Guide

Dr. Marko Boger
Thorsten Sturm
Erich Schildhauer
Elizabeth Graham

x }j— ““™* poseidon for UML Users Guide

by Dr. Marko Boger, Thorsten Sturm, Erich Schildhauer, and Elizabeth Graham

Copyright © 2000 - 2004 Gentleware AG

Table of Contents

1. About Gentleware and Poseidon for UML..........cccceviiiiciicvis e 1
1.1. About Gentleware and Poseidon for UML.........ccccooveveveeieneeieseenns 1
It O 10T Y /1S T o S USS 1

I 2 11 0T 1V [o OSSR 1

3 I G TR @0 To 01T = 1o o R USS 2
I S O 0 3 | = V! PSPPSR 2

1.2. New Features iN VEISION 2.X......ccuiueereeeeneseesieeseeseesessseeseesesssesneeeens 3
1.3. About ThiS DOCUMENL.......cccuieiiiiie et 4
P2 o 110 1 USSR 7
2.1. CommuNity EQITION.......cciiieieeerese e 7
2.2. Standard EditiQN..........ccooeeiiieeeeieeee e 8
2.3. Professional EdItiON..........cociiiieiie et 9
2.4. ENterprise EditioN........cccv oo 10
2.5. Embedded EditiQn.........cccooveiieiieeeeeece e 11
2.6. Edition COMPAIISON.....cciiiiiiriiiiirieeeeiesieee ettt 12
3. Installation and First Start ..o 15
N T =0 [] S RSOSSN 15
3.1.1. Additional Requirements for MacOS X USErS........cc.ccevvreenee. 15
3.1.1.1. Jaguar (MacOS X 10.2.X)...ccccerererrirenierieriesieseseeeenenns 15

3.1.1.2. Panther (10.3.X) ccuiieieeiee et nee 15

3.2. Community, Standard, Professional, and Embedded Editions........ 16
3.2.1. Install Using InstallANywhere.........c.ccoovnnininenineneseeee 16

3.2. 0.0 WINUOWS....coiiiiiieeiesiee ettt 16

I] N1 RS 17

3.2.2. Install Through Java Web Start (Community Edition Only)...17
3.2.3. Install from a ZIP FilE.......ccveeieeeeeece e 18
3.2.4. Silent INStallation...........ccceveeereeereeresee e 19
3.2.4.1. Installer Properties File.........cccoeveveiiicieecie e 19

3.2.4.2. Command Line Parameter..........cccocvvvveieesiensieneieenienns 19

3.2.4.3. Uninstallation...........ccceeereereeeese e 19

3.2.5. UNINStallation.........coeeveieereeeseee e e 20

3.3. ENterprise EdItION......cccoviiieeeeeee et 21
3.4. Environment VariabIes..........cccooviieiieiie e 21
3.5. Keys and RegiStratiQn...........cceceieeiesieieseeieseeieseesiesee e sseessesneeneens 22
3.5.1. Types and Terminology.......cccuurerererenienineeeeeeeeee e 22
3.5.2. CommuNity EditiOn........ccccoviiiiiinieeeee e 23
3.5.3. Evaluation COMY....ccciiieiiriiieiieeiie st esee e nree 24
3.5.4. Premium Version Purchase...........cccocveveviviiesn s 24
3.5.5. KeyS fOr PIUG-INS......cciiiiiiiriieeeree e 25

4. A Short Tour of POS@IdON fOr UMLeeeeeeeeee et 27

4.1. Opening the Default EXample..........cocorirninnneeeeeeeeeee 27
4.2. Introducing the WOrK Ar€a...........ccoeevieiie e 27
4.2.1. The Navigation Pane..........ccccccevieniieiiesie e 29
4.2.1.1. Changing the Navigation VIeW...........c.ccecervererererennenn 31

4.2.1.2. Opening Multiple Navigation Panes...........c.ccoceevrennene. 32

4.2.2. The Diagram Pane........cccoccveieeiie it 34
4.2.3. The Details Pane..........ccoooieeiiieeieneeeeee e 35
4.2.4. The OVEIVIEW PaNE........ccviiiriiinenenesesesesesese st 36

4.3, NAVIQALION....c..eviieeitiiiereesie et 38
4.3.1. Navigating with the Navigation Pane..........c.cccccecevvrvennnennn. 38
4.3.2. Navigating in the Properties Tab..........cccccecvvvieninicecieeieennn, 39

Y o T [VA = 1= 1= £ 41
4.4.1. Change Element..........cccoiiiinininineneseeeseseses e 41
4.4.2. Create EIBMEeNL........cooeiiiee e 43
4.4.3. Delete EIEMENLS.......c.ooeiiieeeiee e 44

ST (01 (= 7= (oL 3 47
S0 o To]| o - VTSRS a7
5.2 IMIBINUS ...ttt b e h e e ae et e e s ae e e r e e neeeneas 47
5.2, L. Fllei e 48
5.2.2. Qi 50
ST T 1 R 52
5.2.4. Create DIiagralh........cccoceeeererierieeee e see e 53
5.2.5. AlIGN .ot 54
oI T O (o U= 56
I R CT=T 1= - i o SR 56
5.2.8. PIUG-INS .. s 57
5.2.9. HeIP i 58

B. PANES.....eeeeee e 61
6.1. NaVIgatioN PANE.......cccooiiiiriiiiiieieeeeeee st 61
6.1.1. Add @ Tah....eieiieeee e e 62
6.1.2. Delete @ Tab.......ccooiiieieeeeeee s 62
6.1.3. Delete a Diagram.........cccceveeeeneeieeseeseseese e 63

6.2. DIagram PaNe.........ccoiiiiiriiieieeeeeeeee e 64
6.2.1. Diagram Pane Toolbar.........c.cccoeriiieiinieeeeee e 64
6.2.2. REMOVE TabS.... oo 64
6.2.3. Change Properties of the Diagram Pane............ccccceeevvveenee. 65
6.2.3.1. Grid SetliNgS......ccocerirerirererereeeee s 65

6.2.3.2. Other SettiNgS.....cccvierereereeeeree e e 66

6.3. DetalilS Pane........coeoiiiieieeee e 66
6.3.1. Properties Tah........cccoovieiice e 67
6.3.2. CH+ PrOPEITIES...c.eitiriirieeeirieeesee e 69

6.3.3. SLYIE Tab....ceeeeeece e 69

6.3.4. TO DO ItemMS Tal.....ccceeiiiieeeiecee e 71
6.3.4.1. SN00ZE CritiQUE......ccueeerreeeierieerie e 71

6.3.4.2. TOggle CritiQUE......ceeveeereeiiecee et 72

6.3.4.3. Turn Off AULOCTItIQUE........ceceeeeee e 72

6.3.5. Source Code Tah.......cccoveererierene e 72
6.3.6. Documentation Tab..........cocveieriereneee e 73
6.3.6.1. TOOIDAL ... 74

(GRS I CIZ B (o] oo [0 117 o 1S 75

6.3.7. CONSLraiNtS Tah......ccceeiereerieeiereeee e 76
6.3.8. Tagged Values Tah..........ccooiiiiniineeee e 77

6.4. OVEIVIEW PANE.......coiiiiiiiiiee ettt e 77
6.4.1. BIrdVIEW Tab.....cccoiiiiiiiirisere e 77
6.4.1.1. Redisplay a Section of a Diagram............ccccceeeevrerunnne. 78

6.4.1.2. Zoom in Birdview ONlY........ccccovirieienienieneeneeee e 78

6.4.1.3. Zoom in a Diagram........cccccceeruriiieeiiesinsie e esee e 78

6.4.1.4. Turn Off Birdview in Settings.........ccccccevivrvenvcceereceene 79

6.4.2. CritiqUE Tab.......eoeiirieirese e 79
6.4.2.1. Open & CritiQUE......cceeiereeerierieeniesee e 79

6.4.2.2. Navigate to a Critiqued Area..........ccccceveeeeireeseeseesneenns 80

6.4.2.3. Turn Off AULOCTItIQUE.......ccvveieececeee e 80

6.4.2.4. Hide/Display Critique WIiNdOW...........cccvereriererenenenne 81

RS 1= o T e (0] 1= 4 1 T= TSP 83
7.1, GENEIAL .. 83
7. 2. APPEATANCE. ... eee it etee ettt e te ettt e st e e nbe e e s b e e s nse e e sre e nes 84
7.3 MOUEIING ... 85
A =0\ o] 11 0= o | OSSR 86
7.5, USBH ...ttt e e e e e r e neeennas 87
AT o (0] (= o PRSPPSO 88
A NG VALY, =T o] o] o 1= PSSR 89
7.8. Diagram DiSPlay......ccueeeririerieieseeieesieesie e nee s 89
8. MOdel REFEIENCE...... .ot 91
8. L. VIBWS...eiiietiieieet ettt ettt ettt 91
S I U K] To 01 o o =] S 93
9.1. Creating NeW MOdEILS..........c.cooiiiiiiiiniee e 93
9.2. Saving and Loading Models..........cccocvviiiienie i 93
9.3. IMPOTtiNG FIlES...ciieee et 95
9.4. IMPOrtiNg MOUEIS......ooiiiiirieeeiee e 99
9.5. EXPOrting MOAELS.......cccooiiiiiieieeeee e 100
9.6. Exporting Graphics and Printing........cccccvvveverreesensieeniee e see e 101

10. Diagram REfEIENCE........ceieeiececce e sree e 105

10.1. Use CaSe DIagramsS.........cccererirereninesiesesesesesesessesesessesseseenes 105
10.1.1. Diagram EIements.........ccceveeiieiii v 106
10.1.2. TOOIDAL......coeeeee e 107

10.2. Class DIiagram.......ccccouirererereninesesesesese s eeenes 107
10.2.1. Diagram EIEMENTS........ccccviririririeieeeeee e 108
10.2.2. TOOIDAL.......coieeeee e e 109

(O RCT @] o] [=Tor fl B T=To -1 o WS 110
10.3.1. Diagram Elements.........cccecvreeivceese e 111
IO 2 o To] | o > 111

10.4. ACLIVILY DIQQIamMS.......cocuerieeierieerie et es 112
10.4.1. Diagram EIements.........cccceveiiriiiciie s 113
10.4.2. TOOIDAL.....c.iiiiieieieeeeee e 114

10.5. State DIagramsS......ccccoereririrenenereeesese et 114
10.5.1. Diagram Elements.........cccooiieriineniniene e 116
10.5.2. TOOIDAL......coeeee e 117

10.6. SEqUENCE DIAQIaIMIS........ccoeieerieeieesieeeeseeee e esaesee e seesaeeseesreeneesns 118
10.6.1. Diagram EIEMENTS.........cceiriririricieeeeeee e 121
10.6.2. TOOIDAL.......coiieee e 121

10.7. Collaboration DiagramsS.........ccccveieeieeeieesee e eireesee e sse e sree s 122
10.7.1. Diagram Elements.........cccevveeeieceenr e 122
O R 7 o To] | o - 122

10.8. CompPoNeNnt DIagramS.......cceveerereerenieesieeieesieesee e see e see e seesneesees 123
10.8.1. Diagram Elements.........ccccevieiieiiicsie s 124
10.8.2. TOOIDAL......c.eiiiieieieieee e 124

10.9. Deployment DiagramsS........ccoceuererererereseneses e eseens 125
10.9.1. Diagram ElemMents.........ccceviririiiienninieseeee e 125
10.9.2. TOOIDAL.......coiieee e 126

11. USING DIAQIraMS.....ccviiiieiecieeiteeeese et te e st ae e ae e ae e e sneaneessesneensens 129

11.1. Creating New Diagrams.........c.ccoererireneniniseseeeeeeee s 129

11.2. Opening DIagrams.........ccceieeeererieneeieeseesee e see e sre e snes 130

11.3. VIeWING DIagramS.......ccoveiieiieiieesee e eieesiee s eneessee s saeesseesseesnnas 131
11.3.1. Details PaAN@.......ccooiiiiiieieeieeeeeeee e 132
11.3.2. ZOOMING ..ottt 134
I TR TS Yol (0] | 11 o S 136
11.3.4. Birdview Tah.......ccoooiie e 136

IS N F= Y T = [] S 136
11.4.1. Navigation Pane.........ccoceeriirieeeee e 137
11.4.2. Details Pan@.......cocviieiieeiieeese et 137
11.4.3. Diagram Pane........cccocoveieeiie et 137

11.5. Editing DIagrams........ccceveeiiieerieeie s esie e eseesseesae e e snas 138
11.5.1. Drag and DIQP......cccoceeeererieeieeeeeeieeee e 139
11.5.2. Changing NamMESPACES.......cccerurmrimriereeieireeeee e eeeeneas 140

Vi

11.5.3. Layout FUNCLIONS........ccceieeeiseeie et 141

11.5.4. UNAO/REUD.......coiiieeeecee ettt 145
11.5.5. NON-UML AddItiONS.....coooiieiieiie et 145
11.5.5.1. SEIECL....ciiiiieeeieee e 145
11.5.5.2. COMMENTS....oooiiiiiiieerree e 146
11.5.5.3. Drawing TOOLS........ccevvrieririereeee e 147
11.5.5.4. Toggle Between Editing Modes...........cccceeervrrennnnne 147
11.5.5.5. Close Shape.......cccocveiiiiiiiiecrec e 149
11.5.5.6. OPACITY.....ceererieriirierieeeere et eee s 150
11.5.5.7. WAYPOINTS.....ooierieeesieeieseeee e 152
11.5.5.8. Diagram-specific TOQIS.......cccceevererinieeinneeeseee 152

12. Element REIEIENCE. ..ot 155
12.1. RelatioNShIQS...cc.ic e 155
12.1.1. Types of Relationships........ccccooriiiiririniinieeeeeeeeeeeeees 156
12.1.2. NaVIgabIlity....cceeieeieeeeeeee e 156
12.1.3. Hiding and Displaying Multiplicity of L........cccccceovrivennnnen. 157
12.1.4. Self-ASSOCIAtIONS.......cccveieeeeeeee et 158
D O = 11T = SR 159
12.2. 0. ARFDULES ... 159
12.2.2. OPEIatiONS.....cueiiieiiieiie e esee st 162
12.2.3. Association ClasSes........ccccveveveiiene e 164
DR T 1] (=] = (o =S 164
12.3.1. BOX NOtALiON.....ccvieeiecie et 164
12.3.2. LOlIpOP NOtAtiON......coiieeieeiie e 165
12.3.2.1. SOCKELScoiiieiecte ettt 165

G T T = 0] ¢ £ USSR 166

13. USING EIEMENTS......ooiieceee ettt 169
13.1. Creating NeW ElemMentS........ccccieiieiie i 169
13.1.1. Diagram Pane TooIbar...........cccccveeveniese e 169
13.1.2. The Rapid BULIONS........cccoirieieiceeeeeeee e 170
13.2. Editing EI@MENTS.....c.coiiieeeee e 172
13.2.1. Inline Editing Text Values...........ccceveevieecieenee e 172
13.2.2. Editing Via the Details Pane...........ccccccevvvevevieeieseececeenn, 174
13.2.2.1. The Properties Tab........ccccooririininineceeee 174
13.2.2.2. The Style Tah........coree e 175
13.2.2.3. The Documentation Pane..........cccecveveenieeciiecsieesinns 176

13.2.3. Editing Via the Context MeNU..........cccccevveceveecieseere e 177
13.2.4. UNAO/REUD.......cooiieeiecee ettt 178
13.2.5. STEIEOLYPES......eiiiieiieeie ettt e 178
13.2.6. Removing and Deleting Elements..........cccccccovveiinvievennen. 180

Vii

O T aT=T =\ £ o] o FE RO 183

I R 0o o [1T 1T = 11 0] o RS 183
14.1.1. Generation SettiNgS........ccccvievieiie e 183
14.1.2. Reverse ENgIiNEEering.......cccccevuveieeiieesiesiieesiee e see e sves e 185
14.1.3. Roundtrip ENQINEETING.......cccourirereririririneeeeeeeeeeeeeeens 186
14.1.4. Fine Tuning Code Generation...........cccceoeeveeerierieriesienieniennens 189

14.2. Advanced Code Generation.........ccoceeeererieeneeneseesie e see e see e 192
14.2.1. Velocity Template Language........cccccevevrieeveenensieeesiee s 192

14.2.1.1. REfEreNCES......cccvviriririreeeee e 193
I R B | =T o 1)Y= 194
14.2.1.3. COMMENTS....oiiiiiiieieeee et s 194
14.2.1.4. EXaMPIES.....oiiiiiiieciecee ettt 195
14.2.2. Working with the Standard Templates..........ccccvevevervennnne. 197
14.2.3. Code Generation ARL.......cccooeiviieie e 197

14.3. Documentation GeNeration..........coeeeereriereereseene e 198
14.3.1. UMLAOC. ... ciiiieeiieiieiieieeieeeeee s 198
14.3.2. Generation SettiNgS........ccevveeereceere e 200
14.3.3. Supported JavadoC TagS.......ccoeerererereriereeeeeeeeeeeseeaens 201

15, PlUG-INS. ..ttt sttt na e ne s 205

15.1. The Plug-INn Pane@Ll........ccccooiiiiiiiee e 205

15.1.1. Installing a New Plug-In........ccccooveieiiiieiecece e 206
15.1.1.1. Add the Plug-In LICENSE.......cccvieririririeereeeeeee 206
15.1.1.2. Install the Plug-In.........ccooeriiiriie e 206
15.1.1.3. Enable the Plug=In.......ccccccooiviieiiiiese e 207

15.2. RemOoViNg PIUG-INS........coiiiieee et 207

15.3. Available PIUg-INS........cccoiii s 207
15.3. 1. JAR IMPOIL. ..o 208
15.3.2. RoundTrip UML/JAVA.......ccooeiiiiiieiee e 208
15.3.3. Refactoring BrOWSEL.........ccccveeeieieenie e cee e eee e 208
15.3.4. MDL IMPOIt....ooiiiieeeeseeeeseee e 209

15.3.4.1. Installing and Using MDL IMpoOrt........ccccceveevieneenenne 209
15.3.4.2. Supported Diagrams..........cceveerieeeiieesieesiessieeeneeseeens 209
15.3.4.3. Unsupported Features...........cceeeveerereevieseesie e 209
15.3.4.4. Display ISSUES........cceerireririreeieeeeeee e 210
15.3.4.5. STAIUS....ceciceieecieeeee e 211
16. ADVANCEA FEALUIES......coeiiietecieeie ettt nae s 213

16.1. Constraints With OCLu.........cvoiriririnireees s 213

16.2. CHIEIQUES ...eitiieiitesiesteete ettt 213

16.3. Searching for Model Elements.........c.ccoooeiinieiinennceneeeceeee 215

16.4. PrOfil@S...eeoeiceeeeeee e s 216

viii

17. Using The Enterprise EditioN..........ccccoveeieiceneeie e 217

I R [(=T = o = RSP 217
17.1.1. CONNECLION STALUS.....ooiiieeiirieeie e e 217
17.1.2. TOOIDAL......coeeee e 217
17.0.3. MENU....ooiiieciieeeeeeeee ettt ne e eneas 218
17.1.4. LiCENSE MANAGEL........ceeeeeueriirieeeeieeeeeeeee e eeeneas 218

17.1.4.1. TeSt CONNECHIQAN.......ccoeceririererie e 219

17.2. Modeling With Others.........ccoi e 219

17.2.1. CollaborationS.......c.cceovrerererininireeee e 219
17.2.1.1. New Collaboratian...........cccccererrererinnerieseee e 220
17.2.1.2. Join Collaboration..........ccceceveeienenin e 220
17.2.1.3. Leave Collaboration...........cccooervenerienenieneeieseee 220

A o o 1= od £ 221
17.2.2.1. Load and Start Project..........ccccvvveerierierienienieneeeenn 221
17.2.2.2. Upload Project......ccooeeieeiineee e 221

17.2.3. Model Locking and Conflict Checking.........ccccceevevvennnnnen. 221
17.2.3.1. Java-IMPOrL......coooiiiiiieeee s 223

17.3. Enterprise Server Administration TOQL.........c.cceovveriirierininicneeene 223
17.3.1. Collaboration AdministratiQn............ccecereeieerenieeseeseseeeenn 224

17.3.1.1. RemoVving [0CKS........cccoviiiciciecc e 224
17.3.1.2. Renaming collaborations............cccccecevvevvseeieseennnn. 224
17.3.1.3. Ending collaborations............cccceerererienenieneneeenne 224

17.3.2. Project AdmIniStration..........ccccevveeenenieenene e 224

17.3.3. CVS SUPPOIL...oiiitiie ittt snee e 224
17.3.3.1. Configuring Your System for CVS Suppart.............. 225
17.3.3.2. Using the CV'S SUPPQIL......cccooriririerieieeneseeeeee 226

18. EPIOQUE.......eeeeeeceeee ettt st sttt sttt nae s 229
A. Poseidon C# Code Generation Plug-In Guide.........ccccccevvveieiiniiieciieesinns 231

AL GeNeral RUIES ... 231
A.1.1. Tagged ValUEs.........ccooiiiiirieieeeeeeee e 231
A.1.2. Additional Stereotypes........ccverererienienesee e 231

A.2. Modeling Element RUIES...........ccooiieie e 231
AL2. 1. ClASSES.. .ottt 232

A.2.1.1. Class SIgNAtULE........cccererererirereeee s 232
A.2.1.2. Class AIHDULES ..o 232
A.2.1.3. Class OpPerations.........cccceeiueeieeieeseesiee e esee e 232

A.2. 2. INTEITACE.eiuieieeeeeee e 233
A.2.2.1. Interface SigNatUre.........cccceeeererereeeeeeeeeeee s 233
A.2.2.2. Interface MembeLS.........ccceiiiiienine e 233

AL2.3. SITUCTUIE ... s 233
A.2.3.1. Structure SigNature.........cceceveeceeneeieseecee e 234
A.2.3.2. Structure MEemDEIS......cccoveceereeeereeese e 234

A 2.4, ENUMETALION. ... e e e e e e e e e e e eeeeeeeeens 234

A.2.4.1. Enumeration SigNature...........ccoceeereneneneneseseseeens 234

A.2.5. DEIEQALE........ootieeece e 235
A.2.5.1. Delegate Signature........ccccevveeieeviee e 235

A.2.6. CH EVENL.....oiuiiiiiieeieeeeee ettt 235
LN A o 1= - 1o 3SR 235

B. Poseidon CORBA IDL Code Generation Plug-In Guide...........ccccccveeueunnee. 237
B.1. General RUIES.........cooi s 237
B.2. CORBA INtEITACE......ccei ittt 237
B.3. CORBA VaAlUE........ccoiieiecece ettt 237
B.4. CORBA SHIUCL......ciiiiitieesiesesese e ens 237
B.5. CORBA ENUML...cuiiiiiiiiiiiieniise e 238
B.6. CORBA EXCEPLION......ccceeivieieeieeiee ettt 238
B.7. CORBA UNIOMN...cuiiiiiiieie it sse e nns 238
C. Poseidon Delphi Code Generation Plug-In Guide.........cccccevvveveeieennenne 241
O I O F= 11 =T RS 241
(O = To o [=To AN /= 10T 241
O I O 1= 11 | 1= OO OTR 241
OR 1 1] 0101 (T 242
(G2 T O o 1= =1 i [o FE S 242
(G020 T (o =T o] (o] o 1SS 243
C.3. SIEIEOIYPES ...ttt e 243
C.3. 1. AUIDULE. ... 243
(ORI @] o 1= =1 i [0 o FE USSR 243
C.3.3. ClASSIfIBL....ccuiiiiiirieriieieree s 244
C.4. Modeling Element RUIES............ccooeiiiiiiireeeee e 244
O I I O T SRR 245
C.4.2. INTEITACE. ... it 245
C.4.3. ENUMEIALION.......coiitiriiriiriirierieeiesesie st 245
(O T =T o 0] IS 245
G5, St nes 245
C.4.6. SUD RANGE......ccoiiciececee e s 246

O o N -\ Y PSPPSR 246
C.4.8. EXCEPLION......eiiitiriiriieierieeieeieeie ettt 246
C.5. SPECIfIC RUIES ...t 246
D. Poseidon PHP4 Code Generation Plug-In Guide.........ccccccvveveieeieeiennen. 249
D.1. GENEIal RUIES......coieee ettt 249
D.1.1. Tagged VAlUES........ccoiiireeeiireeeeereee e 249

D.2. PHP4 Class Modeling RUIES. ... 249
D.2.1. Class SIigNatUIE......cccocuviiiiiie et 249
D.2.2. Class AttriDULES. ..o 250

D.2.3. Class OPEerations..........cccouerererenereneseseeesesee e 250

E. Poseidon Perl Code Generation GUIAE..........ooeeeeeeeeeeeeeeeeeeeeeeeeee e 253

E.1. GENEral RUIES.......cooeeeeeeee et 253
E.2. ClASSES... ..ottt e et be e et eareas 253
E.3. Class AtHDULES.........coooiie et 253

E.4. Class OPErationS.........ccoceririrerireresesesesesese s 254

E.5. ASSOCIALIONS......ccviiirieecttiecctie et et e e e bee e ere e ebeeesnreesbeeseaneas 254

[T Ao To | £=To T= L1 o] o HO RS 254

E.7. INNEIIANCE......co o e e 254

F. Poseidon SQL DDL Code Generation Plug-In Guide.........ccccocvivrerennee. 255
F.1. Modeling Element RUIES.........cociiiiiiiieeee e 255
F.L. L. ClASSES....oi ittt ettt e te e e eaee e saaea e 255

F.L1.2. AHDULES ...t 255

F.1.3. ASSOCIAtioN ENGS........ccveeiiieeeeiee et 255

F.2. TagQed VAlUES.......coiiiiieieee s 255

F.3. Additional StereotypPes.......ccoceviviiieiee e 255

G. Poseidon VB.Net Code Generation Plug-In Guide........c.ccccoevvevevieeenee. 257
G.1. GENEIAI RUIBS ...ttt e snree s 257
G2, ClASSES ...ci ittt ettt ete et e st e et e e et e e s aae e s beeesabeeebeeesnbeesnneeeanreeans 257
G.3. INLEITACES.ei ettt et aee e saree s 257
L Vo T (1] LTSRS 258
G5, SHTUCTUIESttt e e et e e e e e e e nrraeeeee s 258
G.B. ENUMSt et aaee s 258
T @ 01T = 11 o] 13RS 259
G.8. Operation’s Parameters.........ccoceveeieeiieeiie e s see e s 259
G.9. Visual BaSiC Properti€s.........ccoorriririinininieieereses s 259
G.10. Visual BaSiC EVENLS..........cccceeiieieiee ettt 260
G.11. Attribute & Association ENdS..........ccoevevieeeiie e, 260

(€] (0151 Y= Y SRR 261

Xi

Xii

List of Tables

22 I = {11 o] o I @0 g g o F=T 5T o SRR 12

List of Figures

4-1. Poseidon for UML application WOrk ar€a...........cceecueeereeseeseesireeseesessne e 28
4-2. Navigation pane in the Stattauto model...........ccccovveeeiiece i 30
4-3. Class diagram 'Container Class Analysis-Packages..........c.cccceorivrennene. 31
4-4. Change a view in the Navigation pane............ccoceoverereneneseseseseseeene 32
4-5. Add a navigation VIEW tall............cccceeiieiieiie e 33
4-6. Delete a navigation View tabh............cccveeiiicecicce e 33
4-7. The Diagram pane displaying the diagram 'Entity Class Model Overvied4.
4-8. The Details pane with class 'Reservation’ selected..........c.ccoccvveevvnieennnne 35
4-9. Class diagram as seen in the Birdview.tab............cccocoeveieiiiiveece e 37
4-10. Critigues of the Stattauto example..........cccovvevierieicieres e 37
4-11. The Navigation pane in a Diagram CentriC VIEW..........cceerererererernenn 38
4-12. Select class 'Reservation’ from Diagram Centric VIEW.............cccceueene.. 40
4-13. The Details pane with the class 'Reservation’ selected......................... 40
4-14. The Properties tab with the attribute 'number’ selected......................... 41
4-15. Change an operation name in a diagram.........ccccoeeveveeresieereseesesseeneens 42
4-16. Change operation name from the Details pane...........cccooveveerenierennene 43
4-17. Add a package to a diagram with the rapid buttans............c.ccccceeiennee. 44
4-18. Delete an element from @ model..........cooeriiiiiiiinie e 45
4-19. Remove an element from a diagram...........cccceeveverienieenesieeseseese e 46
6-1. Panes iN POSEIQIN.cooiiieiiee et 61
6-2. Grid Settings dialOg.......ccoieriiierereee e e 65
6-3. Properties tab With ZOOML.........c.coceiii i 67
6-4. Drill-dOwn NaVIQatiON..........ccceiveierieie e seese e 68
6-5. C++ tab for an attribUte...........coeeeieeee e 69
6-6. Style tab for an element without compartments...........c.cceoeeeeverieneeenne 70
6-7. Style tab for an element with compartments............cccccceveveccecce e, 70
6-8. To Do tab in the Details Pane.........ccccvveevicieeie e 71
6-9. Source code tab for @ Class.........c.cveriririnii 72
6-10. Documentation tab for a class - WYSIWYG and source............cccceeuee... 74
6-11. New constraint in the Constraints tah............coccooveriinininninneeeeee 76
6-12. Documentation stored in the Tagged Values.tab..........c.ccccccevveirreennne. 77
7-1. The General settings tab..........ccoovviinn e 83
7-2. The Appearance Settings tah.........cccccvveerinene e 84
7-3. The Modeling Settings tab...........ccccoviiiiieiee i 85
7-4. The Environment settings tab..........ccccovveviieeii e 86
7-5. The User SettiNgs fah........cccoiririririneneneereses s 87

Xiii

Xiv

7-6. The Project Settings tab..........cooveve e 88

7-7. The Key Mappings settings tab.........c.ccoovrninnnneeee 89
7-8. The Diagram display settings tab............ccccovvviiiiiieiie e, 90
9-1. EXpOort @ ProjeCt t0 XMUl....cueiiiiiiciiecie et 101
9-2. Watermarked Community Edition diagram graphic............cccecveevvrvrnenee. 102
9-3. Premium Edition diagram graphic without watermark..............c.ccceen.e. ??
10-1. A USE CaSe QIaQraml.......coiuiieeiieieesie e sie e seeses e e e eesreesse e e s sneeneens 105
10-2. A Class Aiagram.......cceccueiieeiie e e e 108
IO G TN o I 1171 Yo [F= Vo = o 1SR 112
10-4. A State diagramL.......ccoeeeeirerirereee e 115
(O RSN T=To (U] aTot o [F=To | =1 o o OO TSR 118
10-6. Selecting the action of a stimulus in a sequence diagram..................... ?7?
10-7. Selecting an operation and attaching arguments.tQ.it...........cccccocceene... 119
10-8. A CompoNent AiAgraml........ccerererirerieeieeieeeeeee e 123
10-9. A Deployment diagramh.........cceoeeeerieeeesie e e 125
11-1. Tooltip displaying documentation............ccceeveereeiiieereesee e 131
11-2. Properties tab displaying class 'Reservation’...........cccccceeeevvrveeresceennnne 133
11-3. Properties tab with operation 'Member’ selected...........ccccevririvrnnnene 133
11-4. Zooming by changing the properties of a diagram............ccceceevvreennee 134
11-5. Zooming from the Birdview tal............cccooveieiin i 135
11-6. Selecting multiple elements with the mouse..........c.ccccecvvveveicenvceenen, 141
11-7. ADdING WAYPOINTS.....ccueiiiriirieriinierieeiesiese st 144
11-8. MOVING @OIMMENTS......ciieiiiiieieeieste et see e snee e 144
11-9. A NEW COMMENL.....ciiiiieeieeeee ettt e e e e e e e e r e e sneeennas 147
11-10. Add a waypoint to @ rectangle..........ccoveceveeceseeee e 148
11-11. Open and CloSed lINES.........cooiriiirireeeeee e 149
11-12. ChangiNg OPACITY......ceeruerierierierieeieeieie et e e e 150
12-1. Properties tab for an associatiQn............ccceeveevieiiiecceesee e 155
12-2. Properties tab for an association end.............cccocevevievieiiesesieese e 155
12-3. Highlight hints for aSSOCIAtIONS...........cccvriririrereeeeeee e 157
12-4. Style tab with multiplicity unset and Set.........cccccooeiiiiiriiiriceee 157
12-5. The rapid button for self-associatians............cccccevcvevieeneevciecceesee e, 159
12-6. Properties of an attribULE...........cccocieiiriieceeese e 160
12-7. ’Remove Attributes’ SELHNG........ccvririrerirereee e 161
12-8. Properties of an OPeration..........cccouereeerieerieneeeeeeeeee e 162
12-9. UNi-DireCtioNal POIS.......cooiiiiiiiieseeie s 166
12-10. Bi-DIreCtional POrL.........coiiiiiiiiesieeee et 167
13-1. Rapid buttons for a class element............cccocvevevieeviencere e 170
13-2. Toggled representation of actors and interfaces..........ccccevevvveenvrceennens 171
13-3. Additional rapid buttons for a class element.............ccccceveienieneninnnene 172
13-4. Add a new attribute or operation to a class inlinge..........ccccceceveveeveenen. 173
13-5. Properties tab for @ Class........cccveveieecevece e 174
13-6. Style tab for @ Class..........covrireriic 175

13-7. Editing a method documentatiQn............cccovveceieeieseece e 177

13-8. Context menu options for 8 USe CaSe.........ceceveriereernseeneseenn e 177
13-9. A Class diagram making use of Stereotypes........cccccceveevireceevieesenenn. 179
13-10. Stereotype dialQg........cceeceeiieiiecieese e 180
14-1. GENEIAtION MEMMUL.....ccueruirierierieriesiesiesiesie st se st se e e se e seeneens 183
14-2. Code Generation dialog and settings - Java...........ccceeeeerererenierennenn 184
14-3. IMPOrt Files dialog-......oieriieeee s ??
14-4. Select file check INterval...........cooiiiiiiii e 187
14-5. Java code generation - SEttiNGS........cccevvrererieeieeieseere e e seeneens 187
14-6. Generated UMLdoC opened in NetSCape.........ccoovrererereneneeeeeeeenene 199
14-7. Code Generation dialog and settings - UMLAQC.........cccccevereeiereennene 200
14-8. UMLdoc code generation - SEtiNGS......cccovereeririiie e see e 201
16-1. A ConStraints tah.........cocoiviiin 213
16-2. CritiQUES PANE....c.iieiriieieetirieeteeie sttt e et e e 214
16-3. Searching for @ Class.........ccuoerireie e 215
16-4. The Profile MAnagEL.........cccouuviieiiieiie ettt 216

List of Examples

14-1. Simple HTML Template........ccccooeeiieiiiiiececee et 195
14-2. Simple Java template.........cccceeciiiiiiie e 196

XV

XVi

Chapter 1. About Gentleware and
Poseidon for UML

1.1. About Gentleware and Poseidon for UML

According to Greek mythology, the hero Jason built a ship and named it the Argo.
With his comrades, the Argonauts, he left on a quest for the golden fleece.
Poseidon, the god of the seas, protected and safely guided their journey.

About 4000 years later, Jason Robbins started an open source project for a UML
modeling tool and named it ArgoUML. Many others joined him in this adventurous
undertaking, including a group of software developers lead by Marko Boger, who
was at that time a researcher at the University of Hamburg. Together they greatly
advanced the tool. After Jason Robbins shifted his focus to other tasks, the
developer group evolved to become leaders of the project. Under their guidance and
with their advances, ArgoUML became very popular. They realized the great
demand for a tool like ArgoUML, as well as the amount of work necessary to shape
it into a professionally usable tool. They finally took the risk of starting a company
with the goal of bringing the most usable tool to a broad audience. With respect to
their open-source origin, the company is called Gentleware and their tool is called
Poseidon for UML.

That is who we are and how our quest started. Today, Poseidon for UML is one of
the most popular UML modeling tools on the market. Our special focus is on
usability and on making the job of modeling a joy.

1.1.1. Our Vision

Software development is a creative process. It requires a deep understanding of the
problems to be solved, the involved users and stake holders and their requirements,
the ability to find the right level of abstraction from reality, and the creativity to

shape a software solution. At the heart of software development is the human being.
Our goal is to provide tools to increase his creativity and productivity. Tom

DeMarco found a word for this: Peopleware. This point of view is engraved in our
name. Gentleware is the connection between humans and the software they develop.
Our main subject is the development of tools for UML, Java, MDA and XML with a
strong focus on usability and high productivity. We also offer training, consulting

and individual solutions.

Chapter 1. About Gentleware and Poseidon for UML
1.1.2. Innovation

New tools require new ideas. Innovation drives our development. We want to prove
this to our customers through improved usability and productivity. Founded with a
strong university background, Gentleware maintains our ties to the University of
Hamburg. With roots in academia and the community process of open projects, we
continuously seek dialog with researchers along with the open source community
and users.

1.1.3. Cooperation

The tools we build are used in a wide range of industries, and the pace of
development is high and always increasing. To stay ahead, we cooperate with
leading experts and companies. Together with our partners we are building a rich set
of development tools and extensions that will fit the needs of our users exactly.

1.1.4. Contact

We are always very happy to get feedback on our tools and services. If you want to
contact us, there are several ways to get in touch.

Email

The easiest way to contact us is via the web form. We offer addresses for different
purposes.

General information, feature requests, or suggestions:
http://www.gentleware.com?redirect=contact

Customer support (for all versions except the Community Edition):
http://www.gentleware.com?redirect=contact

Questions on purchase process, quotes, or volume sales:
sales@gentleware.com (mailto:sales@gentleware.com)

Web Site

For general discussion we have installed an open forum
(http://www.gentleware.com?redirect=forum) in which users of Poseidon for UML
can freely discuss topics related to our tools. Typically these are questions on how
to do something, discussions on what other features would be nice, or comments on
what people like or dislike about our tool. Our staff is actively taking part in these
discussions, but you might also get a response from other users.

Chapter 1. About Gentleware and Poseidon for UML

To order our products you can use the online shop
(http://www.gentleware.com?redirect=order), which requires a credit card. If you do
not have a credit card or you hesitate to use it over the web, send us an email at
sales@gentleware.com (mailto:sales@gentleware.com).

Phone

Our preferred payment method is credit card. However, if you do not have a credit
card or you hesitate to use it over the web, you can also send a fax, send email to
sales@gentleware.com (mailto:sales@gentleware.com) or call us.

There is a fax order sheet (http://www.gentleware.com?redirect=order) provided on
our web site. Our fax number is +49 40 2442 5331.

Please try to find an answer to your question on our web pages
(http://www.gentleware.com/support/), the FAQ list, or the Poseidon Users Guide.

Regular Mail
To send us mail or to visit us in person, our address is:

Gentleware AG Schanzenstraf3e 70
20357 Hamburg Germany

1.2. New Features in Version 2.x

Many of the changes made in version 2.0 were implemented to improve the overall
performance of Poseidon, but are not readily apparent to the user. Modifications of
this sort that are not directly relevant to the User Interface have not been covered in
this manual. A short list of Ul modifications that have been covered:

- Interfaces can be rendered in box or lollipop notation
- Ports are now available in Object, Collaboration, and Deployment diagrams
- Performance has been greatly improved

- The look and feel of the diagrams has been completely revamped. Among these
changes:

Moving an association end to a free area of the diagram creates a new class.
- Waypoints of edges snap to their neighbors’ X and Y coordinates.

Edge adornments move about the edges more intelligently.

Chapter 1. About Gentleware and Poseidon for UML

- Rapid Buttons now include directed associations, attribute creation, and
operation creation.

- New elements, such as association classes and actors-as-classifiers, and diagram
helpers that do not appear in the source code, such as text objects, have been
added.

- Diagram storage has been changed to the Diagram Interchange standard, a part of
the UML 2.0 standard. This way, diagrams are written in the XMI 1.2 format, just
like the model itself.

- Diagrams can be exported to pdf format.

- Project files now are saved with a ".zuml" extension. They are zip files containing
a .proj file with project information, and an .xmi file with the model and layout
information. All of this is in accordance with the Diagram Interchange standard.

« Undo and Redo is supported throughout Poseidon and for all actions.

- A new graphics engine has been implemented in order to render superior
graphics, including anti-aliasing.

« A new documentation editor with full HTML markup capabilities has been
included.

- Derived and ordered attributes can be defined.

- Multiple stereotypes can be applied to all elements.

« Source code target languages are chosen from separate code generation menu
items, and the source tab can be set to display different languages

- More languages are included in the Professional Edition: Java, Perl, VB.Net,
Delphi, CorbalDL, PHP, C#, and SQL, in addition to UMLdoc generation.

A complete list of changes can be found at
http://www.gentleware.com?redirect=changelog.

1.3. About This Document

This document describes Poseidon for UML and how to use it. It is intended as a
user guide. Itis not a book about UML or Java. Basic knowledge about UML as
well as Java is assumed.

We are working hard to make Poseidon for UML as intuitive as possible. You
should be able to open up Poseidon for UML and start using it without looking into
this documentation. However, you will find it useful to read through this document
to get you up to speed faster and discover useful features earlier.

Chapter 1. About Gentleware and Poseidon for UML

This version of the User Guide has been reorganized to help you find the
information you need more quickly. The first four chapters help you get up and
running with Poseidon for UML, chapters 5 through 13 are reference sections, and
the final group of chapters discuss the more advanced features of Poseidon.

Chapter 1. About Gentleware and Poseidon for UML

Chapter 2. Editions

Poseidon for UML is delivered in different editions. This section gives a rough
overview of the editions so that you may decide which of these is most appropriate
for you.

Poseidon for UML is directly based on ArgoUML (version 0.8) and you will find

that what is described here closely resembles ArgoUML. However, Poseidon for
UML is more mature, provides additional features, and is more stable. It is intended
for daily work in commercial and professional environments. ArgoUML, on the

other hand, is open source and lends itself to research, study of architectures, and
extensibility. If you want to get your hands on the code and help advance the open
source project, we greatly encourage you to do so. In that case, we recommend you
to turn to the web site www.argouml.org.

