

1.internal
2. protected internal

3. volatile

Class Operations

- Additional visibilities for class operations are set when the tagged values below
are ’true’:

1.internal

153

Chapter 15. Plug-ins and Profiles

154

2. protected internal
3. override
4.sealed

5. extern

6. virtual

Everything else will use the checked visibility radio buttons

15.2.1.2.2. Interface

. Uses the standard UML ’'Interface’

« Supports single inheritance only

Interface Signature

- Additional visibilities for interface signatures are set when the tagged value
below is 'true’:

1.internal

Interface Members

- All interface members implicitly have public access. It is a compile-time error for
interface member declarations to include any modifiers. In particular, interface
members cannot be declared with the modifiers abstract, public, protected,
internal, private, virtual, override, or static.

Everything else will use the checked visibility radio buttons.

15.2.1.2.3. Structure

» Uses the standard UML 'Class’ with the s&uct>> stereotype
« Supports single inheritance only
Structure Signature

Additional visibilities for structure signatures are set when the tagged value below
is 'true’”:

Chapter 15. Plug-ins and Profiles
« internal

Struct tapes are never abstract and are always implicitly sealed. The "abstract’ and
'sealed’ modifiers are therefore not permitted in a struct declaration. Since
inheritance isn’t supported for structs, the declared accessibility of a struct member
cannot be 'protected’ or ’protected internal’.

Structure Members

Function members in a struct cannot be abstract or virtual, and the override modifier
is allowed only to override methods inherited from the type System.ValueType. A
struct may be passed by reference to a function member using a ref’ or "out’
parameter.

Everything else will use the checked visibility radio buttons.

15.2.1.2.4. Enumeration

« Uses the standard UML 'Class’ with an erum> stereotype
- By default, it generates an enum as type ’'int’.
- Enum does not participate in generalizations or specifications

- Enum cannot have navigable opposite association ends, operations, or inner
classifiers

+ Anything else will default to 'int’.
Enumeration Signature

Additional visibilities for enumeration signatures are set when the tagged value
below is 'true’:

- internal

Everything else will use the checked visibility radio buttons.

15.2.1.2.5. Delegate

+ Uses the standard UML 'Class’ with a delegate> stereotype
- Delegate does not participate in generalizations or specifications
Delegate Signature

Additional visibilities for the delegate signatures are set when the tagged value
below is 'true’:

155

Chapter 15. Plug-ins and Profiles

156

. internal

Everything else will use the checked visibility radio buttons.

15.2.1.2.6. C# Event

C# events are supported with an operation that has the stereotgperd<.

15.2.1.2.7. Operations

There are some translations on the return type of C# operations:

« 'infout’ parameter direction will be translated to ref’
« ’in’ parameter direction will be translated to blank (“)
- ’out’ will be translated to 'out’

« ’root’ will be translated to 'new’

15.2.2. Poseidon CORBA IDL Code Generation
Plugin Guide

15.2.2.1. General Rules

- Everything is modeled using the standard UML ‘Class’ with an appropriate
stereotype as defined by UML Profile for CORBA

« For details about modeling CORBA IDL, refer to the UML Profile for CORBA
v1.0

15.2.2.2. CORBA Interface

+ Uses the standard UML 'Class’ with the €ORBAInterface> stereotype

- Interface member has to be 'public’

Chapter 15. Plug-ins and Profiles
15.2.2.3. CORBA Value

+ Uses the standard UML 'Class’ with the €ORBAValue> stereotype
- Can only specialize one other concrete CORBA Value

- CORBA Value can only have ’public’ or 'private’ attributes and navigable
opposite association ends

« CORBA Value’s 'Factory’ method is modeled using the
<<CORBAValueFactopy> stereotype with an Operation

« CORBA Value can have only 0 or 1 GORBAValueFactopy>-stereotyped
Operation

« CORBA Value can only have 'public’ operations

15.2.2.4. CORBA Struct

« Uses the standard UML 'Class’ with the EORBAStruct> stereotype
- CORBA Struct cannot participate in generalizations or specifications

- CORBA Struct can have only 'public’ attribute and navigable opposite
association end of single multiplicity

- CORBA Struct cannot have operations

15.2.2.5. CORBA Enum

« Uses the standard UML 'Class’ with the EORBAEnum> stereotype

- CORBA Enum cannot participate in generalizations or specifications
« CORBA Enum can have only 'public’ attributes

- CORBA Enum cannot have navigable opposite association ends

- CORBA Enum cannot have operations

15.2.2.6. CORBA Exception

« Uses the standard UML 'Class’ with the €ORBAEXxceptior> stereotype

« Due to current Poseidon limitations, CORBA Exception names must end in the
string 'Exception’

157

Chapter 15. Plug-ins and Profiles
- CORBA Exception cannot participate in generalizations or specifications
- CORBA Exception can have only 'public’ attributes with single multiplicity
- CORBA Exception cannot be an end of a navigable association end

- CORBA Exception cannot have operations

15.2.2.7. CORBA Union

« Uses the standard UML 'Class’ with the €ORBAUnior> stereotype
- CORBA Union cannot participate in generalizations or specifications
- CORBA Union can not have operations

« There are two ways to model CORBA Union as specified in UML Profile for
CORBA:

- Using a composition relationship that points to a 'switcher’ and has the
<<switchEnd> stereotype. Every attribute must have a tagged value with
'Case’ as the key and the switch condition as the value.

- Using an attribute with the <switch>> stereotype attribute acting as the
'switcher’ in conjunction with a composition relationship. The navigable
opposite association ends must have tagged values with 'Case’ as the key and
the switch condition as the value.

Please see UML Profile for CORBA v1.0 §3.5.15 for more details.

15.2.3. Poseidon VB.Net Code Generation Plugin
Guide

15.2.3.1. General Rules

- ’package’ visibility will be translated into 'Friend’
- 'abstract’ will be translated into 'Mustinherit’ or 'MustOverride’
- ’final’ will be translated into 'Notinheritable’ or 'NotOverridable’

. ’'static’ will be translated into 'Shared’

158

Chapter 15. Plug-ins and Profiles

The following keys for tagged value pairs are supported when the value has been set
to 'true’ within the appropriate context:

- Shadows
. Overridable

- Protected Friend

15.2.3.2. Classes

« Uses the standard UML 'Class’
« Supports single inheritance only

- 'Protected Friend’ visibility is determined by setting the tagged value 'Protected
Friend’ to 'true’. Everything else will use the checked visibility radio button.