Poseidon for UML is released Mersionsas well as irEditions All Editions are
based on the same source base and therefore carry the same version number. New
versions are released a couple of times per year. This document refers to version 2.x.

The Editions offer different features and come with different levels of support.

2.1. Community Edition

for uml

The Community Edition is the base version. Offered for free, it is the zero-barrier
entry to the world of UML for the individual software developer as well as for large
organizations. It makes learning and using UML a snap and enables the
cost-effective exchange of models.

It is fully usable for modeling UML, and you may use it for any purpose,

commercial or not, for any duration and in any number. It contains all UML

diagrams and all implemented diagram elements. You can create, save, and load
projects, browse existing models, exchange models, generate Java code, export your
diagrams to various formats and much more. You may freely distribute it, put it on

Chapter 2. Editions

local or Internet servers, and distribute it on CDs or DVDs. Gentleware does not
provide support for the Community Edition.

Generally speaking, the Community Edition provides everything you need to learn
and to use UML at a non-professional level. However, there are a few restrictions.
Some of the features that are available in the commercial editions are not included
in the free Edition. These features are nice to have to increase your productivity, but
are not necessarily required to build UML models. Perhaps most important, the
Community Edition does not support reverse or round-trip engineering, and it
cannot load plug-ins. The Community Edition also does not support printing, copy
and paste to the Windows clipboard (to copy diagrams to Word or Powerpoint for
example), the zoom is restricted, and graphic exports include watermarks. The other
Editions meet the requirements of professional users.

The Community Edition has the following features:

« Fully implemented in Java, platform independent.
« All 9 diagrams of the UML are supported.
- Compliant to the UML 2.0 standard.

« XMI 1.2 is supported as a standard saving format. XMI 1.0, 1.1 and 1.2 can be
loaded.

- Diagram export as gif, ps, eps and svg.

- Graphic formats jpeg and png supported for JDK 1.4.
« Copy/cut/paste within the tool.

- Some diagrams allow drag and drop within the tool.

- Internationalization and localization for English, German, French, Spanish, and
Simplified Chinese.

- Forward engineering for Java.
- Simple installation and updates with Java Web Start.
+ Full Undo and Redo.

Chapter 2. Editions

2.2. Standard Edition

for uml

=

The Standard Edition is the extendable base tool for the professional. It comes with
all features of the Community Edition plus productivity features like printing,
drag-and-drop to the Windows clipboard (copy diagrams to Word or Powerpoint),
and full zoom. Through a plug-in mechanism you can pick and choose from a
growing set of plug-ins that allow you to further extend its functionality.

Additionally, we provide e-mail support for this edition.

UMLdoc, the HTML documentation generator, allows you to export your models to
an HTML format an share it with others over the web or intranet. The outcome is
similar to Javadoc, but includes all the information of a UML model including the
diagrams; thus, we named it UMLdoc.

Poseidon for UML is constructed in a highly modular way so that additional
features can be purchased from our technology partners and added to Poseidon by
introducing new modules as plug-ins. The Standard Edition allows you to load (and
unload) plug-ins at runtime. This functionality turns Poseidon for UML into a

highly flexible and extensible platform of UML tools. The Standard Edition is the
foundation for this.

The Standard Edition has some of the following additional features over the
Community Edition:

- Forward and reverse engineering for Java

+ Plug-in mechanism to load and unload plug-ins from our technology partners,
even at runtime.

- Comfortable printing with fit-to-page print or multiple page split-up.
- Direct copy to the Windows clipboard, drag-and-drop to Word, Powerpoint, etc.
- HTML documentation generation into UMLdoc.

« Support from the Gentleware help desk via email.

Chapter 2. Editions
2.3. Professional Edition

10

for uml

professional edition 2.0

The Professional Edition is the prime version of Poseidon for UML. To meet the
needs of the professional software developer, we have bundled the worlds most
flexible code generation mechanism with a set of productivity features. This Edition
includes round-trip engineering, JAR import, and HTML documentation generation.

One of the most valuable features of Poseidon for UML is its code generation
technology, and the Professional Edition gives you full access to it. The code
generation mechanism is based on a template technology, where the template
defines the syntax of the outcome. This can be Java, C++, XML, HTML or what
ever else you want it to be. The information from the model, like the names of
classes and methods, are provided by Poseidon for UML. This Edition gives you
access to the API and to the templates. As a developer you can edit and change
these templates, even at runtime, and configure the outcome of the code generation
yourself.

Sophisticated round-trip engineering for Java allows you to read in existing Java
code and generate a UML model for it or to continuously synchronize your code

with the model. You can change the generated code or redesign the model and never
lose consistency between the two. With JAR import functionality you can read in
existing libraries and use these in your models.

The Professional Edition has the following features over the Standard Edition:

Template-based code generation with full access.

Round-trip engineering for Java.

JAR import to include existing libraries.

Import of Rational Rose files (.mdl).

Chapter 2. Editions

2.4. Enterprise Edition

for uml

Team support is provided in the Enterprise Edition, the premier version of Poseidon
for UML. It features version control, multi-user support, client-server architecture,
and many more features that you might need for model-driven software engineering
in a highly collaborative development environment. It supports multi-model editing
and scales to high volume models.

The Enterprise Edition comes in two parts, the server and the client component.
Both of them feature an easy installation process. Transmission of files between
clients and server is secured by using standard ssh encryption and authentication. In
order to support the communcation aspect of collaborative modeling, the client also
features an integrated instant messenger based on the Jabber protocol.

The Enterprise Edition includes all features of the Professional Edition, in addition
to the following:

- Collaborative modeling environment based on a client-server architecture.
- Exclusive locking of model parts and elaborated conflict checking.

- Server-based project handling.

« Instant messaging features for client-to-client communication.

« Secure transmission of files between clients and server using SSH.

- Easy installation process for client and server.

11

Chapter 2. Editions

2.5. Embedded Edition

for uml

embedded edition 2.0

The Embedded Edition is specifically designed for embedded systems development.
In order to meet the needs of embedded systems engineers, this version bundles
most of the features of the Professional Edition with optimized code generation for
ANSI C and C++. The code generator has been uniquely created to fit the
demanding criteria of embedded systems, such as memory resource and
performance issues. It supports automatic code generation for UML state diagrams
as well as class diagrams.

2.6. Edition Comparison

12

To give you a quick overview of the features in the different Editions, here is a table
view of the available features:

Table 2-1. Edition Comparison

Feature CE SE EmbEd PE EE
Community Edition| Standard Edition |Embedded Edition [Professional Edition Enterprise Edition

Simple Install v

with WebStart

UML 2.0 Diagram + v v v v

Interchange

All 9 Diagram v v v v v

Types

Forward v v v v v

Engineering Java

XMI Supported v v v v v

Chapter 2. Editions

Platform v v v v v
Independent

Export as GIF, v v v v v
JPG, PNG, PS,

EPS, SVG

Copy/Cut/Paste v v v v v
Within Poseidon

Internal Drag and| v v v v
Drop

Internationalizatian v v v v
OCL Support v v v v v
Undo/Redo * v v v v
UMLdoc (HTML *ox v v v v
Export)

Reverse v v v v
Engineering Java

Printing v v v v
WMF Graphic v v v v
Export

No Watermark in v v v v
Graphic Export

Copy/Cut/Paste of v v v v
Diagrams to Other

Applications

Plug-In support v v v v
Support v v v v
JAR Import v v v
MDL Import v v v
C++ Generation v v v
ANSI C v

Generation

C# Code v v
Generation

CORBA IDL v v
Code Generation

Delphi Code v v
Generation

13

Chapter 2. Editions

Perl Code
Generation

PHP Code
Generation

SQL DDL Code
Generation

VB.net Code
Generation

Changeable Code
Templates

SS S S S S

Round
Engineering Java

Synchronous
Team Modeling

Version Control

Element Locking

Secure
Communication

SISIST S S S S S S S

GoVisual (V) (V) (V")
Autolayout
Plug-In by Oreas

yWorks (V) (V) (V)
Autolayout
Plug-In by
yWorks

AndroMDA (v (v) (¥
Plug-In by M.
Bohlen

b+m EJB Plug-In (v) (V")
by b+m
Informatik AG

Notations:

¥ Included in this Edition

(\/)Not included in this Edition, can be purchased separately
* Limited to 3 steps in history

** Available externally at http://www.umldoc.org

14

Chapter 3. Installation and First Start

3.1. Prerequisites

Poseidon for UML is written entirely in Java and therefore is platform independent.
It runs on almost any modern personal computer. To successfully start and run
Poseidon for UML you need the following:

- Java Runtime Environment or Java Development Kit. JDK 1.4 or higher is
required for Linux, Mac OS X, and Windows Platforms. Poseidon for UML will
not run with JDK 1.3 or older.

« A computer with reasonable memory and CPU power. For memory, 512 MB is
recommended, more is helpful. For CPU, a Pentium Ill or equivalent is the
recommended minimum.

- A specific operating system is not required. Poseidon for UML is known to run
on Windows 98, 2000, NT, and XP, on Linux SuSe 6.X, 7.X, Red Hat, and
MacOS X. It has been predominantly developed and tested on Linux. However,
on Windows platforms performance is known to be superior due to a faster Java
environment.

3.1.1. Additional Requirements for MacOS X
Users

Certain combinations of Java and MacOS X have been known to cause problems.
These are sometimes resolved by changing the Look And Feel used by Poseidon.
For information on how to change the Look and Feel, refer to the Appearance
section of the Settings chapter.

3.1.1.1. Jaguar (MacOS X 10.2.x)

There are two versions of Java 1.4.1, Original and Update 1. When using Original,
Drag and Drop from the Navigation Tree into a diagram will not work. Update 1
includes a set of improvements and should be used whenever possible. In both
cases, the Alloy Look and Feel should be used, as Aqua is known to have additional
problems such as difficulty in opening dialogs.

15

Chapter 3. Installation and First Start
3.1.1.2. Panther (10.3.x)

This version of MacOS X comes with Java 1.4.1 Update 2, which is an improvement
over Update 1, yet there are still some issues with Drag and Drop and the Aqua
Look and Feel. Be sure to use the Alloy Look and Feel with this version of Java.

Java 1.4.2 (which is equivalent to Sun JDK 1.4.2_03) has recently become available.
This release appears to have addressed the speed and Look and Feel problems.

3.2. Community, Standard, Professional, and
Embedded Editions

To install Poseidon for UML, you can choose any one of the following installation
procedures:

- Install Poseidon for UML with InstallAnywhere.

- Install Java Web Start and start Poseidon for UML from the internet (Community
Edition only).

- Download the compressed file (.zip file) over the internet and locally install
Poseidon for UML.

A complete installation guide is available at
http://www.gentleware.com?redirect=installguide
(http://www.gentleware.com/products/documentation/installguide/InstallGuide.pdf)

3.2.1. Install Using InstallAnywhere

The easiest way to install Poseidon for UML is to use the InstallAnywhere
(http://www.installanywhere.com) installer for your platform. If you already have a
recent Java version installed, you can download the installer for your platform that
does not include Java. If you do not have Java installed or if you are not sure of the
version, download the installer that includes Java.

You will be asked to specify an installation folder and a location for shortcuts. Free
disk space of about 20 MB is required.

3.2.1.1. Windows

The Windows installer functions similarly to other installation applications. It is an
exe file that will prompt you through the entire process.

16

Chapter 3. Installation and First Start

Following installation, start Poseidon for UML by selecting the icon placed in the
'Start’ menu by the installer.

3.2.1.2. *NIX

The InstallAnywhere installer is known to run on RedHat, Caldera, TurboLinux,
and SuSe. It will not work on Mandrake. If you are using Mandrake (or another
*NIX flavor that appears not to like the installer), you should use the compressed
file installation process.

Ensure that your installation file executable with:
chmod u+x <your-poseidon-installer>.bin

Then execute the file. If ’." iincluded in this Editions not in your path you should
use:

JPoseidonCE_2_1 1linstaller.birto start the file.

3.2.2. Install Through Java Web Start
(Community Edition Only)

Java Web Start is a mechanism provided by Sun Microsystems to automatically
install and start applications from the internet. After Java Web Start is installed,
double-click the provided link. The required files are then automatically loaded to a
cache on your local disk and the program is started. The first time this may take a
little while, but the second time around most information is taken from the local
cache.

Web Start provides a big advantage in that the new version will start automatically
as soon as the program is updated on the server. The program also works when you
are not online - in this case, the local copy from the cache is used.

First, Java Web Start needs to be installed. If you are using JDK 1.4, Web Start may
already have been installed along with the JDK. If not, follow these steps:

1. Download the Java Web Start installation file. You can get it from
« Gentleware AG at http://www.gentleware.com?redirect=webstart
« Or directly from Sun at http://java.sun.com/products/javawebstart/

You will automatically be provided with a self-installing file for your platform.

2. Close all your browser windows

17

Chapter 3. Installation and First Start
3. Execute the downloaded file.

4. Open your browser again, then go to
http://www.gentleware.com?redirect=webstart and click on the icon provided
for Java Web Start. After a few moments, the latest release version of Poseidon
for UML (Community Edition) will start up automatically.

3.2.3. Install from a ZIP File

If you prefer to install Poseidon for UML without an installer, you can download
and install a platform independent zip file. Installation is very simple. In short,
download the file, unzip it, open the created folder and run the start script. Follow
these steps:

1. To locally install Poseidon, you first need to download the corresponding file
over the internet. Make sure that you are connected to the internet, then open
your favorite internet browser and go to
http://www.gentleware.com?redirect=download.

2. Follow the download instructions. You will then have a single file stored on
your local hard drive in the location you have indicated.

« The file is compressed using zip format. Move this file to the folder where
you would like to install Poseidon for UML. Then, to decompress it, call the
zip program used on your platform. Here are some examples:

« On Linux or Unix, open a command shell, go to the folder where the
downloaded file is stored (using theé command), and calinzip
PoseidonPE-##.##.zipT he file may be named differently, depending on the
edition you downloaded.

« On Windows, start your Zip program. The Zip program should automatically
start if you double-click on the downloaded file. Then extract the file to a
folder of your choice by selectingxtract and following the instructions.

3. All Poseidon files are extracted into a fold@rseidonForUML_ XX _##.##
4. Switch to thelbin - subfolder.
5. Run the start script provided authentificationfor your platform:

« On Linux or Unix, open a command shell, enter pgogeidon.sh
command, and press return.

« On Windows, open the file explorer and double-click the start script
poseidon.bat

18

Chapter 3. Installation and First Start
3.2.4. Silent Installation

Silent installation is a convenient way to install Poseidon without having to interact
with the dialogs of the standard installation. There are a few differences based on
the operating system in use: on Windows, the initial progress indicator and final
‘clean up’ screen will be visible during launch; and on Mac OS X supports silent
mode only when running a UNIX installer. All default values except the installation
directory are used in this mode.

You can perform a silent install via the regular installer using an Installer Properties
file or the command line.

3.2.4.1. Installer Properties File

In order to install Poseidon in silent mode, you must first create a properties file.
This file should be placed in the same directory as the installer, and given the same
name as the installer with the file extensiproperties . For example, if the
downloaded installer is namétbseidonPE_2_2Installer.exe , then the

properties file within the same directory should be named

PoseidonPE_2_ 2Installer.properties

Within this file, you can declare the installation directory and the installation mode
through the variableSSER_INSTALL_DIR andINSTALLER_UI .

Here are the contents of a sample properties file:
USER_INSTALL_DIR=/programs/PoseidonPE2/
INSTALLER_Ul=silent

3.2.4.2. Command Line Parameter

To use the installer in silent mode from the command line, type:

installername -i
silent

It is also possible to use the Properties file from the command line:

installername -f
<properties file>

19

Chapter 3. Installation and First Start
3.2.4.3. Uninstallation

When silent mode using a properties file has been used to install Poseidon and this
file still exists, uninstallation is also completed silently.

3.2.5. Uninstallation

The Poseidon installer places an uninstall utility within the program directory. You
can uninstall Poseidon by running this utility.

& C:" Programme’, Poseidon 2", UninstallerData
File Edit ‘iew Favortes Tool: Help |
G Back » = - | EhSearch [Folders % | (5 05 5 ey | Ed~
Address I[:I C:A\PragrammePoseidon2\U ninstallerD ata j
" | [| J Dateiname | Groke [Tup | Gedndert |
LD [resource D ateiordner 22/01/2004 12:53
b .corn.zerag.registry, =l 260 KE ML Docurnent 22/0/2004 1289
UninstallerData A G NEEE N e SR [EEREt 2 KB Anwendung 22/01/2004 12:58
Urinstall Poseidon For UML 2. lax 4KB Léx-Datei 22/01/2004 12:58
Uninstall Poseidon For uninstaller.jar 1.084 KB ExecutableJar File 22/01/2004 12:58
UML 2. exe
Apwendung
Gedndert: 22/01/2004 12.58
Groke: 312 KB
Attribute: [Marmal]
|Ty|3: Anwendung Groke: 312 KB |31 2KB | Iy Computer i

From Windows, you have the additional option of uninstalling Poseidon from the
Software section of the Control Panel.

ER Software I]
Zurzeit installierte Pragramme: Sortieren nach: | Mame -
i Java 2 SDK, SE v1.4.2_03 Griife 4z5me L=

[T Poseidon For UML 2

portinf ormationen,

\dernyEntfernen”, um dieses Programm
zu entfernen.

& QuickTime Grafie 2. 45ME
@ Radio@Metscape Plus Grife 4,87ME
{1} RealOne Player Grife 14.6MB
33H Secure Shel Grafe I0EKE
i TextPad 4.6 Grife 7.54ME
20 WinCys 1.2 Grifie 4, 69ME =

Schliefen |

20

Chapter 3. Installation and First Start

Once the uninstaller starts, follow the prompts to remove Poseidon from your
system.

If you are planning to re-install Poseidon, you should copy your Poseidon settings
directory to another location before starting the uninstall procedure in order to avoid
losing your keys and registration data. In general, the Poseidon settings directory is
located under your user’'s home directory in poseidop@seidon edition, where
<poseidon edition is the abbreviation for the Edition. Below, the user ’homer’ has
moved his Professional Edition directory to a temporary location before proceeding
with the uninstallation.

= fcygdrive/ o/ Dokumente und Einstellungen, homer/ poseidon2

& 1s
CE EE EmbEd PE SE

$ muv PE stemp/

3.3. Enterprise Edition

The Enterprise Edition is made up of two components, the Client application and
the Server application. At least one server and one client must be installed in order
to use the Enterprise Edition, but the extended capabilities of the Enterprise Edition
will not be realized without the installation of at least two client applications. A
single Installer program is used to set up both components.

The complete configuration is beyond the scope of this document. Please refer to
the Enterprise Edition Installation Guide, available from
http://www.gentleware.com?redirect=ee-installguide for complete installation
information.

3.4. Environment Variables

The installation processes described above should enable Poseidon to run properly
on your system. However, some adjustments can be made by using environment
variables in order to make Poseidon fit even better in your personal environment.

21

Chapter 3. Installation and First Start

Please refer to the instructions of your operating system to see how environment
variables can be set and persisted.

- JAVA_HOME determines the path to the version of Java Poseidon should use for

itself and the Java related tasks that can be done with it. Please remember that the

code generation feature will need a complete SDK (i.e. a full install of Java that
contains the compiler). If you don’t want to generate and compile code from
Poseidon, a runtime environment (JRE) is sufficient. Setting this variable is
absolutely necessary for starting Poseidon using the batch scripts (poseidon.sh or
poseidon.bat). The installer will search for the installed Java versions and let you
choose which version to use for Poseidon. Once the installer has completed, this
decision can be changed by a re-installation of Poseidon only.

« POSEIDONxx_HOMEdetermines the path to the folder where Poseidon can store
user related settings and the log files. (Please note that xx stands for the edition
you are using, i.e. CE for Community Edition, SE for Standard Edition and so
on.) By default, Poseidon uses the home folder of the user. Please refer to the
instructions of your operating system to see what folder is used as your home
folder on your system. Some operating systems use rather strange settings for the
home folder in networking environments, so it might be necessary to use a
different folder than the default one. Defining this environment variable lets you
choose a different folder. On Windows using the Standard Edition, you may want
to set POSEIDONSE_HOME t©:/Documents and Settings/yourname

3.5. Keys and Registration

22

To use Poseidon for UML you need a valid license key, which is a string of
characters containing encrypted information. Obtaining this key is done through a
simple registration process. Once you have the key, it is only a matter of pasting it
into the application.

There are different types of keys. In this chapter we will explain the differences
between these, how to get them, and what to do with them.

3.5.1. Types and Terminology

Evaluation Key - provided when an evaluation copy of a Premium Edition is
requested from the website. These keys place a time-limit and functionality-limit on
the application usage.

Chapter 3. Installation and First Start

Serial Number - provided for the Community Edition and purchased copies of
Premium Editions. The Serial Number is a unique identifier and is used to register
the user with the specific copy of the application in order to receive the License Key.

License Key- provided for the Community Edition and purchased copies of

Premium Editions. These keys are made available after the registration data has
been received by Gentleware. Once a License Key is in place, the registration
process is complete. These keys need no further attention, unless the copy is moved
to another machine or is upgraded to another version.

3.5.2. Community Edition

The Community Edition comes complete with a Serial Number immediately upon
download. This Serial Number must be registered online from within Poseidon or
on the website in order to obtain the License Key required to start Poseidon. The
registration process is painless, and all information collected by Gentleware AG
during the registration process is kept completely confidential. Our privacy policy is
available for your perusal on the website.

To register a copy of the Community Edition:

1. Download and install a copy of the Community Edition.

2. After starting Poseidon for the first time, the License Manager will appear. The
Serial Number will already be provided.

3. Click the 'Register’ button. A dialog will appear. Complete the form and click
"Next'.

@Register your Gentleware Product!

User Information

The license key will be issued for thiz user. Walues in bold are required.

First Hame [can |

Last Hame |Carlson |

E-Mail |ccarlson@snpp.com |

@ Subscribe to Gentleware announcements (approx. ane mail per month)

Freferred E-hail format (@) HTML () plain tesxt

Company |Springfie|d Muclear Fower Flant
Country [united states =]

See httpidwwy. gentleware.com for Gentleware's privacy policy.

| Next Close

23

Chapter 3. Installation and First Start

4. To finish the registration process, select either the online option or the web
option (ideal for users who are behind a firewall).

3.5.3. Evaluation Copy

Premium Editions of Poseidon (Standard, Professional, Enterprise, or Embedded)
can be evaluated free-of-charge, but be aware that some functionality is limited, e.g.
saving is limited to eight diagrams. The evaluation key is valid for 15 days after
registration. As with any registration with Gentleware, your information is kept
strictly confidential.

To register an evaluation copy of a Premium Edition:

1. You will receive your Evaluation Key via email after filling out the evaluation
request form and downloading the software from the website.

2. Enter the Evaluation Key in the 'New Key’ box of the License Manager.

@License Manager
License Keys
Type | Froduct | Editions | Release | Expiration-Datel Walid |
Serial # Fozeidon FE. SE 2 Sep 17,2002 v “Walid. Please register.
Remove | | Register ... | | Evaluate ... | | Buy .. | | Start Pozeidon

Hew Key ! Serial #
To add a new key plaase enter or paste it in thisfield and click on Add.

| Paste fram Clipboard || Add

3.Click 'Add'.

3.5.4. Premium Version Purchase

Registering a purchased copy of a Premium Edition follows a similar process as an
evaluation copy.

To register a Premium Edition:

24

Chapter 3. Installation and First Start

1. You will receive your Serial Number via email after downloading the software.

2. Enter the Serial Number in the 'New Key’ box of the License Manager.

[@lLicense Manager %]
License Keys
Type | Product | Editions | Relzase | Expiration-Datel Walid |
Serial # Fozeidon FE. SE 2 Sep 17,2002 V “Walid. Please register.
Remove J | Register ... J | Evaluate ... I | Buy .. I h Start Poseidon |]

Hew Key / Serial #
To add a new key please enter or paste it in this field and click on Add.

Paste fram Clipboard] | Add

3.Click 'Add'.

4. You will now need to register the Serial Number by clicking the 'Register’
button and completing the registration dialogs that follow.

r{ﬁLicense Manager
License Keys
Type | FProduct | Editions | Relzase | Expiration-Datel Walid |
Serial # Posaidon FE. SE 2. Sep 17, 20032 V “Walid. Pleaze register.
Ewaluation API-Demo FE. SE 1 Sep 19, 2004 V\Jalid
Remove J | ERegister ... | | Ewaluate ... ‘ | Buy ... ‘ [. Start Poseidon |

Hew Key ! Serial #
To add a new key please enter or paste itin thisfield and click on Add.

Faste from Clipboard ‘ | Add

Note that if you try to register via the website, Poseidon searches for Netscape as
the default browser. You can change the default browser from the Settings dialog in
the Edit menu. Note that this setting does not currently work for Macs.

25

Chapter 3. Installation and First Start

26

3.5.5. Keys for Plug-Ins

If you want to use additional plug-ins, you will need an additional key specific to

that plug-in. Plug-ins that are free of charge or are in beta-release are delivered with
a valid license key, similar to the Community Edition. For each commercial plug-in
you purchase or want to evaluate, you are sent a Serial Number by email. You need
to register these Serial Numbers to receive the corresponding License Key.

The Professional and Enterprise Editions come with four plug-ins. They do not
need to be registered separately.

Chapter 4. A Short Tour of Poseidon
for UML

This chapter introduces all basic concepts of Poseidon for UML by guiding you
through an example project. On our tour, we will touch most features and a great
variety of UML elements. However, this is not intended as a UML reference guide;
thus, it will not explain all of the details of the modeling process. It will gradually
teach you what you can do with Poseidon for UML and how you can use it for your
own purposes.

4.1. Opening the Default Example

Let us start our tour through Poseidon for UML. The product is distributed with an
example project, which we will be looking at during the guided tour. If you want to
follow the tour on your own computer (highly recommended), do the following:

. Start Poseidon.

- From the main menu, selelelp, thenOpen Default Example

This example is based on a car rental scenario in which a company r&tatémlito

needs to model its business processes and create a corresponding software system.
This is a typical situation for the usage of a CASE tool, but UML as well as

Poseidon for UML are not restricted to this kind of application design. As a general
tool, Poseidon for UML can be used to model any kind of object-oriented software
system, as well as a system that has nothing to do with software at all, such as a
business-workflow system.

4.2. Introducing the Work Area

The work area of Poseidon is separated in five parts. At the top of the window, there
is a main menu and a toolbar that provide access to the main functions. Below this

27

Chapter 4. A Short Tour of Poseidon for UML

28

are fourpanes:

Figure 4-1. Poseidon for UML application work area.

MPuseidun for UML Professional Edition - StattAuto

File Edit Miew Create Diagram Arrange Critigue Generation Plug-Ins Help

D Diagram Centric

o s]

@ Statthuto

= Activity Diagrams

(O % Class Diagrams

2,, Callaboration Diagrams

= ILﬂ Deployment Diagrams
= f% Sequence Diagrams
= State Diagrams
=

o Usecase Diagrams

Birdwieuw BP rinrity

[&
I I:o:l 400%

20 of 550

EEDals Scida
Crverview |
AN BERiEBETteo—ee B4 S BE DLOP AcOsL @
Analysis D esign
é _____
T
]
)
[}
W
EBusiness Process M odel
FProperties [gtyle] To Do ltems Source code Documentation I I |
Diagram = o= x
Name |D\rer\riew |
Namespace |(Staﬂ_Auto) "vllIJ
Zoomfactor .
[0 606 06 00 00 00 0080 000000 NI NI o
a 25 S0 75 100 125 150 175 200
Zoom 50% ‘| Zoom T5% H Zoom 100% || Zoom 125% ‘| Zoom 150% H Window J
| |

Diagram Pane

« Generally the largest pane

- Located in the top right-hand section of the screen

- Displays the various UML diagrams and is the main working screen

Navigation Pane

Chapter 4. A Short Tour of Poseidon for UML
- Located in the top left-hand section of the screen
- Displays models and model elements based on the selected view

+ Provides quick and intuitive movement through the diagrams

Overview Pane

« Located in the bottom left-hand section
- Bird’s-eye view provides another means of navigation and display control

- Critiques assist in the creation of complete and accurate models and compileable
code

« Usually the smallest pane

Details Pane

. Located in the bottom right-hand section of the screen

- Displays all information about selected elements, some of which may not be
available in the diagram

- Provides the means to add or change details of an element

- Yet another means of navigation

You can hide and redisplay panes by clicking on the small arrows that are located on
the separation bars between panes, much in the same way you can manipulate panes
in most other GUI applications. This allows you to gain extra room for drawing in

the Diagram pane while the other panes are not needed. You can also resize the
panes to best fit your needs by moving the separation bars with the mouse.

4.2.1. The Navigation Pane

The first pane we will explore is the Navigation pane in the upper left corner. It is
used to access all of the main parts of a model by presenting the elements of the
model in various tree structures. There are many different ways the model
information could be organized into a tree structure; for example, the tree could be
sorted alphabetically by element name, by diagram name, or by model element
type. The classic way to organize them isgackages Poseidon for UML uses the
package structure as the default navigation tree, as do most UML tools. But, as we
will see a little later, Poseidon provides a set of ways to structure this tree - these
tree structures are calletews This is one of the strong points of Poseidon for

29

Chapter 4. A Short Tour of Poseidon for UML

30

UML, providing enormous flexibility for navigation. The default view is called the
Package Centric view.

The root node of the tree is the model itself, in our example it is c&tetlauto

The first level of the tree is open by default. In the Package Centric view, all
first-level packages are shown, as well as all model elements that are not inside a
specific package. As you can see, each element in the tree is preceded by a little
icon. Element icons have one symbol, diagrams have several of these symbols
combined into one icon. These icons are used consistently throughout the
application.

Some sample icons:

« % Model - The model icon is a colored box, which is also used as a logo for UML
- B Package- The package icon is a folder

- % Class Diagram- The class diagram icon is a combination of two class icons

You can navigate through the tree by clicking on the icon in front of an element
name, similar to many other applications. Any element you subsequently add to the
model will automatically appear in the corresponding branch of the tree hierarchy,
no matter how it is created.

Right now, your Navigation pane should look like this:

Figure 4-2. Navigation pane in the Stattauto model.

E| Fackage Centric

Fackage Centric B ﬁ
[og i StattAuta

— Owerview
— @ StattAute
5~ £ | StattuteMadule

—ilo Wehicle Rental Business Process: Use Case Owe niew
o E| Analysis

= E| Business Process Madel

o~] Design

— E| Internal Business Aszociate

= E| de

o E| java

0 Use_Case_1

The mode® Stattauto contains many packages (ecy.Analysis
B1 Business Process Model , andm Design) as well as a large number of

Chapter 4. A Short Tour of Poseidon for UML
diagrams % Overview , %= Implementation: Overview) eee)

Select the class diagra%al Container Class Analysis-Packages by

clicking on it in the Navigation pane. The selected diagram will then be displayed in
the Diagram pane, which is located to the right of the Navigation Pane. The
'Container Class Analysis-Packages’ diagram (Figure 6-3) visualizes the
dependencies between the included packezjesccount , &5 Member,

B Reservation ,E1 Vehicle , B User, ande Rates .

Figure 4-3. Class diagram 'Container Class Analysis-Packages'’

Account (ME=Ty
AT
1
ik
1
g
Member R eservation R ates
————— >
ks - = -

)
Vehicle

Inside the packages you can find further diagrams, but to quickly browse through
the existing diagrams you need not navigate through the packages themselves. You
can find diagrams directly (and much more quickly) usingdiagram tree.

4.2.1.1. Changing the Navigation View

Let’s now take a quick look at the diagram tree, which can be seen in the Diagram
Centric view. At the top of the Navigation pane, there is a drop-down selection box.

31

Chapter 4. A Short Tour of Poseidon for UML

32

Select the Diagram Centric view.

Figure 4-4. Change a view in the Navigation pane

E| Package Centric

Fackage Centric B ﬁ

Clazz Centric

Diagram Centric
Inheritance Centric k
Model Index

Fackage Centric
State Centric

UseCase Centric
=T BEhesE P

(= E' Cresign

E| Internal Business Aszociate

odule

tal Business Process: Use Casze Overview

acess Model

> Use_Caze_1

Now your Navigation pane should look like this:

D Diagram Centric

Diagram Centric E ﬁ
o iStah‘Auto -

o Activity Diagrams

¢gg Presentation Clazs Model Overview E‘

This view sorts the model elements according to the diagrams in which they are
included. Of course, this view includes only includes those model elements that are
included in at least one diagram. The organization of this view has the advantage of
quick navigation to any diagram or to the elements they contain. It logically follows
that sometimes the Diagram Centric view and at other times the Package Centric
view is more useful. Take a few moments now to look at the other available views.

4.2.1.2. Opening Multiple Navigation Panes

As we have seen, views offer different advantages for different tasks. But we often

Chapter 4. A Short Tour of Poseidon for UML

find ourselves switching between these tasks regularly, and constantly changing the
dropdown view selector would be a distraction. To give you several choices of

views at one time, you can create multiple instances of the Navigation pane by
creating additional tabs. The different Navigation panes are accessible through these
tabs, and it is then possible to select a different view for each tab.

To open additional Navigation panes:

1. Click on the@ folder icon (called the 'duplicate tab button’) that is located to
the right of the drop-down selection box.

2. A new navigation view will be created behind the current view.

3. Now you can select the Package Centric view from the dropdown menu of one
tab and the Diagram Centric view in the other tab. We will frequently need both
views in the rest of the guided tour.

Figure 4-5. Add a navigation view tab

D Criagram Centric

Diagram Centric E ﬁk
iStatLAuto

Q‘ CDuplicate Tab
i Activity Diagrams
(= Class Diagrams

E,, Collaboration Diagrams

i I[:U Deployment Diagrams
% Sequence Diagrams
(=

State Diagrams

=%, Usecase Diagrams

You can delete the navigation view tabs using the delete button that appears on the
tab, next to the name of the view, whenever the mouse is placed there and two or
more tabs are present.

Figure 4-6. Delete a navigation view tab

D Diagram Centric | B clas Centru‘

Diagram Centric E ﬁ Close this tab
o iStatLAuto
i Activity Diagrams
(= Class Diagrams
E,, Collaboration Diagrams

i I[:U Deployment Diagrams
% Sequence Diagrams
(=

State Diagrams

=%, Usecase Diagrams

33

Chapter 4. A Short Tour of Poseidon for UML

34

We will now turn our attention to the diagrams themselves and how to edit them by
looking at the Diagram Pane.

4.2.2. The Diagram Pane

As diagrams are the center of UML, naturally the Diagram pane is the main working
space in Poseidon for UML. It is the primary place for constructing and editing the
diagrams that compose all models. Just as the Navigation pane can display multiple
views, the Diagram pane also makes use of tabs to open additional workspaces.
Let’s take a closer look at some of the functions available in the Diagram pane.

Open the diagrar®= Entity Class Model Overview in the Diagram pane by
clicking on its name in the Navigation pane. Expand the tree for this diagram by
clicking the ’expand trees- icon that appears to the left of the diagram name.

The Diagram pane to the right should now look like this:

Figure 4-7. The Diagram pane displaying the diagram 'Entity Class Model
Overview'.

Entity Class Model Oveniew |

A BRz2E te—ee H2 Gl BE O ACcOGD @
== EntityObjed == == EntityOhjed ==
User Member
(from de:.amg :stattauto:-user:entity) (from de:amg:: stattauto>member:entity)
1
== Interface == == EntityObject ==
VehicleClass Reservation
(from de::amg::stattauto :vehick:entity) (from de:-amg::stattawto :reserv ation::entity)
1
== EntityObjed == == EntityOhjed ==
Location 43 Vehicle
(from de:amg::stattauto :vehick:entity) 01 (from de:amg::stattauto:vehicke:entity)

Chapter 4. A Short Tour of Poseidon for UML

This is an overview diagram that provides a high level view of the main entities of

our example. The classes from this diagram happen to be located in different
packages. You can see the package name in parentheses under the class name (e.g.
(from de.amg.stattauto.user.entjtyiror each package in this example, there is

another diagram you can view that shows the classes of that package and how they
relate to each other. In UML, model elements can be represented in different
diagrams to highlight specific aspects in different contexts. Other diagrams covered
later in this guide will give us another perspective.

This diagram shows the most important classes of our example model. It already
tells you quite a bit about this example:

« It modelsg Reservations that have (are associated withbaMember and as
Vehicle

- B Vehicles are associated withel Location , and= Locations have
B Vehicles

- Thes VehicleClass is dependent upon tte: Vehicle

If you select one of these classes in the navigation tree, you will see that the
corresponding class is also selected in the diagram. Similarly, if you select a class in
the diagram it is also selected in the Navigation pane. This is true for all elements:
your selection is synchronized between the different panes.

Try it for yourself by selecting one of the classes in this diagram from the

Navigation pane. Notice how the class nhame is highlighted in the Navigation pane,
while the Diagram pane displays the same class with its rapid buttons visible around
it.

4.2.3. The Details Pane

So much more goes into a model than just the shapes representing elements and the
connections between them. But if all of this information were displayed in the
Diagram pane, the diagrams would quickly become cluttered and unreadable. The
Details pane organizes and presents all of these important particulars via tabs.

So let’s now take a closer look at the Details pane, located at the bottom of the
application. Select the class Reservation by either clicking on the class itself
in the diagram or clicking on the class name in the Navigation pane.

35

Chapter 4. A Short Tour of Poseidon for UML

Figure 4-8. The Details pane with class 'Reservation’ selected.

Froperies [C++ Properies | Style | To Do ltems | Source code | Documentation | Lonstraints | Tagged Yalues |

B clas s = i B E B B X Operations3 F % 1 Attributes
+Criteriat...) ‘

Reservation

Name

+Member...)

Mamespace |de.amg.staﬂauto.reser\ration.entity |B| 1' [*gethumbai): String
— |+setNumber.)
Wisibility @ publiz O protacted O package O private
k. Extendz Implements
Maodifiars D abstract D final D roat D active T
none none
@ ¥ Stereotypes EntityDbject ‘
Derived Associations

none none

Cwned Elements

Resenation[f]-=de.amyg.sta
< [l

The Details pane is composed of seven tabs. These tabs (sometimes referred to as
panels) display all of the detailed information about the element currently selected,
allow changes to be made to these elements, add related elements, or delete the
element all together. Properties can be changed, documentation can be written, the
resulting code can be previewed and edited, and more. The tabs always reflect the
currently selected model element and are enabled only if they make sense in the
context of the selected element. The Details pane also serves as another mechanism
to navigate through the model.

Tabs available in the Details pane:

- Properties

. Style

« To Do Items

« Source Code
- Documentation
- Constraints

- Tagged Values

4.2.4. The Overview Pane

The larger a diagram becomes, the harder it gets to keep track of all of the elements,
especially once they are out of the immediate viewing area. The Overview pane
allows you to keep track of the elements already in the diagram. The pane, located
at the bottom left, provides access to two tabs. First of the two is the 'Birdview’ tab,

36

Chapter 4. A Short Tour of Poseidon for UML

which displays a graphic summary of the diagram currently displayed in the
Diagram pane. From this tab you can zoom and/or pan in either the Diagram pane
or the Overview pane. The second tab, called the 'ByPriority’ tab, contains a
collection of critiques that have been compiled by Poseidon.

Figure 4-9. Class diagram as seen in the Birdview tab

Birdview ToDo-ltems [by Priority] |

3

. =

| Lj% L]
ER T mE'
[- & 100%

To directly scale the section displayed in the main diagram area, enable the
checkbox in the lower left-hand corner and use the slider bar to adjust the zoom
factor. To pan and zoom the small diagram in the Birdview tab without disturbing
the Diagram pane, disable this checkbox.

Figure 4-10. Critiques of the Stattauto example

Birdwiem | Tolo-ltems [by Decizion Type]
|TOD0-Items [ty Decision Type] E||24? Items

|j Clasz Selection B
|j Maming

|j Storage

— |j Inheritance

— |j Containment

— |j Planned Extensions

o 1 StateMachines

D Add guard to {anon)

[Add guard to (anon)

D Add outgoing transitions to State_2

[Add transitions to State_11
[Add trigger or guard to (anon]
[Add trigger ar guard to (aneon) B

37

Chapter 4. A Short Tour of Poseidon for UML

Click on the tab called 'ByPriority’. This tab contains a collection of critiques that
have been compiled by Poseidon. This is a feature that originates from ArgoUML
and was one of the motivations for Jason Robbins to start the project. Itis a

powerful auditing mechanism that discretely generates critiques about the model
you are building. Critiques can be hints to improve your model, reminders that your
model is incomplete in some areas, or errors that would cause generated code to not
compile.

4.3. Navigation

38

A UML model can become quite complex as it expands to include more and more
information. Different aspects of the model are important to a variety of people at
particular times. Additionally, there is no one correct approach to viewing a model
and the information it contains. A UML tool should provide comprehesive yet
simple-to-use mechanisms to access and change that information as each individual
requires. Therefore, Poseidon for UML offers various ways of navigating between
model elements to accomodate all of these needs. We will now take a closer look at
some of the most important ones.

4.3.1. Navigating with the Navigation Pane

The central mechanism for moving through the models is the Navigation pane,
mentioned above. It organizes the complete UML model into a tree view that
provides access to almost all parts of that model via the opening and closing of
subtrees. At the top of the Navigation pane you will find a drop-down menu where
you can choose between a number of views.

Views available from the Navigation pane

+ Class Centric

- Diagram Centric

« Inheritance Centric
« Model Index

- Package Centric

. State Centric

Each view organizes the tree structure with its own different focus. By default, the
Package Centric view is displayed. You have already seen how to change the view
in a previous section.

Chapter 4. A Short Tour of Poseidon for UML

Figure 4-11. The Navigation pane in a Diagram Centric view.

D Diagram Centric | B Clas centric |

o
o i Stattauto

)-%Q Activity Diagrams

o %ig Class Diagrams

O ?= Camponent Model Owvendiamw
-
-
&g Entity Class Model Qe e

Implementation: Owenriew

Main Menu View: Design-Class Model
Member ldentification: Design-Class Madel
Owerwi

Chwenviem

Package Dependencies Ovenviam
Fresentation Class Model Owverview

Frocess Object Class Model Owerview

User Registration: Design-Class Madel

Wehicle Resenvation: Design-Class Model
Vehicle Reservation: Entity Class Model
Wehicle Resenvation: Presentation Clasz Maodel

FTYY TN T

= Wehicletlocation: Entity Class Model
—; Collaberation Diagrams
?— %L Ceployment Diagrams
T stattaute
— % Sequence Diagrams
0 State Diagrams

o

[Useczasze Diagrams

Verify that the current view is the Diagram Centric view. From this view you can see
all of the diagrams contained in the model at one glance. By clicking on one of the
diagram names or icons, the corresponding diagram is shown in the Diagram pane.
The elements contained in that diagram are displayed when the subtree is expanded.

The first two views (Class Centric and Diagram Centric) are the most commonly
used views. The others are primarily used for more limited cases; for example, to
find out the inheritance structure of the model or the structure of the navigation
paths.

Remember that the Navigation pane displays the complete model, while a single
diagram will only show you specific aspects of it. It is possible that there may be
elements that are not contained in any diagram at all and are therefore only
accessible from the Navigation pane.

Take a look at the Model Index view by selectigpdel Index from the drop-down
menu. The Navigation pane will change to display an alphabetical list of all
elements in the model. This illustrates yet another useful way to locate elements.

39

Chapter 4. A Short Tour of Poseidon for UML

40

4.3.2. Navigating in the Properties Tab

The Properties tab in the Details pane provides a very convenient method of
drill-down navigation. Navigating in such a way is very intuitive due to the

relational nature of the elements and therefore of the navigation between them. It is
easy to visualize moving from a class to a method of that class to a parameter of the
method.

From the Diagram Centric view in the Navigation Pane, open the diagram 'Entity
Class Model Overview’ subtree and select the class 'Reservation’.

Figure 4-12. Select class 'Reservation’ from Diagram Centric view

Model Index D Diagram Centric
Diagram Centric B ﬁ
o iStaﬂAuto =
0 Activity Diagrams
o Class Diagrams
o

Component Model Qvendeaw

0 Cantainer Class Analysis- Packages

o Container Class Analysis Model

P %ig Entity Class Model Overview

- ¢— Reservation =-* Resening Member
— E Location

— Q Member

— E Rezenation

— E User k

- B wehizle

— B wehicleClass L

— G—
[~ ¢— “Wehicle > home location

i
I~ i anenymous

- &— Resenation =-> Resenad Yehicle

o Implementation: Owenriew
tain Menu Wiew: Design-Class Model
Member ldentification: Design-Class Model

Owerview B

Take a look at the left side of the Properties tab. Listed here are properties of the
class itself which can be modified, such as name and visibility. To the right are
components of the class, elements in and of themselves. These components have
their own properties in their own properties tab.

Figure 4-13. The Details pane with

Chapter 4. A Short Tour of Poseidon for UML

the class 'Reservation’ selected.

FProperties [Style] To Do ltems] Source code] Documentation] Constraints] Tagged Yalues |
Class b4 Operations + F 3 1 Aftributes ¥ ¥
Name Resenation +Criterial...) n
= +hember..1 E
Mamespace |de.amg.staﬂauto.resen:ation.entity "L"ij Faethumber) : Sting ﬂ e s Siiia
Wisibility @ public (O protected () package () private €% Extends Implements
none

Maodifiers D abstract D static D final |:| roat |:| active |"°"® ‘
% » Steraotypes |Entit‘yDbject Berfivad] Aespeiations

none Reservation[*l-=de.amg.sta
Owned Elements |none | A | il

Double-click on the attribute called 'number’. Notice that the Properties tab has
changed and now displays the properties of the attribute. Notice, also, that the fields
present on the left side have changed to details which are useful for attributes
instead of classes. The right side shows us that this attribute has two accessor
methods, and to modify those methods we need only double-click on their names to
bring up the properties of the selected accessor method.

Figure 4-14. The Properties tab with the attribute 'number’ selected.

Prapetties | Style | ToDolems | Source code | Documsntation | Constraints | Tagged Values |

Class * Operations + T 3 1 Aftributes g ¥
Hame Fezenation +Criterial...) n
= +Member..) =
Namespace |de.amg.stattauto.resen:ation.entity | - |1J +aetumber) : String [+] fHumber: String
wisibility (@ public () protected () package () private W Extends Implements
nane

hodifiers D abstract D static D final |:| root |:| active none ‘
« » Steraotypes |Entihr0bject Derived Associations

none Feservation["l->de.amg.sta
Cwned Elements |none | 4 |l

4.4. Modify Elements

Once we have arrived at a desired

element, we may need to make some

modifications. Poseidon provides several ways of changing information relating to

an element.

41

Chapter 4. A Short Tour of Poseidon for UML

42

4.4.1. Change Element

The quickest and easiest way to change information relevant to an element is to
change it directly in the diagram. Be aware, however, that not all information can be
changed in this way.

At this point in the tour, the Diagram pane should be displaying the class diagram
titled, 'Entity Class Model Overview’ and the Details pane should be displaying
information about the attribute 'number’. This diagram has been set to hide
attributes and operations, so we will change to a new diagram that displays this
information. Select the diagram titled, '"Member Identification: Design-Class
Model’ from the Navigation pane. We will now change the name of an operation
from the class '"MemberldentificationController’.

In the Diagram pane, double-click on the operation 'findMember()’ in the class
'MemberldentificationController’. The Details pane displays the information about
this operation, and the text in the Diagram pane itself is now editable from a text
box. Change the name of the operation to 'searchMember()’ and then press
Ctrl-Return or click elsewhere in the diagram.

Figure 4-15. Change an operation name in a diagram

=< AdivityController == =< Presentation ==

MemberldentificationController Memberldentification
(from de::amg:: stattauto::member: presentation) L L (from de:amg::stattauto:: member::presentation)

' I-nnamber:MemLJerIdentiﬁc:t-'ﬂion\,"alueOLJjer:,t i Anembertumber: String

+findMember() : MemberldentificationalueObject | +Cancel():void

+zavellemberimember:MemberdentificationValueObject T void +Cortinue() void
[1

1
== ProcessObject == == ValueObject ==
MemberidentificationP rocess0bj ect MemberldentificationWalueQbject
(from de::amg::stattauto::member: process) (from de::amg::stattauto:member:process)

—— Hum ber String
Lasthame String
Firsthame: String

+identifyMembenmembetumb er Striing): Mem be i de ntif cationvalue O bject

T
|
W
== EntityO hjed ==
Member
(from de:-amg:: stattauto::memberentdy)

== Key ==-Number: String
Firsthlame:String
Lasthame: String

Chapter 4. A Short Tour of Poseidon for UML

The name change will be propagated throughout the model, with
'MemberldentificationController.findMember()’ replaced by
'MemberldentificationController.searchMember()’ in every instance.

Another method of changing information is via the Details pane. Select the
operation 'searchMember()’ again. Notice that the Details pane provides lots of
information about this operation. In the 'name’ field, change the name from
'searchMember()’ back to 'findMember()’ and press return or change the focus of
the window by moving the mouse out of the Details pane. The change will now be
reflected back in the diagram.

Figure 4-16. Change operation name from the Details pane

FPropetties | Style | ToDoltems | Source code | Documantation | | Tagged walues

Boetn &2 ¢ BT X s

return
’Searchhdember ‘

Hame

Owner |MemberldentificationController |

Accessed Attribute | |B| |

Wisibility @ public O protected O package O private IRerEee) Emels
none

hodifiers D abstract D final D root D quen; D =tatic

Concurmency @sequential Osynchronized O concurent

« 3 Stereotypes nene

4.4.2. Create Element

Creating new elements is just as simple as modifying existing ones. And just like
changing elements, there are several ways to create new ones.

Perhaps we would like to associate a discount program with members. Let’s create a
new package, Discount. In the 'Package Dependencies Overview’ class diagram,
click on thetd 'Package’ button from the Diagram pane toolbar. A cross-hair

appears. Click in the Diagram pane to place the new package into the diagram.
Rename this class 'discount’ using one of the methods outlined in the previous
section.

Now that we have the package, we need to associate it with the package 'member’.
We could do this by creating a new association through the toolbar and connecting
the association ends to the classes, or we could speed things up and use the

aptly-named 'Rapid Buttons’. Click on the new package 'discount’. Several buttons

43

Chapter 4. A Short Tour of Poseidon for UML

44

appear around the edges of the package. Click and hold the mouse button down on
the left rapid button. Drag the crosshair that appears onto the package 'member’ and
release the mouse button. An association has now been created.

Now perhaps we need to make a connection between 'discount’ and a region
because different discount schemes are offered in different regions. This will

require the addition of another package and another association. One rapid button
can take care of everything. Select 'discount’ in the diagram. Click (and this time do
not hold) the mouse button on the right rapid button for the package 'discount’. An
new package and an association have been added to the diagram. Rename the new
package 'region’.

Figure 4-17. Add a package to a diagram with the rapid buttons

im pleme ntation Liser]
member| reservation
b - ———

|
i scourt

: .
vehicle

]
ol
T
§

4.4.3. Delete Elements

So after further review, we have decided that the package 'discount’ is a good idea,
but not for this diagram. We have further decided that the 'region’ package is
unnecessary and will not be used elsewhere in the model. Let’s first delete 'region’
completely.

Chapter 4. A Short Tour of Poseidon for UML

Select the package region’ in the Diagram pane. Now press the 'Del’ key. A dialog
box will prompt you before removing the class. Notice that the association has been
deleted as well, as there is no point to an association with only one end.

Figure 4-18. Delete an element from a model

im plem entation

Are you sure?

" Are you sure you want to remove all selected elements from the maodel?

= region

FE

, ,
discourt vehicle

Fackage: region

To delete an element without encountering the dialog box, you can press Ctrl and
mouseover the element. A delete rapid button will appear in the upper right corner.

) |
Class_1
L0 |Delete from Model

1

45

Chapter 4. A Short Tour of Poseidon for UML

46

The package 'discount’ is a different story. We may need to use this again
elsewhere, so we just want to remove it from this one diagram, not from the entire
model. To remove it from this diagram, select the class in the Diagram pane. Now
cut it from the diagram using either the Cut option from the main toolbar, Cut from
the Edit menu, or the shortcut Ctrl-X. You will not encounter a warning here, but the
package still exists within the model and can be viewed from the Navigation pane.

Notice that the element no longer appears in the Navigation pane under the class
diagram. Change the Navigation pane to display the Model Index view and take a
look at the packages listed there. You will see that, although it is not included in any
current diagrams, the package 'discount’ still exists and is ready to be used in
another diagram.

Figure 4-19. Remove an element from a diagram

E| Fackage Centric |
)
(J?— E| de B
&7 amg
(é)— E| stattauto
— Component Model Dwe e
— Entity Class Madel Dvensien
— Fackage Dependencies Oweniewn
— Fresentation Class Model Overview
%Process Object Class Model Oweni e |:
o E| companent
— E| discount
o~ 7 implementation
o=] member E

Now that you have seen some of the basic ways of working with models in
Poseidon, you should be ready to strike out on your own and see all that Poseidon
has to offer.

Chapter 5. Interface

5.1. Toolbar

New Project

Open Project

Save

Print*

Import Files

Roundtrip Enabled***
Roundtrip Disabled***
Undo**

Redo**

Cut

Copy

Paste

New Class Diagram

New Use Case Diagram
New State Diagram

New Activity Diagram

New Collaboration Diagram
New Sequence Diagram
New Deployment/Object/Component Diagram

PEHPrPEE KAV e &k 0o IV

* Not available in the Community Edition
** Limited functionality in the Community Edition

*** Available in the Professional and Enterprise Editions only

47

Chapter 5. Interface

5.2. Menus

48

5.2.1. File

File

@ Hew Froject Strg-H

E Open Project... Strg-0

m Save Project Strg-§

Save Project As...

b P
wh herge Froject into current...

%% Impaort files

Export Project to XMI

Save Graphics...

% Frint... Strg-P

Frint Diagrams...
Fage Setup...
Frint Options...

Exit #-Fa

New Project- Opens a new project with a blank class diagram. If a project is
already open, it will prompt for a save.

Quick Key - Ctrl-N

Open Project- Opens a browser dialog to select a file to open.

Quick Key - Ctrl-O

Save Project- Saves the project to its last saved location.

Quick Key - Ctrl-S

Save Project As..- Opens a save dialog to save a project with a new name
and/or location.

Merge Project into Current... - Opens a browser dialog to select a project to
combine with the project currently open in Poseidon.

The file types that may be merged are: zuml, zargo, and xmi.

Import Files - Opens a browser dialog to select files to incorporate into the
project currently open in Poseidon.

Chapter 5. Interface

The file types that may be imported are: java, jar, mdl.

Note: Not available in the Community Edition

Export Project to XMI - Opens a browser dialog to select the location to which
to save the xmi file.

Save Graphics- Opens a browser dialog to save the diagram as a graphic.

The file types that may be used to save graphics are: ps, pdf, wmf, svg, png, eps,
gif, and jpg.

Print... - Opens the printer dialog.
Quick Key - Ctrl-P

Note: Not available in the Community Edition

« Print Diagrams... - Opens a tree of the diagrams. Use Citrl-click to select
multiple diagrams to print at one time.

Note: Not available in the Community Edition

Page Setup..: Opens a dialog to select page options such as paper size and
orientation.

Note: Not available in the Community Edition

Print Options... - Opens the Print Options dialog to select options such as
scaling.

Note: Not available in the Community Edition

49

Chapter 5. Interface

- Exit - Exits Poseidon. If there are any edited projects, a save prompt will appear.

5.2.2. Edit

Edit

9 Undo Create class diagram Ctr-Z

e Redo Copy Ctr+Shift-Z

% Cut Ctrl-X

@ Copy cti-C

@ Paszte Ctr-4

Select 3 Select All Ctrl-A
Copy To Windows Clipboard Ctrl+5hift-C Invert Selection Ctrl-l
& Find... F3

Lelete Fram Model Delete

Femove Diagram

Jump to Element Ctr-J

Settings...

« Undo - Steps backwards in the edit history.
Quick Key - Ctrl-Z

Note: Limited functionality in the Community Edition

« Redo- Steps forwards in the edit history.
Quick Key - Ctrl-Alt-Z

Note: Limited functionality in the Community Edition

« Cut - Removes the selected element(s) to the Poseidon clipboard. The element
will remain in the model.

Quick Key - Ctrl-X

50

Chapter 5. Interface

Copy - Places the element(s) into the Poseidon clipboard without altering the
element selection.

Quick Key - Ctrl-C

Paste- Places the element(s) currently in the Poseidon clipboard into the model.
Quick Key - Ctrl-V

Select-
- Select All- Selects every element in the current diagram.
Quick Key - Ctrl-A

Invert Selection - Selects all unselected elements while de-selecting all
selected elements.

Quick Key - Ctrl-I

« Copy to Windows Clipboard - Places the element(s) into the Windows
clipboard without altering the element selection.

Quick Key - Ctrl-Alt-C

Note: Not available in the Community Edition

Find... - Opens the Poseidon search dialog.
Quick Key - F3

Delete from Model - Removes the selected element(s) from the model
completely. All instances of the element(s) will be removed from every diagram.

Quick Key - Del

Remove Diagram- Removes the selected diagram from the project without
deleting the elements contained within that diagram.

Jump to Element- Opens a dialog to quickly navigate to a specified element

51

Chapter 5. Interface
Quick Key - Ctrl-J

+ Settings...- Opens the Settings dialog, where you can change some of the default
properties of Poseidon.

5.2.3. View

Wiew

o to Diagram... Strg-G

Detailz Tabs » HNext Detailz Tab
Properties

style

To Do ltems

Source code

Adjust Grid ..
Zoam 3
= Goto contained Diagram... Strg+dt-G

Show Rapid Buttons Pausa

Documentation

Constraints

Tagged Yalues

- Go To Diagram...- Opens the diagram navigation dialog.
Quick Key - Ctrl-G

« Details Tabs-
Next Details Tab- Changes the active tab to be the next tab to the right.

Individual Tabs - List of individual tabs for navigation.

« Adjust Grid... - Opens the grid dialog, where the grid display can be modified.
« Zoom -

- Zoom Factors- List of zoom factors to change the diagram display.

« Go To Contained Diagram...- Navigates to the sub-diagram of the current
element. If the element has more than one sub-diagram, the diagram navigation
dialog will open, filtered on the current element.

Quick Key - Ctrl-Alt-G

- Show Rapid Buttons- Toggles rapid button display.
Quick Key - Pause

52

Chapter 5. Interface

5.2.4. Create Diagram

LCreate Diagram

L,

Class Diagram strg-L
by

Use Case Diagram Strg-U
B

State Diagram $trg-T

o,

Activity Diagram trg- v
B

Collaboration Diagram Strg-B

ot

Sequence [iagram Strg-0

&L

Deployment/ObjectCompanant Diagram Strg-0

- Class Diagram- Creates a new blank diagram.
Quick Key - Ctrl-L

« Use Case Diagram Creates a new blank diagram.
Quick Key - Ctrl-U

- State Diagram- Creates a new blank diagram.
Quick Key - Ctrl-T

- Activity Diagram - Creates a new blank diagram.
Quick Key - Ctrl-Y

- Collaboration Diagram - Creates a new blank diagram.
Quick Key - Ctrl-B

» Sequence Diagram Creates a new blank diagram.Limited functionality in the
Community Edition

Quick Key - Ctrl-Q

53

Chapter 5. Interface

- Deployment/Object/Component Diagram- Creates a new blank diagram.

Quick Key - Ctrl-D

5.2.5. Align
Align
Wertically 3
Haorizontally »
Size 13
Width Cnly 3
Height Only 3
Distribute »| % Distribute Horizontal Spasing
DOrdering 3 ﬁ_ﬂ_f] Distribute Horizontal Centers
IF slian to ¢iid = Distribute Vertical Spasing
=] pistribute Vertical Centers
« Vertically -

Align Tops - Moves selected elements so that top edges are aligned.
Horizontal placement is not affected.

Bottoms - Moves selected elements so that bottom edges are aligned.
Horizontal placement is not affected.

Center - Moves selected elements so that center points are aligned. Horizontal
placement is not affected.

+ Horizontally -

Align Lefts - Moves selected elements so that left edges are aligned. Vertical
placement is not affected.

Align Rights - Moves selected elements so that right edges are aligned.
Vertical placement is not affected.

Center - Moves selected elements so that center points are aligned. Vertical
placement is not affected.

. Size-

54

Greatest Current Width and Height - Uniformly resizes selected elements
so that each is the size of the largest selected element.

Chapter 5. Interface

- Smallest Current Width and Height - Determines the size of the smallest
element that can display the information of each of the selected elements and
uniformly resizes the selected elements.

Minimum Possible Width and Height - Determines the smallest possible size
for each of the selected elements and uniformly resizes them so that each is the
size of the largest minimized element.

« Width Only -

- Greatest Current Width - Uniformly resizes selected elements so that each is
the width of the largest selected element.

. Smallest Current Width - Determines the width of the smallest element that
can display the information of each of the selected elements and uniformly
resizes the selected elements.

Minimum Possible Width - Determines the smallest possible width for each
of the selected elements and uniformly resizes them so that each is the width of
the largest minimized element.

« Height Only -

- Greatest Current Height - Uniformly resizes selected elements so that each is
the height of the largest selected element.

- Smallest Current Height - Determines the height of the smallest element that
can display the information of each of the selected elements and uniformly
resizes the selected elements.Note: this is not functional in the current version
of Poseidon.

Minimum Possible Height- Determines the smallest possible height for each
of the selected elements and uniformly resizes them so that each is the height
of the largest minimized element.

- Distribute -

Distribute Horizontal Spacing - Places a uniform vertical gutter between
elements. Vertical spacing and element size are not changed.

Distribute Horizontal Centers - Places a uniform amount of space between
the center vertical axes of the selected elements. Vertical spacing and element
size are not changed.

Distribute Vertical Spacing - Places a uniform horizontal gutter between
elements. Horizontal spacing and element size are not changed.

55

Chapter 5. Interface

Distribute Vertical Centers - Places a uniform amount of space between the
center horizontal axes of the selected elements. Horizontal spacing and
element size are not changed.

- Ordering -

Bring To Back - Places the selected element(s) on the bottom layer of the
diagram display.

Bring To Front - Places the selected element(s) on top of the diagram display.

- Send Backward- Moves the selected element(s) down one layer in the
diagram display.

- Send Forward - Moves the selected element(s) up one layer in the diagram
display.

- Align to Grid - Snaps the top and left edges of an element to the grid. Element
size is not changed.

5.2.6. Critique

Critique

Dezign |ssues...

Design Goals...

Browse Critiques...

- Design Issues. - Opens the issues dialog, where you can specify the importance
of each design criterion. This affects the order of critiques.

- Design Goals..- Opens the goals dialog, where you can specify the importance
of each design goalNote: this is not functional in the current version of
Poseidon.

- Browse Critiques...- Displays a list of all possible critiques. Here you can
toggle the critiques and change their importance.

56

Chapter 5. Interface

5.2.7. Generation

Genera tion

Generated sources: File check interval » 3 seconds

Reload the templates Ssecon d=

UhiLdec A0 zecon dz
30 seconds
Java
FHF

Delphi

60 secon ds

Parl
WB.Net
CH+
CSharp
CorbalbL
S0

. Generated Sources: File Check Intervat

Interval Listing - Determines the length of time between comparison of the
source code and the current project.

Note: Available in the Professional and Enterprise Editions only

- Reload the Templates Refreshes the templates if they have been altered.

Note: Available in the Professional and Enterprise Editions only

- Language Listing - Opens the generation dialog of the selected language.
. Community Edition: Java
- Standard Edition: Java, UMLdoc
Embedded Edition: Java, UMLdoc, Embedded

Professional and Enterprise Editions: UMLdoc, Java, PHP, Delphi, Perl,
VB.Net, C++, CSharp, CorbalDL, SQL

57

Chapter 5. Interface

5.2.8. Plug-Ins

Flug-Ins

Flug-Ins Panel

Frofiles Panel

« Plug-Ins Panel- Opens the Plug-Ins Manager, where you can add, remove,
enable, and disable the plug-ins.

- Profiles Panel- Opens the Profile Manager, where you can enable and disable
profiles.

Note: Not available in the Community Edition

5.2.9. Help

Help

About Foseidon for UML
Open Default Example
Open Users Guide

Open FAQs

Tip of the Day

Send asupport request

Licenze Manager

Purchase » Upgrade Foseiden

Upgrade subscription

« About Poseidon for UML - Displays Poseidon version information and credits.
- Open Default Example- Opens the Stattauto project.

« Open Users Guide- Opens the local html version of the Poseidon User Guide.
« Open FAQs- Opens the local html version of the FAQ.

- Tip of the Day - Opens the Tip of the Day dialog.

- Send a Support Request Opens the Support Request web page at the
Gentleware web site. Poseidon will launch a web browser, if necessary.

Note: Not available in the Community Edition

58

Chapter 5. Interface

- License Manager- Opens the License Manager, where you can add and remove
keys, serial numbers, and register your copy of Poseidon.

Note: Not available in the Community Edition

- Purchase- Provides links to the Gentleware Web Store. This is a separate menu
in the Community Edition.

Upgrade Poseidon
Upgrade Subscription

59

Chapter 5. Interface

60

Chapter 6. Panes

The panes in Poseidon for UML divide the application workspace into 4 sections,
each with a specific purpose. This design eases the process of modeling by
providing quick access to all parts of the project. The panes can be resized and
hidden as you work with your models.

Figure 6-1. Panes in Poseidon

Navigation Pane Diagram Pane

[] Poseidon for UML Professional Edition - Untitled

File Edit Miew Create Diagram Align Critigue Generation Flug-Ins Help
F By By B[Sl B[Oy [F
DEOsHS cdDd
— = e —
hodel Index
Diagram Centric lz‘ @

G model 2

Auctivity Diagrams

Class Diagram_1 |

A BBRXES Pe—eeg7 O | D

D Diagram Centric

B&

Clasz Diagrams
§E Clasz Diagram_1
B class_1

g,' Collaboration Diagrams

'[j Ceployment Diagrams

% Sequence Diagrams
State Diagrams

o Usecase Diagrams

Source code Documentation] Constraints] Tagged Walues
Birdwiew Wl Froperties [C++ Properies | Style | To Do ltems
o B class a = ﬁ Q a Operations
— Name Class_1 ‘
Mamespace |(mode|2) "'"EJ
e \ Extend:
Wigibility @ public O protected O package O private By =
Mo difiars D abstract |:| static D final D root D active nens
4« » Stereotypes |n0ne | Derived
none
Owned Elaments |none |
O -) a1l [« il | L

Overview Pane

6.1. Navigation Pane

As a model grows, its complexity likewise increases. It becomes more and more
necessary to have different organizations of the model to facilitate easy navigation.
This is what the Navigation pane has been designed to do; present the elements of a

61

Chapter 6. Panes

model in different arrangements based on pre-determined criteria. Poseidon calls
these arrangements 'views'.

Each view positions the elements within the model hierarchy differently. Views are
not required to display all of the elements of a model, only those which pertain to
their organization schema. The one similarity between all of the views is the root
node, which is always the model itself. In the case of the default example, this
would be ’'StattAuto’.

The views offered by Poseidon are as follows:

+ Class Centric

- Diagram Centric

« Inheritance Centric
« Model Index

- Package Centric

. State Centric

6.1.1. Add a Tab

Adding a tab allows you to view several navigation views at one time. You can add
as many tabs as you like to the Navigation pane, up to the number of views, that is.

D Diagram Centric
Diagram Centric E ﬁk
[og iStah‘Auto o -
Cuplicate Tab
(= Autivity Diagrams
i Class Diagrams
g,, Collabaoration Diagrams
o= O

L[Deployment Diagrams
% Sequence Diagrams
o)

State Diagramsz

&= %, Usecase Diagrams

To add a tab to the Navigation pane:

1. Click the @ Add Tab button. A new tab will appear in front.

2. Select a different view for this tab from the dropdown list.

62

Chapter 6. Panes
6.1.2. Delete a Tab

Deleting a tab is equally as easy.

D Diagram Centric B clas CentriE]
%
Diagram Centric B @ Close this tab
o iStah‘Auto
i Autivity Diagrams
i Clasz Diagrams
g_. Collaboration Diagrams
i '? Ceployment Diagrams
% Sequence Diagrams

State Diagrams

(=7, Usecase Diagrams

To delete a tab:

1. Move the mouse to the right side of the name of the tab. A 'close’ button with
an 'X’ on it will appear.

2. Click this button to close the tab.

6.1.3. Delete a Diagram

Deleting a diagram in Poseidon removes the diagram itself completely from the
model, but leaves the the elements contained within that model intact.

There are two ways to delete a diagram, through the Edit menu and through the
context menu.

To delete a diagram using the Edit menu:

1. Select a diagram in the Navigation pane.

2. Select 'Remove Diagram’ from the Edit menu. A dialog will appear to prevent
unintended deletion of the diagram.

Are you sure?

':“J Age you sure wou want to remove the selected diagram™
-

All contained elements will not be removed from the model.

Les || v |

63

Chapter 6. Panes

To delete a diagram through the context menu:

1. Select the diagram in the Navigation pane.

2. Right-click on the diagram name and select 'Remove Diagram’. The same
dialog box mentioned above will appear.

6.2. Diagram Pane

64

The Diagram Pane is the area used to do most of the diagram creation and
modification. It is generally the largest pane.

This section covers some of the functions available from the diagram pane, as well
as changing the settings of this pane. Chapter 7, "Working with Diagrams’, provides
a more extensive look at all of the functions available. Chapter 9, titled 'A Walk
Through the Diagrams’, contains detailed information about the diagrams
themselves.

The graphical editor is embedded in the Diagram pane. This pane, as has been
previously mentioned, is used to display and edit the diagrams of your model

6.2.1. Diagram Pane Toolbar

Across the top of the Diagram pane, there is a toolbar that contains a number of
tools you can use to create and modify your UML models. If you have already
worked with a UML tool or a drawing tool capable of creating UML diagrams, you
are probably familiar with the general idea. Each diagram type has a specialized set
of tools in addition to the tools that are common to all diagram types. To display the
name of each individual tool, position your mouse over it and wait a second or so,
the name will appear in a box underneath.

In general, the Diagram pane toolbar changes according to the type of diagram
currently displayed. There are, however, some tools which are available in all or
nearly all of the diagrams:

6.2.2. Remove Tabs

To remove the a tab from the Diagram pane, move the mouse over the tab to be
deleted. A 'delete’ button with an X’ will appear. Click the button and the tab will
be removed from the pane.

Chapter 6. Panes

Ohve i e Implementation - Packagv_*l
k| BEBES | P e Closethistab:(EA o | i

LUser Member|

I

Reservation

6.2.3. Change Properties of the Diagram Pane

6.2.3.1. Grid Settings

The first thing you may notice about the Diagram Pane is the grid that is drawn over
the drawing area. By default, the drawing area displays this grid. The visible grid is
only a collection of lines, they have no functions of their own.

A second grid, called the snap grid, is invisible to the user. When this option is
enabled, diagram elements align themselves along the intersections of this grid
which are closest to the element (in a process called snapping) to aid with element
positioning.

To make elements snap to the visible grid, set the visible and snap grids to be the
same size. The settings shown in Figure 10—1 will have the visible grid drawn every
20 pixels, and the elements will be able to snap to intermediate positions of the
visible grid.

You can change the properties of both grids from the Grid Settings dialog in
View-Adjust Grid...

65

Chapter 6. Panes
Figure 6-2. Grid Settings dialog

(O Dots (@) Lines

[¥] snap

Pice
| oK

Grid Settings

- Visible - Determines whether the visible grid is drawn at all.

Spacing and line appearance are also set for the visible grid here.

- Snap- Determines whether the elements placed in the diagram will be forced to
align to a snap grid.

The pixel dropdown sets the spacing of the snap grid.

6.2.3.2. Other Settings

The grid is not the only setting that can be changed for the Diagram pane.

- Display/Hide Tabs- Hide or redisplay diagram tabs at the top of the pane with
the Appearance Tab in the Settings Dialog.

« Number of Tabs Displayed- Set the maximum number of tabs with the Settings
Dialog, Appearance Tab.

- Display/Hide Information About Elements - Hide or redisplay information
such as operations or attributes from the Settings Dialog, Diagram Display Tab.

- Resize the Drawing Area- Drag the pane separation bars to the desired size.
The arrows on the bars open and close the panes completely.

- Enlarge/Reduce the Diagram- Change the zoom factor in the Properties tab for
the diagram or hold the Ctrl key while turning the mouse wheel.

66

Chapter 6. Panes
6.3. Details Pane

The Details pane provides access to all of the aspect of the model elements. Within
this pane, you can view and modify properties of the elements, define additional
properties, and navigate between elements.

The pane is composed of eight tabs:

- Properties

« C++ Propertiegnot available in CE)
. Style

- To Do Items

- Source Code

- Documentation

- Constraints

- Tagged Values

The following sections investigate these tabs in greater detail.

6.3.1. Properties Tab

The most important tab is tHeropertiestab, which is selected by default. The
Properties tab looks a little different for each different type of model element. So far
in this tour we have selected packages, diagrams and classes. All of these elements
have only one common property, the property 'name’. It makes sense that this
would be the only field in this tab which is duplicated for all of the elements.

An important property, the zoom factor, becomes visible in the Details pane when a
diagram name is selected in the Navigation pane. You can use the slider to change
the zoom factor interactively or use the buttons to set it to pre-selected zoom factors
(The range of zoom factors is limited in the Community Edition). To access this
property, select a diagram in the Navigation pane or click on empty space in the
Diagram pane.

67

Chapter 6. Panes
Figure 6-3. Properties tab with zoom

Wehicle Resenvation: Design-Class Model |
A = s o
k BELztEBste—ceF He | BE O AcOEL ¢
AetivtyCon il e gt o ket e <% AcrANCITirier
P oo sl atpsnal bl it ijact Gt sl
Pt e B Dbt s Sy
e : Lty
AT - e ——
bk i iy Fhew rtiriiaed ik
ekt Sy
i !
<« Pl =
T ! [T —— -
e ————_)
ET—— L= 1
etk Lt
i
———— <Erayiget =e T—— o Erp Ot o = Ernchp
it e Walichn Locana Mz Pme g
TR IA——
Froparies [C++ FProperies] Style] To Do ltems] Source code] Locumentation] |
Diagram & o= x
Hame |Vehic|e Reservation: Design-Class Model |
Namespace |Design.Use Case - Implementation.Wehicle Resenvation " ot ||lJ
Z t r i)
P e
0 25 50 75 100 125 1460 175 200
Zoom S0% J| Zoom 75% H Zoom 100% H Zoom 125% H Zoom 150% H Wiind o

But the real power and importance of the Properties tab becomes apparent for
complex model elements like classes or methods. For these, the Properties tab
becomes an important tool to view and change the model details. As a general rule,
properties that can be changed are placed to the left. On the right, related model
elements are displayed. By clicking on the related model elements, you can
navigate to them and change their properties. This way, you can drill down from a
package to a class to a method to its parameters and so forth.

68

Chapter 6. Panes

Figure 6-4. Drill-down navigation

Froperies [gtyle] To Do ltems] Source code] Documentation LConstraints] Tagged Walues |

B tlass = 4 B E BB X Operations # F 3 L Attibutes 3§ 3§
ehicle +Criterial..): Callection
Name P A
- -Description : String k
Mamespace |de.amg.staﬂauto.\rehicle.entity "'"lj
Wisibility @ publiz O protactad O package O private
R Extends Implements

Madifiars D abstract D static |:| final D raaot D active none nane
EntityObject

<« Stereotypes

Derived Aszociations

Wehicle[1]5->Location[] [
Ilﬂ II.

none nong

Cwned Elements

6.3.2. C++ Properties

The C++ functionality has been ported from the Embedded Edition. The available
properties are dependent upon the element currently selected.

Figure 6-5. C++ tab for an attribute

Source code Documentation] Tagged Values
Properties C++ Properties [Style | To Do ltems

Aftribute "memberNumber!

Modifiers: I:‘static Dconst Dmutable Dvolatile

Containment: @ by walue O by pointer O by reference

Note: Not available in the Community or Standard Editions

69

Chapter 6. Panes

70

6.3.3. Style Tab

- Offers possibilities for defining colors and certain other display characteristics of
selected elements

- Style can be changed for a single element, or for several selected elements at a
time

Figure 6-6. Style tab for an element without compartments

Froperties C++ Properties | Style [To Do ltems Source code | Documentation Lonstraints Tagged Values

Bounds [ro.0.40.0, 1400, 1200 |

Fill Lines Font

|<defau|t> B| | E|

The Style tab allows you to control the display of elements within a particular
diagram. If, for example, you wanted all your classes in a diagram to have fill color
green, you can select all the elements (using the mouse, or by pressing Ctrl-A) and
then use the color chooser to change their color to green. You can also change the
line color, text color, font, and font size. The display properties of an element exist
only within that diagram, that is, if you give a font color to a class in one diagram,
that font color will not be automatically applied to the other diagrams in which that
element appears.

The display of compartments is also configurable from the Style tab. In general, the
visibility of compartments (for those elements that have compartments, such as
classes) is determined at the diagram level. But this can be altered for individual
elements without affecting the rest of the elements in that diagram. Select the option
"Specify individual compartment display" and enable or disable the appropriate
checkboxes.

Chapter 6. Panes

Figure 6-7. Style tab for an element with compartments

Froperies] C++ Properies | Style I To Do ltems] Source code Documentation] Lonstraints Tagged Walues

Bounds | |

@ Specify infividual compartment display O Compartment display followes diagram setting
|z| All Feature Compartments

@Aﬂribute Compartment

|z| Operation Compartment

Fill Lines Font

<defaults E| | B|
|:J | || =lll |:J | || =lll |:J | | | =lll

6.3.4. To Do Items Tab

- Displays the critique selected in the Overview pane

- Sets the activity of the critique via the Toggle and Snooze buttons

Figure 6-8. To Do tab in the Details pane

Io

roperties Style | To Do ltems Source code Locumentation Constraints Tagged ¥alues

“ou have not yetspecified operations far +elasz WehicleClass |

BT

i Attributes

+Economy : String = "Econamy";
+Compact: String = "Compact";
+Standard[1] : String = "Standard";
+Luseuny : String = "Lusund;

i Azsociations
i Qperations

1F end classWehicleClass &f
. Harmally classes provide operations that define their behawvior.

Defining operations is needed to complete the behavioral specification part of your design.

6.3.4.1. Snooze Critique

The= Snooze critique button temporarily turns off a single critique. The critique

71

Chapter 6. Panes

12

will return without a user specifically re-enabling it.

6.3.4.2. Toggle Critique

The Toggle critique button allows you to turn off and on single critiques. This
feature is available in the Standard and Professional editions of Poseidon.

6.3.4.3. Turn Off Autocritique

Critiquing can be turned off completely from the Appearance tab of the Settings
dialog. Uncheck the box titled, 'Perform Automatic Critiquing’ to disable critiques.
The tab will still be visible in the Details pane, but no critiques will be listed.

£ settings
| Enviranment | User | Fraject | Optimizing | Diagram display |
General | Appearance Modeling

Look And Feel [Possiden alloy) =]

@ Show tips on program start

@ Shaw bird view perspective @ Adjust birdview to diagram size

[#] Show Ta Do (Critics) Pane

Perform automatic critiquing
@ Tabs in diagram wiew @ max. number of tabs EI
Ok] | Apply I | Cancel

6.3.5. Source Code Tab

- Available for different elements, based upon the target language selected

- Shows the code generated by Poseidon

Chapter 6. Panes

Figure 6-9. Source code tab for a class

Froperies | Style | ToDoltems Source code Documentation LConstraints Tagged Walues l

Language |Java El

CorballL
AEE Tl Net Mezber, java™ generated from Poseidon for UMLD.

PofJava k ML is developed by <3 HREF="htip://www. gentleware. cor"=Gentlewarec /A=,
GeEs0L th <A HREF="http: /S iakarta.apache. org/velocity,Mereloci ty< Ax template engine.
£ CSharp

packag|FHP .Container Class Model.Member:

import Analysis.Container Class_Model. Account.®;
import. Analysis.Container Class Model.Reserwvation. #;
import jawva.util.®*;

/fi
* capan style="font—fampily:Arial "=Additional comments and documentation can be added. </ span>
*

Fauthor Carl Carlson
=
public class Member |

Y /5 end Member

atatus-bar-insert

At the start this code just represents the skeleton that has to be filled with content.
For example, method names and the corresponding parameters may already present
and defined, but the method body might still be empty. With most of the target
languages, you can use this editor to fill in the body. With round-trip engineering

you can also use any other external editor or IDE. Note also that documentation
entered in the Documentation tab is included in the generated code.

The editor in Poseidon will not allow you to change all of the code. The sections of
code which are highlighted in blue are 'read-only’ in the Poseidon editor. Text
highlighted in white may be edited, deleted, and appended. This functionality
originates from a NetBeans project and is the result of a plug-in.

New in version 2.1 is the ability to select the target language of the source code. The
list of available languages is dependent upon the list of enabled plug-ins and
profiles. Each language must have both the plug-in and profile specific to that
language enabled.

The same diagrams may be used to generate code in different languages. Any code
written in the 'your code here’ sections is available only in the language selection in
which it was written. For example, any code manually entered into the editable
section of this tab while Java is the selected language will not be seen if the
language is changed to C# or Perl.

Should there be ambiguity, a second dropdown will appear next to the language
selection dropdown in order to determine the correct option for the implementation.

73

Chapter 6. Panes

74

6.3.6. Documentation Tab

- Contains a WYSIWYG editor, where you can easily add your own
documentation for model elements

« You can also use javadoc tags, li@author , @seeand others

Figure 6-10. Documentation tab for a class - WYSIWYG and source

| Froperies | Etyle | To Do ltems | Source code | Documentation [Lonstraints | Tagged Yalues |

& B oo [stenca [etaury [=]|[normai [=][normal =]
EE=E I A BE EE € diUB- @TAEE
Additional comments and documentation can be added. @mhorJa"a'D” Tag |Ca” Ca[ﬂ’:ocn”me”tﬂﬁon I
[B]

See

since k

depracated

zeral

author

W Ersion
ureSiuye | Source Miew | =

Properies | Etyle | To Do ltems | Source code | Documentation [LConstraints | Tagged Walues |

3 B oo i

BIUx A BBR = &€& @i oEE— §9 A%
Java-Doc Tag | Cocumentation |

[ERUthar Carl Carzon

| O]

see

since k

depracated

serial

author
version

=p=Additional comments and documentation can be added.</p>

WYSIMYSE | Source Wiew

The Documentation tab provides a mechanism for adding your own freeform text as
well as supported JavaDoc tags to the generated code.

There are a couple of choices for entering text - you can use the WYSIWYG editor
and format the text using the documentation toolbar, or you can edit in plaintext
mode and add html formatting tags by hand. Both methods result in html-formatted
text; for instance, pressing 'Enter’ while in the WYSIWYG tab generates a new
paragraph with the <p> </p> tags, and pressing 'Ctrl-Enter’ generates the
 tag.

This information is stored as tagged values and can be previewed in the Java Source
tab. Any entries made via the editor on the left side of the tab are placed in
paragraph tags by default and are displayed before the JavaDoc entries.