- Classes with abstract operations must also be declared "abstract’

15.2.3.3. Interfaces

Uses the standard UML 'Interface’

Interface identifiers must start with the ’'I’ character

Interface operations must be ‘Public’ and cannot be 'Shared’

Interfaces cannot have attributes or navigable opposite association ends

15.2.3.4. Modules

- Uses the standard UML 'Class’ with the Module>> stereotype

- Modules cannot be 'abstract’ or 'final’

- Modules cannot participate in generalization or specification

« Modules cannot be an inner classifier or have an inner classifier

- Modules cannot have a 'Protected’ or 'Protected Friend’ member

159

Chapter 15. Plug-ins and Profiles
15.2.3.5. Structures

« Uses the standard UML 'Class’ with the Structure-> stereotype

« Structures must have at least one member that is non-static (shared) and is either
an attribute, a navigable opposite association end, or an operation with the
stereotype <Event->.

. Structures cannot have a 'Protected’ or 'Protected Friend’ member

- Structures cannot have an attribute or navigable opposite association end with an
initialized value

15.2.3.6. Enums

» Uses the standard UML 'Class’ with the Equn»> stereotype
- By default, it generates an Enum as type ’Integer’
- Enums do not participate in generalizations or specifications

- Enums cannot have navigable opposite association ends, operations, or inner
classifiers

- Other Enum types are supported by using the tagged value key 'type’ with one of
the following values:

- Short
Byte
Integer

Long

« Anything else will default to ’Integer’

15.2.3.7. Operations

- Operations support the following tagged values:

Protected Friend
+ Shadows

. Overridable

- Operations with no return parameter (returning 'void’) are generated as 'Sub’

160

Chapter 15. Plug-ins and Profiles

- Operations with a return parameter are generated as 'Function’

15.2.3.8. Operation’s Parameters

- Parameter type ’in’ is translated as '‘ByVal’, everything else is ‘ByRef’

- The type 'ParamArray’ is supported by using the stereotydéaramArray->
with a parameter

- A’ParamArray’ parameter must be the last parameter

- A’ParamArray’ parameter must be of type 'in’ or 'ByVal’

15.2.3.9. Visual Basic Properties

- Properties are supported with Rroperty>> stereotyped operations

- There are 3 type of stereotypes available:
- 'Property’ will generate 'Get’ and 'Set’ inside the Property block
- 'ReadOnly Property’ will generate only 'Get’ inside the Property block
« 'WriteOnly Property’ will generate only 'Set’ inside the Property block

- If no attribute is set in "accessed attribute’, it will by default generate an attribute
with same type as the Property return type with the name set to
'm_operation_name’.

15.2.3.10. Visual Basic Events

- VB Events are supported by using Event-> stereotypes with operations

15.2.3.11. Attribute & Association Ends

« Supports the tagged value 'Protected Friend’

161

Chapter 15. Plug-ins and Profiles

15.2.4. Poseidon PHP4 Code Generation Plugin
Guide

This guide is based on the PHP4 Manual, available at http://www.php.net/docs.php.

15.2.4.1. General Rules

- The only classifier in PHP4 is 'Class’.
- PHP4 Class can not participate in an Association.
« There is no Exception in PHP4

- There are two files generated for each Class generation process:

1.’.inc’ file that contains the class declaration

2.’.php’ file that includes related the ".inc’ on its first line

15.2.4.1.1. Tagged Values

The following tagged value keys are supported for PHP4 Class:

« '<<<’ for Heredoc string
- ’initval’ for an initial value of an operation parameter
- '& for operation parameter passed by reference

. '&’ for a function that returns a reference

15.2.4.2. PHP4 Class Modelling Rules

. Uses standard UML 'Class’

« Supports single inheritance only

15.2.4.2.1. Class Signature

- There are no visibilities for Class Signature

162

Chapter 15. Plug-ins and Profiles
15.2.4.2.2. Class Attributes

- There are no visibilities for Class Attributes
- Tagged values supported:
1. Heredoc
Tagged value = '<<<’, with value = true’
Will return anything typed in the initial value with Heredoc string type.
For example:
$str = <<<EOD
Example of string
spanning multiple lines

using heredoc syntax.

EOD;

15.2.4.2.3. Class Operations
- There are no visibilities for Class Operations

- Tagged values supported:
1. Parameter initial value
Tagged value="initval’, with value = (specified parameter initial value).

For example:

class ConstructorCart extends Cart

{

function ConstructorCart($item = "10", $num = 1)

{

163

Chapter 15. Plug-ins and Profiles

$this->add_item ($item, $num);

2. Parameter passed by reference
Tagged value="&’ with value="true’ in the parameter signature.
For example:
<?php
function foo (&$var)
{

$var++;

$a=5;
foo ($a);
/I $a is 6 here

?>

3. Function returns a reference
Tagged value="&’ with value="true’ in the operation signature.

For example:

<?php
function &returnsReference()

{

return $someref;

164

Chapter 15. Plug-ins and Profiles
}

$newref =& returnsReference(); ?>

15.2.5. Poseidon Delphi Code Generation Plugin
Guide

15.2.5.1. Classfiers

- Class

- Interface

- Enumeration
« Record

+ Set

- Sub Range
« Array

» Exception

15.2.5.2. Tagged Values

All strings input in the Tag column are case-sensitive.

. Classifier

- Tag ='uses’ with Value = string that represents unit(s) name to be included in
specified unit declaration, separated by comma.

Description Handles strings that represent the names of units to be included in
specified unit declarations. A 'uses’ tag with a blank value will be defaulted to
'SysUtils’.

Example UnitA, UnitB, UnitC

165

Chapter 15. Plug-ins and Profiles

166

. Tag ='setvalue’ with Value = string that represents the value of 'Set’,

separated by comma.
Description Handles the way to input the value of the 'Set’ type.