6.3.6.1. Toolbar

@ & (e

"
ot

=
L3

m S

K] [@]l

®
e

W@ E P

W

O e B =B & O (e

BB @ @

iy

Cut

Copy

Paste

Undo

Redo

Search and Replace
Align Left

Align Center

Align Right

Bold

Italic

Underline

Subscript
Superscript

Font Color

Insert Default Table
Insert Table
Numbered List
Bulleted List
Decrease Indent
Increase Indent

Link to Model Element
Insert Hyperlink
Insert Bookmark
Insert HTML

Insert Span

Insert Image

Insert Text

Insert Horizontal Line
Insert Symbol

Show All Formatting Characters

Remove Formatting

Open Style Properties Dialog
Display Document Statistics

Chapter 6. Panes

75

Chapter 6. Panes
6.3.6.2. Dropdowns

Standard lE‘

Standard

Heading 1
Heading 2
Heading 2
Heading 4
Heading 5
Heading &

Para-
graph
Style

| [Default]

[

Crefault
Dialog
Dialoglnput
Dream Orphans G
Eurasia
“aramond
Feargia

Impact B

Font

Type
Er—

Mormal
=3

10

12

14

18

24

26

Font
Size

Normal |Z|
Mormal

Style
Sheet

6.3.7. Constraints Tab

- Holds the constraints for the given element

Figure 6-11. New constraint in the Constraints tab

FPropetties] C++ Properties] Style] To Do ltems] Source code Documentation Lonstraints Tagged Yalues

%

Hamea | Language | Stereotype | Body
My New Constraint | Plain English <<precondifion®=|[=]|3ge must be greater than 24

<<invariant=»
<<precondition==

<=postcondition==

<estatelnvariants»

76

Chapter 6. Panes

The UML does not include specifications regarding constraint language. Poseidon
is now able to hold constraint information that is language independent, including
plain English. Of course, you are still free to use OCL if you so choose.

6.3.8. Tagged Values Tab

- Edit different pairs of names and values that you might want to use in order to
enhance your model with specific characteristics.

« This is a general mechanism of UML that can be extended for special purposes

Figure 6-12. Documentation stored in the Tagged Values tab

Froperties | C++ Properties | Style | Tao Lo ltems |
Source code | Documen tation | Constraints | Tagged Walues

Owner Stereotype | Tag | Walue |
documentation#author Carl Carlson

documes nitation#version 1.2

If, for example, you need special information for external processing of the model
you can add this information here. This is also where Poseidon stores any
documentation entered in the Documentation tab.

6.4. Overview Pane

Especially when working with large models, the Overview pane is quite helpful for
keeping track of the big picture of the model.

77

Chapter 6. Panes

78

6.4.1. Birdview Tab

e E
0O
| Lj% L |
(-« T EEI
] - & 100%

Screen space is limited, and it is often impractical to view an entire diagram at one
time. Scrolling around or zooming in and out repeatedly is time-consuming,
inefficient, and generally annoying. The Birdview tab resolves these issues by
maintaining a snapshot of the entire diagram that can be quickly referenced while
working on a diagram.

6.4.1.1. Redisplay a Section of a Diagram

The portion of the diagram visible in the Diagram pane is highlighted in the
Birdview tab. You can change the display by dragging the highlighted portion
within the birdview.

6.4.1.2. Zoom in Birdview Only

Perhaps you would like to keep track of a smaller section of the diagram, and then
later decide to view the entire diagram again. This is easily done by adjusting the
zoom factor in the Birdview tab.

To change the zoom factor of the Birdview tab:

1. Uncheck the box in the lower left corner of the pane.
2. Use the slider bar to change the zoom factor.

3. The scroll bars can be used to position the view as required.

6.4.1.3. Zoom in a Diagram

The Birdview tab provides the means to resize the diagram in the Diagram pane as
well. The view in the Birdview tab remains unchanged while the diagram itself is

Chapter 6. Panes

enlarged or reduced.

To change the zoom factor of the diagram in the Diagram pane:

1. Check the box in the lower left corner of the pane.
2. Use the slider bar to change the zoom factor.

Note that the zoom factor is set for each diagram individually. A zoom factor set for
one diagram will not be applied to subsequently displayed diagrams.

6.4.1.4. Turn Off Birdview in Settings

The Birdview, while helpful, can slow down the performance of Poseidon. At times,
it may be useful to turn off the Birdview option. This can be set in the Appearance
Tab of the Settings dialog.

4. Settings

| User Project Optimizing | Liagram display |
General Appearance | Modeling | Envirenment |
Look And Feel |Poseidon(AIon) E|

@ Sheow tips on program start
Show bird view perspective @ Adjust birdview to diagram size
Show To Do (Critics) Pane

@ Perform autematic critiquing

@ Tabs in diagram wiew @ max. number of tabs

|. Ok -l | Apply | | Cancel

6.4.2. Critique tab

The second tab in the Overview pane, called To-Do-Iltems, is a collection of

critiques. This is a feature that originates from ArgoUML and was one of the
motivations for Jason Robbins to start the project. It is a powerful auditing
mechanism that discretely generates critiques about the model you are building.
Critiques can be hints to improve your model, reminders that your model is
incomplete in some areas, or errors that would cause generated code not to compile.

79

Chapter 6. Panes
6.4.2.1. Open a Critique

Critiques are arranged within this tab in a variety of ways. The following options
are available for viewing critiques:

80

by Decision Type - Uncategorized, Behavior, Class Selection, Naming, Storage,
Inheritance, Containment, Planned Extensions, State Machines, Design Patterns,
Relationships, Instantiation, Modularity, Expected Usage, Methods, Code
Generation, Stereotypes

by Diagrams - Seems to be broken

by Knowledge Type - Correctness, Syntax, Presentation, Completeness
by Offenders - Model Elements

by Posters - arranged according to the critic who reported them

by Priority - High, Medium, Low

To view the details of a critique, simply click on the critique. The details will be
displayed in the "To Do Items’ tab of the Details pane, located to the right of the
Overview pane.

6.4.2.2. Navigate to a Critiqued Area

You can move directly from a critique to the diagram where the issue occurs by
double-clicking on the critique name in the Overview pane. The appropriate
diagram will then be opened in the Diagram pane.

6.4.2.3. Turn Off Autocritique

Critiquing can be turned off completely from the Appearance tab of the Settings
dialog. Uncheck the box titled, 'Perform Automatic Critiquing’ to disable critiques.
The tab will still be visible in the Overview pane, but no critiques will be listed.

Chapter 6. Panes

£ gSettings

| Environment] Uszer] Project] Optimizing] Diagram display |
General | Appedrance Maodeling
Look And Feel [Possiden Aoy =]

|2| Show tips on program start
|2| Shaw bird view perspective |2| Adjust birdview to diagram size
[#] Show Ta Do (Critics) Pane

|Perform automatic critiquing|

|2| Tabs in diagram wiew |2| max. number of tabs

Ok] | Apply I | Cancel

6.4.2.4. Hide/Display Critique Window

The Critique tab can be hidden regardless of whether critiquing has been enabled or
disabled. To hide the tab, uncheck the box titled, 'Show To Do (Critics) Pane’.

& gSettings

| Enviranment] User] Fraject] Optimizing] Diagram display |
General | Appearance [Maodeling
Look And Feel [Possiden alloy) =]

|z| Show tips on program start
|z| Shaw bird view perspective |z| Adjust birdview to diagram size

|Show To Do (Critics) Pane|

|z| Perform automatic critiquing

|z| Tabs in diagram wiew |z| max. number of tabs EI

" Ok u | Apply I | Cancel

81

Chapter 6. Panes

82

Chapter 7. Setting Properties

The behavior of Poseidon is defined by a number of properties. You can adjust the
behavior of Poseidon to your personal needs by changing the corresponding
properties using the settings dialog. Once the settings dialog is open (choose
Settings from the Edit menu), you will see a number of tabs.

7.1. General

Figure 7-1. The General settings tab.

& Settings

Environmen t | User Praject | Ciagram display |
General | Appearance | Modeling |
Language |Eng|ish. United States E|
D Re-Open Last Project on Startup
D Skip confirmation dialogwhen deleting elements
| DK Il | Apply | | LCancel

- Language- This is the language used for the Poseidon user interface. You can
switch the interface to a different language by choosing your preferred language
from this selection list. Poseidon currently supports English, German, French,
Spanish, Italian and Chinese. By default, the system language is used - or
English, if the system language is not available. In other words, if you start
Poseidon on a Spanish system, for example, the program will start in Spanish -
but on a Swedish system the program will start in English, as Swedish is not
currently supported.

« Re-Open Last Project on Startup- If checked, Poseidon opens the most
recently used project on startup.

- Skip confirmation dialog when deleting elements If checked, the dialog
asking if you really want to delete selected elements will not appear.

83

Chapter 7. Setting Properties

- Browser - This sets the default web browser used by Poseidon. To change the
browser, click on the ellipse button and navigate to the location of your favorite
web browser. This does not currently work on Macs.

7.2. Appearance

Figure 7-2. The Appearance settings tab.

& Settings
| Environment Uzer Project Diagram display
General Appearance Modeling
Look And Feel |Poseidon(AIon) E|

@ Show tips on program start
@ Show bird view perspective E Adjust birdview to diagram size
[#] Show Ta Do (Critics) Pane

D Perform automatic critiquing

@ Tabsz in diagram wiew E max. number of tabs

| oK] | Apply | | Cancel |

- Look and Feel- Determines the look and feel of the Poseidon user interface. You
can change the interface appearance by choosing an entry from this list. The list
of options is determined by the operating system under which Poseidon is
running.

It may sometimes be necessary to change the Look and Feel from outside of the
Settings dialog (as with MacOS X and Java combinations). To change this, use
the following procedure:

1. Start Poseidon, then shut it down again.

2. Open the Poseidon.properties file in a text editor. In Windows, this is found
in: C:\Documents and Settings\<User>\poseidon2\<Poseidon
Version>

3. Change the line

poseidon.init.laf=...

84

Chapter 7. Setting Properties
to

poseidon.init.laf=com.incors.plaf.alloy.AlloyLookAndFeel

4. Save this file and restart Poseidon.

Show tips on program start- If checked, alip of the Day dialog appears
when you start up the program.

Show bird view perspective- If checked, the Overview pane shows the
bird’s-eye perspective. The speed of Poseidon increases when the bird’s-eye
perspective is disabled.

Adjust birdview to diagram size - If checked, the bird’s-eye view is scaled to
show all elements of the currently selected diagram.

Show To Do (Critics) pane- If checked, the Overview pane displays the
ToDo/Critics tab.

Perform automatic critiquing - If checked, suggestions and possible conflicts or
flaws will be automatically logged in the ToDo/Critics tab.

Tabs in diagram view - If checked, the diagram view shows the most recently
viewed diagrams as tabs over the Diagram pane. This allows for faster navigation
between the diagrams.

max. number of tabs- If checked, the maximum number of tabs in the Diagram
pane is limited to the specified value.

7.3. Modeling

Figure 7-3. The Modeling settings tab.

4. Settings

Environment | User Froject | Diagram display

General | Appearance | Modeling

@ Accessor methods copy documentation of attribute
@ Ak before ovenwriting documentation

D Immediately create accessors for new attributes (CTRL inverts on the fly)

When removing attributes: |De|ete accessor operations, ask before E|

T e) [onn |

85

Chapter 7. Setting Properties

« Accessor methods copy documentation of attribute If checked, the
documentation of the attribute is passed to its accessor methods.

+ Ask before overwriting documentation - If unchecked, Poseidon will prompt
before overwriting existing documentation of an attribute with the documentation
of its accessor methods.

- Immediately create accessors for new attributes If checked, accessor
methods (get/set) will be automatically created when a new attribute is created.

« When removing attributes - Defines what to do with associated accessor
methods when an attribute is removed from the model. The possible options are
to keep the methods in place, to delete them but ask first (this is the default
setting), or to delete them immediately.

7.4. Environment

Figure 7-4. The Environment settings tab.

& Settings

| User | Froject | Diagram display |
General | Appearance | Modeling Environment

Poseidon home folder
Froject folder |c:\ |
Export folder | |
Jawva home folder
User home falder
Userfolder
Startup folder
Import classpath | |
Temporany Files folder

| Ok l| Apply || LCancel |

86

Chapter 7. Setting Properties

The Environment tab contains properties regarding the local environment and the
directories used for loading and saving files.

- Poseidon Home folder- The folder Poseidon stores user-related information
into, e.g. log files and the saved properties. This property cannot be changed.

- Project folder - Projects are loaded from and saved into this preferred folder.
- Export folder - Exported files (like graphics) are saved into this preferred folder.

- Java Home folder- The folder in which the currently-used version of Java is
installed. This property usually points to the runtime part of the installation, even
if the used Java is a SDK installation. This property cannot be changed.

- User Home folder- The folder your operating system uses as your personal
folder. This property cannot be changed.

- User folder - The folder into which Poseidon is installed. This property cannot
be changed.

- Startup folder - The folder your system points to at the startup of Poseidon. This
property cannot be changed.

« Import Classpath - Additional classpath that is used when importing source
code or jar files.

- Temporary Files folder - The folder used when any temporary files are created.

7.5. User

Figure 7-5. The User settings tab.

& Settings

| general | #ppearance | Modeling |

Full Hame |CarICarIson |

Email Address |ccar|son@snpp.com |

User information was set during key registration.

| Ok]| Apply || Cancel |

87

Chapter 7. Setting Properties

The User tab contains properties regarding information about the user. These
properties cannot be changed from the settings dialog, because they are part of the
product registration. They can be changed using the license manager, but any
change would require a new registration of the product.

+ Full Name - Full name of the user who registered this copy of Poseidon.

- E-mail Address - E-mail address of the user who registered this copy of

Poseidon. The presented email address must be a real one, or registration of
Poseidon will fail.

7.6. Project

Figure 7-6. The Project settings tab.

& Settings

| General Appearance Modeling Enviranment |

User Project [Diagram display

Frojectname |Stat‘LAuto |

Saving location |fi|e:.l’C:.l’Programme.l’PoseidonPE2.2_reI.l’Iib|

Creating wersion |1.4.1 |

Last modifying wersion |2.2 |

Frojectdescription | |

Registered Frofiles [#] cshapProfile [] PerlFrofile
[#] JavaFrofile [#] PHFF1ofile
[#] DelphiPratfile [#] wBNeatF rofile

|z| CorbaProfile

[#] saLFrofile [] cppFrofile

| Ok l | Apply | | Cancel

The Project tab contains properties regarding information about the project

- Projectname- Name under which the current project has been saved. If the
project has not yet been saved, this will be 'Untitled’.

- Creating Version - The version of Poseidon which was used to create the project
originally.

88

Chapter 7. Setting Properties

- Last Modifying Version - The version of Poseidon which was last used to edit
the project.

- Projectdescription - A short, user-defined description of the current project.

+ Reqgistered Profiless The Profiles registered for this project.

7.7. Key Mappings

Figure 7-7. The Key Mappings settings tab.

[settings
General Appearance Modeling Environment

User Froject Key Mappings Ciagram display

Pulti Line Editing

Enter iz @ Commit (Ctrl-Enter for new line)

O Mews Line (Ctrl-Enter to commit)

=] o [

The Key Mappings tab allows you to determine the behavior of particular keys.

- Multiline Editing - This option tells Poseidon whether to use the 'Enter’ key to
commit an edit or create a new line while entering the name of an element or any
other field that accepts multiline text.

89

Chapter 7. Setting Properties

7.8. Diagram Display

90

Figure 7-8. The Diagram display settings tab.

& Settings

D Hide acceszor methods

D Hide operations' parametars
D Hide private clazz features
D Hide package class features
D Hide protected class features
D Hide public class features

@ #Add dependent edges automatically

| oK ‘ | Apphy | | Lancel

The Diagram Display tab contains properties regarding the display of information
within the diagrams. Currently, most of the properties refer to Class Diagrams only.

Hide accessor methods If checked, accessor methods will not be displayed in
the operation compartment.

Hide operation’s parameters- If checked, parameters will not be displayed.
Operations with parameters will then be displayed &igeration1(...)

Hide private class features- If checked, private attributes and operations will
not be displayed.

Hide package class features|f checked, package attributes and operations will
not be displayed.

Hide protected class features If checked, protected attributes and operations
will not be displayed.

Hide public class features- If checked, public attributes and operations will not
be displayed.

Add dependent edges automatically If checked, dependent edges are added to
a node which has been created via cut-and-paste or drag-and-drop. No dialog or
warning is used.

Chapter 8. Model Reference

A UML model can completely describe a variety of systems using both syntactic
element definition and semantic diagram rendering. Although semantics are not
included in the UML specification, they are important to a UML model in that they
clarify meaning and enhance understanding for human readers. It is also possible to
enhance diagrams with non-UML elements such as shapes and text objects. These
items will not appear in any generated code, but they will be available for viewing
within the diagrams.

8.1. Views

Several views of the elements are available within Poseidon. These are available
from the dropdown list in the Navigation pane, and include:

+ Class Centric

- Diagram Centric

« Inheritance Centric
« Model Index

- Package Centric

. State Centric

Each of these present the elements in a tree view with a different focus in mind. But
one thing they all have in common is the root node, which is the model itself. In
every UML model, it is the top level namespace.

91

Chapter 8. Model Reference

92

Chapter 9. Using Models

In the tour of Poseidon, you learned how to navigate an existing model, how to
work with existing diagrams and how to edit elements. Now let’s take it to the next
level and look at what you can do with whole models in Poseidon for UML.

9.1. Creating New Models

Creating new models is very simple. At startup, Poseidon for UML opens with an
empty model. This model contains one Class Diagram that is immediately
displayed in the Diagram pane. You can start working on this model right away.

To create a new model:
. Main Toolbar - Click the 2 "New Project’ button on the main toolbar.

- Main Menu - Select 'New Project’ from the File menu.

9.2. Saving and Loading Models

Saving the models you created in Poseidon for UML is routine, but there are a few
things that should be mentioned about saving and the format used.

Open Standards Support

Poseidon for UML supports open standards extensively, and this is also true for the
saving format. UML is standardized by the Object Management Group (OMG). Part
of the official UML specification by the OMG (http://www.omg.org) is a

mechanism for the exchange of models between different tools. This mechanism is
based on XML and has special extensions and rules to better represent
object-oriented structures as well as metadata. The OMG has specified a concrete
application of XML for this purpose that is called the XML Metadata Interchange,
or XMl for short. Poseidon for UML makes use of this format. In fact, while most
other tools can only import or export XMI, Poseidon for UML uses XMI, as
specified by the Diagram Interchange standard, as the default saving and loading
mechanism.

Introducing the .zuml File

The previous version of UML had no standards for storing the graphical
information of a diagram. This made exchanging a model between tools very
difficult. UML 2.0 has solved this issue with the inclusion of Dmgram

93

Chapter 9. Using Models

Interchange standard which specifies exactly how graphics are to be stored and
rendered. Gentleware was at the forefront of the development of this standard and is
therefore uniquely able to implement it in Poseidon.

Now diagrams are written in the XMI 1.2 format, the same format used to store the
model itself in both UML 1.x and UML 2.0. Poseidon creates a project file with a
".zuml’ extension, which is a .zip file containing a .proj file with project information,
and an .xmi file with the model and layout (Diagram Interchange) information. This
method of storage is supplementary to the previous method, meaning that projects
created with previous versions of Poseidon (.zargo files) or other tools will open in
Poseidon version 2.0, but diagram information will be converted before it is opened.

To Save a Model:

- Main Menu - Select 'Save Project’ or 'Save Project As...” from the main menu

+ Quick-Key - Use the quick-key Ctrl-S to save a project

To Load a Model

« Main Menu - Select 'Open Project’ from the main menu

+ Quick-Key - Use the quick-key Ctrl-O to open a project

You can also import XMI that was created by other UML tools.
Components Of A .zargo File

Poseidon 1.x saves projects with a .zargo extension. These files can be opened in
Poseidon 2.0, but new projects created with Poseidon 2.0 cannot be saved in this
format. The following section briefly explores these files.

The current version of XMl is, by itself, not sufficient to save all aspects of a UML
model. It can be used to transport the names and properties of all model elements,
but diagram information (layout, colors, etc.) is not included, therefore this
information has to be stored in a different format. Poseidon 1.x uses another XML
application, called PGML, which is a predecessor to SVG, the Scalable Vector
Graphics format, standardized by the W3C.

Finally, some internal information about the model needs to be stored. This is done
in yet another XML-based format with the endirggo . All of the files mentioned

are zipped together into just one compressed file with the enghingp . This is

actually just a regular ZIP file; you can decompress it using any ZIP tool or the Java
JAR tool. Usually you don’t have to worry about all this. But sometimes if, for
example, you want to access the XMl file to exchange it with other tools, you may
need to unzip this file and have a closer look inside.

94

Chapter 9. Using Models

Poseidon 1.5 and 1.6 use a different XMI format than previous Poseidon versions
(up to version 1.4.1). Support for XMI 1.1 and 1.2 as well as UML 1.4 was added,
and all .zargo files that were created with older Poseidon versions are converted
when necessary, so there is no need to care at all about the different versions.
Gentleware also works on better import functionality so that the XMI generated by
other CASE tools can be imported smoothly.

9.3. Importing Files

Poseidon provides a slick dialog to assist with the importation of source code. You
can save any changes you make to the settings, such as modeling Java attributes as
UML associations, by clicking the 'Apply’ button in the lower right section of the
dialog.

Several options are available when importing code:

General Tab

- Descend directories recursively Easily add all files below the selected
directory

» Skip CVS and SCCS directories- Ignore version control files

[Import files
Suchen in: |Q_J SIG B| |E| |£| |Q| @“E'
_l AquatetalTheme. java General Java i Jdar | MDL-Import |

|_] BigContrasthdetal Theme java
|_] ContrasthetalTheme java
L] Demotetal Theme java [Skip CVS, RCS and SCCS directories.
] GreentetalTheme java

] KhakiMetalTheme java

] MetalThememMenu.java

|| Metalwonkes.java

| MetalwotsDocumentFrame java
| MetahwotsFrame java

] MetalwotsHelp java

| MetahmotelnB o java

] MetalwansP refsjava

|_] PropertiestetalTheme java

|| UIlswitchListener.java

@ Dezcend directories recursively.

| Apply |

Dateiname: |Meta|wod«s.ja\ra |

D ateityp: |Ja\ra source (7.java) E|

Open || Cancel |

Java Tab

95

Chapter 9. Using Models
- Java attributes modeled as Select either attributes or associations
- Arrays are modelled - Select either as data types or with a multiplicity of 1..n

« Import Classpath - Add classpaths by clicking the 'Add’ button and navigating
to the classpath in the browser that opens automatically.

[Import files
Suchen in: |u Metalworks E| |EJ |£J |@ @“E
() HelpFiles General | Jawafdar | MDLimpert |
[images Java attributes modelled as

META-INF
U,j D UmL attributes @ UML azsociations
U-J resoure s
u'j e Arrays are modelled

| Metalworks.jar (@) as data types () with multiplicity 1..n

Import classpath

ej2sdhd 4.2_03Yretlibirt jar ‘

add | Remove |
o
Dateiname: [Metalwars.jar |
D ateityp: [44R archive .jan B
oper | [oomee]

Should the import fail because needed files have not been located, an error dialog
will appear. If you would like to continue without adding to the classpath and create
dummy classes instead, click 'Yes'. To return to the previous dialog and add the
necessary files to the classpath, click 'No'.

96

Import problems - do you still want to complete the import

Chapter 9. Using Models

-:IJ Foseidon was unable to find following datatypes

-

= Uzed type:
= Used type:
& Used type:
= Used type:
= Used type:
= Uzed type:
= Uzed type:
= Used type:
& Used type:
= Used type:
= Used type:'
= Uzed type:
= Uzed type:
= Used type:
& Used type:
= Used type:
= Used type:
= Uzed type:

‘javax.aning.plaf.FontUIResource' (in class 'BigContrasthetal Theme")
'javax.aning JPanel (in class 'MetalwodeDh ocumentFrame")
'javax.aning.plaf.metal.efaulthetal Theme' (in ¢lass'Propertiestetal Theme")
‘javax.aning.event. HyperlinkEwvent (in class 'HtmIF ane)
'javax.sming.event.HyperlinkListener {in class 'HtmIPane")
‘javaxaning.JDeddopPane' (in class'MetalwodsFrame’)
‘javaxaning.JienuBar (in clasz 'MetalwodeFramet)
'javax.aning.JCheckBoxhenultem' (in class 'hWetahwotsFrame)

‘javax.aning. UIDefaults (in class 'Contrasthetal Theme"
‘javaxaning.JComponent (in class 'UlSwitchListener)

javax.aning.plaf.metal.MetalTheme' {in class'Metal Themebenu')

‘javaxaning.JSerollPane' (in class 'HtmIFane

‘javax.aning JEditorPane' (in class 'HtmIFane"
'javax.aning.JintemalFrame' (in class 'MetalwotebocumentFrame")
‘javax.aning.plaf.Colo)IResource’ (in class'Contrasttetal Theme")
javaxaning.Jlialog' (in class 'MetahmodsF refs)
'javaxsming.JMenu' {in class'MetalThemeMenu)
‘favaxaning.JFrame' {in class 'MetalmotsF rame’)

ou have to extend the classpath, to complete the import comect.
Fress'No' to restart Import.
If vou don't care about it- press'yes and the importwill be completed but it might be incorect.

Lyes | [v |

Once the import has begun, a dialog will appear asking if you would like to

generate diagrams. A tree of the project is also presented, so that you can choose
which packages and classes you would like to include in the diagrams. By default,

any packages that contain new classes are automatically selected.

MDL Import Tab

The MDL Import tab is used to import diagrams saved to the Rational Rose format.

- Scale down diagrams to [%]- Automatically resizes diagrams for easier

readability

- Show classifiers’ packagesHides or displays the package of a classifier

- Create no diagrams- Import just the elements, or import the elements and
create all diagrams

« Skip View Root Notes- Does not import the view root notes

97

Chapter 9. Using Models

[/ Import files
Suchen in: |u examples |z|| |@ Q |@ |§J
|_] Hospital3s.mdl General Jawa fJar MDL-Import

|_] imvoicing.mdl
|_] IrvoicingUseCases.mdl
] JoK-1z_01.md]

tADLImport

| 1ab01.mdl X X _ X

. Thiz plug-in reads *.mdl files into Poseidon. t supports
|_J 1arman_analysis2000. mdl class, state-, activity-, sequence- and usecasze-diagrams.
|_] larman_design-2000.mdl
I_l librang.mdl If something went wrong during an import, vou'll get

detailed information aftenwards. Please check your model
‘—l machwass.mdl before wou start using it. If vou need help, please contact
|_] machwass.mdl us at support.

|] machwass.mdl

] MAGE-OM.mdI

|_] MBASE.mdl

|_] metD116t.mdl

|_] MOF1_4-Madel.mdl
._] ordersys.mdl Seale down diagrams to [%]
|_l project.mdl

| pte-2001-10-14.mdl

| rimD116t mdl

._] Rose_hodels_LCA_FO1a_T11.mdl
|_] Roze_hodels_LCO_FO1a_T11.mdl

Thiz plug-in uzes and improwves the Crazy-Beans Libran
found at hitp #crazybeans.sourceforge.net

Show classifiers' packages

Create no diagrams

Ummmi

] RSS.mdl

I_l RUFQ.mdl Skip Wiew Root Hotas

|_] SeabassRose.mdl

] T 0] L Aeety
Dateiname: |project.md| |
D ateityp: |RosePr0ject(".mdl) lz“

| Open | Cancel

Here is an example of what an imported Java class looks like in the Navigation Pane
and in the Diagram pane, as well as showing a bit of the source code:

98

Chapter 9. Using Models

[l Poseidon for UML Professional Edition

File Edit Miew Create Diagram Arrange Critigue Generation Flug-Ins Help

heDalle ScEiabBbnBRE

hodel Index

Class Diagram_1 |

s & |
[Modelmaee __ [=] (3 K BOxete—e-e ¢ (! BE OR cOGZ |
@ model 1 -
— % Actors & .
I o— Assacistions] Aqua Theme) DefaultMetal Theme
o~ B Classes Jprimary1: ColotJIResource= newColorUIResource(102, 153, 153) (fio m javax:swing:.plaf: meta)
o B laquaTheme Jrimary2: ColoJIResource= new ColorUIResource{128, 192, 152)
o= B primargt Jrimary3: ColoiJIResource= new ColorUIResource(159, 235 235)
o~ B primanz 'I+getNameO:8t|'ing)
o= B primanea #getP imary1 (I Coloil IResource
- B getHame #getP imary2{1Coloi IResource
- B getrrimant #getP imary3(IColoi IResource
— ﬁ getPriman2 ©
— E getPrimand
— A accassor getPrimanc() = N
A _ = ColorUIResowrce String
B A aceesser getPrimanzg (fiom javasx::swing::plaf) (fiom jawva:la ng)

— | accessorgetPrimana0
— E ColorUIResaurce
2= B pefaulttetalTheme

— B sting
— %c;: Datatypes
o D Diagrams
l—EE Class Diagram_1 —
- E Interfaces Froperies] Style] To Do ltems | Source code [Locumentation] Lonstraints Tagged Walues
- & States
-
—« » Stereotypes public String getHame () | £*F lock-end */
— —* Tranzitions return "icqua”;
= ad } A end getName A#% lock-begin #/
Birdview | ByFriority | s
W L]
* Doss ...
@poseidon—object—id [lam:180b2Ze:fadafilefd: —7faf] E|
@return
#
= L protected ColorUIResource getPrimaryl() ! /%% lock-end */
return primaryl; mlz‘
T]
M -) ' 100% | HSERT |

Checking for changed files. Current interval is 5 seconds. 1 file watched. | |

9.4. Importing Models

Models can be imported directly into other models. This allows for the merging of

two or more sub-models into one or the importing of models from different formats.
For example, Poseidon for UML 1.6 can import files stored in MDL format - the file
format used by Rational Rose. This feature is available in the Professional Edition.

To Import Sub-Models:

« Main Menu - Select 'Import Files’ from the main menu

99

Chapter 9. Using Models

« Quick-Key - Use the quick-key Ctrl-I to import files.

Keep in mind that importing an XMl file means that no layout, color, or style
information is included, as the XMI format simply does not contain this kind of
data. You will have to create your own diagrams by dragging elements from the
Navigator to the Diagram pane.

To Import XMI Files Created By a Different Tool:

« Main Menu - Select 'Open Project’, change the file chooser to XMI, then select
the XMl file

9.5. Exporting Models

100

The XMI File Type

For the interoperability of different UML tools, it is important to be able to export
models from a proprietary to a common format. UML defines a standard exchange
format for UML models called XMI, which Poseidon for UML uses as the default
saving format. This means that every time you save a model it is stored in an XMl
file. However, since XMl is a quite wordy xml format and lacks layout information,
Poseidon compresses this file, and zips it together with other project information.
This file has the name of your project and the ending .zuml. To get to the XMl file,
unzip this file with the compression software of your choice.

From version 2.1 on, it is possible to include diagram data in an XMl file by
selecting this option during the export process.

Advantages of XMI

Such a standard interchange format has a number of applications. It not only makes
sense to be able to replace one tool by another or to exchange models with people
using other tools, it also makes sense for chains of tools. The following example
well illustrates this value addition:

Some tools are especially well prepared for capturing models designed in
cooperative sessions on the white-board. The model is sketched on the white-board,
the gestures are tracked and transformed to UML model elements, and a laptop in
conjunction with a projector places the newly-created diagram back onto the
white-board. This demonstrates and facilitates a creative and cooperative style of
working on a model as a team.

Different tools from other vendors are specialized on generating code. They might
not even have a graphical user interface, they simply read in a model and produce
code for a specific type of application or platform. Such tools can be connected to

Chapter 9. Using Models

Poseidon using the XMI format. However, the XMl standard is not implemented
equally well among different tools. Poseidon for UML is known to produce one of

the cleanest XMl files for its models, and many tools have chosen to support our
variant of XMI. However, the interchange might not work with all other tools. The
Diagram Interchange standard should alleviate some of these issues once other tools
implement the recognized standard.

To Export a Project

1. Open the File menu and select 'Export Project to XMI'.

2. The Export Project dialog will open. To the right, select or deselect 'Save with
diagramdata’.

3. Select a location and file name, then click 'Save’.

Figure 9-1. Export a project to XMl

MExpnrt Project to XMI: testfile

@D B

@ Save with diagramdata

Dateiname: |samp|e_project |

D ateityp: |XML Metad ata Interchange (F.xmi) E“

9.6. Exporting Graphics and Printing

Another option that you will find useful is the export of diagrams as graphics.
Whether you want to use your diagrams in other documents, in a report, a web site,
or a slide show, you can export them in a range of different formats depending on
your needs.

Formats

The currently available formats are Joint Photographic Experts Group (JPG),
CompuServe Graphics Interchange (GIF), Portable Networks Graphics (PNG),

101

Chapter 9. Using Models

102

Portable Document Format (PDF), Postscript (PS), Encapsulated Postscript (EPS),
Scalable Vector Graphics (SVG), and Windows Meta File (WMF).

The first six are well known for their respective areas of usage, but for our purposes
the most promising format is SVG. There are not many applications that support it
yet, but in the near future this is likely to change to be the standard format of choice
for web content as well as for text documents. If you want to try to exporting and
viewing diagrams in SVG, there is a browser plug-in (for the Internet Explorer)
available from Adobe. There also is an appropriate graphics tool called Batik,
available from the Apache project.

Export a Diagram to a Graphic File:

« Main Menu - Select 'Save Graphics...’ from the File menu.

Beginning with Poseidon for UML version 2.0.4, graphics generated from the
Community Edition contain a watermark that appears in the background of the
exported graphic file but does not affect any of the diagram information.
Watermarks are not generated from any of the Premium Editions. The figures below
depict the same diagram, but the first was saved from the Community Edition and
the second from the Professional Edition.

Figure 9-2. Watermarked Community Edition diagram graphic

Initial State [errongous reservation request]

v

[cancel] |: Receive Reservation Request }

oK [no vehicles availalble]

(Check Yehicle Availakility)

[at least one vehicle availakle]

</ﬂC Select Vehide)

Cancel

[DH] | [vehicle no longer availakle]

(Reserve Yehicle)

Cancelled Reserved

Chapter 9. Using Models

Figure 9-3. Premium Edition diagram graphic without watermark

Initial State [erroneous reservation request]

v

[cancal] |: Receive Reservation Request }

=10 [no vehicles availalle]

(Check Vehicle Availability)

[at least one vehicle available]

Qﬂ(Select Vehide)

Cancel

[2K] | [vehicle no longer available]
(Reserve Vehicle)

Cancelled Reserved

Printing

You can also directly print diagrams to a printer. In the Page Setup dialog, you can
specify how many diagrams to print per page - this allows you to place several
diagrams on each print, e.g. 2x2. The Print function (Ctrl-P) prints the current
diagram. The Print Diagrams function calls up a window for you to select which
diagrams to print. You can navigate through the diagram tree and select any number
of diagrams by pressing the Ctrl key and clicking the relevant entries. These

printing functions are not available in the Community Edition.

103

Chapter 9. Using Models

104

Chapter 10. Diagram Reference

There is a lot to say about when to use which diagram type when developing a
design, and what the role of it should be. The different answers to this are referred
to as the design process or design method. This document is not intended to
describe a concrete design process. Poseidon for UML can be used for any such
process. Instead, in this chapter we will look at the various diagram types and how
the corresponding model elements are created or edited in Poseidon. For many of
these diagrams, a short example has already been given in the default model
Stattauto , which we looked at in Chapter 6.

10.1. Use Case Diagrams

The first diagram to look at is tHi. Use Case diagram. The main ingredients for
this type of diagram arase caseandactors together they define threlesthat

users can play within a system. They are associated to the tasise oaseghey

are involved in. It is often used in early stages of the design process to collect the
intention requirements of a project.

If you are not well-acquainted with UML yet, remember that a use case is not just a
bubble noted in the diagram. Along with this bubble, there should be a description

of the use case, a typical scenario, exceptional cases, preconditions etc. These can
either be expressed in external texts using regular text processing tools,
requirements tools or file cards. It can be and is often refined using other diagrams
like a'% sequence diagram or &-activity diagram that explain its main scenarios.

The basic description of a use case can also be inserted in the Documentation tab of
the Details pane.

105

Chapter 10. Diagram Reference

106

Figure 10-1. A Use Case diagram.

| = |
AT Fagitar Liser)] (N st L)]
— " — T
- cat
AW Procass Mamésats
- —
[T 1T mill
- ~ -~ ~
(R i & T—
- — _ -
! ~L
(MNP Exsbioh urbushi) -
- o 2
— S <o incduate =='|
N
e </M:FB.IH|.- hn@
r’ Py —— — -
e
- —

10.1.1. Diagram Elements

« % Actors - Also referred to as Roles. Name and stereotype of an actor can be
changed in its Properties tab.

. T Inheritance - Refinement relations between actors. This relation can carry a
name and a stereotype.

- o Use cases These can have Extension Points.
. = Extension Points- This defines a location where an extension can be added.

+ « Associations- Between roles and use cases. It is useful to give associations
speaking names.

- 7 Dependencies Between use cases. Dependencies often have a stereotype to
better define the role of the dependency. To select a stereotype, select the
dependency from the diagram or the Navigation pane, then change the stereotype
in the Properties tab. There are two special kinds of dependencies: <<extend>>
and <<include>>, for which Poseidon offers own buttons (see below).

- 4 Extend relationship - A uni-directional relationship between two use cases.
An extend relationship between use case B and use case A means that the
behavior of Bcan beincluded in A.

Chapter 10. Diagram Reference

- % Include relationship - A uni-directional relationship between two use cases.
Such a relationship between use cases A and B means, that the behavier of B
alwaysincluded in A.

- 0O System border- The system border is actually not implemented as model
element in Poseidon for UML. You can simply draw a rectangle, send it to the
background and use it as system border by putting all corresponding use cases
inside the rectangle.

10.1.2. Toolbar

Select

Package

Actor

Actor as Classifier
Use Case
Generalization
Dependency
Association

= Directed Association
= Aggregation

+ Composition

Y. Include

Extend

S Extension Point
<= Collaboration
Classifier Role
Comment
Connect Comment to Element
Text

Ellipse
Rectangle
Polygon

Polyline

Repaint

o M P e

=2 2 0

I

9 —

-

a A & O 0 =

107

Chapter 10. Diagram Reference

10.2. Class Diagram

108

Class diagram®s are probably thenost important diagramef UML. They can be

used for various purposes and at different times in the development life cycle. Class
diagrams are often applied to analyze the application domain and to pin down the
terminology to be used. In this stage they are usually taken as a basis for discussing
things with the domain experts, who cannot be expected to have any programming
nor computer background at all; therefore, they remain relatively simple like this
typical example, th& Entity Class Model Overview Class Diagram.

Please note that graphical elements have been added to this diagram simply to
highlight different regions.

Figure 10-2. A Class diagram.

== EntityObjed == == EntityObjed ==

User Memb er
(fiom de::amg::stattauto: user:entity) (fiom de::amg::stattauto -member:entity)
1
== |nterface == == EntityObjed ==
VehicleClass Reservation
(from de::amg:: stattauto -vehick:entity) (fiom de::amg::stattacto “reservation:entity)
1

== EntityObjed == == EntityObjed ==

Location] Vehicle

(from de::amg:: stattauto -vehick:entity) 01 (from die:-amg::stattauto :vehicke: entity)

Once the domain has been established, the overall architecture needs to be
developed. Class Diagrams are used again, but now implementation-specific classes
are expressed in addition to the terms of the domain.

If a class is shown in a diagram of a different package, the(fexn
package.subpackagms)displayed just under the class name in the diagram. You can
turn it off with the Context menu of the class. Move the mouse over the class,
right-click, and selecDisplay - Hide Package display.

Chapter 10. Diagram Reference

10.2.1. Diagram Elements

£1 Packages Packages are used to structure the model. Placed into Class
Diagrams, they illustrate the hierarchy explicitly. Classes can then be nested

inside them, or they can be used exclusively to express the interdependencies of
the packages. These diagrams are sometimes referred to as package diagrams, but
in Poseidon you do not need to make a difference here and can combine them at
will.

T Dependencies Exist between packages, and express that classes within one
package use classes from the package on which it depends.

<> Collaborations - Exist between objects. Additionally you have to associsite a
Classifier Role to this collaboration to illustrate what role a special element plays
in that collaboration.

B Interfaces - Restricted to contain operations only, no attributes. Operations are
abstract and have no implementation from within the interface. The class that
implements the interface is also responsible for implementing the operations.
Interfaces can also be represented with lollipop (or ball) n

g Classes Classes are the most important concept in object-oriented software
development, and in UML as well. Classes hold operations and attributes and are
related to other classes via association or inheritance relations. A class has a few
properties of its own, such as name, stereotype and visibility, but the more
important aspect is its relation to other classes.

T Inheritance relations - Relations between interfaces or between classes. They
are not allowed between an interface and a class.

T Implementation relations - Relations which exist only between interfaces and
classes.

~— Association Relations- Relations between classes.

10.2.2. Toolbar

Select

Class

Package

Actor

Actor as Classifier
Generalization
Dependency

LT 11

3

109

Chapter 10. Diagram Reference

< Association
Directed Association
Aggregation
Composition
Association Class
Interface
Interface as Circle
Realization
Lollipop

Socket
Collaboration
Classifier Role
Attribute
Operation
Comment
Connect Comment to Element
Text

Circle

Rectangle
Polygon

Polyline

Repaint

¥

f

4 © D o

-C:

¥

@ N« 0O 0 = = F D m -

10.3. Object Diagram

110

Object diagrams show classes at the instance level.

Since objects are not on the same conceptual level as classes, although very closely
related, they are expressed in separate diagrams. On the other hand, objects are on
the same conceptual level as instances of components and instances of nodes. That’s
why Poseidon for UML combines the functionality for creating object diagrams,
component diagrams and deployment diagrams into a single editor; therefore, to
create an object diagram, use the editor forsgeployment diagram

This may not seem very intuitive at first, but we found it to be very useful. Objects,
component instances and node instances can thus be used conjunctively. You can
still restrict yourself to use only objects and their links in a deployment diagram.