Example 1,9

- Tag = 'subrangevalue’ with Value = string that represents the value of 'Sub

Range’ separated by comma.
Description Handles the way to input the value of the 'Sub Range’ type.

Example 1,9

- Tag =arrayvalue’ with Value = string that represents the value of 'Array’,

separated by comma.
Description Handles the way to input the value of the "Array’ type.

Example 1,9

- Tag ='arraytype’ with value = string that represents the type of 'Array’.

Description: Handles the way to input the type of the 'Array’ type.

. Attribute
. Tag ="published’ with Value ="true’.

Description Handles the published visibility of the classifier "attribute’.

« Operation

. Tag =published’ with Value ="true’.

Description Handles the published visibility of the classifier 'operation’.

- Tag =virtual’ with Value = true’

Description Handles the way to set the specified operation into a 'virtual’ type
operation.

Chapter 15. Plug-ins and Profiles

- Tag ='dynamic’ with Value = "true’

Description Handles the way to set the specified operation into a 'dynamic’
type operation.

- Tag ='override’ with Value = 'true’

Description Handles the way to set the specified operation into an ‘override’
type operation.

- Tag ='overload’ with Value = true’

Description Handles the way to set the specified operation into a
'overload'type operation.

- Exception
- Tag = "published’ with Value ="true’.

Description Handles the published visibility of 'Exception’.

15.2.5.3. Stereotypes
. Attribute

. Stereotype ='Const’

Description Handles the way to specify a 'const’ type Attribute.

- Stereotype = 'property’
Description This will handle the way to specify a 'property’ type Attribute.

167

Chapter 15. Plug-ins and Profiles

+ Operation
. Stereotype = 'function’

Description Handles the way to specify a 'function’ type Operation.

. Stereotype ='procedure’

Description Handles the way to specify a 'procedure’ type Operation.

. Classifier
- Stereotype =’Enum’

Description Handles the way to specify an 'Enumeration’ type Classifier.

. Stereotype = 'Record’

Description Handles the way to specify a 'Record’ type Classifier.

- Stereotype ='Set’

Description Handles the way to specify a 'Set’ type Classifier.

. Stereotype = 'SubRange’

Description Handles the way to specify a 'Sub Range’ type Classifier.

. Stereotype ='Array’

Description Handles the way to specify an 'Array’ type Classifier.

. Stereotype = Exception’

Description Handles the way to specify an 'Exception’ type Classifier.

168

Chapter 15. Plug-ins and Profiles
15.2.5.4. Modelling Element Rules

+ Class
Uses the standard UML Class
Participates in generalizations, associations and specifications

- Only supports single inheritance

Interface
Uses the standard UML Interface
Participates in generalizations

Does not participate in associations or specifications

- Only supports single inheritance

« Enumeration
Uses the standard UML Class with €num>> stereotype
Does not participate in generalizations or specifications

- Cannot have navigable opposite association ends or operations

« Record
Uses the standard UML Class with ®ecord>> stereotype
Does not participate in generalizations or specifications
- Can have navigable opposite association ends

- Cannot have any operations

+ Set
Uses the standard UML Class with &et>> stereotype
Does not participate in generalizations or specifications

- Cannot have navigable opposite association ends or operations

169

Chapter 15. Plug-ins and Profiles
- Sub Range
- Uses the standard UML Class with &ubRange> stereotype
- Does not participate in generalizations or specifications

- Cannot have navigable opposite association ends or operations

+ Array

. Uses the standard UML Class with #¢ray >> stereotype
- Does not participate in generalizations or specifications

- Cannot have navigable opposite association ends or operations

- Exception
- Uses the standard UML Class with €xception>> stereotype

+ The same as Class

15.2.5.5. Specific Rules

- An attribute with 'non-1" multiplicity will generate an Array that is defaulted to
type ’int’ with Lower Bound and Upper Bound values based on the specified
multiplicity.

Example Attribute with multiplicity: 1..2 will generate : Array[1..2] of int;

« A blank value with the 'uses’ Tag, will be defaulted to 'SysuUtils’.

« A blank value with the 'setvalue’ Tag will be defaulted to 'a’..’z’

A blank value with the 'subrangevalue’ Tag will be defaulted to ’'a’..’z’
+ A blank value with the 'arrayvalue’ Tag will be defaulted to 1..10
A blank value with the 'arraytype’ Tag will be defaulted to int

A blank value with the 'procedure’ and 'function’ Tag will be defaulted to
procedure

170

Chapter 15. Plug-ins and Profiles
15.2.6. Poseidon Perl Code Generation Guide

15.2.6.1. General Rules

The result of the code generation is saved as a Module file (ClassName.pm)

- Interfaces and their associations are not translated into Perl code

- Abstracts and their associations are not translated into Perl code

- Element’'s documentation are translated into Perl comment syntax (# comment)

- Attribute / Parameter types are ignored because there is no need to define data
types for Perl variables

15.2.6.2. Classes

+ Uses the standard UML ‘Class’
- Classes are translated into Perl Class (package className)

« A constructor is generated for each class (sub new)

15.2.6.3. Class Attributes

- Attributes are translated into variables

- Attributes with single multiplicity are translated into scalar type variables (my
$AttributeName)

- Attributes with multi-multiplicity are translated into array type variables (my
@AttributeName)

- An attribute with a tagged value ’local’ that is set to 'true’ is translated into ’local
$AttributeName’ instead of ‘'my $attribute’

« An attribute that has non-1 multiplicity with a tagged value 'Map’ set to 'true’ is
translated into '%AttributeName’ instead of '@ AttributeName’

- When the visibility of an attribute is public, 'use vars qw ($AttributeName)’ is
added to the code generation.

171

Chapter 15. Plug-ins and Profiles

172

15.2.6.4. Class Operations

Operations are translated into Sub-routines (Sub OperationName)
. Parameters are translated into Sub-routine variables
. Return value are not translated into Perl code

- When an operation is static and has the stereotypereate>>, a ' BEGIN { }’
block is added to code generation.

« When an operation is static and has the stereotypgesttoy>>, a 'END { }"
block is added to code generation.

15.2.6.5. Associations

- 1to 1 associations are translated into scalar type variables (my $className)

- 1to N associations are translated into array type variables (my @className)

15.2.6.6. Aggregation

- 1to 1 aggregations are translated into scalar type variables (my $className)

15.2.6.7. Inheritance

- Single inheritence is implemented using @ISA = gw(class)

- Multiple inheritence is implemented using @ISA = qw(classl class?2 ...)

15.2.7. Poseidon SQL DDL Code Generation
Plugin Guide

15.2.7.1. Modelling Element Rules

15.2.7.1.1. Classes

. Uses the standard UML ‘Class’

15.3.

Chapter 15. Plug-ins and Profiles

. Each class is considered as a table.

15.2.7.1.2. Attributes

- Describes the columns in table. Each attribute can have stereotypes that will be
treated as column constraints.

15.2.7.1.3. Association Ends

- Describes the relationships between tables. Foreign keys will be automatically
generated in tables that have references to other tables.

15.2.7.2. Tagged Values

These tagged value keys are supported when the value is set with digit number
within appropriate context: The values will specifically describe the column data
type. Considered in the following order: length, precision, scale

15.2.7.3. Additional Stereotypes

Stereotypes apply in attributes. The stereotype for allowing NULL values is not
included since it is the default behaviour of columns.

« Primary Key
« Not Null

- Unique

Available Plug Ins

15.3.1. JAR Import

The JAR Import Plug-in supports reverse-engineering and importing JAR archives
into an existing model in Poseidon for UML. You can use and extend existing
packages or frameworks in your own models, or browse and learn existing APIs.

173

Chapter 15. Plug-ins and Profiles

174

This feature is often requested by professional developers, for instance, to get a
more vivid visualization of APIs than a standard Javadoc might provide.

15.3.2. RoundTrip UML/Java

With the RoundTrip UML/Java Plug-in you can generate Java code from your UML
model, edit your code, reverse-engineer your code and synchronize with the model.
This is especially interesting with tight integration in an IDE like Forte. Modeling
and coding are not separated anymore.

15.3.3. Statechart-to-Java

With the Statechart-to-Java Plug-in you can directly generate java code from a

UML state diagram that describes the behavior of a class. So in addition to the static
structure of the class — i.e. operations, attributes and associations — the dynamic
behavior is generated as java code.This unique module enables you to visualize, test
and even manipulate the behavior of objects using their corresponding state
diagrams. The visualization is based on pure UML, just adding some color and
action.

The triggers in the state chart are mapped to ordinary operations of a class. The
behavior of these operations is determined by the actions that are specified in entry
and exit actions of states and as effects of transitions in state charts.

In order to validate the semantics of the specified behavior, the Statechart-to-Java
Plug-in allows you to run a simulation in which state diagrams can be instantiated.
The generated java code of a class assures that by creating an object that owns a
state chart, its state chart diagram is simulated graphically. You can send triggers to
these objects and step through the various states that are defined in the state chart
diagram. By dealing with several objects, you can validate not only the intra-object
behavior of one object, but also the inter-object behavior.

15.3.4. OCL Code Generation

OCL code generation can immensely enhance your productivity using Poseidon.
This module is particularly beneficial to development teams who make excessive
use of UML and OCL. It also works very well for small and medium projects, if the
developers already “speak” OCL fluently.

Chapter 15. Plug-ins and Profiles
15.3.5. Refactoring Browser

The refactoring browser module is the latest extension of the cognitive support for
Poseidon. It provides a very handy set of functions to change the structure of your
design for the better, without changing the functional outcome. The refactoring is
actively assisted according to acknowledged rules, so that with bigger projects you
still don’t run the risk of side effects that ruin hitherto working models.

To put it in a nutshell, refactoring your program means cleaning up your program'’s
internal structure without implementing new features or introducing side effects.
The term "refactoring" was coined by the famous thesis “Refactoring
Object-Oriented Frameworks" (ftp://st.cs.uiuc.edu/pub/papers/refactoring/) by
William Opdyke in 1992. Nowadays, refactoring is an important practice within
eXtreme Programming (XP) (http://www.extremeprogramming.org/). In contrast to
the popular saying "Never change a running system", XP advises developers to
routinely refactor their programs in order to prevent them from deteriorating.
Further information about refactoring in general can be found on Ward
Cunningham’s extraordinary Wiki-Web
(http://c2.com/cgi/wiki?WikiPagesAboutRefactoring).

To refactor a program, you don’t need a tool as everything may be done manually.
But a dedicated tool can save you a lot of time (and trouble) by automating much of
the work and relieving you of tedious routine checks. The aim of the "Refactoring
Browser for Poseidon” is to aid developers in refactoring not "just” code but also
UML models. Currently 13 refactorings for class, state, and activity diagrams are
supported — with far more to come.

Using the Refactoring Browser is easy. Every time you select a model’s element,
the browser checks its list of refactorings. If a refactoring is applicable for the
current selection, you may select and customize it. Before performing the
refactoring, the browser issues warnings if the refactoring is likely to alter your
model’s behavior. Error messages are generated if a modification will result in a
defective model. You perform the refactoring with a final click of the mouse.

15.3.6. MDL Import

The MDL Import Plug-in enables Poseidon to import UML models created by
Rational Rose.

15.3.6.1. Installing and Using

After the plug-in has been installed, thmport Files dialog (accessible from the
File menu or by clicking the icon in the toolbar) allows you to select the file type
*mdl . Unlike jar and java import, the current model is discarded and you cannot

175

Chapter 15. Plug-ins and Profiles

add a Rose model to your current model. You can set the scaling factor by entering
a different value into the text field below the general information about the plug-in
(see Display Issues). By default, the import plug-in hides the package information

in Class Diagrams — long package names tend to ruin the diagram layout. If you
want package names to be displayed in classes and interfaces, you may activate the
check box.

15.3.6.2. Supported Diagrams

This version of the import plug-in reads class, state, activity, usecase, and sequence
diagrams. The other diagram types will be incorporated in the next release.

15.3.6.3. Unsupported Features

Some elements are changed during the import, others are ignored completely. Here
is a list of known shortcomings:

- Poseidon currently supports notes for classes, interfaces, packages, use cases,
actors and states, but not for transitions, associations or objects. If a note is not
supported, it is added to the diagram as ordinary text.