The diagram elements and toobar options are provided here for quick reference. A
much more comprehensive look at the editor is provided in the secti%1 on

Chapter 10. Diagram Reference

deployment diagrams.

10.3.1. Diagram Elements

&7 Nodes andd Instances of Nodes Nodes represent the hardware elements of
the deployment system.

- £1Components andél Instances of Components Components stand for
software elements that are deployed to the hardware system.

« N Links - Links are used to connect instances of nodes or objects.

- T Dependencies Dependencies exist between components and can be specified
by utilizing predefined or user-defined stereotypes.

« « Associations- Associations are used to display communication relations
between nodes. They can be specified by utilizing predefined or user-defined
stereotypes.

- o Objects, 5 Classesg Interfaces - Components and nodes can include objects,
classes or interfaces.

10.3.2. Toolbar

Select

Node

Instance of a Node
Component

Port

Instance of a Component
Dependency

Class

Interface As Circle
Lollipop

v Socket

< Association

= Directed Association
=/ Aggregation

~ Composition

8 Association Class

O Object

e e =TI [= =V ¢

S H m

111

Chapter 10. Diagram Reference

Link

Comment

Connect Comment to Element
Text

Circle

Rectangle

Polygon

Polyline

Repaint

r] Al @ D O ;‘2 - 9 /-

10.4. Activity Diagrams

112

%. Activity diagrams are often used to model business processes. They simply and
quite plainly showhow things workand so function as a good aid to discussions of
aspects of the workflow with the domain experts. These are less abstract than the
often used object-orientetlstate diagrams.

The following example shows &. activity diagram that depicts the rules and the
process of paying an order. In the following exameftsale will not accept an
order if you have overdue payments open, will only allow payment by invoice if
your e-mail and home address have been verified, and a few other rules. Take a
closer look for yourself in order to become more familiar with the notation.

Chapter 10. Diagram Reference

Figure 10-3. An Activity diagram.

Initial State [erroneous reservation request]

i

[cancel] (Receive Reservation Request }

[2K] | [no vEhicles available]

(Cheek Vehicle Availability)

[at least one vehicle available]

</ﬂ< Select Vehide)

Cancel

[2K] | [vehicle no longer availakble]
(Reserve Yehicle)

Cancelled Reserved

10.4.1. Diagram Elements

e Initial States and® Final States- Indicate the beginning and end of the
observed process.

o Action States- Specific activities which comprise the process. They must be
executed in a specified chronological order. Sometimes you may want to split the
sequence; therefore, you have two different possibilities: Branches (choice) and
Forks (concurrency).

< Branches- These divide the sequence into several alternatives specified by
different conditions (guards).

Forks and% Joins - Forks divide the sequence into concurrent sub-sequences.
Joins merge the sub-sequences.

® Synchronization States- Used in concurrent sub-sequences to synchronize
producer-consumer relations.

113

Chapter 10. Diagram Reference

- — Transitions - The ingredient that keep states active and the model elements
together. Each transition can be givgunardsis, triggersx, andactionsA as
properties to describe its behavioral details.

- o Object Flow States- Objects are inputs or outputs of activities and are
accordingly connected by transitions to them.

- T Dependencies Always possible between any model elements.

10.4.2. Toolbar

Y Select
Action State
Object Flow State

Transition

Initial State

Final State
Synchronization State
Branch

Fork

Join

Send Signal

Receive Signal

Note

Connect Comment to Element
Text

Circle

Rectangle

Polygon

Polyline

Repaint

O

4 & ® @ @ [

=
Ml

a M la O 0 = @ @ 49 ¢ -4

10.5. State Diagrams

Business process models do not lend themselves to implementation in an
object-oriented way. If you go the UML way, you will break down the business
process and express it in terms of states for each object involved in the process.

114

Chapter 10. Diagram Reference

Let's take a short look at the States themselves. In the editors toolbar you find three
different symbols:

- = State

In a state diagram, each state has at least two compartments, the top one always
keeping the name of the state. The name usually is an adjective describing the
recent object.

The states properties are a lot more meaningful and complex than they are in the
activity diagrams. Not only does a state have ingoing and outgoing transitions,
but also different actions or activities that are to be taken with it.

5 Composite State

Composite States make visual use of the second compartment that encloses
refinements of the given state. Enclosed states don’t have to have an initial state.
Ingoing as well as outgoing transitions might be connected directly to one of
them. When the corresponding object is in the composite state, it is exactly in one
of the sub-states (OR relation).

If you find yourself needing to change a simple state to a composite state, you
have to delete the former and again add the new state via the toolbar.

& Concurrent State

Concurrent States are, like the above, refinements; therefore, they are focused in
the second compartment. When the corresponding object enters the concurrent
state, all initial sub-states are enabled at once (AND relation).

115

Chapter 10. Diagram Reference

116

Figure 10-4. A State diagram

Start

== ControllerState ==

Sulamit Member Number Lﬁ
Carcel

Continueimember = findMember)

Errar [member ==rnull] \5

Choice

Ok

[ele=)isavel emberime mber)

== ControllerState ==

Back Werify Mem ber Data Cancel

Cantinue

®

Ol

10.5.1. Diagram Elements

@ Initial States and® Final States- Indicate the beginning and end of the
observed process.

o Action States- Specific activities which comprise the process. They must be
executed in a specified chronological order. Sometimes you may want to split the
sequence. Therefore, you have two different possibilities: Branches (choice) and
Forks (concurrency).

< Branches- These divide the sequence into several alternatives specified by
different conditions (guards).

#r Forks and* Joins - Forks divide the sequence into concurrent sub-sequences.
Joins merge the sub-sequences.

® Synchronization States Used in concurrent sub-sequences to synchronize
producer-consumer relations.

— Transitions - The ingredient that keep states active and the model elements
together. Each transition can be givgunardsi«, triggersx*, andactionsA as
properties to describe its behavioral details.

Chapter 10. Diagram Reference

- o Object Flow States- Objects are inputs or outputs of activities and are
accordingly connected by transitions to them.

- T Dependencies Always possible between any model elements.

+ o Choicesande Junctions - Both elements are used in sequential systems to
define decision points. The difference between them is that choices are dynamic
and junctions are static.

- ® Shallow History and® Deep History - History states are used to memorize
past active states so that you can return to a marked point and don't have to start
again from the beginning. A deep history allows you to return from any sub-state,
whereas a shallow one only remembers the initial state of a composite state.

10.5.2. Toolbar

Select
Simple State

Composite State
Concurrent State
Transition

Initial State

Final State
Synchronization State
Deep History

Shallow History
Choice

Junction

Fork

Join

Comment

Connect Comment to Element
Text

Circle

Rectangle

Polygon

Polyline

Repaint

J0 0 e

FINONONONON |

g« @

-
|«

a [k O0C =B < F -

117

Chapter 10. Diagram Reference

10.6. Sequence Diagrams

118

A % sequence diagram is an easily comprehensible visualization of single scenarios
or examples of business processes with regard to their behavior in time. It focuses
onwhenthe individual objects interact with each other during execution. The
diagram essentially includes a timeline that flows from the top to the bottom of the
diagram and is displayed as a dotted line. The interaction between objects is
described by specifying the different kinds of messages sent between them.
Messages are called stimuli. They are displayed as arrows; the diverse arrowheads
stand for different kinds of messages (see below).

The following diagram shows a typical example:

Figure 10-5. A Sequence diagram.

Object 1:Membedcdertif cationC ortroller | |OIJ'ec:t J:MembeddertificationProcessOhject
I

: stim_1:

Object_2:Memberdcdentification |
i

: =tim_2: | g

stim_3 1 w=identifyemben)

stim_4:

1
| stim_5: j

1
i
1
1
|
: T Object_4:MembeddentificationvalueQbject
1
|
1
| |
| | stim_6: [

|
1

Objects

After creating or changing objects, they are automatically arranged in the Diagram
pane. You can specify which of the objects is to have control by enabling the
corresponding check box 'Focus of control’ in the Properties tab. Afterwards, you'll
see how the graphical representation of this object changes: it gets a thick border
and its lifeline is no longer a dashed line but a solid rectangular area.

Self messages

In Poseidon, all stimulus types, except create stimuli, can be created as self stimuli.
In the case of a stimulus to itself, the arrow starts and finishes on the object’s
lifeline. A self stimulus is created by dropping the stimulus target point on the
source object.

Chapter 10. Diagram Reference
Selecting an operation

A call stimulus is regarded as a procedure call and can be connected with any
operation provided by the receiving object, depending on its type. This is achieved
by connecting the stimulus with an action that will cause the class operation to be
called. The following two figures show an example for selecting an operation and
attaching actual arguments to the call.

Figure 10-6. Selecting the action of a stimulus in a sequence diagram.

Sequence diagram_1

R [O=»=#=« O ACOEL | @

|Ob'ed 1:l-zlembendentiﬁc:-‘ltionContl'olla'| |Ob'ed d:MembeddentificationP rocessObject
I
stim_1

I
l
|
I
I
stim_2:) g :
l
|
I

stim _2: |
L Ohject_4:Memberddentif cationValueO bject
stim_5: j
L T

I

Propetties | Stde [ToDoltems | Source code | Documentation Tagged Values

= Stimulus = XS

im_3
Name ’stlm_ ‘
DispatchAction anon Open | |
Sender Collabaration_Z.0bject_1 |

Receiver |Co|Iaboration_Q.Dbject_S

« # Stereotypes nang

After selecting the stimulus in the diagram, the Details pane shows the properties of
the stimulus. It is there that you have to open the dispatched action field displayed
in the Details pane, which is directly below the name field of the stimulus. This
causes the Details pane to change the view to the properties of the action.

119

Chapter 10. Diagram Reference

120

Figure 10-7. Selecting an operation and attaching arguments to it.

Sequence diagram_1

\ O = =2 8 = 4. O lAcOEL @

|Ob'ec1 1:MembeddentificationC ontroller |Ob'ect S:hembeddentificationP rocessOhject

|
|
|
l
| |
: stim_2: | g :
[|
|
l

stim_3 1 w=identifytembenx)

|
1
1
! stim_2:
: T ’I Object_4:Memb ed dentification'alueD hiect
1 1
| | stim_5: j
1 P — — & — — — I
|
|
: stim _G: |
_____________ | | \
T
|
|
|
e 3
Fropetties | stde [ToDotems | Source code | Documentation | Tagged values
A calaction & = et
Name ‘ ‘
D asynchronous
Operation [identityMember..) : Memberidentificationvaluebject| ~ | 1
Parameter Argument |
return:Memberldentification's... =
memberMumber: String 3¢

Language

The properties of the action allow you to select an operation and edit the arguments
attached to the procedure call. The set of possible operations includes all operations
of the receiving object’s class, as well as any operations inherited from direct and
indirect superclasses or interfaces. If an operation is selected, the name of the action
is updated according to the name of the operation and the given values of the
arguments. An empty argument value is displayed as an 'x’. Keep in mind that you
cannot edit the name field while an operation is selected.

Activations

An activation shows the period of time during which an object will perform an
action, either directly or through a subordinate procedure. It is represented as a tall
thin rectangle with the top aligned with its point of initiation and the bottom aligned
with its point of completion.

Now, let’'s consider how Poseidon deals with starting and terminating activations.
When an object receives a stimulus, an activation is created that starts at the tip of

Chapter 10. Diagram Reference

the incoming arrow. When an object sends a stimulus, an existing activation is
terminated at the tail of the outgoing arrow. There are two exceptions: First, an
outgoing send stimulus does not terminate an existing activation, because it
represents an asynchronous message. Second, if an object has explicitly set the
focus of control, its activation will continue during the whole lifetime.

10.6.1. Diagram Elements

- o Objects - Elements responsible for sending and receiving messages.

- . Call stimuli - Represents a synchronous message, which means that it is
regarded as a procedure call.

« . Send stimuli- lllustrates an asynchronous message, which means that it is
regarded as a signal. As such, the sender doesn’t wait for an answer from the
receiver.

« - Return stimuli - Represents the return statement of a call stimulus.

+ . Create stimuli - Used to create a new object at a certain point in the sequence.
The created object will then be placed at this specific point and not at the top of
the Diagram pane.

- . Destroy stimuli - Used to destroy an object at a specific point in the sequence.
The lifeline of the destroyed object will then end with a cross at this point and not
at the bottom of the Diagram pane.

10.6.2. Toolbar

Y Select
o Object

Call Stimulus
Create Stimulus
Destroy Stimulus
Send Stimulus
Return Stimulus
Comment
Connect Comment to Element
Text

Circle

Rectangle
Polygon

a O 0 &= ¢ @

121

Chapter 10. Diagram Reference

< Polyline
¢ Repaint

10.7. Collaboration Diagrams

z, Collaboration diagrams are another means for representing the interactions and
relationships between objects. Unlisesequence diagrams, however, they do not
focus on the timeline of interaction, but on the structural connections between
collaborating objects. Of central interest are the messages and their intent, when
creating &z, collaboration diagram. The chronological order of messages is
represented by numbers preceding each message.

10.7.1. Diagram Elements

- o Objects- In collaborations, objects represent different roles - these are
specified as Classifier Roles in Poseidon for UML.

« « Associations- Associations illustrate the connections between collaborating
objects. Messages are then placed along them.

- = Messages Just like in sequence diagrams, messages are used to describe the
interaction between objects. The numbers in front of the given names represent
the chronological order of messages. Using the corresponding buttons in the
toolbar of the Properties tab, you can specify an acdifor the message, and
you can change the direction of the message

10.7.2. Toolbar

A Select
o Object
“~ Link
Call Stimulus

Create Stimulus
Destroy Stimulus
Send Stimulus
Return Stimulus

122

Chapter 10. Diagram Reference

Comment

Connect Comment to Element
Text

Circle

Rectangle

Polygon

Polyline

Repaint

a N« O O 2 2 7

10.8. Component Diagrams

After a while, clusters of classes that strongly interact and form a unit will start to
peel out from the architecture. To express this, the corresponding clusters can be
represented as components. If taken far enough, this can lead to a highly reusable
component architecture. But such an architecture is hard to design from scratch and
usually evolves over time. As mentioned above, component diagrams are, like
object diagrams, edited with ti%:deployment diagram editor; therefore, the
corresponding model elements are explained in that section.

Figure 10-8. A Component diagram.

ClientManagement
<= control == ClientApplication
ClientController
é _____
== prfity == Account
Client
™

OrderManagement

== ety == == control ==
Order OrderController

Product

123

Chapter 10. Diagram Reference

124

10.8.1. Diagram Elements

&7 Nodes anda Instances of Nods - Nodes represent the hardware elements of
the deployment system.

- £1Components andél Instances of Components Components stand for
software elements that are deployed to the hardware system.

« N Links - Links are used to connect instances of nodes or objects.

- T Dependencies Dependencies exist between components and can be specified
by utilizing predefined or user-defined stereotypes.

« + Associations- Associations are used to display communication relations
between nodes. They can be specified by utilizing predefined or user-defined
stereotypes.

- o Objects, 5 Classesg Interfaces - Components and nodes can include objects,
classes or interfaces.

10.8.2. Toolbar

Select

Node

Instance of a Node
Component

Port

Instance of a Component
Dependency

Class

Interface As Circle
Lollipop

v Socket

< Association

= Directed Association
=/ Aggregation

~ Composition

8 Association Class

O Object

e e =TI [= =V ¢

S H m

Chapter 10. Diagram Reference

Link

Comment

Connect Comment to Element
Text

Circle

Rectangle

Polygon

Polyline

Repaint

i

a N« O 0 2 2 F

10.9. Deployment Diagrams

Finally the way the individual components are deployed to a hardware system can
be described using t% deployment diagram. Because we decided to merge the
different diagram types, the editor contains a wide set of elements to be used (see
also: Object diagrams Component diagrar@&sReployment diagrams are defined

on two levels: object or instance level and class level. For this reason, Poseidon for
UML provides both nodes and instances of nodes.

Figure 10-9. A Deployment diagram.

Senver

Client %esewatcn Management DElElErR SRR

Client Application = Database
! M
v/ I

% Client Management | | | | .

125

Chapter 10. Diagram Reference

126

10.9.1. Diagram Elements

& Nodes and& Instances of Nodes Represent the hardware elements of the
deployment system.

- £1Components andél Instances of Components Represent software elements
that are deployed to the hardware system.

« N Links - Used to connect instances of nodes or objects.

- 7 Dependencies Exist between components and can be specified by utilizing
predefined or user-defined stereotypes.

« + Associations- Used to display communication relations between nodes. They
can be specified by utilizing predefined or user-defined stereotypes.

- o Objects, 5 Classesd Interfaces - Components and nodes can include objects,
classes or interfaces.

10.9.2. Toolbar

Select

Node

Instance of a Node
Component

Port

Instance of a Component
Dependency

Class

Interface As Circle
Lollipop

Socket

Association

Directed Association
Aggregation
Composition

Association Class

Object

Link

Comment

Connect Comment to Element
Text

e e =TI [= =V ¢

0P m

¥l) (T X

T

0 m

;'2 i E v d

a [~ &« O O

Circle
Rectangle
Polygon
Polyline
Repaint

Chapter 10. Diagram Reference

127

Chapter 10. Diagram Reference

128

Chapter 11. Using Diagrams

11.1.

UML is a graphical language; therefore, from a user’s perspective at least, the most
important part of a UML tool is the graphical editor. This chapter introduces the
general features of the diagram editor that are available for all or most of the
diagram types, then takes a detailed look at the graphical editor and explains
Poseidon’s most important functionalities for editing diagrams.

Creating New Diagrams

Creating new diagrams is the core of creating new models. After all, it is the
diagrams that communicate the design. With Poseidon for UML, generating new
diagrams is a very simple process.

Diagrams are considered model elements themselves; therefore, you must decide
where the diagram will fit into the hierarchy of the model before you create the
diagram. The Package Centric view of the Navigation pane displays the distinct
hierarchy. New diagrams are created in the topmost package of this hierarchy by
default, but you can also create new diagrams for a specific package. If you select a
specific package and then create a new diagram, the diagram will be created within
that package. If anything else is selected in the Navigation pane, the new diagram
will be created in the topmost package.

There are two ways to create a new diagram. The first is through the main toolbar.
Simply click one of the create diagram buttons. The new diagram will be placed in
the navigation tree to the left. Where it is placed depends on what was selected in
the Navigation pane prior to the creation of the new diagram. By default, new
diagrams are placed in the top level of the model, which can be easily seen in the
package centric view. A diagram can be created elsewhere by first selecting the
package in which it should be placed, then clicking the create button.

Some diagrams are specific to certain model elem&rfisate an@. Activity

diagrams, for example, are used to design the details of a class or a use case. Such a
diagram needs to be associated with a class or a use case. To do so, you need to
select the class or use case prior creating the new state or activity diagram. Notice
that this association is fixed and cannot be changed later.

New diagrams can be created in several ways:

- Main Toolbar - Click the appropriate button for the corresponding diagram type.

« Main Menu - Select the diagram type from the 'Create Diagram’ menu in the
main menu.

+ Quick-Key Combinations - Use these shortcuts to create a new diagram:

129

Chapter 11. Using Diagrams

. Class Diagram €trl-L

- Collaboration Diagram €trl-B

- Deployment / Object / Component Diagrar@tr|-D
. Sequence DiagramGCtrl-Q

. State Diagram €trl-T

. Activity Diagram -Ctrl-Y

. Use Case DiagramGCtrl-U

11.2. Opening Diagrams

130

All existing diagrams are listed in the Navigation pane. To open one of these
diagrams, simply click on the name of the diagram. The diagram will open in its
own tab in the diagram pane to the right.

D Diagram Centric

From e]

@ StattAute
o8 gw Activity Diagrams
o EKReser\ration: Process Analysis

MEPE jit R aservation: Frocess Analysis |
Frocess Resenation: Process Analysis

Statt@uto: Main Process Analysis
Wehicle Reservation - Systern Use Case
o Wehizle Resencation: Process Analysis
)-EE Claszs Diagrams

— g_. Collaboration Diagrams

)-'? Ceployment Diagrams
o % Sequence Diagrams
o State Diagrams

g i, Usecase Diagrams

The number of diagrams which can be open at one time is set to 5 by default. This
number can be changed in the Appearance tab of the Settings dialog. Unchecking
the 'max number of tabs’ box removes any limits to the number of tabs.Include
reference to Ctrl-Alt-G

Chapter 11. Using Diagrams

£ gSettings

| User Project Optimizing | Diagram display |
General Appearance ldadeling | Environmeant
Look And Feel [Possiden Aoy =]

@ Show tips on program start
@ Shaw bird view perspective @ Adjust birdview to diagram size
[#] Show Ta Do (Critics) Pane

D Ferform automatic critiquing

@ Tabs in diagram wiew I%max. number of tabs

" s " | Apply | | LCancel

11.3. Viewing Diagrams

Viewing a single diagram is easy. You simply select the diagram you wish to view
from the Navigation pane and the chosen diagram is then displayed in the Diagram
pane. Much more interesting are the relationships between elements and how
specific elements are represented in different diagrams. Each element contributes to
the overall picture of the model. It may occur in only one diagram, or it may be
repeated throughout many diagrams, or perhaps it does not appear in any diagrams
at all. The element remains constant throughout the model, with the same
characteristics and properties. The only differences it may have from one diagram

to another are in the way it is rendered, such as color and compartment visibility.

The yellow field behind the diagram elements indicates the actual size of the
diagram. This is important when printing or exporting graphics. The size and shape
of this field will change automatically when moving or adding elements.

Select individual classes or associations in a diagram by single-clicking on them.
Note how they are simultaneously selected in the Navigation and Details panes.

Hovering with the mouse over any element in the Diagram pane will display the
beginning of any documentation that has been entered for that element.

131

Chapter 11. Using Diagrams

132

Figure 11-1. Tooltip displaying documentation

A Class Diagram |

k BRhzste—ce B i BE L cOcgL |

Sample Class
B Class Sample Class The beginning of any documentation included here will appear...
Froperies | Etyle | To Do ltems | Source code | Documentation | Lonstraints | Tagged Yalues |
c',’{, & ¥ Ca “ |Standard E“[Default} E”Nolmal E‘”Normal B|

E=E=E BIUFA BEE EE EE Q@@@B'@EI= [
|

L . . Jdava-Loc Tag Documentation
The begnning of any deocumentation mcluded H Eathor Caﬂ Carzon

Inzert a newtag w

here will appear in a tooltip.

UWFHSINTTE |Ml fimert

The model can be changed directly from the diagram. For example, double-click on
the class name of any class in a class diagram. The text field now slightly changes its
look and becomes editable. Changing the class name here perpetuates the name in
the model everywhere this model element is used. Most name fields accept multiline
text; therefore, the Enter key will add a newline. To commit a change to such a field,
use Ctrl-Enter in place of Enter, or simply click elsewhere in the application.

You can also select and change attributes or operations. You need to be aware,
though, that in this case you are not simply editing an ordinary text field, you are
editing text rendered from a number of model elements. As such, your changes will
be propagated throughout the model. Poseidon for UML provides quite powerful
parsers that allow you to change these directly by changing the text lines. This is
referred to as in-place editing. If you are familiar with the notation used in UML,
you can edit almost all of these directly in place.

Though most textual elements can be edited directly in place, another option for
elements that are not so easily edited in the diagram is to use context-sensitive
menus, which you call up by means of a right-click. In associations, for example,
most elements are changeable through Context menus.

There are, however, some details that can conceptually not be changed in place or
where it makes more sense to provide a special graphical user interface. It is for
these purposes that the Details pane is used.

Chapter 11. Using Diagrams
11.3.1. Details Pane

To explore the facets of the diagram, you can select elements with the select tool

and delve deeper into them. Each time you make a new selection in a diagram, the
Details pane (bottom right) is updated and shows specific information for the
selected element, as has been previously mentioned. Within this pane, the Properties
tab will be selected by default. It contains all relevant details of the selected model
element and also displays links to other directly related model elements.

The Properties tab of Poseidon for UML has some similarities with an internet
browser. And in a way, a UML model is very similar to hypertext. It is highly
connected and navigation between the connected elements is important. All
relations to other model elements function as a link to the corresponding Properties
tab. Like a browser, this navigation has a history that can be accessed using the
forward anc= back buttons. Since a model is also hierarchical, there isugmn

button to access the element at the next higher level. For a class this could be the
package or namespace to which it belongs, for example.

Figure 11-2. Properties tab displaying class 'Reservation’

Fropeties | C++ Properties | Style | To Doltems | Source code | Documentation | Constraints | Tagged Malues |

E Class

Operations 3 § 3 1 Atftributes

Fesencation

Name

+Criterial...)

+hlemben...)

Namespace |de.amg.stat'tauto.reser\ration.entity

||z||z| +getHumben]) : String

Wisibility @ public O protected O package

Modifiers

+zetHumben..)
O private

R Extends

Implements

D abstract

D final D root D active

none

none ‘

4 ¥ Stereotypes EntityDbject

Associations

Reservation[]-=de.amyg.sta
: D

Derived

none none

Owned Elements

Open the diagram 'Component Model Overview’ and select the class 'Reservation’.
Take a look at some of the fields, likasociations , Operations and

Attributes . All entries in these text fields work like links in hypertext, which
means that clicking on these links allows you to navigate to the related model
elements. You can navigate from one class to its associations, operations or
attributes and easily access their properties too. Of course, this kind of navigation
works in both directions: e.g. from a class to its operations and back.

Now let's move to one of the operations of this class. ClickNteenber operation
and have a look at its properties.

133

Chapter 11. Using Diagrams

Figure 11-3. Properties tab with operation 'Member’ selected.

FProperties [gtyle | To Do ltems | Source code | Documentation | | Tagged Yalues

Hopaton &= ¢ 88 T0 X P
return

Hame ember ‘ memberNumber

Cwuner |Resenration |

Accessed Attribute | |B|:l

Visibility (@ public (O protected () package () private Raised Signals

Maodifiers D abstract D final D root D queny D static nens

Concurency @sequential Osynchronized O concurrent

@ ¥ Stereotypes Finder ‘

Take an even closer look at the parametergl@hber. The parameters have
properties themselve; therefore, they have their own Properties tab, too.

Click on the parameteeturn . The UML specification treats return types as
special parameters; thus, every operation has a return parameter thatoset try
default. This type can be changed to any other type.

You should now be able to comfortably navigate through the model with the up,
back, and forward buttons of the Properties tab toolbar, which is again similar to a
hypertext browser.

11.3.2. Zooming

The zoom factor is a property of the diagram. Your diagrams might get too large to
fit completely into the visible part of the screen. In this case you will want to zoom
out to get a better overview. Or you might want to zoom in on some specific part of
a model to increase readability, for example during a presentation using a projector.

There are several ways to zoom in and out:

- Change the zoom factor of a diagram by clicking on an empty space in the
diagram and using the slider (or the buttons with predefined zoom values) on the
Properties tab in the Details pane.

134

Chapter 11. Using Diagrams

Figure 11-4. Zooming by changing the properties of a diagram.

Wehizle Resenation: Design-Class Model |

s - & R
A BEhzxEBete—-+«F B2 S BE OP ACOGL @
=5 At e O et AckAnCorire
P e s o b .
PO o f T sty
=+ | Pl B i i e
mrv——— = i
AN il sy [——————
bk i Sy Fewrtirioe Oin
ekt Sry
T & Er——
T] Comfimimer o
o = T —— vy
rrp—— [o
[et infagn U
st Cden b= - Coladtion wahiduSing
vkt Cilatin | TP o o i
FE—
__________________________ H TTT I I T T T T T
L W Ul
......... T — rePT—— peTvr— = Enchp
Wahichotn Waichn Locaon Mnizar
e]
Froperies [C++ Properties] Style] To Do ltems] Source code] Locumentation]] |
Diagram S o= x
Hame |Vehic|e Reservation: Design-Class Model |
Hamespace |Design.Use Case - Implementation.Wehicle Resenation " it ||lJ
Zoomfactor r .)
P -
a 25 50 75 100 125 140 178 200
| Zoom S0% ‘ | Zoom 7E% ‘ | Zoom 100% ‘ | Zoom 125% ‘ | Zoom 150% ‘ | iind o ‘

« Use the slider in the Birdview tab of the Overview pane. The checkbox indicates
which pane is affected - unchecked means the birdview can be zoomed, checked

means the diagram in the Diagram pane can be zoomed.

Figure 11-5. Zooming from the Birdview tab

Birdvizw | ByPriority |

] L]
. []
¥ :‘* -1

« Hold down the Ctrl key and use the mouse wheel to zoom in and out.

135

Chapter 11. Using Diagrams

- Choose a zoom factor from the mentidw->Zoom).

11.3.3. Scrolling

As diagrams get bigger and bigger, the scroll bars become more and more useful.

Fresentation Class Model Overview |

N BRzg te—ee O o BRILP OGS @
e alion: presen tadion) — L
9 E
__
4 3 ;
== AcivtyConroler == == AolwiyConrolier == == AiviypConrolier =
e arfcken Blhcatho n: on ol er C ateg cry Sadection Contm Ber Processfese rva SonControlier
o g S Aoy b - 50 rkation | Prom docamg-statiauio esevvation:prosl__)
s icand f cal on'al e O bt
[Ptiormberid i c af onvakeObject SCreateR eservalion ([vold -+ nadviehi ded) void
Ot ecdd 1 v W il el d
|
4 4 4
<< Presentation > << Fresentaion == << Presental on ==
CategorySelecion Process Reservation B
1] [F—]

You can use Shift and the mousewheel to scroll horizontally through a diagram as
well.

11.3.4. Birdview Tab

The Birdview tab displays an overview of the entire diagram. The portion of the
diagram visible in the Diagram pane is highlighted and has blue handles around the
edges. You can redisplay parts of the diagram by dragging the highlight box over
different areas of the diagram.

Birduiewm EyPriority |

4] [v]

|:|l=§/' 1 1%

136

Chapter 11. Using Diagrams

11.4. Navigation

Poseidon was designed to accelerate and simplify the modeling process; therefore it
offers many ways to move around within a model. Some users prefer using a mouse,
others work more quickly with a keyboard. Some users spend more time in the
Details pane, while others spend more time in the diagrams themselves. Regardless,
all users need different ways to efficiently find what they are looking for.

11.4.1. Navigation Pane

The Navigation pane in the upper left corner presents the elements of the model in
various views. Each view contains a different organizational structure, represented
as a tree of model elements. The root node of the tree is always the model itself.

Model elements are available for closer inspection by clicking on the name or
symbol of the element. The properties of the selected element are then displayed in
the Details pane, located in the lower right section of the application. If the element
appears in the diagram that is currently displayed in the Diagram pane, the element
will also become the currently selected element within the diagram. Should a
diagram be the selected element, that diagram will open in the Diagram pane.

This selection/activation interaction goes both ways. That is, if an element is
selected from within the Diagram pane, it is likewise selected in the Navigation
pane.

You can also move from a selected element to diagrams belonging to that element
with the quick-key Ctrl-Alt-g. If the selected element has more than one diagram,
the 'Go To Diagram...” dialog appears. You can then use the mouse or cursor keys
and Enter button to select the desired diagram.

11.4.2. Details Pane

The Details pane contains numerous tabs, and it is the Properties tab that provides
the means for drill-down navigation. Each element contains or is a part of other
elements, as an operation is both a part of a class and contains parameters, for
example. Moving between these elements is as simple as double-clicking on the
name of the element in the tab.

Also available are the up, down, and back buttons, which move you through the
hierarchy of the elements.

137

Chapter 11. Using Diagrams

11.4.3. Diagram Pane

The easiest way to navigate between elements within in the Diagram pane is to
simply click on any element.

But what about moving between the diagrams themselves? Easy. Open the 'Go To
Diagram...’ dialog by pressing Ctrl-g. In the dialog, you can use the arrow keys to
move around. The space bar switches the diagram that appears in the background,
and Enter selects the diagram and exits the dialog.

[@iGo to Diagram...

All Diagrams |
Search Results: 40 items

Type | Name | In Diiagram | Description |

UseCaseDiagram hember: Implemertation - Relationships not available 7 nodes and edges B
UseCaseDiagram User: Implementation - Relationships not available 7 nodes and edges
Fctivity Diagram ‘wihicle Reservation: Process Analysis not available 26 nodes and edges
ClazzDiagram Cortainer Class Analysis - Packages not available 11 nodes and edges
ClassDiagram Cortainer Class Analysis hiodel not available 20 nodes and edgas
ClaszDiagram “wizhicle Resenration: Design- Class hodel not awailable 28 nodes and edges
ClazzDiagram User Registration: Design- Class Model not available 10 nodes and edges
ClassDiagram “wishicle+Location: Bntity Class hiodel not available i nodes and edges
ClaszDiagram “wighicle Resenration: Entity Class hiodel not available 4 nodes and edges
ClazzDiagram Ertity Class Model Overview not available 11 nodes and edges
ClassDiagram ttgin hdenu dew: Design-Class hiodel not available 3 nodes and edges
ClaszDiagram hdermber Identification: Design-Clazs hdodel not awvailable 10 nodes and edges
ClazzDiagram Implemertation: Overview not available 4 nodes and edges B

If an element contains diagrams (a package for example), a rapid button takes you
to the elements sub-diagram(s).

_ (1] =24
Package I | 3o te contained Diagram

!

q

The quick-key Ctrl-Alt-G will also do this, and if an element has multiple diagrams,
it will open a dialog with the list of available diagrams.

11.5. Editing Diagrams

138

Now that you have learned to add and edit elements to a diagram, it is time to learn
how to refine the appearance of the diagram itself.

Of course, central to any model is the collection of diagrams. They provide a means

Chapter 11. Using Diagrams

to communicate ideas to the viewer in a format which is easily comprehensible.
And as they are responsible for clearly relating important aspects of the system,
they must also be completely accurate. Poseidon makes it easy to modify the
diagrams as the model progresses in development.

Adding Elements

There are two methods for placing new elements within a diagram: through the
Diagram pane toolbar and through the rapid buttons. The toolbar contains miniature
representations of all of the elements available in that particular diagram. Adding
elements to a diagram in this manner is very straightforward, simply click on the
element in the toolbar and then click in the diagram workspace. Creating elements
through the rapid buttons is not only quick (as the name implies), but also has the
advantage of creating a relationship to the new element from this one step.

Editing Elements

Perhaps the simplest way to edit an element is to edit it directly in the diagram. This
is known as Inline Editing. Double-click on the aspect of the element that you
would like to change, and the characteristic will be editable in a text box.

You can also edit an element in the Diagram pane through the context menus.
Right-click on the element or characteristic to display the context menu to see what
is editable from this menu for the particular element.

Some characteristics, however, are available for editing only from the Details pane.
Open the Details pane for an element by selecting it from the Diagram pane or the
Navigation pane. Navigate to the desired characteristic (such as a return type for a
class operation) by double-clicking on the characteristic in the left side of the
Properties tab. Some of the characteristics may require navigating through several
layers of characteristics. The Properties tab also provides navigation buttons which
function similar to a web browser.

11.5.1. Drag and Drop

Some diagrams will be created solely from new elements. But sometimes you will
want to use elements that already exist in the model. You just want to present them
in a different context and show other specific aspects of its role in the overall
architecture.

To do this, you can drag existing elements from the Navigation pane and drop them
in the diagram. These elements will appear with all currently known associations to
other elements already present in the diagram.

Drag and Drop can also be used to move a class from one package to another. This
can be accomplished by selecting a class in the Navigation pane and dragging it to

139

Chapter 11. Using Diagrams

140

the destination package. Once the class has been moved, the description that shows
the origin of the class is immediately updated.

Another possibility is to select elements in a different diagram, copy them by hitting
Ctrl-C and pasting them into your new diagram by hitting Ctrl-V. To cut elements
from a diagram, use Ctrl-X. Of course, you can also use these features Hdithe
menu or theContext menu.

Note that Drag and Drop is not currently available in Activity, Collaboration,
Sequence, and State diagrams.

11.5.2. Changing Namespaces

As your model evolves and grows bigger, you might want to restructure your model
organization. Drag-and-Drop and Copy/Cut/Paste functions are surely one way of
doing this. But there is a deeper concept behind the structure of models that you
should be aware of.

UML has the notion ohamespaceshat define a structure for a model. This

structure is not necessarily the same as the structure of your diagrams. Remember

that model elements can be represented in several diagrams but can only have one

namespace. And since diagrams can be created at very different points in the model
structure (that is in different namespaces), model elements do not always share the

namespace of that diagram.

A namespace is an abstraction of model elements that can contain further model
elements. A typical example for a namespace is a package. Classes as well as
diagrams are usually contained in a package, or to put it differently, their namespace
is the package they are included in. Any model element that is not directly owned

by another model element (like an operation that is owned by a class) has such a
namespace.

To find out what namespace a model is in, look at the Properties tab in the Details
pane. Any element either has a namespace or an owner. You can change the
namespace by clicking on the little button to the right of the text field. This opens a
drop-down menu with all namespaces you can move it to. For example, if you
decide a class should not belong to the package you created it in, you can simply
change its namespace to be a different package from the Properties tab.

In some cases, changing the namespace for one element does not only effect this
element but others as well. This is a convenience feature that was intentionally built
in, believing that this is what the user intends to do in most cases. But this might not
always be the case. If you change the namespace of a diagram, then all model
elements in that diagram are assigned the new namespace as well. Also, if you
change the namespace of a package, all included elements will likewise be moved
to the new namespace.

Chapter 11. Using Diagrams

Since packages are the most important type of namespace, there is another
convenience feature for it. You can change a model element’s namespace by
dragging it with the mouse onto the figure of a package within a diagram.

11.5.3. Layout Functions

You already know that you can layout your diagram by using the select tool. But
there are a number of other ways to rearrange your diagrams.

Select and Move Elements

A selected class can be moved not only by using the mouse, but also by means of
the arrow keys. The elements get nudged in the direction of the selected arrow key.
Holding down the SHIFT key while pressing the arrows causes the elements to
move in larger increments.

You can easily select several elements by holding down the Shift key while you
select further elements, or by clicking somewhere in the empty space of the drawing
area and dragging the mouse over elements. A dashed line appears and all elements
that are partially or wholly enclosed in it will be selected.

Figure 11-6. Selecting multiple elements with the mouse.

Movements always apply only to the selected elements. If you want to select all
elements in a diagram, use the quick-key Ctrl-A.

Elements can be moved along invisible rails’ by holding the Ctrl key while
dragging the elements. This limits the movement to the X and Y axes of the original
element. If multiple elements are selected, the center of the selected elements is

141

Chapter 11. Using Diagrams

142

used as the origin of the rails. This means that an element may or may not reside at
the origin.

Arrange Elements

Another set of useful options that are accessible from the main menu are the
arrangement options. These are a powerful set of tools to assist with the layout of a
diagram.

TheAlign Tools include:

m™ Align Tops - Aligns the tops of the selected elements along the same
horizontal axis

Iz Align Bottoms - Aligns the bottoms of the selected elements along the same
horizontal axis

E Align Lefts - Aligns the left sides of the selected elements along the same
vertical axis

< Align Rights - Aligns the right sides of the selected elements along the same
vertical axis

& Align Horizontal Centers - Aligns the centers of the elements along the same
vertical axis

=8 Align Vertical Centers - Aligns the centers of the elements along the same
horizontal axis

IF Align to Grid - Aligns the top-left corner of the element with the snap grid

The Distribute Tools include:

it Distribute Horizontal Spacing - Distributes elements so that there is the same
amount of white space between the vertical edges of the selected elements

it Distribute Horizontal Centers - Distributes elements to that there is the same
amount of space between the centers of elements along a horizontal axis

=i Distribute Vertical Spacing - Distributes elements so that there is the same
amount of white space between the horizontal edges of the selected elements

=t Distribute Vertical Centers - Distributes elements so that there is the same
amount of space between the centers of elements along a vertical axis

The Size Toolsinclude:

Greatest Current Width and Height - Uniformly resizes selected elements so
that each is the size of the largest selected element.

Chapter 11. Using Diagrams

Smallest Current Width and Height - Determines the size of the smallest
element that can display the information of each of the selected elements and
uniformly resizes the selected elements.

Minimum Possible Width and Height - Determines the smallest possible size
for each of the selected elements and uniformly resizes them so that each is the
size of the largest minimized element.

Greatest Current Width - Uniformly resizes selected elements so that each is
the width of the largest selected element.

- Smallest Current Width - Determines the width of the smallest element that can

display the information of each of the selected elements and uniformly resizes the
selected elements.

Minimum Possible Width - Determines the smallest possible width for each of
the selected elements and uniformly resizes them so that each is the width of the
largest minimized element.

Greatest Current Height - Uniformly resizes selected elements so that each is
the height of the largest selected element.

Smallest Current Height - Determines the height of the smallest element that
can display the information of each of the selected elements and uniformly
resizes the selected elements.Note: this is not functional in the current version of
Poseidon.

Minimum Possible Height - Determines the smallest possible height for each of
the selected elements and uniformly resizes them so that each is the height of the
largest minimized element.

The Ordering Tools include:

Bring To Back - Places the selected element(s) on the bottom layer of the
diagram display.

Bring To Front - Places the selected element(s) on top of the diagram display.

Send Backward- Moves the selected element(s) down one layer in the diagram
display.

Send Forward - Moves the selected element(s) up one layer in the diagram
display.

These groups of tools may be used alone or in conjunction with another tool of a
different type.

The layout process is supported by a grid. It you want a finer or a coarser grid than
the default, or if you want the grid to be displayed in a different manner, you can
change this in th&iew menu.

Changing the Shape of Relationships

143

Chapter 11. Using Diagrams

144

You can also change the layout of the edges. By default, Poseidon for UML always
tries to draw a straight line without bends but you can easily add waypoints: Select
an edge and move the mouse perpendicular to the edge. At first the edge simply
moves, too. But as soon as a straight edge is no longer possible, a waypoint is
automatically added. You can add several waypoints by clicking on the edge so that
you can wire your diagrams as you prefer. To remove a waypoint, just move it over
another waypoint or an endpoint and it disappears.

Figure 11-7. Adding waypoints.