« Metaclass: Poseidon does not support meta classes, these classes are imported as
ordinary classes.

« Association Class: Association classes are imported, but not displayed correctly:
They appear as simple associations. If you click on an association class, the
Details pane displays the properties correctly, though.

- Synchronization States: Rose does not discriminate between fork and join states.
There is no way of telling how to map synchronization states — this plug-in
currently always assumes fork states if the number of outgoing transitions is
bigger than one. You are informed about the decision.

« Subsystems: Subsystems are treated as packages — Poseidon does not support
subsystems at the moment.

The following features are (at the moment) not being imported at all. You will get a
warning after the import is complete that these elements will be missing.

- Destruction Markers
« Swim lanes

- References: MDL files support references to other filgs(or*.cab files,
for example). This import tool ignores references, no warning is issued.

176

Chapter 15. Plug-ins and Profiles

Other problems: Some older versions of Rose have a bug in sequence diagrams:
Links between objects have a wrong target ID. These links will not be resolved
correctly by this plug-in — you will get an error message. Rose does the resolving
by name instead of by ID, which seems rather error-prone, so we do not try to do
this. Loading and saving the model with a new Rose version like Rose 2000 solves
the problem, and the sequence diagram can be correctly be imported.

15.3.6.4. Display Issues

MDL files contain information about the diagram layout. The import plug-in reads
the diagram elements coordinates and positions the diagram elements accordingly.
A few things should be considered, though. Poseidon uses "smaller" coordinates
than Rose. In general, scaling down the coordinates by 40 percent does the job —
the diagrams almost look like they did in Rose. You can change the value in the
Configuration tab to the right. If you choose 80%, for example, the diagram
elements are further apart (but not bigger!) — making it easy to add comments or
further elements.

While the coordinates are read from the MDL file, the sizes of diagram elements are
dependent on the information being displayed. For example, a classes size depends
on the length of the contained methods names and parameters. Long names or lots
of parameters may lead to overlapping classes. To solve this, you can either select a
higher scaling factor, or (at least for Class Diagrams) you can can edit the display
options (select menu itedit/Settings, and click the taliagram display).

Sequence Diagrams

Poseidon performs an automatic layout of sequence diagrams — layout information
contained in MDL files is ignored. Objects are currently placed arbitrarily, you

might have to re-arrange them and any associated textual information. Apart from
that, Rose allows activations to have arbitrary length, while Poseidon calculates the
length of activations depending on the stimuli sent. Using the right mouse button,
you can force an object to remain activated after the last message was sent.

15.3.6.5. Status

We did extensive testing, and any problems during import should be signaled. But
before you use and extend an imported file for production work, you should check
your models and diagrams in case some model element was forgotten. If you
experience problems or want to request additional features, do not hesitate to
contact us at support@gentleware.com >

177

Chapter 15. Plug-ins and Profiles

15.4. Profile Manager

178

Profiles generically extend the UML through the use of stereotypes that are most
often language-specific, provide a common graphical notation and vocabulary, and
define a subset ot the UML metamodel (that could possibly be the entire UML
metamodel). For example, variable and operation types change based on the profile
(and therefore the stereotypes) used. There is a profile associated with each of the
language plugins, and the profiles that automatically appear in the Profile Manager
directly correspond to the set of enabled language-specific plugins and are enabled
by default. Likewise, if a plugin is disabled from the Plugin Manager, the associated
profile is automatically disabled and will not appear in the Profile Manager.

It may be advantageous at times to disable these profiles. The Profile Manager
displays those profiles that are currently available and allows you to enable and
disable them with a simple dropdown menu.

The profile is saved to the project as long as the profile was enabled in the Profile
Manager when the project was saved. If the originating plugin or the profile was
disabled at the time of the save, no data related to that profile is saved. Say you have
disabled the profile, and then decide to disable the plugin. If you enable the plugin

again, the profile will be automatically enabled. The status of the profile is not saved
when the plugin is disabled.

Figure 15-1. The Profile Manager

lgiProfiles [X]
Profiles
WENetProfile
CEharpProfile
JavaF rofile From plugin || to-CSharp
FHFF refile
CarbaProfile
|I Cloze |

Chapter 16. More on Code Generation

16.1.

This chapter describes the code generation functions offered by Poseidon for UML
and the options for customizing the code generation templates. Code generation
based on standard templates is available in all editions of Poseidon for UML. The
standard templates define code generation for Java and HTML. With the Developer
and Professional Editions, you have the option of changing the code generation
templates to suit your specific requirements. You can even create new templates to
generate code for a different programming language such as C#.

The Velocity Template Language

Code generation in Poseidon for UML is based on the Velocity Template Language.
Velocity is an open source template engine developed as part of the Apache/Jakarta
project. Originally designed for use in the development servlet based Web
applications, it has also proved to be useful in other areas of application including
code generation, text formatting and transformation.

The Velocity Template Language (VTL) supports two types of markup elements:
references and directives. Both references and directives can be intermixed freely
with the (non-VTL) content of a template, as shown in the examples below.

Since templates have been widely used in the field of Web page generation, we will
begin with a simple HTML example. The second example demonstrates the use of
VTL to generate Java code.

For further information on Velocity — including complete documentation of the
Velocity Template Language — please go to the Velocity Web site at
http://jakarta.apache.org/velocity/.

16.1.1. References

References are variable elements referring to some entity provided by the context.
A reference such akuserName or $userList can be used to access and store a
particular data structure for use within a template. Thus, references establish the
connection between a template and the context of the Velocity engine.

Within a template it is possible to create a new reference at any time and to assign a
value to the new reference. This is done using#ée directive (see directives).

This means you can add references to the active context as required. If a reference
name is used within a template for which no corresponding object or value exists in
the active context, the reference name is treated as plain text, i.e. it is output “as is”
just like the other (non-VTL) elements of the template.

179

Chapter 16. More on Code Generation

180

Every reference must have a unigue name. The name (also known as the VTL
identifier) begins with a dollar sigh followed by a string of characters as described
in the following table:

$ dollar sign — the dollar sign must be the first character in the reference
name,
and it may not occur in any other position.

a-z, A-Z |alphabetic characters — only standard characters are allowed, no
accented or

diacritical characters. The first character following the dollar sign
must always be an alphabetic character.

0-9 numerical characters

- minus sign (hyphen)
underscore

A regular expression describing the reference name syntax would be:
$[a-zA-Z][a-zA-Z0-9_/-]*

In addition to referencing variables, it is also possible to specify attributes and
methods by means of the VTL reference syntax. Using references such as
$item.name andsitem.price , you can dynamically insert the attributes
associated with the specified object. Likewise, you can access the methods of a
referenced object (for example a Java object) using a reference such as
$item.getNameAsString() . This will return the result of applying the given
method to the specified object.

Taking this one step further, you will find that the standard Java templates supplied
with Poseidon for UML make extensive use of the following syntax:

#set ($name = S$currentOp.getNameAsString())

Here the referencéname is dynamically set to the string returned by the method
$currentOp.getNameAsString . This use of references to elements of the
context establishes a very powerful connection between the templates and the
template API.

16.1.2. Directives

Directives in VTL are a defined set of commands that can be used for basic control
functions within a template. For example you can us the directives to create typical
procedural branches (if/else) and loops (foreach).

The current set of VTL directives comprises the following commands:

Chapter 16. More on Code Generation

#set() function for assigning a value to a reference

#if() #else#elseif()J#end |common conditional functions used for branching

#foreach()#end looping function

#include() #parse() functions for including code from another template or
static resource

#macro()#end function for defining a reusable set of commands

For complete information on the use of these directives please refer to the Velocity
documentation (see http://jakarta.apache.org/velocity/).

16.1.3. Comments

Particularly in the case of templates used for code generation it may be advisable to
use comments in the templates to explain their use. Comments can be added to a
template by means of the following syntax:

Single line comment ..[The comment continues up to the end of the line. This
is comparable to the syntax for single line comments in

Java or C beginning with g.

#* Inline or multiline The comment continues up to the closing characten *#.
comment *#
This is comparable to the syntax for inline and
multiline
comments in Java or C beginning with /* and ending
with */.

The use of comments in VTL is illustrated by the examples below.

16.1.4. Examples

Example 16-1. Simple HTML Template

This example uses VTL markup intermixed with HTML code to generate dynamic
Web pages based on information retrieved from the context (e.g. from a database).

#7\‘

This is an example of a simple VTL template for generating

181

Chapter 16. More on Code Generation

dynamic HTML pages.

*H

<HTML>

<HEAD>

<TITLE>Holiday Weekend</TITLE>
</HEAD>

<BODY>

$roomList.size() rooms available
at special holiday weekend rates!

Check in for a luxurious holiday weekend at these amazing

prices.

Choose from:

#set($count = 1)

<TABLE>

#foreach($room in $roomList)
<TR>

<TD>$count)</TD>
<TD>$room.type</TD>

<TD>$room.price</TD>

182

Chapter 16. More on Code Generation

</TR>
#set($count = $count + 1)

#end

</TABLE>

Call today for a reservation. Toll free number: $freePhone
</BODY>

</HTML>

This example makes use of VTL references and directives to generate an HTML
page based on data from an external data source, for example a database. The data
source is referenced by means of the elemgnismList and$room (with its
attributes$room.type and$room.price). When this template is applied, the
directives and references are interpreted and the results are inserted into the
generated HTML code.

The resulting HTML page might look something like this:
<HTML>

<HEAD>

<TITLE>Holiday Weekend</TITLE>

</HEAD>

<BODY>
3 rooms available
at special holiday weekend rates!

183

Chapter 16. More on Code Generation

Check in for a luxurious holiday weekend

at these amazing prices.

Choose frome:

<TABLE>

<TR>

<TD>1)</TD>
<TD>Single Room</TD>
<TD>$ 100.00</TD>
</TR>

<TR>

<TD>2)</TD>
<TD>Double Room</TD>
<TD>$ 150.00</TD>
</TR>

<TR>

<TD>3)</TD>
<TD>Luxury Suite</TD>
<TD>$ 250.00</TD>
</TR>

</TABLE>

184

Chapter 16. More on Code Generation

Call today for a reservation. Toll free number:
1-800-555-1212

</BODY>

</HTML>

Example 16-2. Simple Java Template

The following example demonstrates the generation of standard Java code and a
number of options for changing the format of the generated code by making slight
modifications to the template.

Note: The standard Java templates supplied with Poseidon for UML use defined
indentation markers to format the code for better reading. The markers are of the
format:$(__) . These indentation markers are defined as variables that resolve to an
empty string. They should never show up in the generated Java code. If you find that
the generated code contains such text elements, please ensure that the markers are
defined and used correctly in the template.

Below is an excerpt from the template used for generating the class and method
declarations.

(A)
Template for standard Java output

.. snippet ..

#set ($vis = S$currentOp.getVisibilityAsString())

#set ($static = $currentOp.getOwnerScopeAsString())

185

Chapter 16. More on Code Generation

186

#set ($thrownClause = $currentOp.getThrownExceptionsSignature())
#set ($name = S$currentOp.getNameAsString())

#set ($methodBody = $currentOp.getMethodBody())

${vis}${static}s{final}${synch}${return} ${name}($params) $thrownClause {

#renderMethodBody($currentOp.getMethodBody() $currentOp.hasReturnType())

.. snippet ..

One step you could take to modify the Java code generated by this example would
be to enter a line break before the “$thrownClause” references in the template so
that the thrown exceptions appear in a separate line of the method declaration. In
the following example the opening bracket has also been moved to a separate line:

(B)
Template for reformatted Java output

.. snippet ..

${vis}${static}{final}${synch}${return} ${name}($params)
$thrownClause

{

#renderMethodBody($currentOp.getMethodBody() $currentOp.hasReturnType())

16.2.

Chapter 16. More on Code Generation

.. snippet ..

The effects of such a change become clear if we compare a bit of Java code
generated on the basis of these simple variations (A and B):

(Java code based on A)

public static void main(String[] params) throws Exception {

doSomething()

(Java code based on B)

public static void main(String[] params)

throws Exception

{

doSomething()

Working with the Standard Templates

The standard templates supplied with Poseidon for UML can be used to generate
Java and HTML code. The generated code is based on Class Diagrams only, but one
may want to produce code from deployment diagrams or sequence diagrams. With
the Professional Edition you can create your own templates to generate IDL files or
C++ code.