Class 1 Class 2

+class_ 2

™1
+clazs_ 1

Class|1 == Class| 2

In Poseidon for UML version 2.0, waypoints have changed from blue boxes to
yellow circles. Despite the change in appearance, they function in the same way.

Moving Adornments

You can also move adornments as you can move elements. Simply select the
adornment and drag it around. You will notice a little dotted red line that indicates
to which association this adornment belongs. Roles and multiplicities are attached
to the association ends in the same manner.

Figure 11-8. Moving adornments.

Class_1 myAsspciation Class_2
+

Chapter 11. Using Diagrams

In version 2.0, the adornments move in a slightly different (and more intelligent)
manner. Previously, an adornment might obscure an edge. Adornments now 'hop’
over edges, automatically providing a cleaner look to the diagrams.

11.5.4. Undo/Redo

Poseidon maintains a history of changes made to the model. The undo and redo
buttons step forwards and backwards through this history.

Undo and redo is limited to three steps in the Community Edition.

11.5.5. Non-UML Additions

Some of the items available in the toolbar exist to clarify and enhance models, even
though they are not a part of the UML specification. These items do not affect any
code generation, but increase the understandability of a project for human readers.

11.5.5.1. Select

The first tool in the toolbar is called the 'select’ tool, and is the default active tool. It
is used to select, move, and scale diagram elements, as well as modify the element
directly from the diagram. When an element has been selected and is now the
current active element, it will appear with yellow circles (called 'handles’)
surrounding it.

A brief list of functions:

. Select an element Click on the desired element.

- Move an element Click and hold the mouse button inside the element, then
drag the element to its new location.

. Resize an element Click and hold the mouse button on an element handle, then
drag the handle.

. Edit an element inline - Double-click on a text element to activate the text edit
box.

Try it Yourself - Resize an Element

145

Chapter 11. Using Diagrams

146

1. Selectthez Client class from a diagram.
2. Small round yellow handles appear on the corners of the element.

3. Click and hold the mouse button on one of these handles and drag it
around the diagram to resize the class.

11.5.5.2. Comments

Sometimes a diagram requires a bit of extra explanation. This information is not a
part of the final code, yet it helps the viewer better understand the diagram. This
information can be included in a comment element. Comments are extra notes that
are included and displayed in a diagram. These comments can be added to almost
any element including other comments, or they can stand alone in the diagram.
Comments cannot be added to relationships, transitions, or shapes created with
drawing tools in any diagram, and objects in sequence diagrams.

Comments are ignored by the code generator; therefore they are never seen in the
code output. They are likewise never seen in the Navigation pane.

To add a comment to a diagram:

1. Click the & Comment button in the diagram toolbar.

2. Position the crosshairs in the diagram and click to place the comment in the
diagram. At this point it is a freestanding comment that is not connected to any
element.

To connect a comment to an element using the toolbar buttons:

1. Click the!®/ Connect Comment button from the toolbar.

2. Place the crosshairs over the comment to be connected. Click and hold the
mouse button.

3. Drag the crosshairs to the element to be connected. Release the mouse button.

To connect a comment to an element using the rapid buttons:

1. Click one of the rapid buttons around the comment to be attached. Hold the
mouse button down.

2. Drag the crosshairs to the element to be connected.

3. Release the mouse button.

Chapter 11. Using Diagrams

You can either use the 'select’ tool to make the comment the current active element
and then begin typing, or double-click to open the editable text field.

Just as with any other element, notes can be resized with its handles and the color
can be changed through the style panel of the Details pane. This makes it easy to
introduce a color-coding scheme to diagram notations.

Figure 11-9. A new comment

Sample comment
with style properties.

Class

11.5.5.3. Drawing Tools

The set of tools which appears at the end of the toolbar are for general drawing
purposes. With these tools you can add other graphical elements such as shapes to
your diagram. You should keep in mind that, although useful sometimes, these
graphics are not part of UML; therefore, they don’t show up in the model tree in the
Navigation pane.

The Drawing Tools:

Al Text - Click in the diagram area and begin typing to create a text object.

Q Circle - Click in the diagram area and drag the mouse to create an ellipse.

o Rectangle- Click in the diagram area and drag the mouse to create a rectangle.

@ Polygon- Click once everywhere the polygon is to have a corner. Double-click
the last corner to close and render the polygon.

£ Polyline - Click in the diagram area and to create a waypoint. Click again to
create another waypoint and a line between them. A connected line can be added
by Iclicking to add a third waypoint. Double-click the last waypoint to cease the
addition of lines.

147

Chapter 11. Using Diagrams

148

11.5.5.4. Toggle Between Editing Modes

Two modes of editing are available for modifying shapes. You can switch between
modes by double-clicking on a shape.

The first is a resize mode, which allows you to change the size of the shape by
dragging the handles (gold circles) that surround the shape. Dragging one of the
corner handles enlarges and shrinks the shape without changing its proportions.
Dragging the side handles expand and compress the shape.

The second editing mode is available for all shapes except circles. It allows you to
add, remove, and move waypoints to change the shape of the element. For example,
you can create a rectangle, double-click on it, and then add a waypoint to create a
new polygon.

Figure 11-10. Add a waypoint to a rectangle

Shapes |

K BEhXEfte—-e-e B2 1S BEILP AcOGL @

Shapes |

kR BRhEFTe—=ee B9 i BE L ACOGD @

Chapter 11. Using Diagrams

11.5.5.5. Close Shape

Once a shape has been drawn with the line tool, it is possible to close the shape
automatically to create a polygon. Select the shape and open the 'style’ tab of the
Details pane. Check the box titled, 'Close Shape’. The shape can be reopened by
unchecking the same box.

Figure 11-11. Open and closed lines

Shapes |

k| BRhzEBETTe—es B9 i (BRILOP ACOEL @

[swe |

Bounds |

DCIose Shape Opacity
I | Vg |
o 20 40 G0 &0 100
Fill Lines Font
[¢setauit- = =]
[[SCI []] [[WISC [(]] o HER LI [][
ml ml mr L g _
Samm N RNNNENENERNN | mmms B IRERCANEEEND | | pm m B EEERTSENEEEE
N RNNNNREREEND mm B TIEERRNREENN pn_ I EEEENEEEEEEE
m 0 DNNNENNNNENN wm=s B IEDNNREDDENN H EEEEEEEEEEEE

149

Chapter 11. Using Diagrams

Shapes |

K BEhXEfte—-e-e B2 1S BEILP AcOGL @

[stre |
Bounds |
[#] Close Shape Op asity
v
| 1 O R
(1] 20 40 [=1n] an 100
Fill Lines Font
|<defau|t> lz“ | B|
[[N [[] | IS [[[o | | [LI [[
| 1 [- -
i N S
SEmm N NNNRCENNNREN | mmmm B IHIEEENEEEND | gm m B EEEETSEDEEEE
1 INRRENNNERNR mm B IIINNNRRRENN pn. § EEEEEEEEEEEN
m 0 DNNRNNENNEEN wwmws B IEDNDNREEEND L W]]]

11.5.5.6. Opacity

Fill colors can be applied from the Style tab of the Details pane. It may be
advantageous to change the opacity of this fill at times. Fortunately, this is very
easily accomplished. Simply select the figure that will have a different opacity and
use the slider bar within the ’style’ tab of the Details pane.

150

Chapter 11. Using Diagrams
Figure 11-12. Changing opacity

Shapes |

Kk BRiBste—ece B4 i BE IO AcOcS e

[swe |
Bounds | |
DCIose Shape Opacity O
1 1 i 1 opooog
o 20 40 G0 &0 100
Fill Lines Font
|<defau|t> lz“ | E|
[COWSCI []] [WIS [[]] . o | [[LI [][]
o o i u
i | —
uumm | RENRCNONEENN - N HIRCERRRENE | | pgm m N EEERENENEEEE
ARRERRENNNEN N NNNENNNRENNDR peE & EEEENEEEEEEE
annm § DNNONNENNNNN wess B JEDNNDNDDENN H EEEEEEEEEEEN

151

Chapter 11. Using Diagrams

Shapes |

K BEhXEfte—-e-e B2 1S BEILP AcOGL @

Q T 0O
[stre |
Bounds
[Close Shape Op asity
' b
1 1 jooogo 1 1
o 20 40 G0 &0 100
Fill Lines Font
|<defau|t> lz“ | B|
[L[] [L[] . o | [LI [][]
| 1 [e -
Summ § NNNNCENNNNNY | mmmm B SERNGENENEND | gpm @ N EEEESEEEEEEE
s 1 RNNNRNERNENY | | e T DNONRREREENN peE | EEEENEEEEEEE
annm I DNNONNENNNNN wme=s B DEDNNDEDDENN H EEEEEEEEEEEN

11.5.5.7. Waypoints

Once a line or polygon has been created, the shape can be altered by creating and
moving a waypoint, much in the same way that connections between elements can
be edited. Click on the perimeter and move the resulting gold circle to create an
'elbow’. In this same vein, waypoints can be deleted by selecting and dragging
them over an existing waypoint or endpoint.

11.5.5.8. Diagram-specific Tools

The rest of the tools in the toolbar are specific to the current diagram type. They
allow the creation of diagram elements and operate similarly to a stamp. With a
single click on the icon you get a handle to create one corresponding diagram
element. If you double-click, the tool stays selected and you can create a number of
diagram elements, one after the other. The cursor changes to a hair cross with which

152

Chapter 11. Using Diagrams

you can select the position of the new element. To disable this feature just click on
the 'select’ tool.

Some tools are only available in a certain context. In Class Diagrams, the tools to
create a new attribute or a new operation are only available when a class is selected.
Select the desired class and click on the appropriate button to create a new attribute
or operation for your class.

The individual tools are covered in detail in the chapter titled, 'A Walk Through the
Diagrams’.

153

Chapter 11. Using Diagrams

154

Chapter 12. Element Reference

12.1. Relationships

Relationships are very important in UML. They have properties in and of
themselves, as well as consisting of other model elements. Every association has
two — association ends that are model elements in their own right, as defined in the
UML specification. Figure 9—4 shows the Properties tab for an association, in this
case between Account and Member. Notice that there is no stereotype or name for
this association, but they could conceivably exist. Also note that the association is
part of theDesign.Use Case - Implementation.User Registration

namespace.

Figure 12-1. Properties tab for an association.

FPropetties | Style | To Do ltems | Source code Documentation | | Tagged Walues

& Aszociation & o= ﬁ x Aszociation Ends
members account

Hame ‘ agcount holder

Mamespace | |Blz|

Mo difiars D abstract D final D root D derived

« ¥ Stereotypes |none |

An association end can also be given a name, and like an association it doesn’t
require one. If an association end does not have its own name, the class name at that
end of the association is displayed. Look to the left hand side of Figure 9—4. In this
case, both association ends have been named. Like hypertext, they link to the
association end properties, not to the class properties.

155

Chapter 12. Element Reference

Figure 12-2. Properties tab for an association end.

FProperties | Style | To Do ltems | Source code Documentation | | Tagged Yalues

+— Association End 8 = {f — Madifiers [] nawigable
account holder Scope |:| Classifier

Hame

—— Ordering @ unordered O ordered O unspecified
Type |Ana|ysis.Container Class Model.Member.bdember |B| "l

— Aggregation @ none Oaggregation Ocomposition
Multiplicity 1

Changeability @ changeable Ofrozen O add anly

Aszzociation |Ana|y‘sis.Container Class ModelAnalysis.Container Class... |

% # Stereotypes |n0ne | Wisibility @ public O protected O package O private

Associations can be specialized to-=rmggregation or &composition. To do this,
navigate to one of the association ends and change the aggregation type from none
to either aggregation or composition. They can also be created directly from the
toolbar, using th¢= 'Create Aggregation’ button or tk*=''Create Composition’

button.

12.1.1. Types of Relationships

- Generalization

- Dependency
 Association

- Directed Association
- Aggregation

« Composition

12.1.2. Navigability

The navigability of associations is similarly changed, using the association ends
properties. The check box titled 'navigable’, when checked, meamards the

class that this association end points Tanis is a bit counter-intuitive at first, so
further explanation is warranted:

Associations can be modeled as navigable in both directions, navigable in only in
one direction, or without any navigability. In most cases, navigability is indicated by
arrows in the diagrams. The one exception is the default association, an association
which is navigable in both directions. In this case arrows are omitted. The
navigability of an association occurs at the beginning of the arrow, not at the end.

156

Chapter 12. Element Reference

You can easily navigate to the opposite association end using the navigation button
— in the Properties tab.

When you first create an association, it is navigable in both directions. The UML
standard requires that both arrows are hidden in this case, so it looks just the same
as an association with no arrows at all. To distinguish these two cases, the arrows of
both its ends show up in grey, if necessary, when you select an association.

Figure 12-3. Highlight hints for associations.

Reservation) i travelReport) TravelReport

resgrvation
0.1

12.1.3. Hiding and Displaying Multiplicity of 1

When a multiplicity of 1 is set, some UML authors recommend hiding the 1,
whereas others like to show the 1. To suit your needs, you can set the single
multiplicity to be displayed or hidden. This can only be set diagram-wide in order to
avoid confusion.

To change the display setting for single multiplicity:

1. Select the diagram where you want to change the setting.
2. Go to the Style tab.

3. Activate or deactivate the 'Show association multiplicity of 1’ check box.

157

Chapter 12. Element Reference

Figure 12-4. Style tab with multiplicity unset and set

Class diagram_1 |

k BRhzste—ce B i BE L cOgL

Class 1 Class 2

Properias | Style [To Do ltems] Source code Documentation]

Bounds | |

|:||Show association muliplicity of 1
Fill Lines Font

|<defau|t> lz“ |

Clasz diagram_1 |

Ak BREzete=e-e g S BEILGR COCD @

Class 1 Class 2

Froperties | Strle [To Do ltems | Source code Documentation]

Bounds | |

] [show association multiplicity of 1|

Fill Lines Font
[detaut>
- [[| SIS T[] - [[(ST P[] -
B .) : o
L I |
1
1 1 1 |

12.1.4. Self-Associations

Associations usually connect two different classes. But they can also be drawn from

158

Chapter 12. Element Reference

one class to itself. Simply use the rapid button in the lower right corner of the class.

Figure 12-5. The rapid button for self-associations

BB

Sarrplé Class

=l 4=

TN

Creates an association to itself

Sample Class

1
+sample Class

+sample Class k
i Azzociation: Sample Class-> Sample Class

Bample Class <= Sample Class

12.2. Classes

Classes are the core elements in an object-oriented model. They are represented by
rectangles divided into three sections that display class information in the topmost
portion, attribute information in the second, and operation information on the

bottom. These compartments can be hidden via the context menu, as can package
and stereotype information.

12.2.1. Attributes

Every class can have attributes that express some of its properties. In UML, every
attribute has a name and a type. The type can be any other DataType, Class or
Interface that is in the model. You can select the type from a combo box of all
available types. If the type you need is not in the list, you can create it elsewhere,
and then select it from the list.

159

Chapter 12. Element Reference

160

Figure 12-6. Properties of an attribute.

Froperies [gtyle | To Do ltems | Source code | Documentation

| Tagged Walues |

B attibute =4 ZE B X

e [sung [[~]3]

Name
Accessor methods
Multiplicity | [=] [a=thumber
setMumber
Ordering D unordered D ardered @ unspecified
Chaner |Reser\ration |
Wisibility O publiz O protactad O package @ private
Maodifiars I:‘static Dfinal Dtransient Dvolatile D derivad

@ 3 Stereotypes ||'<9!‘

Attribute Properties

Multiplicity - The multiplicity field determines how many references the class

has to this attribute.

Ordering - Can be set to ordered, unordered, or unspecified (default).

Owner - Specifies to which element the attribute belongs.

Visibility - The visibility of an attribute expresses which other classes can access

it. The options are:

Public +
Protected #
Private -
Package ~

Accessible to all objects

Accessible to instances of the
implementing class and its subclasses.
Accessible to instances of the
implementing class.

Accessible to instances of classes
within the same package.

Modifiers - You can also set whether the attribute is write-only by checking the
final check box. An attribute can also batic (class scope instead of instance
scope) ottransient or volatile. An initial value can be given as a Java expression.

Stereotype- Stereotypes can be added an removed via a dialog that is accessed
by right-clicking the stereotype field and clicking 'Open’.

Chapter 12. Element Reference
- Type - The Type dropdown sets the type of the attribute.
- Initial Value - This optional field gives an initial value to the attribute.

« Accessor Methods You can create the appropriate accessor methods for this
attribute with a simple click. Just hit the butt 2i’Add Accessors' in the
Properties tab of the Details pane, and in the list below you will see a list of
methods. This list depends on the multiplicity and the state of the final check box.
If the multiplicity is 0..1 or 1..1, oneetAttribute and ongyetAttribute
method are created. If final is checked, it is only geeAttribute method that
is created. If you chose a multiplicity that has a numerical upper bound (and not
1), array access methods are displayed. If you give a multiplicity with unlimited
upper bound (also known as ..* or ..n), accessors favautil.Collection
are created.

When you create a new attribute, these methods are created automatically if you
checked 'Create accessors for new attribute&adiit-Settings. Every time you
change the name or the multiplicity of the attribute, the access methods will
change accordingly.

If you prefer to have only some accessor methods, right-click on one of the
entries in the list ’Accessor Methods'. Then, select 'Delete’. The operation will
be removed from the list; thus, it will not be marked as accessor any more. You
will be asked if you want to remove this relation only or if you want to delete the
operation completely. Whether this dialog appears or not is determined by your
settings, which can be accessedEntt-Settings. The 'Modeling’ tab is

displayed in Figure 9-9. Notice the 'When removing attributes’ drop-down list.
The default option is to ask before deleting the accessor operation. You can also
choose to always keep the operations or to delete them directly without asking.
This depends on your preference and your style of working with accessor
methods.

161

Chapter 12. Element Reference

Figure 12-7. 'Remove Attributes’ setting

& Settings
| Lzer l Praject l Optimizing Diagram display |
General | Appearance | Modeling Environment

@ Acceszor methods copy documentation of attribute
@ Ak before ovenwriting documentation

D Immediately create accessars for new attributes (CTRL inverts on the fly)

When removing attributes: |Delete acceszor operations, ask before |Z|

Keep accessor operations

Delete accessor operations, ask before

Celete accessor operations, do not ash

" OK ” | Apply J | Cancel

12.2.2. Operations

Figure 12-8. Properties of an operation.

Propetties | Stde [ToDoltems | Source code | Documentation | Tagged values
Hoeaton @@= ¢ BB T X Farameters
retumn
Name userRegistration login
pazanard
Cwwner |UserReser\rationProcessDbject
Accessed Attribute | |B|_J
Raised Signals
Wisibility @ public D protected D package D private g
none
hodifiers D abstract D final |:| root D quen; D static
Concurmency @sequential I:::)sy'nchronized Dconcunent
<« Stereotypes |none |

For every operation, you can set several UML properties. Among them are

visibility, scope (class or instance), and concurrency (with designators like
sequential, synchronized, and concurrent). You can set an operation to be final, be a
guery, abstract, or a root method (with no parent).

The two lists on the right of the Properties tab are used to refine the operation’s
signature. In the list of parameters, the first parameter return is always there. This

162

Chapter 12. Element Reference

defines a return type for this operation. Similarly, you can add parameters that may
be given a name, a type and the modifier 'final’. The final modifier is a special case
that we introduced to handle Java.

You can define a constructor by setting the stereotyeeate>>. The code
generation generates a constructor signature.

Operation Properties

- Name- This field gives a name to the operation. This field can also be changed
directly in the diagram.

- Owner - The 'Owner’ field specifies the element to which the operation belongs.

« Accessed Attribute- In the field 'Accessed Attribute’, you can define whether
this operation should be marked as an accessor method for an attribute. The
primary use of accessor methods is to modify the attribute internally and to
control access to the modifications externally. You can choose a modified
attribute (if the operation is an accessor method created by Poseidon, an attribute
is already selected) or select none if you want to decouple an accessor method
from its attribute.

- Visibility - Can be set to public, protected, package, or private.
- Modifiers - One or more modifiers are set by means of the checkboxes.
- Concurrency - Set the concurrency to sequential, synchronized, or concurrent

- Stereotypes Stereotypes can be added an removed via a dialog that is accessed
by right-clicking the stereotype field and clicking 'Open’.

- Parameters- Lists parameters of the operation. In Poseidon, return types are
considered a special type of parameter.

- Raised Signals The last list, 'Raised signals’, is used to define whether this
operation throws exceptions.

Select 'Add..." from the context menu to insert a new exception.

To edit this exception, select Open from the context menu, then enter a name and
select a type for the thrown exception. As you know, only the type of the
exception (not the name) is relevant for code generation. If you need more
exception types, simply create the corresponding class in your model (e.qg.,
MailException in your packagéavax.mail). Your exception type must end

in ...Exception in order to be visible in the type list of exceptions.

You may also assign the <<exception>> stereotype to an element and use that
element as a raised signal. First, apply the stereotype using the stereotype dialog.
Second, add an exception to the desired operation through the ’raised signal’
context menu within the properties tab. Third, select the exception-stereotyped
element from the dropdown "Type’ list.

163

Chapter 12. Element Reference

12.2.3. Association Classes

Poseidon now supports association classes.

To create an association class:

1. Create the two classes to be associated.
2.Select 'Association Class’ from the toolbar.
3. Click on one of the original two classes and drag the mouse to the other class.

4. An association class will be created between the original two classes.

1
Association_Class

12.3. Interfaces

164

Interfaces are present in Class, Component, Deployment, and Object diagrams.
Poseidon allows you to choose a variety of ways to represent interfaces, the
standard being the traditional box notation, which looks like a class with only two
compartments (as attributes are not allowed in interfaces). They can also be drawn
using lollipop (or ball) notation, and you can toggle back and forth between these
two.

12.3.1. Box Notation

The box notation is just what is sounds like - the Interface is shown as a box with
two compartments. The uppermost compartment contains the name, stereotype, and
package information, while the bottom compartment displays operations that

Chapter 12. Element Reference

belong to the interface. The options available to an interface (such as hiding
compartments) are identical to those available to classes.

To create a new interface with box notation, select the Interface button from the
toolbar and click in the diagram.

You can toggle between box and lollipop notation using the representation rapid
button.

Interface

g 151 5]

12.3.2. Lollipop Notation

Lollipop notation is a condensed way to represent an interface. The interface itself
is drawn as a circle with a solid line connecting it to another element. This indicates
that the element to which it is connected 'offers’ the interface.

In this example, the class Foo offers Bar as an interface.

Foo

Bar

You can create the class first and then add the interface using the lollipop rapid
button.

Alternatively, you can create the interface with the 'Interface as Circle’ toolbar
button and connect it to the element by either dragging the lollipop rapid button
from the element to the interface, or you can select the lollipop button from the
toolbar and drag it from the element to the interface.

The order in which the elements are connected is important to the meaning of the
diagram. If you drag the relationship from the interface to the element, you will
create a 'realize’ relationship, indicating that the interface realizes the element.

12.3.2.1. Sockets

In addition to the compact representations, lollipop notation has an advantage in the

165

Chapter 12. Element Reference

166

clarity of a diagram. This is because not only can 'offered’ interfaces be modeled,
but required’ ones as well. These are called 'sockets’ and are drawn with a
semi-circle and line to the element requiring the interface.

To create a standalone socket that does not connect to an offered interface, you can
either click the socket rapid button from an element, or you can click the socket
button in the toolbar and drag it from an element to a blank space in the diagram.

To connect a socket to an offered interface, first create the offered interface as a
circle. Then drag the socket rapid button (or socket toolbar button) from the element
requiring the interface to the offered interface.

Here we see that class Foo offers the interface (Bar) that class Baz requires.

@)

Bar

12.3.3. Ports

Ports provide a way to organize interactions between components and their
environment within Component, Object, and Deployment diagrams. They can be
uni-directional (only required or only provided interfaces connect to the port), or
they can be bi-directional (both required and provided interfaces occur at one port).

Figure 12-9. Uni-Directional Ports

== component ==
Component

Requiredinterface

== component ==
Component

O

Providedinterface

Figure 12-10. Bi-Directional Port

Providedintesface

=2 component ==
Component

Requiredinterface

Chapter 12. Element Reference

To create a port on a component, first select the component in the Diagram pane,
then click the port toolbar button or the port rapid button. This is a bit different than
with other element types. You cannot first select the tool from the toolbar and then

apply it to the component.

The properties of ports are very similar to those of other elements. The 'Port

Properties’ entry, however, only appears for ports. These checkboxes describe how

the information entering the port will be handled.

isService- When checked, this port provides access to the published functionality
of a classifier; when unchecked, this port implements the classifier but is not part

of the functionality of the classifier, meaning that it can be altered or deleted.

The default value is checked.

The default value is unchecked.

isBehavior- When checked, signal requests arriving at this port are received by
the state machine of the object, rather than by any parts that this object contains.

Properies

Ct+ Properties | Style | ToDoltems | Source code | Documentation

Lonstraints Tagged Values

b= Py X

port ‘

O Port

Name

|Component |

[~]1]

Owner

Type |anon

Faort Properties D iz behavior @ issenice

(=]

none ‘

Multiplicity [

¥ Stereotypes |:|

Frovided Interfaces

Interface_1

Required Intarfaces

Interface_2

167

Chapter 12. Element Reference

168

Chapter 13. Using Elements

13.1. Creating New Elements

A new diagram, of course, requires elements in order for it to have significance.
There are several ways to add elements to a diagram, as you will see in the next
couple of sections.

13.1.1. Diagram Pane Toolbar

The diagram pane toolbar contains buttons to create elements that are specific to
that diagram. For example, the button to create an initial state will not appear in a
class diagram toolbar. This reduces the amount of buttons that you must deal with at
one time.

The create buttons for most elements act as stamps, so that the element is placed
wherever you click within a diagram. The exceptions are associations and ports.

Ports are created by first selecting the component that will have a port, then
selecting the port tool from the toolbar. At this point the port will be automatically
added, you need not click on the component to add the port.

Any sort of relationship needs to exist between two model elements; therefore, both
elements of the association must be included in the creation process instead of just
stamping a line anywhere. To create a new association element with the toolbar,
select the type of association and place the cursor over the first element in the
relationship. Click and hold the mouse button, then drag it to the second element in
the relationship. Note that for some of the association types, the order in which the
elements are connected affects the definition of the association.

Try it Yourself - Create new elements with the toolbar

169

Chapter 13. Using Elements

170

1. Open the class diagranUser Registration: Design-Class Model
2. Select the= "create class’ button from the toolbar. The mouse should
now appear as a crosshair.

3. Place the crosshair to the right of the class 'User’ and click the mouse
button to create the new class.

4. Select theT! 'generalization’ button from the toolbar. The mouse will
again appear as a crosshair.

5. Place the crosshair in the new class, press and hold the mouse button,
then drag it to 'User’.

* Note that the order in which they are connected determines the direction of
the inheritance.

6. You are now ready to incorporate the new class into the model. Look
through the rest of this guide to learn how to change the name of the class,
color-code it, add elements and operations, and more.

13.1.2. The Rapid Buttons

The toolbar is not the only way to create new diagram elements or associations.
Poseidon for UML provides an intelligent shortcut that can speed up the
development of a diagram. Select a class and wiggle your mouse near the edge of
the class and several additional buttons will appear. They are called Rapid Buttons
and are only available if an element is selected.

These rapid buttons can be used in several ways. You can either click on it to create
and associate a new corresponding model element with appropriate connection in
one step, or keep the mouse button pressed and drag it to an existing model element
to create a new association without creating a new class.

Rapid buttons are available for many diagram elements in each of the editors. Here
is a class example:

Chapter 13. Using Elements

Figure 13-1. Rapid buttons for a class element.

Class 1

For a class element, the rapid buttons to the left and right represent directed
associations, the button on top represents specialization of superclasses, below is
the generalization of subclasses, and self-associations are in the bottom right corner.

Try to click on the rapid button underneath your new class and you will see that a
new subclass appears close to it. If you click and hold the button, you can move the
mouse and place the new element where you want it to be. Or if you click, hold, and
move the cursor over an existing element, only a connection between these elements
is created.

Rapid buttons for some elements change the way the element is presented. For
interface elements, you can toggle between lollipop (or ball) representation and box
representation. Similarly, for actor elements you can toggle between stickman and
box representation.

Figure 13-2. Toggled representation of actors and interfaces

== actor ==
Actor

Agtar b m

Interface

The rapid buttons displayed are some of the more commonly used buttons. To
display additional buttons as rapid buttons, hold down the 'shift’ button while

171

Chapter 13. Using Elements

rolling over the element with the mouse.

Figure 13-3. Additional rapid buttons for a class element.

CI_1

- Attributes and Operations - You can create new attributes and operations by
clicking the rapid button that appears when you hover over the attribute or
operation compartment of a class.

- Delete- Press Ctrl while hovering over an element to display a rapid button that
will not open a confirmation dialog.

- Go to Sub-Diagrams- If an element contains diagrams, an additional rapid
button will appear in the top right-hand corner that will take you to the
sub-diagram.

13.2. Editing Elements

172

Now that new elements have been created, they must be modified in order to be
meaningful to the model.

13.2.1. Inline Editing Text Values

The diagram drawing area in the Diagram pane not only allows for creating,
deleting and moving graphical elements; it is also possible to enter values, such as
names, directly into the elements without using a different pane. Exactly which
element properties can be modified depends upon the specific element. Most of the
elements allow editing of the name of the element at a minimum. For example,
selecting a state from within a state diagram and then typing will immediately open
a small text editor. When editing is finished, the typed text will replace the previous

Chapter 13. Using Elements

text in the navigation tree and Properties tab, as well as in the diagram of the
selected state.

Classes and interfaces offer far more options for editing values than just editing
their names. Both of them are constructed of different parts catiatpartments

The first compartment holds the values for the name, the stereotype and the package
of the class or interface. You can edit the name of the class as described above;
however, stereotypes and packages can only be changed using the Properties tab.
The second and third compartments hold the attributes and operations defined for
the class or interface (in UML, interfaces can have operations only). Inline editing
works the same way here. Select the attribute or operation you want to change and
start typing (or double-click on it to open the inline editor). Press Ctrl-Return on the
keyboard or click elsewhere in the application to end the editing. Note that in some
cases, interfaces may be rendered as a circle in lollipop notation, and therefore will
not display compartments.

After editing an attribute or operation, you can directly add another attribute or
operation without leaving the element by hitting 'return’ on the keyboard instead of
Ctrl-Return after editing the first attribute or operation.

You can also create a new attribute or operation with a rapid button by moving the
mouse to the right side of the compartment and then clicking on the 'create’ button
that appears. As above, Ctrl-Return will end the editing and add the new
attribute/operation to the class or interface, and 'return’ on its own will end the
editing and create a new attribute or operation..

The attributes and operations compartments in the diagram can be set to invisible
for the current diagram via the Context menu, or for the entire model via the
'Settings’ dialog from the 'Edit’ menu.

Figure 13-4. Add a new attribute or operation to a class inline

Click here to create a new attribute into this class

173

Chapter 13. Using Elements

Class_1
S
Clic:hele to create a new operation into this class

13.2.2. Editing Via the Details Pane

The first tab you will see in the Details pane is the Properties tab.

13.2.2.1. The Properties Tab

There are many modifications that can be made to elements from the Details pane.

You can add attributes and operations, rename elements, change namespaces and
stereotypes, add colors and borders, and much more. This section will outline some
of the most important modifications that can be made. Many of these procedures

can be extrapolated to other editing procedures.

Let's look at a class element, as these are very frequently used elements.

Figure 13-5. Properties tab for a class

Fropeties | C++ Properties | Style | To Doltems | Source code | Documentation | Constraints | Tagged Malues |

B class &= 4 B BE BB X Operations¥ § % 1 Aftributes
Name Resenation +Criterial...)

- +hlemben...)

Mamespace |de.amg.stat'tauto.reser\ration.entity ||z|| j‘l +getNumberQ) : String

+zetHumben..)

Wisibility @ public O protected O package O private
R Estends Implements

Modifiars D abstract D final D root D active

none none

EntityObject

4 ¥ Stereotypes

Derived Associations

none none

Owned Elements

The toolbar across the top of the tab contains buttons for navigation between
elements, creation buttons, and a delete button. These buttons will change
depending on the type of element selected as the current active element.

174

Chapter 13. Using Elements

Below this toolbar are the editable characteristics of the class. The name of the
element can be typed directly into the name field with no restrictions. Likewise,
Visibility and Modifiers can be directly modified from their checkboxes. Note,
however, that these two properties are not displayed in the diagram itself; thus, the
changes made will be visible only from the Properties tab (the modifier 'abstract’ is
the exception to this). The Namespace must be selected from the list of available
options. Stereotypes can be applied through the Stereotypes dialog, accessed by
right-clicking the Stereotypes field and selecting 'Edit’ from the context menu that
appears. The Owned Elements section is automatically populated.

All changes made to the class are propagated throughout the model. For instance,
when a hamespace is changed, the navigation tree is updated and the class is moved
from the original package to the new one that was just selected. This change is also
reflected in the Diagram pane: the top compartment of the class will digfpday
new_namespaca) place of(from old_namespacgjyvhere old_namespace and
new_namespace refer to the original namespace and most recently selected
namespace. This easy and convenient mechanism for changing namespaces is
provided for nearly all of the elements.

To the left of the editable characteristics are elements which are affiliated with the
selected element. In UML, operations and attributes are considered both an
elements in their own right as well as a characteristics of a class. As they are
elements, they have their own Properties tabs; therefore, to edit the name or any
other properties of an operation, for example, we must go to the Properties tab of
that operation. That is why it is not editable here. The remaining fields are:
Extends , Implements , Associations , andDerived . These properties show
different relations between the focused class and other model elements.

13.2.2.2. The Style Tab

Next we can look at the Style tab, which determines how the element is rendered in
the diagram.

175

Chapter 13. Using Elements

176

Figure 13-6. Style tab for a class

Class Diagram |

A BBzETt1eo—cvh HRFQ vy |

BE O AcOocd @

o

SampleClass

Properties | C++ Properias | Style [To Do ltems | Source code

Documentation | Lonstraints

Tagged WYalues

Bounds

@ All Feature Compartments
@Aﬂribute Compartment
@ Operation Compartment

Fill

@ Specify infividual compartment display D Compartment display follows diagram setting

Lines

Font

|WeezerFonf E" |15 E“

([N
]

The Style tab indicates which colors and fonts will be used to display the element.
This is very useful when color-coding diagrams or highlighting aspects of the
diagram. It is also possible to override diagram-level specifications for compartment
visibility. As with the properties tab, not all of the options make sense for every

element; therefore, only the appropriate style options are available.

Options for the Style tab:

« Fill - Determines the background fill color of the element

. Lines - Determines the border color of the element

- Font - Determines the color and font of the text.

- Visibility - Radio buttons and checkboxes determine the visibility of element

compartments.

Whereas changes made to an element in the Properties tab are propagated
throughout the model, changes made to the style of an element apply to the current

diagram only.

Chapter 13. Using Elements

13.2.2.3. The Documentation Pane

To add documentation to a model element, select the documentation tab in the
Details pane. When you have imported Java source code, the javadoc contained in
the source code is likewise imported and viewed in the documentation tab. When
working with text based IDEs, you put your javadoc in doc commemts*().

When using Poseidon’s HTML editor, this is not necessary. The doc comments are
added automatically to your source code when you generate it.

Figure 13-7. Editing a method documentation.

Froperies | Style | To Do ltems | Source code | Locumentation | | Tagged Walues |

LB v oo | [standar [=][metauty [=][ormai [=][normal -]
ESE=E 77U A BHE EE 5 DFRIDBDWE= @YAFE

D Java-Doc Tag | Cocumentation |
0BE .. IEretum Retums the factorial as an int

Inzert a newtag w

Calculates the factorial of any integer greater than 1.

(@param int calculate the factorial of this number

wyshirve | Sourse view |]

13.2.3. Editing Via the Context Menu

The Context menu can be accessed by right-clicking on an element in a diagram.
Entries relevant to the selected element are displayed. Remember that things like
attributes and operations are considered elements in their own right; therefore, the
context menu for an attribute will be different than that for the class in which it
occurs. If you do not see what you expect, be sure that you have selected the proper

element to be the active element.

The Show option displays all checked items in the diagram. In the case of a class
element, this includes stereotype, package, and compartment options. Unchecked
items remain hidden from view.

It is also possible to create things like attributes, operations, and dependent edges
when appropriate. These items are listed towards the bottom of the context menu
and, once created, are available for editing in the Properties tab.

177

Chapter 13. Using Elements

178

Figure 13-8. Context menu options for a Use Case

== Stereotype ==

4 Sample Use Case =
p Align

Distribute

Show [J Package

* v | v v -

Format Stereotype
Ordering
@ Copy crl-C
g Cut Ctrl-¥
Delete Fram Model Delete
State Diagram Cti-T
o,
Activity Diagram Ctr-
E Create Attribute
E Create Operation

T:I Add all dependent Edges

13.2.4. Undo/Redo

Sometimes when working with your models, you might have done something you
did not really intend to do. If this happens, the ability to revert your work can be
very valuable. Poseidon for UML offers such an undo mechanism. The Undo
function is not limited to the last change you made - you can undo all the steps you
took prior to that, and you can even redo the things you just undid.

To Undo or Redo actions

. Main Menu - Select Undo or Redo from the Edit menu
. Main Toolbar - Click the @ Undo or€' Redo button on the main toolbar
« Quick-Keys - Use the quick-key Ctrl-Z for undo or Ctrl-W for redo

13.2.5. Stereotypes

One of the general patterns of an architecture is the
Model-View-Controller-Pattern, or theBoundary-Control-Entity-Schemaas it is
often rephrased in the UML community. According to this, an architecture is
constructed in three layers.

Chapter 13. Using Elements

First, theBoundary is responsible for representing information to the user and
receiving his interactions. Users of the system interact with this layer only. The next
layer,Control, contains the rules on how to combine information and how to deal
with interaction. It is responsible for transferring control based on the input received
from the Boundary layer. And finally, thentity layer holds the data and is
responsible for its persistence. To which layer a class belongs is expressed using
corresponding stereotypes. You obtain these in the Properties tab of each class. An
example for the usage of stereotypes is shown below.

Figure 13-9. A Class diagram making use of stereotypes.

<< ProcessOhjed == == EntityObjed == == EntityObjed ==
U serf eservationP rocess0bject User Member
(from deamg :stattauto. user: proce s5) (from d'e;amg: stattauto: user: entity) (from de:amg::stattauto -member:entity)
=] w "
s | -
-
== Componentlinterface ==
<< ProcessObjed = StattAutoComponent == EntityObjed ==
ProcessReservationProcess Object ked-1-1 (from de:amg:: stattauto:component)
(fiom de-amg::stattawto:: re servation: proce ss) (from de;-amg::stattawto “reserv ation:entity)
T =
<
o - I ~
= '
<< ProcessOhjed == == EntityObjed == == EntityObjed ==
MemberidentificationProcess0bject Location Vehicle
(fiom dle -amg:: stattawto -member: proce 55) (fiom de:amg: stattauto -vehic k:entity) (from de:amg: stattauto - vehicke: entity)

The code generation functionality of Poseidon for UML can distinguish between
different stereotypes for the same element type. In this way it can select the
appropriate template for generation based on both of these factors. Stereotypes can
be displayed for nearly every element type.

Poseidon supports multiple stereotypes for single elements. Adding, editing, and
removing these stereotypes is accomplished via a dialog that is accessible from the
Details pane.

To access the Stereotype dialog:

1. Select the element the stereotype applies to from the diagram, Details pane, or
Navigation pane.

2. Open the Properties tab for this element in the Details pane.

179

Chapter 13. Using Elements

180

3. Click the ellipsis button (...) to open the stereotype dialog.

Note that the previous method to access the dialog (right-click in the stereotype
field and select Edit’ from the menu) still works.

Once this dialog is open, altering and applying stereotypes is quite simple. The
buttons with the arrows allow you to add and remove stereotypes from the element.
The 'Add’ box below the list of stereotypes will create new stereotypes, but will not
automatically add them to the element. Removal of stereotypes from an element is
only possible through this dialog. Selecting a stereotype and clicking the delete
button will remove the stereotype from the model completely, not just from the
selected element.

Figure 13-10. Stereotype dialog

f@iselect needed elements

Available; « # Stereotypes Selected: <« # Stereotypes

Const ewvent
Constant
CORBAConstant | o |
NOT NULL -
PRIMARY KE™ | |
property —
readonhy
anitch

UNIQUE

[T

| Apphy | Cancel

13.2.6. Removing and Deleting Elements

With drawing tools like Visio or Powerpoint, deleting an element from a diagram
simply removes the figure from that single location. With full-blown UML

modeling tools this is different. You are always working on a single, consistent
model. The different diagrams and the elements contained within them are just
components of views rendered fromse the quick-key Ctrl-Z for undo or Ctrl-W for
redo this single model, even if the diagrams are constantly used as a means to
change the model. The consequence of this is that modifications to any element
within a diagram are applied to the element, not to the diagram. As such, a change
made to the element will be seen throughout the entire model.

Chapter 13. Using Elements

It then follows that selecting an element and then pressing delete means that the
element itself is deleted, meaning that it no longer exists within the model and is
removed from all aspects of the model, including other diagrams. Additionally, all
connections to other elements, such as associations or inheritances, are completely
removed. Note that there is a big difference between deleting an element from a
model and removing an element from a diagram.

This leads us to use different terminology with different meanings: Youwedete

an element from the mode] which means that the element is removed entirely and
is no longer available in the Navigation pane or in any of the diagrams, or you can
justremove its figure from the current diagram you are working with, leaving

the element available to the rest of the model. These are very different things, and
different commands are used to achieve them.

To completely remove an element from the model:

« Use the delete buttc* in the Properties tab

- Select an element or part of an element in the diagram and hit 'delete’ on the
keyboard

. Select 'Delete from Model’ in the Context menu
« Use the delete rapid button

To remove an element’s representation from the current diagram:

- Select an element or part of an element in the diagram and use Ctrl-X to cut the
item

. Select 'Cut’ from the Context menu

The element, as part of the model, remains untouched in other diagrams and it also
remains in the tree in the Navigation pane. For elements that are connected to other
elements through, for example, an association or inheritance, removing the first
element (e.g. a class) means that the association is no longer valid; therefore, the
second element (e.g. the association) is also removed from the diagram, but is
likewise still accessible from the navigation pane or other diagrams.

If you want to remove an element but not the connections it has to other elements,
you can detach it by selecting the connection and dragging the handle at the end of
it to another elemerieforeyou remove the element.

181

Chapter 13. Using Elements

182

Chapter 14. Generation

14.1.

UML wouldn’t be worth all the sophisticated work if all it came down to was pretty
vector graphics. When analyzing and designing a software system, your final goal
will be to generate well-implemented code.

Poseidon for UML provides a very powerful and flexible code generation
framework, based on a template mechanism. It is currently used to generate a
variety of code types including Java and HTML, but it is flexible enough to generate
any kind of programming language, or other output, such as XML.

Code Generation

Java code generation is usually based on the classes of a model and other
information displayed in the respective Class Diagrams. Additionally, Poseidon can
generate setter and getter methods for the fields of each class.

By default, associations between classes in UML are bi-directional; that is,
associations allow navigation between classes in both directions. For the common
object-oriented programming languages, these need to be transformed into separate
uni-directional associations. If one of these is set, the other should be set
accordingly. The code for managing bidirectional as well as unidirectional
associations is also generated automatically.

14.1.1. Generation Settings

Code and documentation generation are both invoked from the Generation menu.

Figure 14-1. Generation menu

Generation

Generated sources: File check intenval » 3 secon d=

Reload the templates 5 zeconds

UMLdoc A0 secon ds
20 zeconds
Java
FHP

Delphi

60 secon ds

Ferl
WB.Net
CH+
CSharp
CorballL
saL

183

Chapter 14. Generation

Select the type of generation you would like from the Generation menu and a dialog
will appear. Here you can select or deselect model elements from the tree, specify
an output and a template folder, and indicate if the destination folder should be
cleared. Poseidon can remember your selection of model elements if you enable the
checkbox titled, 'Remember current node selection’.

Remember current node selection

Remember current node selection and restare itwhen window is opened nexttime.
Please note that new model elements are not automatically added to the current selection.

Note that the output and template folders are saved by project and language. This
means that output of Java generation can be placed in one folder, and Perl
generation from the same project can be placed in another folder. These folder
preferences will be saved to the current project, but another project will not
recognize these preferences and must have its own preferences set. This is to avoid
accidentally overwriting the output from a previous project.

Figure 14-2. Code Generation dialog and settings - Java

[@1ava - Generation X

@ M i Stattaute
= [B Analysis
@ [7 vesign
@ [E| de
= [#] 7 Business Process Model
@ E| Internal Business Associate

Do (Felez |C:\temp\amg || I

Uil Felider |C:\Programme\PoseidonZ\lib || ‘
Kind of generation
D Compile generated source DEIeardestinationfolder DRemembelcurrent node selection

| Generate] | Apply I | Settings... J | Cloze

Generator/Compiler output

184

Chapter 14. Generation

f@icode generation settings

Java Settings

@ Generate accessor methods for associations

J
e Compiler [coizedit.42_onbinjavac.exe |

Type forunordered associations |TleeSet |

Twpe for ordered associations |AnayList |

|| Ok || Cancel |

You'll find the generated java files in the specified output folder, sorted by packages.

14.1.2. Reverse Engineering

Software engineers often run into the problem of having to re-engineer an existing
project for which only code and no models are available. This is where
reverse-engineering comes into play; a tool analyzes the existing code and
auto-generates a model and a set of Class diagrams for it.

Poseidon for UML can do this for Java programs, where source code is available
and is in a state where it can be compiled without errors. With the corresponding

JAR Import function (available only in the Professional and Enterprise editions), it
even works with JAR files of compiled Java classes.

To launch this process, go to thaport Files menu and direct the file chooser to

the sources’ root package. It will then analyze this as well as all sub-packages. The
outcome is a model containing the corresponding packages, all the classes, their
complete interface, their associations, as well as one Class Diagram for each
package. Note that the path that you select here will be automatically adopted by the
generation dialog. The next time you open the code generation dialog, this path will
be displayed as output folder by default.

If the imported file uses classes that are part of the JDK, these classes will be
created in the model as required, so you may see some apparently empty classes in
the packaggva in your model. This is of no concern and is done solely to have a
smaller model. But these classes are necessary to have a consistent project. All
classes that the imported files use must be present in the model.

Additionally, you can give an import classpath. This is necessary to make the model
complete if a file references classes that are not imported themselves. Here you can
specify one or more jar files, each entry separated by a colon. If you want to import
files that make use dbo.jar , anotherfoo.jar andstillanotherfoo.jar :

then it should look similar to this:

185

Chapter 14. Generation

186

folder/subfolder/foo.jar:anotherfolder/anotherfoo.jar:stillanotherfoo.jar

Figure 14-3. Import Files dialog.

P]Impoll files
Suchen in: |u hetalwas B| |ﬂ| |-:|.-|1| |Tj| EE |E:|
] HelpFiles General | Jawaidar | MDLImport |
8 images Java attributes modelled as

META-INF
O UhiL attributes @ UML aszociations
LJ resours;es
“.-J e Arrays are modelled
| Metalmoks jar (@) as data types () with multiplicity 1..n
Import classpath
Gj2sdil 4.2_03Yredlibitjar ‘
Add || Remove |
| ApplY |
Dateiname: |Meta|wo|ks.jar |
D ateityp: |JAR archive (F.jan E“
Qpen | | Cancel |

Classes that are needed to make the model complete but are not present in the
package structure are created on demand. If you give an import classpath but the
imported file does not use any classes from it, then no additional classes will show
up in your model.

14.1.3. Roundtrip Engineering

Generating code and reverse engineering that same code still does not make
round-trip engineering. Reverse-engineering generates a new model from existing
code, but it does not by itself reconnect the existing code to an existing model. This
feature is only available in the Professional Edition, which contains the RoundTrip
UML/Java Plug-in. It is one of the most recommended and highly sophisticated
features provided by Poseidon for UML.

Generate a UML model from your existing code, change the model, re-generate the
code, change the code and so on. All generated Java code files are watched, so that
changes you have made with an external editor are imported into Poseidon’s model
of your project. Use your favorite source code editor to edit method bodies, add or

Chapter 14. Generation

remove methods and member variables. Poseidon keeps track of all changes, and all
your project data is in one place - in Poseidon.

Please note that the round-trip plug-in is primarily an import tool; it imports

changes in the source code for you and updates the model as necessary. Automatic
code generation in the background is not yet implemented, but will be in one of the
next minor releases.

To use this feature:

1. Create or load a model in Poseidon

2. Set the interval after which Poseidon checks for file modifications

Figure 14-4. Select file check interval.

Generation

enerated sources: File check intenval » 3 seconds

Reload the templates 5 seconds

10 seconds
Java

Ferl 20 seconds

WB.Net G0 seconds

Crelphi

CorballL
PHP
CSharp
saL
UhLdoc

3. Generate the code (the generation window will automatically pop up if you
load a model)

4. Use your preferred editor to modify the code (especially the method bodies),
modify identifier names, add or remove methods and/or variables

5. Save the file in your editor
And the changes will appear in Poseidon!
Some words on how to handle accessor methods:

You should unset the check b@enerate accessor methods after you have
generated accessors once. Otherwise, they would be generated again, and would
clutter up your classes. The preferred way to create set/get methods is by adding
them in an attribute’s Properties tab, and by checkingate accessor methods

for new attributes in the dialogEdit-Settings.

187

Chapter 14. Generation

188

Figure 14-5. Java code generation - settings.

f@icode generation settings

Jawa Settings

@ Generate accessor methods for associations

J
ava Compiler [cyzsdk1 4.2_01wbintjavac. exe |

Type for unordered associations |TleeSet |

Type for ordered associations |AnayList |

|| Ok || Cancel |

In the code generation settings dialog, you have the ability to specify an additional
classpath for compilation.

You might temporarily have non-compiling source code that you do not want to
import into Poseidon right away. For these instances, you can temporarily disable
the automatic import with the button next to tingport sources button. It will

turn to red, showing that automatic round-trip is disabled.

®

By clicking it again, it will turn back to green, designating that round-trip is enabled
again.

®

When the round-trip plug-in is running and you have imported files, Poseidon asks
if you would like to keep these source files and the model in sync.

When you load a new model, Poseidon asks you if you want to generate the source
code now or if you want to import existing source code. Choose the first alternative
if the you want to ensure that the source code you have reflects the current model.
Using the latter choice (import), you can synchronize the code and model even if
you have changed the source code while Poseidon was not running and therefore
could not keep track online of the changes you did to the source.

Chapter 14. Generation

Roundtrip: Matching model and code

2> Source code folder:

= Chitemp | | Update |

Yifrang folder? "ou can change it.

In the source code folder
Chtemp

are the following source files:

Chternpibernhber java

Catempiember_check.java
CatemplstattautoanalysisiContainer_Class_ModelAccountidccount java
ChternpistattautoidnalysisiContainer_Class_ModelAccountiBill java
Catempistattautodnalysis\Container_Class_ModehAccountiTransaction.|
CatemplstattautoanalysisiContainer_Class_mModeliembenhember.java
ChternpistattautoidnalysisiContainer_Class_ModelRates\Rates java

el ol 1 =t

Do you want to

1) generate source cade because the model is up-to-date?
(S0wou can be sure that the source code mirrars the model.)

2) importthe source code because the sources are up-to-date?
(Al changes in the sources will he imported into the maodel)

3 turn off roundtrip and decide laterwhat to do?
(Afteryou generate or impart files, you will be asked again.)

|1)D\:em\lritesources]| 2) Check sources || 3) lgnore sources |

Note that a folder for the source code is always set in Poseidon. This may not be the
one that is suitable for your new project. To change it, select 'Update’ and view the
contents of another folder. This way, you can make sure that after opening a project,
you can either update the project with the correct source code (and select option 2),
or generate fresh code if the project is the latest version (select option 1).

14.1.4. Fine Tuning Code Generation

There are several possibilities to fine-tune the appearance of the generated Java
source code. Among them are the creation of accessor methods for attributes, the
types for collection attributes, and the list of import statements in the files.

- Accessor Methods

From Poseidon 1.4 on, you can create accessor methods for attributes
automatically. This way, you can fine-tune the code so that some attributes have
accessors, some not. In previous versions of Poseidon, you could only have
setters/getters for all attributes, or for none.

In Edit - Settings, there is a check box called 'Generate accessor methods for
attributes’. Check this box to have accessor methods created for every attribute
that is created. If the attribute has a multiplicity of 1..1 or 0..1, two simple
getAttribute() andsetAttribute() methods are created. For attributes

with a finite multiplicity, an array is generated, and the accessor methods include

189

Chapter 14. Generation

addAttribute() andsetAttribute(). For an unbounded multiplicity, a
Collection is generated, and the appropriate access methods like
addAttribute() andremoveAttribute() are produced.

You can fill the bodies of these access methods according to your business logic.
Also, you can hide the display of accessors by setting the check box 'Hide
accessor methods’ iBdit-Settings-View.

Additionally, you can generate the standard accessor methods for your attributes
at code generation time. These will be visible only in the generated code, not in
your Poseidon project.

+ Collection Types
Poseidon up to version 1.3.1 used the type Vector whenever an association had a
multiplicity of ..*.

From version 1.4 on, the rules are:

1. Create an attribute of the element’s type if the multiplicity is 0..1 or 1..1.

2. Create &ollection type attribute if the multiplicity has an upper bound of
*

3. Create an array of the element’s type if the multiplicity has an upper bound
that is not 1 and not * (that is, it is a number).

In Code Generation-Settings, you can define what type of collection
should be used for Collection types. The defaultnsyList, but you can
enter any type (e.g., Vector) that implemea@tsiection. Accessor methods
are programmed againSbllection

This version of Poseidon, you are now able to distinguish between ordered,
unordered and sorted attributes, and you will be able to give different kinds of
implementation types such aseSet for unorderedArrayList for ordered
andVector for sorted attributes.

Import Statements

Import statements can be added to classes in two ways: By drawing dependencies
or by entering tagged values.

The graphical way is to draw a dependency from the class to the class or package
that you want to import. An appropriate import statement will be generated:
Eitherimport package.* orimport package.Class

190

Chapter 14. Generation

Sample Class Diagram |

A BBz te—e-+« B2 (S BE LR cOCL @

[=
Class 1 Class 2
(from java:math)

Froperies] Style] To Do ltems Source code Documentation Constraints | Tagged Walues

A#% (Java class "Class Z.java" generated from FPoseidon for UML.
Poseidon for UML is developed by <3 HEEF="http:/ S, gentleware. con"=Gentlewares A
* Ggenerdated with «d HREF="htip://jakarta.apache.org/velocity/ "=velocity=/A> temrplate engine.
#/

import java.math.Clazs 1;

import jawa.util.®;

/**

@poseidon—object—id [lsm:ié2525b: fabdbFidoé: —7F£50]
#

public class Clasz 2 |
} A4 end Class 2

| msERT |

The second way (that does not clutter up your diagrams) is to add a Tagged Value
calledJavalmportStatement to the class. Then enter a number of imports,
separated with colons. Qualified names can be given in Java syntax. For example,
importjava.lang.reflect.* andjava.io.lOException by setting the

tagged valugavalmportStatement to

java.lang.reflect.*:java.io.lOException

Sample Class Diagram |

A BBz te—e-« H2 (S BE LR cOCL @

Class_1
G
Fraperies] Style] To Do ltems Source code | Drocumentation LConstraints Tagged Walues
Tag | Value
Jawvalmport Statement java lang.reflect.*jawa.io.| 0 Exception

Above, you can see the import statement in the Tagged Values tab, and below is
the resulting Java code generated by Poseidon.

191

Chapter 14. Generation

Froparies | Style | To Do ltems Source code Locumentation Lonstraints Tagged Walues

AEE Jave class "Class_l.jav&" generated from Poseidon for UML.

Poseidon for ML is developed by <3 HREEF="kttp:/ dww. gentleware. cor"sGentlewares A=

Generated with <d HREEF="ktitp://jakarta.apache.org/velocity M=relocitys A> template engine.
#

import java.io.I0OException:

import java.lang.reflect.®;

import java.util.®;

/:(-*

@woseidon—ohject—id [lam:162622b: fabdbTidos: -TEE0]
S5

public class Clazss 1 {

} A end Class 1

| wsERT |

- Modifying Templates (Not available in the Community Edition)

More advanced customizaton of the generated code is possible if you are using
one of the Premium Editions. Modification of the templates that are used for code
generation is possible with these editions. We cover this topic briefly in a separate
chapter and more deeply in a separate document that is distributed with these
editions and online under http://www.gentleware.com?redirect=codegenapi.

- Javadoc Tags

You may not want certain operations to be reverse engineered. Any operations
with the Javadoc tag '@poseidon-generated’ will be excluded from the reverse
engineering process.

14.2. Advanced Code Generation

192

This chapter describes the code generation functions offered by Poseidon for UML
and the options for customizing the code generation templates. Code generation
based on standard templates is available in all editions of Poseidon for UML. The
standard templates define code generation for Java and HTML. With the Developer
and Professional Editions, you have the option of changing the code generation
templates to suit your specific requirements. You can even create new templates to
generate code for a different programming language such as C#.

Chapter 14. Generation
14.2.1. Velocity Template Language

Code generation in Poseidon for UML is based on the Velocity Template Language.
Velocity is an open source template engine developed as part of the Apache/Jakarta
project. Originally designed for use in the development servlet based Web
applications, it has also proved to be useful in other areas of application including
code generation, text formatting and transformation.

The Velocity Template Language (VTL) supports two types of markup elements:
references and directives. Both references and directives can be intermixed freely
with the (non-VTL) content of a template, as shown in the examples below.

Since templates have been widely used in the field of Web page generation, we will
begin with a simple HTML example. The second example demonstrates the use of
VTL to generate Java code.

For further information on Velocity — including complete documentation of the
Velocity Template Language — please go to the Velocity Web site at
http://jakarta.apache.org/velocity/.

14.2.1.1. References

References are variable elements referring to some entity provided by the context.
A reference such aluserName or $userList can be used to access and store a
particular data structure for use within a template; thus, references establish the
connection between a template and the context of the Velocity engine.

Within a template it is possible to create a new reference at any time and to assign a
value to the new reference. This is done usingttee directive (see directives).

This means you can add references to the active context as required. If a reference
name is used within a template for which no corresponding object or value exists in
the active context, the reference name is treated as plain text, i.e. it is output "as is"
just like the other (non-VTL) elements of the template.

Every reference must have a unique name. The name (also known as the VTL
identifier) begins with a dollar sigh followed by a string of characters as described
in the following table:

$ dollar sign - the dollar sign must be the first character in the reference
name, and it may not occur in any other position.

a-z, A-Z falphabetic characters - only standard characters are allowed, no
accented or diacritical characters. The first character following the
dollar sign must always be an alphabetic character.

0-9 numerical characters

- minus sign (hyphen)

193

Chapter 14. Generation

194

L \underscore

A regular expression describing the reference name syntax would be:
$[a-zA-Z][a-zA-Z0-9_/-]*

In addition to referencing variables, it is also possible to specify attributes and
methods by means of the VTL reference syntax. Using references such as
$item.name andsitem.price , you can dynamically insert the attributes
associated with the specified object. Likewise, you can access the methods of a
referenced object (for example a Java object) using a reference such as
$item.getNameAsString() . This will return the result of applying the given
method to the specified object.

Taking this one step further, you will find that the standard Java templates supplied
with Poseidon for UML make extensive use of the following syntax:

#set ($name = S$currentOp.getNameAsString())

Here the referencéname is dynamically set to the string returned by the method
$currentOp.getNameAsString . This use of references to elements of the
context establishes a very powerful connection between the templates and the
template API.

14.2.1.2. Directives

Directives in VTL are a defined set of commands that can be used for basic control
functions within a template. For example you can us the directives to create typical
procedural branches (if/else) and loops (foreach).

The current set of VTL directives comprises the following commands:

#set() function for assigning a value to a reference

#if() #else#elseif()J#end |common conditional functions used for branching

#foreach()#end looping function

#include() #parse() functions for including code from another template or
static resource

#macro()#end function for defining a reusable set of commands

For complete information on the use of these directives please refer to the Velocity
documentation (see http://jakarta.apache.org/velocity/).

Chapter 14. Generation

14.2.1.3. Comments

Particularly in the case of templates used for code generation it may be advisable to
use comments in the templates to explain their use. Comments can be added to a
template by means of the following syntax:

Single line comment ..[The comment continues up to the end of the line. This

Is comparable to the syntax for single line comments in

Java or C beginning with g.

comment *#

#* Inline or multiline The comment continues up to the closing character *#.

This is comparable to the syntax for inline and
multiline

comments in Java or C beginning with /* and ending
with */.

The use of comments in VTL is illustrated by the examples below.

14.2.1.4. Examples

Example 14-1. Simple HTML Template

This example uses VTL markup intermixed with HTML code to generate dynamic
Web pages based on information retrieved from the context (e.g. from a database).

#* This is an

example of a simple VTL template for generating dynamic HTML
pages. *# <HTML> <HEAD> <TITLE>Holiday
Weekend</TITLE> </HEAD> <BODY>

$roomList.size() rooms available at special holiday
weekend rates!
 Check in for a luxurious

holiday weekend at these amazing prices.
 Choose from:
#set($count = 1) <TABLE> #foreach($room in $roomlList)
<TR> <TD>$count)</TD>

<TD>$room.type</TD> <TD>$room.price</TD>

</TR> #set($count = $count + 1) #end </TABLE>

 Call today for a reservation. Toll free number:
$freePhone </BODY> </HTML>

This example makes use of VTL references and directives to generate an HTML
page based on data from an external data source, for example a database. The data
source is referenced by means of the elemgénismList and$room (with its
attributessroom.type and$room.price). When this template is applied, the

195

Chapter 14. Generation

196

directives and references are interpreted and the results are inserted into the
generated HTML code.

The resulting HTML page might look something like this:

<HTML> <HEAD> <TITLE>Holiday
Weekend</TITLE> </HEAD> <BODY> 3 rooms
available at special holiday weekend rates!

Check in for a luxurious holiday weekend at these amazing
prices.
 Choose frome: <TABLE> <TR>
<TD>1)</TD> <TD>Single Room</TD>
<TD>$ 100.00</TD> </TR> <TR>
<TD>2)</TD> <TD>Double Room</TD>
<TD>$ 150.00</TD> </TR> <TR>
<TD>3)</TD> <TD>Luxury Suite</TD>
<TD>$ 250.00</TD> </TR> </TABLE>

 Call today for a reservation. Toll free number:
1-800-555-1212 </BODY> </HTML>

Example 14-2. Simple Java template

The following example demonstrates the generation of standard Java code and a
number of options for changing the format of the generated code by making slight
modifications to the template.

Note: The standard Java templates supplied with Poseidon for UML use defined
indentation markers to format the code for better reading. The markers are of the
format:$(__) . These indentation markers are defined as variables that resolve to an
empty string. They should never show up in the generated Java code. If you find that
the generated code contains such text elements, please ensure that the markers are
defined and used correctly in the template.

Below is an excerpt from the template used for generating the class and method
declarations.

(A)

Template for standard Java output ## .. snippet
.. #set ($vis = S$currentOp.getVisibilityAsString()) #set ($static
= $currentOp.getOwnerScopeAsString()) .. #set ($thrownClause =
$currentOp.getThrownExceptionsSignature()) #set ($name =
$currentOp.getNameAsString()) #set ($methodBody =
$currentOp.getMethodBody()) ..
${vis}${static}${final}${synch}${return} ${name}($params)
$thrownClause { #renderMethodBody($currentOp.getMethodBody()
$currentOp.hasReturnType()) } ## .. snippet ..

Chapter 14. Generation

One step you could take to modify the Java code generated by this example would
be to enter a line break before the "$thrownClause" references in the template so
that the thrown exceptions appear in a separate line of the method declaration. In
the following example the opening bracket has also been moved to a separate line:

(B)

Template for reformatted Java output ## ..
snippet .. ${vis}${static}${final}${synch}${return}
${name}($params) S$thrownClause {
#renderMethodBody($currentOp.getMethodBody()
$currentOp.hasReturnType()) } ## .. snippet ..

The effects of such a change become clear if we compare a bit of Java code
generated on the basis of these simple variations (A and B):

(Java code based on A)

public static void main(String[] params) throws
Exception { doSomething() }

(Java code based on B)

public static void main(String[] params) throws
Exception { doSomething() }

14.2.2. Working with the Standard Templates

The standard templates supplied with Poseidon for UML can be used to generate
Java and HTML code. The generated code is based on Class Diagrams only, but one
may want to produce code from deployment diagrams or sequence diagrams. With
the Professional Edition you can create your own templates to generate IDL files or
C++ code.

The Java code generated on the basis of the standard Java templates is fully Java 2
compliant. The code can make use of all the features supported by Java 2, including
exception handling, inner classes, and static initializers.

HTML code generated on the basis of the Standard HTML templates is simple
HTML, similar to Javadoc. A separate page is generated for each class in a Class
Diagram. As with the Java templates, the Professional Edition of Poseidon for UML
allows you to modify the HTML templates to conform with your preferences and
requirements.

197

Chapter 14. Generation
14.2.3. Code Generation API

For a detailed description of the code generation API, please refer to the online API
documentation
(http://www.gentleware.com/support/dev/poseidon2-openapi/index.html) (Javadoc)
and the separate document describing the code generation framework
(http://www.gentleware.com/support/dev/PoseidonCodeGenFramework.html).
These files are part of the Developer and Professional distributions in the docs
folder.

Also available are two demo plug-ins
(http:/lwww.gentleware.com/support/dev/examples.php4) that show the capability
of the code generation API and of the Poseidon plug-in API in general. The demo
plug-ins are distributed as ready-to-run JAR files, along with the appropriate license
keys. Also, the source code is distributed, including an ANT script for building the
JARs. You may use these plug-ins as examples and as starting points for your own
plug-ins. If you want to create your own plug-ins, please contact
plugins@gentleware.com to receive a key for your plug-in.

14.3. Documentation Generation

For generating the corresponding HTML documentation for your model you need
the UMLdoc feature, which is available in every editiexceptthe Community

Edition. Users of any edition, including the Community Edition, can utilitze the
UMLdoc Online Service (http://www.umldoc.org). The look and feel of the
generated documentation is very similar to Javadoc. Poseidon for UML allows you
to specify Javadoc information directly in your model (in the Documentation tab).
This information, such as comments to your classes or methods, is included in the
code. But unlike UMLdoc, Javadoc provides a view of the code only, not of the
model. For example, you do not see your diagrams. With the UMLdoc feature you
get the same information as with Javadoc, in addition to all diagrams from your
model. This includes Class diagrams, Use Case diagrams, sequence diagrams etc.
This is valuable information that you would want in your documentation.

14.3.1. UMLdoc

The UMLdoc Plug-In generates HTML documentation files, that look similar to
Javadoc. But it includes your UML diagrams as jpeg images, and offers an

improved navigation. Currently UMLdoc generates documentation for models,
packages, classes, interfaces, operations, methods, associations, actors, use cases,
extend and include relationships.

198

Chapter 14. Generation

UMLdoc is also capable of generating external links. Any types from Java will be
automatically linked to Sun’s Java site, and other links can be created utilizing the
@link tag. Additionally, any URL included in the documentation will be
automatically detected and the link will be activated without requiring any other
notation.

Note that from within Poseidon, the default browser is Netscape. This is not
configurable in this version; however, workarounds are available. For instance, in
Linux you can create a soft link from Netscape to Mozilla with the commbmes
lusr/local/share/mozilla netscapeNow Poseidon should open external links on
your system with Mozilla.

After the generation is finished, you will get a corresponding message in the
Generator/Compiler output . Now you can open the HTML documentation in
your favorite browser. UMLdoc generates an HTML page for the model overview,
each package and each classifier (actors, use cases, classes, interfaces). They are
connected by hyperlinks, so that you can easily navigate through the whole
document.

Figure 14-6. Generated UMLdoc opened in Netscape.

[FE Model StattAuto - Mozilla _[O]x]
Y File Edit “iew Go Bookmarks Tools ‘wWindow Help
b4 5 b
. 3 A @ fle: 2 Memp incles html - Sealchl
i Back Fonwmard Reload Shop I& J 2
* ‘_’l“#Home| ‘,tBookmarks lGoogIeSearch lGoogIe
B Rates | " =
/P Reservation BB Fackage Classifier Tree Index Help
B Receipt J FRAMES NO FRAMI
SUMMARY: PACKAGE | CLASS | INTERFACE | ACTOR | USE CASE DlAGRAMS: CLASS [—

B Reseration
B TravelReport

-7 User
B User
- Vehicle Model stattauto
| B Location
" B “ehicle
: -4 Use_Case
O StattAuto_Process_Mco

--E Mermber A
o awFio_edit merr | Class diagrams of model StattAuto

o AWFY_ Process_Ie

3 o AWFE Terminate X
1 | »

O AWF3 Establish User =l
O AWF4 Delete User - Analves [BEsiin

O AWFS Edit User Data | || E----1
O AWET Process Memberst

O AWES Terminate Member = =
41 | » 41 | 3
|5 &b 2 (& B o | L BN

199

Chapter 14. Generation

Figure 14-7. Code Generation dialog and settings - UMLdoc

MUMLch - Generation

@ M i Stattiute
o= [B Analysis
@ [E| Design
@ [E| de
o~ [B pusiness Process Model
|Z| E| Internal Business Associate

Dutput Folder

|C:\temp\amg ||

Template Folder |C:\Programme\Poseidon2\|ib ||

Kind of generation

D Compile generated source DEIeardestination folder D Remember current node selection

Generate] | Apply ‘ | Settings... ‘ | Cloze

Generato’Compiler output

f@icode generation settings
A

UmLdocSettings

|z| Generate authors doc

Generate class doc for
|Z| public

|Z| protectad

|Z| private

Esxternal Link Base http:ffjava.sun. comdj2ses1 4.2 docsfapi || Set Default
|

|Z| Generate External Links

UhdLdoc

14.3.2. Generation Settings

The code generation settings dialog of UMLdoc provides the following settings:

200

Chapter 14. Generation
Generate author docs

If you disable this setting, @author tags are skipped in the output.

Generate class doc for

Here you can select for which classes documentation should be generated. You
can enable/disable the documentation output of public, protected and private
classes.

External Link Base

The site noted here will be used as the base link for all external links within the
document. The default points to Sun’s Java site, and this site can be restored
after modifications by clicking 'Set Default’.

Generate External Links

With this option enabled, @link destinations that are external will be activated
within the document.

Figure 14-8. UMLdoc code generation - settings.

Mcude generation settings

UMLdocSettings

@ Generate authors doc
Generate class doc for
@ public

@ protected

@ private

External Link Base hitp:ffjava.sun. comijzsed! 4.2rdo csfapi || Set Default |

Unildoc

@ Generate External Links

| Ok | Cancel |

14.3.3. Supported Javadoc Tags

Currently UMLdoc generates output for the following javadoc tags, all unknown
tags are skipped and do not produce output.

201

Chapter 14. Generation

202

@authofauthor name]

Adds the specified author name to the model element documentation, output is

only produced if you have selected tBenerate authors dogption in the
UMLdoc code generation settings.

@deprecateftext]
Adds a comment indicating that this APl should no longer be used (even
though it may continue to work).

@exception, @throw@xception type] [description]

Adds an exception description to the method documentation.

{@link package.class#member lapel
Inserts an in-line link with visible text that points to the documentation for the
specified package, class, or member name of a referenced class.
@paramparam name] [description]

Adds a parameter description to the method documentation.

@return[description]

Adds a return parameter description to the method documentation.

@sedreference]

Adds a "See Also" heading with a link or text entry that points to a reference.

@serial[description]

Adds a comment indicating a default serializable field. The optional
description should explain the meaning of the field and list the acceptable
values.

@serialDatddescription]

Documents the sequences and types of data written by the writeObject method

and all data written by the Externalizable.writeExternal method.

@serialFieldname] [type] [description]
Documents an ObjectStreamField component of a Serializable class’
serialPersistentFields member.

@sincelrelease name]

Adds a description indicating that this change or feature has existed since the
software release specified.

Chapter 14. Generation
@version[version]

Adds a version to the method documentation. A doc comment may contain at
most one @version tag.

203

Chapter 14. Generation

204

Chapter 15. Plug-Ins

15.1.

With Poseidon’s plug-in interface it is possible to add extended functionality that is
well beyond what is implemented in the core product. The Standard Edition of
Poseidon for UML comes with this plug-in feature. Development teams from
Gentleware AG as well as technology partners are working on plug-ins that meet
specific designer and developer needs. The following sections give a brief overview
of the most recent plug-ins that are available for shipping (or will be soon). For
information on how to install a plug-in, please see the separate documentation
(http://www.gentleware.com?redirect=support) available on the Gentleware Web
site.

The Professional Edition of Poseidon comes with several options for code
generation and one for documentation generation (UMLDoc). Java code generation
is the default setting, but you can also choose to generate other types of code. To do
this, you have to activate the plug-in that supports the desired language. (Via
Plug-Ins -> Plug-Ins Panel). When you do this, a set of stereotypes becomes
available that can be used to control the result of the code generation. The next
sections describe what stereotypes and tagged values you can use to control the
output of code generation.

The Plug-In Panel

The Plug-In Manager is provides an easy interface to install, manage, and uninstall
plug-ins. The left side displays all installed plug-ins, while the right side displays
details about the selected plug-in.

The plug-in displayed in the figure below is named Jarimport. It contains all of the
information used by Poseidon to import archived Java files. This plug-in is standard
in the Professional Edition.

[@iPiug-Ins

Installed Flug-Ins Dretails

LJar-lmport AJ Enabled |true E“
MOLImport
Rewverse-Engineering

File name |C:\Plogramme‘\PoseidonPEQ\Iib\jarImport.jar |

UML to- CSharp Code name [com.gentieware possiden jarmport |
UM L-to-DEL

UMLto-Delphi
UML-te- IDL Wersion (Implementation) [2 |
UhdL-to-Jawa
UMLto-PHP

Version (Specification) [2.0 |

Dependencies com.gentleware. poseidon.uml.reveng

| Add... | | Remove | | Close |

205

Chapter 15. Plug-Ins

206

Details available in the Plug-in Manager:

- Enabled- This dropdown allows you to determine whether or not a plug-in is
used by Poseidon.

- File Name- Displays the location where the plug-in is installed. This field is not
editable.

- Code Name- Displays the code name of the plug-in.
- Version (Specification)- Displays the version number of the plug-in.
« Version (Implementation) - Displays the internal build number of the plug-in.

- Dependencies Lists the plug-ins from which it uses functions.

15.1.1. Installing a New Plug-In

Using Plug-Ins requires three steps. You must first add the license, then install the
plug-in, and finally enable the plug-in.

15.1.1.1. Add the Plug-In License

1. Download the plug-in from the Gentleware web site. You must additionally
purchase a license key from the Gentleware store (except in the case of beta
versions).

2. From Poseidon, open the License Manager from the Help menu.

3. Paste the Serial Number into the ‘New Key/Serial # box at the bottom of the
License Manager. This number should have arrived via email when you
purchased the plug-in.

Click the 'add’ button.

4. The Serial Number now displays a valid status.

The Serial Number must be registered in order to receive the Final Key. The
Final Key allows you to use an unrestricted version of the plug-in. Failure to
register the plug-in will cause the plug-in to cease operation after the grace
period expires.

5. Click the ‘register’ button. You can choose to register online (directly from the
dialog) or via the website. Once the registration is complete, close the License
Manager.

Chapter 15. Plug-Ins
15.1.1.2. Install the Plug-In

1. Check the documentation accompanying your plug-in to determine which
directory you should use for installation. For most plug-ins, extract these files
into the ‘lib’ directory under the Poseidon installation directory. There are
exceptions, however. For example, if you have downloaded the GoVisual
autolayout plug-in, extract these files into the ‘lib/ext/directory.

2. Now that the files are in place, it is time to add the Plug-In to Poseidon.

15.1.1.3. Enable the Plug-In

1. Open the Plug-In Panel (located in the Plug-Ins menu). Click the ‘add’ button.

2. Select the .jar file for the Plug-In from the ‘lib’ directory (or wherever you
installed the plug-in, as this is the same file that was unzipped earlier in the
process).

Click the ‘install’ button.

3. Verify that the Plug-In has been installed and is enabled by highlighting the
name of the Plug-In from the list of Installed Plug-Ins.

15.2. Removing Plug-Ins

If you decide to no longer use a plug-in, you have the option to disable it from
within the Plug-In panel. You can also remove the plug-in from the panel by
selecting the plug-in and clicking the 'Remove’ button. This does not remove the
files for the plug-in from the Poseidon directory, nor does it remove the license key
for the plug-in.

To completely uninstall a plug-in, you must manually delete the files that were
added during the installation process, then open the License Manager and remove
the License Key.

207

Chapter 15. Plug-Ins

15.3. Available Plug-Ins

208

15.3.1. JAR Import

The JAR Import Plug-in supports reverse-engineering and importing JAR archives
into an existing model in Poseidon for UML. You can use and extend existing
packages or frameworks in your own models, or browse and learn existing APIs.
This feature is often requested by professional developers, for instance, to get a
more vivid visualization of APIs than a standard Javadoc might provide.

15.3.2. RoundTrip UML/Java

With the RoundTrip UML/Java Plug-in you can generate Java code from your UML
model, edit your code, reverse-engineer your code and synchronize with the model.
Modeling and coding are not separated anymore.

15.3.3. Refactoring Browser

The refactoring browser module is the latest extension of the cognitive support for
Poseidon. It provides a very handy set of functions to change the structure of your
design for the better, without changing the functional outcome. The refactoring is
actively assisted according to acknowledged rules, so that with bigger projects you
still don't run the risk of side effects that ruin hitherto working models.

To put it in a nutshell, refactoring your program means cleaning up your program'’s
internal structure without implementing new features or introducing side effects.
The term "refactoring” was coined by the famous thesis "Refactoring
Object-Oriented Frameworks" (ftp://st.cs.uiuc.edu/pub/papers/refactoring/) by
William Opdyke in 1992. Nowadays, refactoring is an important practice within
eXtreme Programming (XP) (http://www.extremeprogramming.org/). In contrast to
the popular saying "Never change a running system", XP advises developers to
routinely refactor their programs in order to prevent them from deteriorating.
Further information about refactoring in general can be found on Ward
Cunningham’s extraordinary Wiki-Web
(http://c2.com/cgi/wiki?WikiPagesAboutRefactoring).

To refactor a program, you don’'t need a tool as everything may be done manually.
But a dedicated tool can save you a lot of time (and trouble) by automating much of
the work and relieving you of tedious routine checks. The aim of the "Refactoring
Browser for Poseidon" is to aid developers in refactoring not "just" code but also

Chapter 15. Plug-Ins

UML models. Currently 13 refactorings for class, state, and activity diagrams are
supported - with far more to come.

Using the Refactoring Browser is easy. Every time you select a model’s element,
the browser checks its list of refactorings. If a refactoring is applicable for the
current selection, you may select and customize it. Before performing the
refactoring, the browser issues warnings if the refactoring is likely to alter your
model’s behavior. Error messages are generated if a modification will result in a
defective model. You perform the refactoring with a final click of the mouse.

15.3.4. MDL Import

The MDL Import Plug-in enables Poseidon to import UML models created by
Rational Rose.

15.3.4.1. Installing and Using MDL Import

After the plug-in has been installed, theport Files dialog (accessible from the

File menu or by clicking the icon in the toolbar) allows you to select the file type

*mdl . Unlike jar and java import, the current model is discarded and you cannot
add a Rose model to your current model. You can set the scaling factor by entering
a different value into the text field below the general information about the plug-in
(see Display Issues). By default, the import plug-in hides the package information

in Class Diagrams - long package names tend to ruin the diagram layout. If you
want package names to be displayed in classes and interfaces, you may activate the
check box.

15.3.4.2. Supported Diagrams

This version of the import plug-in reads class, state, activity, usecase, and sequence
diagrams. The other diagram types will be incorporated in the next release.

15.3.4.3. Unsupported Features

Some elements are changed during the import, others are ignored completely. Here
is a list of known shortcomings:

- Poseidon currently supports comments for classes, interfaces, packages, use
cases, actors and states, but not for transitions, associations or objects. If a
comment is not supported, it is added to the diagram as ordinary text.

209

Chapter 15. Plug-Ins

210

« Metaclass: Poseidon does not support meta classes, these classes are imported as
ordinary classes.

- Synchronization States: Rose does not discriminate between fork and join states.
There is no way of telling how to map synchronization states - this plug-in
currently always assumes fork states if the number of outgoing transitions is
bigger than one. You are informed about the decision.

« Subsystems: Subsystems are treated as packages - Poseidon does not support
subsystems at the moment.

The following features are (at the moment) not being imported at all. You will get a
warning after the import is complete that these elements will be missing.

- Destruction Markers
. Swim lanes

- References: MDL files support references to other filgs(or*.cab files,
for example). This import tool ignores references, no warning is issued.

Other problems: Some older versions of Rose have a bug in sequence diagrams:
Links between objects have a wrong target ID. These links will not be resolved
correctly by this plug-in - you will get an error message. Rose does the resolving by
name instead of by ID, which seems rather error-prone, so we do not try to do this.
Loading and saving the model with a new Rose version like Rose 2000 solves the
problem, and the sequence diagram can be correctly be imported.

15.3.4.4. Display Issues

MDL files contain information about the diagram layout. The import plug-in reads
the diagram elements coordinates and positions the diagram elements accordingly.
A few things should be considered, though. Poseidon uses "smaller" coordinates
than Rose. In general, scaling down the coordinates by 40 percent does the job - the
diagrams almost look like they did in Rose. You can change the value in the
Configuration tab to the right. If you choose 80%, for example, the diagram
elements are further apart (but not bigger!) - making it easy to add comments or
further elements.

While the coordinates are read from the MDL file, the sizes of diagram elements are
dependent on the information being displayed. For example, a classes size depends
on the length of the contained methods names and parameters. Long names or lots
of parameters may lead to overlapping classes. To solve this, you can either select a
higher scaling factor, or (at least for Class Diagrams) you can can edit the display
options (select menu ite@dit/Settings, and click the talDiagram display).

Sequence Diagrams

Chapter 15. Plug-Ins

Poseidon performs an automatic layout of sequence diagrams - layout information
contained in MDL files is ignored. Objects are currently placed arbitrarily, you

might have to re-arrange them and any associated textual information. Apart from
that, Rose allows activations to have arbitrary length, while Poseidon calculates the
length of activations depending on the stimuli sent. Using the right mouse button,
you can force an object to remain activated after the last message was sent.

15.3.4.5. Status

We did extensive testing, and any problems during import should be signaled. But
before you use and extend an imported file for production work, you should check
your models and diagrams in case some model element was forgotten. If you
experience problems or want to request additional features, do not hesitate to
contact us at kttp://www.gentleware.com?redirect=contact >

211

Chapter 15. Plug-Ins

212

Chapter 16. Advanced Features

16.1. Constraints with OCL

UML is basically a graphical language. As a graphical language it is very suitable
for expressing high-level abstractions for architectures, workflows, processes etc.
But for expressing very detailed and fine-grained things like algorithms, equations
or constraints, textual languages just tend to be more convenient.

The current UML recognizes this and comes with a supplementary textual language
to express constraints. This language is called the Object Constraint Language, or
abbreviated OCL. Although Poseidon does not require OCL, nor does it check OCL
syntax, there are certainly no restrictions prohibiting you from using OCL.

Since OCL is noted as text, it is simple to support, and many UML tools do it just
that way. You can simply enter lines of text in certain fields reserved for constraints.
In Poseidon for UML you can do that in the Constraints tab on the Details pane, as
shown in the figure below.