The Java code generated on the basis of the standard Java templates is fully Java 2
compliant. The code can make use of all the features supported by Java 2, including
exception handling, inner classes, and static initializers.

HTML code generated on the basis of the Standard HTML templates is simple
HTML, similar to Javadoc. A separate page is generated for each class in a Class
Diagram. As with the Java templates, the Professional Edition of Poseidon for UML

187

Chapter 16. More on Code Generation

16.3.

188

allows you to modify the HTML templates to conform with your preferences and
requirements.

The Code Generation API

For a detailed description of the code generation API, please refer to the online API
documentation (http://www.gentleware.com/support/developer/codegen-

api/) (Javadoc) and the separate document describing the code generation framework
(http://www.gentleware.com/products/documentation/PoseidonCodeGenFramework.html).
These files are part of the Developer and Professional distributions in the docs

folder.

The Professional Edition also includes two demo plug-ins that show the capability
of the code generation API and of the Poseidon plug-in API in general. The demo
plug-ins are distributed as ready-to-run JAR files, along with the appropriate license
keys. Also, the source code is distributed, including an ANT script for building the
JARs. You may use these plug-ins as examples and as starting points for your own
plug-ins. If you want to create your own plug-ins, please contact
info@gentleware.com to receive a key for your plug-in.

Chapter 17. Epilogue

At this point we would like to express our thanks to everyone who, over the years,
has contributed to ArgoUML and Poseidon. Without this active community of
developers and users, Poseidon would not be what it is today.

Also, we would like to acknowledge the work of all the other open source projects
we have made use of. We share with them the intention of developing high-quality
software within the open source community. The Poseidon for UML Community
Edition, as well as our feedback to the open source of ArgoUML (and to other OS
projects) and our activities in the development of improved open standards, are a
sustained expression of this support.

And let’s not forget Jason Robbins, who started the quest that led us here.

Poseidon includes open source software by Antlr (Java source reverse engineering),
Jakarta’s log4j (logging), Jakarta’s Velocity (Code Generation), Sun’s Netbeans
project (the UML repository MDR), TU Dresden (OCL support), Piccolo (diagram
rendering), Apache’s batik toolkit (SVG graphics export), and Freehep (Postscript
and PDF rendering).

189

Chapter 17. Epilogue

190

	Poseidon for UML Users Guide
	Table of Contents
	List of Tables
	List of Figures
	List of Examples
	Chapter 1. About Gentleware and Poseidon for UML
	1.1. Our Vision
	1.2. Innovation
	1.3. Cooperation
	1.4. How to get in touch with us
	1.5. New Features in Version 2.0
	1.6. About this document

	Chapter 2. Editions
	2.1. Community Edition
	2.2. Standard Edition
	2.3. Professional Edition
	2.4. Enterprise Edition
	2.5. Embedded Edition
	2.6. Edition Comparison

	Chapter 3. Prerequisites
	Chapter 4. Installation and First Start
	4.1. Install using InstallAnywhere
	4.2. Install through Java Web Start
	4.3. Install from a ZIP file
	4.4. Environment Variables

	Chapter 5. Keys and Registration
	5.1. Types and Terminology
	5.2. Community Edition
	5.3. Evaluation Copy
	5.4. Premium Version Purchase
	5.5. Keys for Plugins

	Chapter 6. A Short Tour of Poseidon for UML
	6.1. Opening the Default Example
	6.2. Introducing the Work Area
	6.2.1. The Navigation Pane
	6.2.1.1. Changing the Navigation View
	6.2.1.2. Opening Multiple Navigation Panes

	6.2.2. The Diagram Pane
	6.2.3. The Details Pane
	6.2.4. The Overview Pane

	6.3. Navigation
	6.3.1. Navigating with the Navigation pane
	6.3.2. Navigating in the Properties Tab

	6.4. Modify Elements
	6.4.1. Change Element
	6.4.2. Create Element
	6.4.3. Delete Elements

	Chapter 7. Working with Diagrams
	7.1. The Diagram Pane
	7.1.1. Diagram Pane Toolbar
	7.1.1.1. Select
	7.1.1.2. Notes
	7.1.1.3. Drawing Tools
	7.1.1.4. Toggle Between Editing Modes
	7.1.1.5. Close Shape
	7.1.1.6. Opacity
	7.1.1.7. Waypoints
	7.1.1.8. Diagramspecific Tools

	7.2. Viewing Diagrams
	7.2.1. The Details Pane
	7.2.2. Zooming

	7.3. Creating New Diagrams
	7.4. Creating New Elements
	7.4.1. Diagram Pane Toolbar
	7.4.2. The Rapid Buttons

	7.5. Editing Elements
	7.5.1. Inline Editing Text Values
	7.5.2. Editing via the Details pane
	7.5.2.1. The Properties Tab
	7.5.2.2. The Style Tab

	7.5.3. Editing via the Context menu

	7.6. Editing Diagrams
	7.6.1. Drag and Drop
	7.6.2. Changing Namespaces
	7.6.3. Layout functions
	7.6.4. Removing and Deleting Elements

	7.7. Undo/Redo

	Chapter 8. Working with Models
	8.1. Creating new Models
	8.2. Saving and Loading Models
	8.3. Importing Files
	8.4. Importing Models
	8.5. Exporting Models
	8.6. Exporting Graphics and Printing

	Chapter 9. A Walk through the Diagrams
	9.1. Use Case Diagrams
	9.1.1. Diagram Elements
	9.1.2. Toolbar

	9.2. Class Diagrams
	9.2.1. Stereotypes
	9.2.2. Associations
	9.2.2.1. Navigability
	9.2.2.2. Hiding and Displaying Multiplicity of 1
	9.2.2.3. SelfAssociations

	9.2.3. Attributes
	9.2.4. Operations
	9.2.5. Diagram Elements
	9.2.6. Toolbar

	9.3. Object Diagrams
	9.3.1. Diagram Elements
	9.3.2. Toolbar

	9.4. Activity Diagrams
	9.4.1. Diagram Elements
	9.4.2. Toolbar

	9.5. State Diagrams
	9.5.1. Diagram Elements
	9.5.2. Toolbar

	9.6. Sequence Diagrams
	9.6.1. Diagram Elements
	9.6.2. Toolbar

	9.7. Collaboration Diagrams
	9.7.1. Diagram Elements
	9.7.2. Toolbar

	9.8. Component Diagrams
	9.8.1. Diagram Elements
	9.8.2. Toolbar

	9.9. Deployment Diagrams
	9.9.1. Diagram Elements
	9.9.2. Toolbar

	Chapter 10. Panes
	10.1. Navigation Pane
	10.1.1. Add a tab
	10.1.2. Delete a tab
	10.1.3. Delete a diagram

	10.2. Diagram Pane
	10.2.1. Open Diagrams
	10.2.2. Remove Tabs
	10.2.3. Create Diagrams
	10.2.4. Edit Diagrams
	10.2.5. Change properties of the Diagram Pane
	10.2.5.1. Grid Settings
	10.2.5.2. Other Settings

	10.3. Overview Pane
	10.3.1. Birdview Tab
	10.3.1.1. Zoom in Birdview only
	10.3.1.2. Zoom in diagram
	10.3.1.3. Turn off Birdview in settings

	10.3.2. Critique tab
	10.3.2.1. Open a Critique
	10.3.2.2. Navigate to critiqued area
	10.3.2.3. Snooze Critique
	10.3.2.4. Toggle Critique
	10.3.2.5. Turn off Autocritique
	10.3.2.6. Hide/display Critique window

	10.4. Details Pane
	10.4.1. Properties Tab
	10.4.2. Style Tab
	10.4.3. To Do Items Tab
	10.4.4. Documentation Tab
	10.4.5. Source Code Tab
	10.4.6. Constraints Tab
	10.4.7. Tagged Values Tab

	Chapter 11. Setting Properties
	11.1. General
	11.2. Appearance
	11.3. Modeling
	11.4. Diagram Display
	11.5. Environment
	11.6. User
	11.7. Project
	11.8. Optimizing

	Chapter 12. Code Generation and Roundtrip Engineering
	12.1. Generating Code
	12.2. Finetuning code generation
	12.3. ReverseEngineering Code
	12.4. RoundTrip Engineering

	Chapter 13. Documentation Generation (UMLdoc)
	13.1. UMLdoc
	13.2. Code generation settings
	13.3. Supported javadoc tags

	Chapter 14. Advanced Features
	14.1. Constraints with OCL
	14.2. Critiques
	14.3. Searching for Model Elements

	Chapter 15. Plugins and Profiles
	15.1. The Plugin Manager
	15.2. Plug In Guides
	15.2.1. Poseidon C# Code Generation Plugin Guide
	15.2.1.1. General Rules
	15.2.1.1.1. Tagged Values
	15.2.1.1.2. Additional Stereotypes

	15.2.1.2. Modelling Element Rules
	15.2.1.2.1. Classes
	15.2.1.2.2. Interface
	15.2.1.2.3. Structure
	15.2.1.2.4. Enumeration
	15.2.1.2.5. Delegate
	15.2.1.2.6. C# Event
	15.2.1.2.7. Operations

	15.2.2. Poseidon CORBA IDL Code Generation Plugin Guide
	15.2.2.1. General Rules
	15.2.2.2. CORBA Interface
	15.2.2.3. CORBA Value
	15.2.2.4. CORBA Struct
	15.2.2.5. CORBA Enum
	15.2.2.6. CORBA Exception
	15.2.2.7. CORBA Union

	15.2.3. Poseidon VB.Net Code Generation Plugin Guide
	15.2.3.1. General Rules
	15.2.3.2. Classes
	15.2.3.3. Interfaces
	15.2.3.4. Modules
	15.2.3.5. Structures
	15.2.3.6. Enums
	15.2.3.7. Operations
	15.2.3.8. Operation's Parameters
	15.2.3.9. Visual Basic Properties
	15.2.3.10. Visual Basic Events
	15.2.3.11. Attribute & Association Ends

	15.2.4. Poseidon PHP4 Code Generation Plugin Guide
	15.2.4.1. General Rules
	15.2.4.1.1. Tagged Values

	15.2.4.2. PHP4 Class Modelling Rules
	15.2.4.2.1. Class Signature
	15.2.4.2.2. Class Attributes
	15.2.4.2.3. Class Operations

	15.2.5. Poseidon Delphi Code Generation Plugin Guide
	15.2.5.1. Classfiers
	15.2.5.2. Tagged Values
	15.2.5.3. Stereotypes
	15.2.5.4. Modelling Element Rules
	15.2.5.5. Specific Rules

	15.2.6. Poseidon Perl Code Generation Guide
	15.2.6.1. General Rules
	15.2.6.2. Classes
	15.2.6.3. Class Attributes
	15.2.6.4. Class Operations
	15.2.6.5. Associations
	15.2.6.6. Aggregation
	15.2.6.7. Inheritance

	15.2.7. Poseidon SQL DDL Code Generation Plugin Guide
	15.2.7.1. Modelling Element Rules
	15.2.7.1.1. Classes
	15.2.7.1.2. Attributes
	15.2.7.1.3. Association Ends

	15.2.7.2. Tagged Values
	15.2.7.3. Additional Stereotypes

	15.3. Available Plug Ins
	15.3.1. JAR Import
	15.3.2. RoundTrip UML/Java
	15.3.3. StatecharttoJava
	15.3.4. OCL Code Generation
	15.3.5. Refactoring Browser
	15.3.6. MDL Import
	15.3.6.1. Installing and Using
	15.3.6.2. Supported Diagrams
	15.3.6.3. Unsupported Features
	15.3.6.4. Display Issues
	15.3.6.5. Status

	15.4. Profile Manager

	Chapter 16. More on Code Generation
	16.1. The Velocity Template Language
	16.1.1. References
	16.1.2. Directives
	16.1.3. Comments
	16.1.4. Examples

	16.2. Working with the Standard Templates
	16.3. The Code Generation API

	Chapter 17. Epilogue