Figure 16-1. A Constraints tab.

ies | Ct+ Properties | Style | ToDoltems | Source code | Documen tation

e (| T

{

ropert
Hame | Language | Stereotype |
ew Constraint |Plain English - |[2<precon difio n==|[=]| age must be greater than 24
<<invariants>
<<precon dition®=

ity N

<=postcondition==

<=statelnwvariants>

16.2. Critigues

Before we start generating code, lets first check if our model is as well-formed as it
should be. There are certain design rules for software that are generally
acknowledged by developers. The implementation of these kinds of rules into
Poseidon for UML is in fact one of its finest features. This feature of cognitive
support, which acts like a built in auditor, is called 'critique’.

213

Chapter 16. Advanced Features

214

When activated in the critiques menu, the critiques are constantly analyzing and
criticizing your design. The Critiques pane in the bottom left corner of the working
area contains three priority nodes in the 'by Priority’ view.

Figure 16-2. Critiques pane.

Birdview | ByFriority |

[ToDo-ltems [by Priority [~z ttems

@ [J High B

o lLJ Medium

— D Add Elements to package Internal Business Associate

— D Add Elements to package Auxiliany Buziness Processes
— D Add Elements to package Active Business Partner

— D Add Elements to package Passive Business Partner
— D Add Elements to package External Business Associate
— D #Add Elements to package Member Maintenance

— D Add Elements to package presentation

— D Add Elements to package process

[[Add associations ta Rates

— D Add associations to User

— D Add aszociations to VehicleResenration

= [Add associations ta Main

= [4dd assnciatinns to StattéuteSomoonent

Available Views in the Critiques Tab

- by Decision Type- The type of action to be taken determines the category of the
critique. The available categories are:

Uncategorized, Behavior, Class Selection, Naming, Storage, Inheritance,
Containment, Planned Extensions, State Machines, Design Patterns,
Relationships, Instantiation, Modularity, Expected Usage, Methods, Code
Generation, and Stereotypes

- by Diagrams - Critiques are arranged according to the diagram in which they
appear

- by Knowledge Type- Critiques are listed according to type. The available types
are:

Correctness, Syntax, Presentation, and Completeness

« by Offenders - Lists design elements of the current model and the critiques
associated with them

16.3

Chapter 16. Advanced Features

- by Posters- Critiques are arranged according to the critic who reported the

problem

- by Priority - Critiques are categorized in a priority of high, medium, or low

Broadening and improving this feature is part of each development cycle of

Poseidon.

Searching for Model Elements

When your models start to grow, you will want a nice mechanism to search for
elements. Poseidon offers a powerful search tool that is not just based on text but on
model information. It allows you to look for specific types of elements. The search
tool is invoked from thdedit menu, by selectingind... or by directly pressing the

function keyF3.

Type in the name of the element you are looking for (you can also use the asterisk
as a wildcard), and specify the type of element you are looking for. If you are
looking for a class, this type would be Class.

Figure 16-3. Searching for a class

[@lsearch X
| Name and Location [| | |
Elemeant Name Element Type |Anyw Type EI
Search In Entire Project B
| Clear Tabs | Search
| Help | Reservation ... |
Search Results: 4 items
Type | Mame In Diagram | Crezcription
Pachage Rezenvation niot available docs
Package Reserwation not available docs
Class Reservation not available docs
Class Reserwation not available docs
Related Elemants: 3 items
Type Name In Diagram | Crescription
Az zociation not available docs
A sociation not available docs
Associgtion not available docs

For each search, a new tab is created so that you can access older search results.
You can also restrict the search space to be the result of an earlier search. Selecting

215

Chapter 16. Advanced Features

16.4.

216

one entry from the results list provokes tiRatiated Elements are also shown.
Double-click on one entry in the results list whereas effects that the element is
selected in the Navigation pane.

Profiles

Profiles generically extend the UML through the use of stereotypes that are most
often language-specific, provide a common graphical notation and vocabulary, and
define a subset ot the UML metamodel (that could possibly be the entire UML
metamodel). For example, variable and operation types change based on the profile
(and therefore the stereotypes) used. There is a profile associated with each of the
language plug-ins, and the profiles that automatically appear in the Profile Manager
directly correspond to the set of enabled language-specific plug-ins and are enabled
by default. Likewise, if a plug-in is disabled from the Plug-in Manager, the
associated profile is automatically disabled and will not appear in the Profile
Manager.

It may be advantageous at times to disable these profiles. The Profile Manager
displays those profiles that are currently available and allows you to enable and
disable them with a simple dropdown menu.with features such as version control
and messaging. It also incorporates all of the features of the Professional Edition.

The profile is saved to the project as long as the profile was enabled in the Profile
Manager when the project was saved. If the originating plug-in or the profile was
disabled at the time of the save, no data related to that profile is saved. Say you have
disabled the profile, and then decide to disable the plug-in. If you enable the plugin
again, the profile will be automatically enabled. The status of the profile is not saved
when the plug-in is disabled.

Figure 16-4. The Profile Manager

I profiles
Frofiles
YEINetF rofile
CSharpFrofile
JavaPrafile From plugin | pgLto-CSharp
FHFFrofile
CorbaProfile
|_ Close |

Chapter 17. Using The Enterprise
Edition

17.1.

The Enterprise Edition is the high-end version of Poseidon for UML. It is designed
for use in highly collaborative development environments, with features such as
version control and messaging. It also incorporates all of the features of the
Professional Edition.

Before you use the Enterprise Edition for the first time, consult Enterprise Edition
Installation Guide for information about how to correctly configure the client
application.

Interface

The collaborative modeling environment is based on a client-server architecture. It
is quite unnecessary for those wishing only to model to concern themselves with the
details of the server; therefore, this section outlines the new features of the Client
application only.

The GUI for the Enterprise Edition is very similar to the Professional Edition, but
with some additions. As the Professional Edition features and functionalities are
covered elsewhere in this manual, this section is not intended as an exhaustive list of
the Enterprise Edition GUI. Rather, it is an addendum containing those features that
are exclusive to the Enterprise Edition.

17.1.1. Connection Status

There are two quick ways to determine the connection status to the server.

First, a status icon appears in the lower left-hand corner of the application that states
whether the Client application is connected to the Enterprise Server. A tooltip
appears with text when you hover over this icon.

Second, the main toolbar will display the five Enterprise-specific buttons that do not
appear in the other Editions.

17.1.2. Toolbar

The toolbar of the Enterprise Edition changes depending on the connection to the
Poseidon Collaboration Server. When not connected, the toolbar looks identical to
the Professional Edition toolbar.

217

Chapter 17. Using The Enterprise Edition

However, functions change while engaged in a collaboration. It no longer makes
sense to save a project locally, and to make this difference clear the save button
changes. Likewise, functions that are irrelevant while outside of a collaboration
such as locking and access to the Collaboration Manager become visible.

Save to Server

Collaboration Manager
Show Locks

Request Lock

Release Lock

E
i)
__J

17.1.3. Menu

Enterprise

@ Connect to server

Collaboration-Management
{ 1’| Request madelalemeant lock

- II‘J Release modelelement lock

@E;_' Show locks

» Connect to Server- Opens the connection dialog box
- Collaboration Management- Opens the Collaboration Management dialog box

- Request Model Element Lock- Send a request to the server to make a model
element uneditable for other members of the collaboration

- Release Model Element Lock Allows access to a model element for other
collaboration members

- Show Locks- Displays all locks for the current project.

17.1.4. License Manager

The Enterprise Edition uses a floating license scheme. This means that there are a
limited number of people who may connect to the server at one time. Ordinarily,

218

17.2.

Chapter 17. Using The Enterprise Edition

Poseidon will automatically contact the Floating License Server and attempt to
obtain a license. If no license is available on Poseidon startup or when working with
Poseidon, a dialog will pop up stating that the license is invalid and that it is trying
to request a new license.

This popup provides access to the License Manager. Two tabs are available from
here, but as the Enterprise Edition utilizes Floating Licenses, only the Floating
License tab is of interest to us at this point.

17.1.4.1. Test Connection

To test the connection to the Floating License Server, specify the server address in
the Floating License tab and click 'Test Connection’.

The following results are possible:

- Successfully connected to floating license server with valid license.

« Successfully connected to floating license server but no valid license.

- No floating licenser server available.

- Connection to floating license server failed because of malformed URL.
- Connection to floating license server failed because lookup failed.

- FL_NotReachable=Could not establish a connection to floating license server.

Modeling with Others

17.2.1. Collaborations

UML exists primarily to facilitate between people. We can look at the symbols and
understand the meaning of a much more complex system. The ease with which
others can interpret drawings is an essential goal. The UML also provides a
powerful mechanism for describing these systems in technical terms, so that a
complete semantic and syntactic picture is presented.

Naturally, an environment where people work closely together, regardless of
physical location, is an ideal setting for UML to come into play. One question has
always lingered - how do we work on the same project with knowledge of what
others are doing and without stepping on toes?

219

Chapter 17. Using The Enterprise Edition

220

Poseidon for UML Enterprise Edition introduces the idea of a collaboration, where
teammates have a real-time view of the project and the means to control editing
through locks.

The heart of this is found in the Collaboration Manager, where you can create and
join collaborations, as well as save projects to the server so that others may have
access to them.

In the Collaboration Management Window, you'll see the list of active
collaborations and a list of projects that have been saved to the server. To create a
new collaboration with a new project, click the "Create Collaboration” button, give
the collaboration a name, and wait until the window closes. To re-open a saved
project, select it in the bottom list, and click the "Load project"-button.

You can create diagrams and model elements just as if you were working in the
standalone version of Poseidon.

17.2.1.1. New Collaboration

1. Click the 'Create Collaboration’ button from the toobar
2.In the dialog, give the collaboration a name
3. Wait for the window to close

4. You are now the first member of a project that is hosted on the server. In your
toolbar several enterprise-icons will appear, while several standalone-icons
(like "create new project") will have been removed.

17.2.1.2. Join Collaboration

If another user has already started a collaboration, you may join that collaboration
to work together on the same project. Connecting to the server, and you'll see that
users collaboration in the upper part of the collaboration management window.
Simply select it, and then click the "Join collaboration"-button. You will now get a
copy of that project onto your computer.

1. Open the 'Collaboration Management’ window.
2. Select the collaboration to join
3. Click the "Join Collaboration’ button

4. A copy of the project will now be available for you to edit

Chapter 17. Using The Enterprise Edition
17.2.1.3. Leave Collaboration

If you decide to end your work, or to create a new project, or to load another
project, you have to log off from the current collaboration. Open the Collaboration
Management Frame (you can use the "E"-Button in the toolbar), and then select
"Leave current collaboration”. After that, all work you do is local again, and the
buttons for saving and creating new projects locally are back in place. If no other
user had joined your collaboration, it will be automatically saved to a file by the
server, and removed from the list. To re-enter that project, load it from the list of
stored projects.

17.2.2. Projects

Projects can be stored at the server level so that they are accessible to other team
members.

17.2.2.1. Load and Start Project

To load and start a project that is stored on the server:

1. Make sure that you are connected to the server and disconnected from any
collaborations.

2. Select a project from the lower list in the Collaboration Manager.
3. Click 'Load and Start Selected Project'.

4. The project will open and a new collaboration will be started.

17.2.2.2. Upload Project

To upload project and make it available to others:

1. Make sure that you are connected to the server and disconnected from any
collaborations.

2. Click 'Upload Current Project’ in the Collaboration Manager).

3. The project will now be available to other team members connected to the
Enterprise Server. (You may have to close and re-open the Collaboration
Manager to see the changes.)

221

Chapter 17. Using The Enterprise Edition

222

17.2.3. Model Locking and Conflict Checking

It is quite possible that you may require access to a large number of elements, and
as only one person may edit an element at a time, you do not want to be concerned
with fighting for access with another member of your team. Element locking allows
you to guarantee access for yourself, while denying edit priviliges to other team
members.

When, for example, a class is locked, no one else may change the class’s name, add
an association to it, remove an attribute, or delete a state in that class’s state
diagram. Other users are not even allowed to select a locked element - looking at it
as it appears in the diagram must suffice. Additionally, no one else may lock an
element that is inside your locked namespace, and likewise you can't lock a
namespace that already contains locked elements.

By default, autolocking is activated for the elements you select. This means, when
you select an element, it tries to aquire a a temporary lock (which behaves like a
normal one). If this is not possible (because of elements locked inside that element)
no warning is issued. When you deselect the element, the lock is removed
automatically. Autolocking is used to prevent conflicts as early as possible - as
mentioned before, a locked element can’t even be selected by other users, let alone
edited. Autolocking is very useful in most settings, but it can be a hard restriction
too. For example, when you select a class, then other users will not even be able to
align states that reside in that classes state-diagram. You can deactivate auto-locking
in the settings dialog. Note that auto-locking does NOT apply for the model - you
can select the model in the tree, and you can lock it by hand, but it will not be

locked automatically. Locking is only possible if nothing else inside the namespace
is locked (e.g. by another auto-lock), so it is very unlikely that you'd get the
model-lock without consulting your co-workers first. And even if you got the

models lock, your coworkers might get a bit upset when they notice that they cannot
continue working - while you selected the model just to create a few stereotypes.
Any element with an autolock will appear to the owner with a green lock and clock
icon.

B
%

Customer

All others will see a red lock and clock. These locks are automatically released
when you select a different element.

Chapter 17. Using The Enterprise Edition

Customer

Namespaces may also be locked manually to reserve certain elements. These must
be specifically set and unset while working on the model. To lock a namespace
manually, first select the namespace and then press the ’lock’ icon in the toolbar.
From that point forward, the element will be marked for the lock owner by a green
lock in the upper left corner of that element, while all other users will see a red lock.

~

Customer Customer

Elements that are contained within a locked namespace are automatically locked
too, so they also get marked. To make it possible to tell the locked and the implicitly
locked elements apart, the inner elements get a transparent lock. If you don’t want
to see the lock-symbols, you can turn them off in the settings window.

Customer
(from Owder)

Please remember that not all elements are namespaces. Comments are not
namespaces, so it is not possible to lock them one by one at the moment.

17.2.3.1. Java-Import

The java-import will need access to most parts of the model. To prevent lots of
conflicts with your coworkers during import (which would result in a complete
rollback of the import), you have to lock the complete model for yourself before
you can start importing. Tell your co-workers to unlock and deselect everything,
acquire the lock on the model, perform the import, and remove the lock again.

223

Chapter 17. Using The Enterprise Edition
17.3. Enterprise Server Administration Tool

224

The Admin Tool enables you to access the running Enterprise Server and perform
some administrative actions. You can start the tool by running the

admintool.[bat/sh] script. It presents you with the same Connect-to-Server-dialog as
the one within the Enterprise Client. After connecting, the main management frame
also resembles the Collaborations window from the Enterprise Client. However,
there are different buttons here - for instance, you can’t start collaborations here, but
you can end them.

17.3.1. Collaboration Administration

17.3.1.1. Removing locks

In case some model element locks are not been removed automatically (e.g. when a
clients connections crashed), you can use this button to clear all locks immediately.
Removing single locks is not supported yet.

17.3.1.2. Renaming collaborations

As within the client, you may rename a running collaboration.

17.3.1.3. Ending collaborations

In case a collaboration was not ended properly (e.g. because a client crashed
unexpectedly and the server did not notice this), you may use this button to force it
to end.

17.3.2. Project Administration

You can use the button ‘Upload Project’ to upload a local project file to the server,
and likewise you can delete a project with the delete button.

The most interesting feature about the Admin-Tool is its CVS-Support. If your
projects directory resides in a CVS-aware directory, you will see more buttons and
features in the stored projects section of the admin tool. Read more about this in the
next section.

Chapter 17. Using The Enterprise Edition
17.3.3. CVS Support

Poseidon’s Admin Tool supports the most basic (and most needed) CVS operations,
S0 it is very easy intuitive to use; however, you should be generally familiar with

CVS before you use this plug-in. The following documentation is not meant to be a
CVS manual. Please refer to

http://www.loria.fr/~molli/cvs/doc/cvs_toc.html#TOC1 for some nice CVS
documentation.

Also, the Admin Tool's CVS support is not a replacement for a fully fledged CVS
GUI Client. Please refer to WInCVS (http://www.wincvs.org) for a Windows client,
or to (http://www.jcvs.org) for a Java-based Unix/Linux client . The Admin Tool
currently only supports PserverConnections. This is the most common usage and
will suffice for most user needs. If you need EXT-Connections (e.g. for
ssh-tunnelling), please check more advanced CVS Clients.

To use the CVS support from the Admin Tool, you need to have a CVS server
running (on linux a cvs server comes along with most distributions, and CVSNT
(http://www.cvsnt.org/wiki) is a freely-available Windows CVS server. You must
also have a project directory checked out somewhere on your file system.

17.3.3.1. Configuring Your System for CVS Support

As mentioned, you must have created and checked out a directory from your cvs
server already, and configure the Enterprise Server to use it as your projects
directory (using the setting "collabserver.project.file.location” in the
CollabServer.properties file). To access the CVS server, the Admin Tool needs to
know the password for the user that performed that initial cvs checkout. This
password is stored in a file called ".cvspass", usually located in the user’'s home
directory. You can either specify that files location, or you may set the encoded
password as a separate setting. So, your could add an entry like this (Windows
notation),

collabserver.cvs.passFile=C\:\\Dokumente und
Einstellungen\\per. GENTLEW\\.cvspass

or instead use
collabserver.cvs.encodedPassword=As84123

(with the latter entry being the encoded password taken from a .cvspass file, not the
original one)

On startup, the Enterprise Server displays a few values it reads from the properties
files, including those above. It will also notify you it was not able to read a

password from the .cvspass file, or when the password could not be used to access
the CVS. The CVS support for the Admin Tool will then remain disabled.

225

Chapter 17. Using The Enterprise Edition

226

When everything is set up properly, restart the Enterprise Server and the Admin
Tool. The lower part of the screen will now present you with a CVS view and a few
additional buttons for CVS Access.

17.3.3.2. Using the CVS Support

Each file in the current directory is displayed in a color reflecting the file’s state in
CVS:

Black - File is up-to-date, or there is no CVS available

 Blue - File has changed and needs to be committed

Green - File has been newly added and needs to be committed

Brown - File is not known to CVS yet

The following states should not occur for your Poseidon Projects, as the projects are
binary and will not get merged, but other files in your CVS directories might look
like this:

- Red- File was updated, merged, and a conflict was detected.
- Purple - File was updated from CVS, local changes have been merged.
Next to the list of files, you can find buttons for performing CVS operations.

Adding a file to the CVS- A file that is not yet known to CVS (for example after it
was uploaded) is displayed in brown. Select it, click the add button, enter a
comment for it, and then the file is added (but not yet committed) to CVS. Its color
changes to green.

Committing a file - A file that has been changed (blue color) or added to CVS
(green color) can be committed in order to store the changes in the repository
permanently. Just select the file, press the Commit button and enter a comment for
that file. The files color changes to black (the up-to-date-color).

Removing a file from the CVS- To delete a file and remove it from the CVS,

select it and press the remove button. You will be asked to enter a comment,
afterwards the file gets deleted and removed from the CVS. It is still available
through the CVS repository, so you can change your mind and restore the file. But
you will need to use a more advanced CVS client (or the command line) for this, the
Admin Tool does not yet support access to removed files. Note: The regular cvs
remove command does not delete a file from the file system, nor does it commit a
removed file. To keep things simple, the Poseidon Admin Tool auto-deletes and
auto-commits files.

Chapter 17. Using The Enterprise Edition

Renaming a file- CVS does not support renaming, so the client first renames the
file. Then CVS is told to remove the file with the old name from its repository and
add the renamed file to the repository as a new file. In addition to the message you
supply, the Admin Tool generates a short message about the old file’s name -
unfortunately CVS cannot store information about renamed files, and your renamed
project has no history except for the message you supply here. Because of the loss
of history information, it is not advisable to rename projects just for cosmetic
reasons, like from "OurWorkflow" to "Our_WorkFlow". You should only rename
when the model inside the file has changed so much that the original filename does
not fit the model at all anymore.

Version History - Inside the CVS file view, click the Version button to open the
history frame. The history of the selected file will be displayed. Apart from looking
at and closing that frame, you can also restore an old version.

Restoring an old revision- CVS does not have a command for restoring an old
revision. You may "down-update" to an old version, but that implies that the
checked out file is "sticky", and committing changes will create a branch on that old
revision of the file. To save you the trouble of sticky files (you can do this by hand if
you really want to), the Admin Tool deletes the current version of the file from the
file system, checks out the old revision (sticky), renames that file to a temporary
file, checks out the latest version of the file (just to get rid of the sticky tag), deletes
that file, and renames the temporary file (the old revision) to the original name. Now
the old file has been restored and you can modify and/or commit it. As has been
checked out from CVS as new, it is not modified yet. Note that he revision will not
change; if you restore revision 1.2 of a file that already was at revision 1.6, the
restored file will still be 1.6, and then 1.7 once you change and commit it.

227

Chapter 17. Using The Enterprise Edition

228

Chapter 18. Epilogue

At this point we would like to express our thanks to everyone who, over the years,
has contributed to ArgoUML and Poseidon. Without this active community of
developers and users, Poseidon would not be what it is today.

Also, we would like to acknowledge the work of all the other open source projects
we have made use of. We share with them the intention of developing high-quality
software within the open source community. The Poseidon for UML Community
Edition, as well as our feedback to the open source of ArgoUML (and to other OS
projects) and our activities in the development of improved open standards, are a
sustained expression of this support.

And let’s not forget Jason Robbins, who started the quest that led us here.

Poseidon includes open source software by Antlr (Java source reverse engineering),
Jakarta’s log4j (logging), Jakarta’s Velocity (Code Generation), Sun’s Netbeans
project (the UML repository MDR), TU Dresden (OCL support), Piccolo (diagram
rendering), Apache’s batik toolkit (SVG graphics export), and Freehep (Postscript
and PDF rendering).

229

Chapter 18. Epilogue

230

Appendix A. Poseidon C# Code
Generation Plug-In Guide

A.l. General Rules

A.1.1. Tagged Values

These tagged value keys are supported when the value is set to 'true’ within the
appropriate context:

- internal

- protected internal
- volatile

- override

- sealed

. extern

« internal

. virtual

A.1.2. Additional Stereotypes

. <<evenp>
« <<readonly>

» <<delegate>

231

Appendix A. Poseidon C# Code Generation Plug-In Guide

A.2. Modeling Element Rules

A.2.1. Classes

« Uses the standard UML 'Class’

« Supports single inheritance only

A.2.1.1. Class Signature

- Additional visibilities for class signatures are set when the tagged values below
are 'true’:

1.internal

2.sealed

A.2.1.2. Class Attributes

- Additional visibilities for class attributes are set when the tagged values below
are 'true’:

1.internal
2. protected internal

3. volatile

A.2.1.3. Class Operations

- Additional visibilities for class operations are set when the tagged values below
are 'true’:

1.internal

2. protected internal

232

Appendix A. Poseidon C# Code Generation Plug-In Guide
3. override
4.sealed
5. extern

6. virtual

Everything else will use the checked visibility radio buttons

A.2.2. Interface

. Uses the standard UML ’'Interface’

« Supports single inheritance only

A.2.2.1. Interface Signature

- Additional visibilities for interface signatures are set when the tagged value
below is 'true’:

1.internal

A.2.2.2. Interface Members

- All interface members implicitly have public access. It is a compile-time error for
interface member declarations to include any modifiers. In particular, interface
members cannot be declared with the modifiers abstract, public, protected,
internal, private, virtual, override, or static.

Everything else will use the checked visibility radio buttons.

A.2.3. Structure

« Uses the standard UML 'Class’ with the s&uct>> stereotype

233

Appendix A. Poseidon C# Code Generation Plug-In Guide

234

« Supports single inheritance only

A.2.3.1. Structure Signature

Additional visibilities for structure signatures are set when the tagged value below
is ‘true’™:

- internal

Struct tapes are never abstract and are always implicitly sealed; therefore the
"abstract’ and 'sealed’ modifiers are not permitted in a struct declaration. Since
inheritance isn’t supported for structs, the declared accessibility of a struct member
cannot be 'protected’ or 'protected internal’.

A.2.3.2. Structure Members

Function members in a struct cannot be abstract or virtual, and the override modifier
is allowed only to override methods inherited from the type System.ValueType. A
struct may be passed by reference to a function member using a ref’ or "out’
parameter.

Everything else will use the checked visibility radio buttons.

A.2.4. Enumeration

« Uses the standard UML 'Class’ with an erum> stereotype
- By default, it generates an enum as type 'int’.
- Enum does not participate in generalizations or specifications

- Enum cannot have navigable opposite association ends, operations, or inner
classifiers

« Anything else will default to 'int’.

A.2.4.1. Enumeration Signature

Additional visibilities for enumeration signatures are set when the tagged value
below is 'true’:

« internal

Appendix A. Poseidon C# Code Generation Plug-In Guide

Everything else will use the checked visibility radio buttons.

A.2.5. Delegate

« Uses the standard UML 'Class’ with a delegate> stereotype

- Delegate does not participate in generalizations or specifications

A.2.5.1. Delegate Signature

Additional visibilities for the delegate signatures are set when the tagged value
below is 'true’:

- internal

Everything else will use the checked visibility radio buttons.

A.2.6. C# Event

C# events are supported with an operation that has the stereotgpert<.

A.2.7. Operations

There are some translations on the return type of C# operations:

« 'infout’ parameter direction will be translated to ref’
+ 'in’ parameter direction will be translated to blank (")
- 'out’ will be translated to 'out’

- root’ will be translated to 'new’

235

Appendix A. Poseidon C# Code Generation Plug-In Guide

236

Appendix B. Poseidon CORBA IDL
Code Generation Plug-In Guide

B.1. General Rules

- Everything is modeled using the standard UML 'Class’ with an appropriate
stereotype as defined by UML Profile for CORBA

« For details about modeling CORBA IDL, refer to the UML Profile for CORBA
v1.0

B.2. CORBA Interface

+ Uses the standard UML 'Class’ with the €ORBAInterface >>stereotype

- Interface member has to be 'public’

B.3. CORBA Value

« Uses the standard UML 'Class’ with the €ORBAValue >>stereotype
- Can only specialize one other concrete CORBA Value

« CORBA Value can only have 'public’ or 'private’ attributes and navigable
opposite association ends

« CORBA Value’s 'Factory’ method is modeled using the
<<CORBAValueFactopy> stereotype with an Operation

« CORBA Value can have only 0 or 1 GORBAValueFactopy>-stereotyped
Operation

- CORBA Value can only have 'public’ operations

237

Appendix B. Poseidon CORBA IDL Code Generation Plug-In Guide

B.4. CORBA Struct

« Uses the standard UML 'Class’ with the EORBAStruct> stereotype
- CORBA Struct cannot participate in generalizations or specifications

« CORBA Struct can have only 'public’ attribute and navigable opposite
association end of single multiplicity

- CORBA Struct cannot have operations

B.5. CORBA Enum

+ Uses the standard UML 'Class’ with the €ORBAEnum> stereotype

- CORBA Enum cannot participate in generalizations or specifications
« CORBA Enum can have only 'public’ attributes

- CORBA Enum cannot have navigable opposite association ends

- CORBA Enum cannot have operations

B.6. CORBA Exception

« Uses the standard UML 'Class’ with the EORBAEXxceptior> stereotype

« Due to current Poseidon limitations, CORBA Exception names must end in the
string 'Exception’

- CORBA Exception cannot participate in generalizations or specifications
« CORBA Exception can have only 'public’ attributes with single multiplicity
- CORBA Exception cannot be an end of a navigable association end

- CORBA Exception cannot have operations

B.7. CORBA Union

« Uses the standard UML 'Class’ with the EORBAUnNior> stereotype

238

Appendix B. Poseidon CORBA IDL Code Generation Plug-In Guide
- CORBA Union cannot participate in generalizations or specifications
- CORBA Union can not have operations

- There are two ways to model CORBA Union as specified in UML Profile for
CORBA:

- Using a composition relationship that points to a 'switcher’ and has the
<<switchEnd> stereotype. Every attribute must have a tagged value with
'Case’ as the key and the switch condition as the value.

- Using an attribute with the switch>> stereotype attribute acting as the
'switcher’ in conjunction with a composition relationship. The navigable
opposite association ends must have tagged values with 'Case’ as the key and
the switch condition as the value.

Please see UML Profile for CORBA v1.0 §3.5.15 for more details.

239

Appendix B. Poseidon CORBA IDL Code Generation Plug-In Guide

240

Appendix C. Poseidon Delphi Code
Generation Plug-In Guide

C.1. Classfiers

« Class

. Interface

« Enumeration
« Record

« Set

- Sub Range
« Array

- Exception

C.2. Tagged Values

All strings input in the Tag column are case-sensitive.

C.2.1. Classifier

« Tag ='uses’ with Value = string that represents unit(s) name to be included in
specified unit declaration, separated by comma.

Description Handles strings that represent the names of units to be included in
specified unit declarations. A 'uses’ tag with a blank value will be defaulted to
'SysUtils’.

Example UnitA, UnitB, UnitC

- Tag ='setvalue’ with Value = string that represents the value of 'Set’, separated
by comma.

Description Handles the way to input the value of the 'Set’ type.

241

Appendix C. Poseidon Delphi Code Generation Plug-In Guide
Example 1,9

- Tag =subrangevalue’ with Value = string that represents the value of 'Sub
Range’ separated by comma.

Description Handles the way to input the value of the 'Sub Range’ type.

Example 1,9

- Tag ="arrayvalue’ with Value = string that represents the value of 'Array’,
separated by comma.

Description Handles the way to input the value of the 'Array’ type.

Example 1,9

- Tag ="arraytype’ with value = string that represents the type of 'Array’.

Description: Handles the way to input the type of the 'Array’ type.

C.2.2. Attribute

- Tag =published’ with Value = 'true’.

Description Handles the published visibility of the classifier "attribute’.

C.2.3. Operation

- Tag =’published’ with Value ='true’.

Description Handles the published visibility of the classifier 'operation’.

« Tag =virtual’ with Value = 'true’

Description Handles the way to set the specified operation into a 'virtual’ type
operation.

242

Appendix C. Poseidon Delphi Code Generation Plug-In Guide
- Tag ="dynamic’ with Value = 'true’

Description Handles the way to set the specified operation into a 'dynamic’ type
operation.

- Tag ="override’ with Value = 'true’

Description Handles the way to set the specified operation into an 'override’
type operation.

- Tag =’override’ with Value = true’

Description Handles the way to set the specified operation into an 'override’
type operation.

C.2.4. Exception

- Tag =’published’ with Value ="true’.

Description Handles the published visibility of 'Exception’.

C.3. Stereotypes

C.3.1. Attribute

+ Stereotype ='Const’

Description Handles the way to specify a 'const’ type Attribute.

+ Stereotype =property’
Description This will handle the way to specify a 'property’ type Attribute.

243

Appendix C. Poseidon Delphi Code Generation Plug-In Guide
C.3.2. Operation

. Stereotype = function’

Description Handles the way to specify a 'function’ type Operation.

. Stereotype ='procedure’

Description Handles the way to specify a '‘procedure’ type Operation.

C.3.3. Classifier

Stereotype = 'Enum’

Description Handles the way to specify an 'Enumeration’ type Classifier.

- Stereotype = 'Record’

Description Handles the way to specify a 'Record’ type Classifier.

« Stereotype ='Set’

Description Handles the way to specify a 'Set’ type Classifier.

- Stereotype = 'SubRange’

Description Handles the way to specify a 'Sub Range’ type Classifier.

- Stereotype ="Array’

Description Handles the way to specify an 'Array’ type Classifier.

- Stereotype = 'Exception’

Description Handles the way to specify an 'Exception’ type Classifier.

244

Appendix C. Poseidon Delphi Code Generation Plug-In Guide

C.4. Modeling Element Rules

C.4.1. Class

+ Uses the standard UML Class
- Participates in generalizations, associations and specifications

« Only supports single inheritance

C.4.2. Interface

Uses the standard UML Interface

Participates in generalizations

Does not participate in associations or specifications

Only supports single inheritance

C.4.3. Enumeration

« Uses the standard UML Class with €num>> stereotype
- Does not participate in generalizations or specifications

- Cannot have navigable opposite association ends or operations

C.4.4. Record

+ Uses the standard UML Class with ®Record>> stereotype
- Does not participate in generalizations or specifications
- Can have navigable opposite association ends

- Cannot have any operations

245

Appendix C. Poseidon Delphi Code Generation Plug-In Guide
C.4.5. Set

« Uses the standard UML Class with &et>> stereotype
- Does not participate in generalizations or specifications

- Cannot have navigable opposite association ends or operations

C.4.6. Sub Range

« Uses the standard UML Class with SubRange> stereotype
- Does not participate in generalizations or specifications

- Cannot have navigable opposite association ends or operations

C.4.7. Array

+ Uses the standard UML Class with #«ray >> stereotype
- Does not participate in generalizations or specifications

- Cannot have navigable opposite association ends or operations

C.4.8. Exception

« Uses the standard UML Class with €&xceptior>> stereotype

. The same as Class

C.5. Specific Rules

« An attribute with 'non-1" multiplicity will generate an Array that is defaulted to
type ’int’ with Lower Bound and Upper Bound values based on the specified
multiplicity.

Example Attribute with multiplicity: 1..2 will generate : Array[1..2] of int;

246

Appendix C. Poseidon Delphi Code Generation Plug-In Guide

A blank value with the 'uses’ Tag, will be defaulted to 'SysuUtils’.

A blank value with the 'setvalue’ Tag will be defaulted to 'a’..’z’

A blank value with the 'subrangevalue’ Tag will be defaulted to 'a’..’z’
A blank value with the "arrayvalue’ Tag will be defaulted to 1..10

A blank value with the "arraytype’ Tag will be defaulted to int

A blank value with the ’procedure’ and 'function’ Tag will be defaulted to
procedure

247

Appendix C. Poseidon Delphi Code Generation Plug-In Guide

248

Appendix D. Poseidon PHP4 Code
Generation Plug-In Guide

This guide is based on the PHP4 Manual, available at http://www.php.net/docs.php.

D.1. General Rules

« The only classifier in PHP4 is 'Class’.
« PHP4 Class can not participate in an Association.
« There is no Exception in PHP4

- There are two files generated for each Class generation process:

1.’.inc’ file that contains the class declaration

2.’.php’ file that includes related the ".inc’ on its first line

D.1.1. Tagged Values

The following tagged value keys are supported for PHP4 Class:

» ’'<<<’ for Heredoc string
« ’initval’ for an initial value of an operation parameter
- '&’ for operation parameter passed by reference

. '&’ for a function that returns a reference

D.2. PHP4 Class Modeling Rules

« Uses standard UML 'Class’

« Supports single inheritance only

249

Appendix D. Poseidon PHP4 Code Generation Plug-In Guide
D.2.1. Class Signature

- There are no visibilities for Class Signature

D.2.2. Class Attributes

- There are no visibilities for Class Attributes
- Tagged values supported:
1. Heredoc
Tagged value = '<<<’, with value = "true’
Will return anything typed in the initial value with Heredoc string type.

For example:

$str = <<<EOD Example of string
spanning multiple lines using heredoc syntax.
EOD;

D.2.3. Class Operations

- There are no visibilities for Class Operations
- Tagged values supported:
1. Parameter initial value
Tagged value="initval’, with value = (specified parameter initial value).

For example:

class ConstructorCart extends Cart { function
ConstructorCart($item = "10", $num = 1) { $this->add_item
($item, $num); } }

2. Parameter passed by reference

Tagged value='&’ with value="true’ in the parameter signature.

For example:

250

Appendix D. Poseidon PHP4 Code Generation Plug-In Guide

<?php function foo (&$var) { $var++; }
$a=5; foo ($a); // $a is 6 here ?>

3. Function returns a reference
Tagged value='&’ with value="true’ in the operation signature.

For example:

<?php function &returnsReference() {
return $someref; } $newref =& returnsReference();
?>

251

Appendix D. Poseidon PHP4 Code Generation Plug-In Guide

252

Appendix E. Poseidon Perl Code
Generation Guide

E.1. General Rules

- The result of the code generation is saved as a Module file (ClassName.pm)

- Interfaces and their associations are not translated into Perl code

- Abstracts and their associations are not translated into Perl code

- Element’'s documentation are translated into Perl comment syntax (# comment)

- Attribute / Parameter types are ignored because there is no need to define data
types for Perl variables

E.2. Classes

« Uses the standard UML 'Class’
- Classes are translated into Perl Class (package className)

« A constructor is generated for each class (sub new)

E.3. Class Attributes

- Attributes are translated into variables

- Attributes with single multiplicity are translated into scalar type variables (my
$AttributeName)

- Attributes with multi-multiplicity are translated into array type variables (my
@AttributeName)

- An attribute with a tagged value ’local’ that is set to 'true’ is translated into 'local
$AttributeName’ instead of 'my $attribute’

« An attribute that has non-1 multiplicity with a tagged value 'Map’ set to 'true’ is
translated into '%AttributeName’ instead of '@AttributeName’

253

Appendix E. Poseidon Perl Code Generation Guide

- When the visibility of an attribute is public, 'use vars qw ($AttributeName)’ is
added to the code generation.

E.4. Class Operations

- Operations are translated into Sub-routines (Sub OperationName)
. Parameters are translated into Sub-routine variables
- Return value are not translated into Perl code

- When an operation is static and has the stereotypereate>>, a 'BEGIN{}’
block is added to code generation.

- When an operation is static and has the stereotypaestroy>>, a 'END { }’
block is added to code generation.

E.5. Associations

- 1to 1 associations are translated into scalar type variables (my $className)

- 1to N associations are translated into array type variables (my @className)

E.6. Aggregation

- 1to 1 aggregations are translated into scalar type variables (my $className)

E.7. Inheritance

- Single inheritence is implemented using @ISA = qw(class)

« Multiple inheritence is implemented using @ISA = gw(classl class?2 ...)

254

Appendix F. Poseidon SQL DDL Code
Generation Plug-In Guide

F.1. Modeling Element Rules

F.1.1. Classes

. Uses the standard UML 'Class’

. Each class is considered as a table.

F.1.2. Attributes

- Describes the columns in table. Each attribute can have stereotypes that will be
treated as column constraints.

F.1.3. Association Ends

- Describes the relationships between tables. Foreign keys will be automatically
generated in tables that have references to other tables.

F.2. Tagged Values

These tagged value keys are supported when the value is set with digit number
within appropriate context: The values will specifically describe the column data
type. Considered in the following order: length, precision, scale

F.3. Additional Stereotypes

Stereotypes apply in attributes. The stereotype for allowing NULL values is not

255

Appendix F. Poseidon SQL DDL Code Generation Plug-In Guide

included since it is the default behaviour of columns.

« Primary Key
« Not Null

- Unique

256

Appendix G. Poseidon VB.Net Code
Generation Plug-In Guide

G.1. General Rules

- ’'package’ visibility will be translated into 'Friend’

- 'abstract’ will be translated into 'MustlInherit’ or '"MustOverride’
- final’ will be translated into 'NotInheritable’ or 'NotOverridable’
- ’static’ will be translated into 'Shared’

The following keys for tagged value pairs are supported when the value has been set
to 'true’ within the appropriate context:

- Shadows
. Overridable

. Protected Friend

G.2. Classes

« Uses the standard UML 'Class’
« Supports single inheritance only

- 'Protected Friend’ visibility is determined by setting the tagged value 'Protected
Friend’ to 'true’. Everything else will use the checked visibility radio button.

- Classes with abstract operations must also be declared "abstract’

G.3. Interfaces

. Uses the standard UML ’'Interface’

. Interface identifiers must start with the ’I’ character

257

Appendix G. Poseidon VB.Net Code Generation Plug-In Guide

G.4.

G.5.

G.6.

258

- Interface operations must be 'Public’ and cannot be 'Shared’

- Interfaces cannot have attributes or navigable opposite association ends

Modules

« Uses the standard UML 'Class’ with the KModule>> stereotype

« Modules cannot be 'abstract’ or 'final’

- Modules cannot participate in generalization or specification

- Modules cannot be an inner classifier or have an inner classifier

- Modules cannot have a 'Protected’ or 'Protected Friend’ member

Structures

» Uses the standard UML 'Class’ with the Structure-> stereotype

- Structures must have at least one member that is non-static (shared) and is either
an attribute, a navigable opposite association end, or an operation with the
stereotype <Event>.

. Structures cannot have a 'Protected’ or 'Protected Friend’ member

- Structures cannot have an attribute or navigable opposite association end with an
initialized value

Enums

« Uses the standard UML 'Class’ with the Equn»> stereotype
- By default, it generates an Enum as type 'Integer’
- Enums do not participate in generalizations or specifications

- Enums cannot have navigable opposite association ends, operations, or inner
classifiers

- Other Enum types are supported by using the tagged value key 'type’ with one of
the following values:

Appendix G. Poseidon VB.Net Code Generation Plug-In Guide
« Short
- Byte
- Integer

- Long

« Anything else will default to 'Integer’

G.7. Operations
« Operations support the following tagged values:

. Protected Friend
. Shadows

. Qverridable

- Operations with no return parameter (returning 'void’) are generated as 'Sub’

- Operations with a return parameter are generated as 'Function’

G.8. Operation’s Parameters

- Parameter type ’in’ is translated as 'ByVal’, everything else is 'ByRef’

- The type 'ParamArray’ is supported by using the stereotypeaxamArray>>
with a parameter

- A’ParamArray’ parameter must be the last parameter

- A’ParamArray’ parameter must be of type 'in’ or '‘ByVal’

G.9. Visual Basic Properties

- Properties are supported with Rroperty>> stereotyped operations

- There are 3 type of stereotypes available:

259

Appendix G. Poseidon VB.Net Code Generation Plug-In Guide
- 'Property’ will generate 'Get’ and 'Set’ inside the Property block
- 'ReadOnly Property’ will generate only 'Get’ inside the Property block
- 'WriteOnly Property’ will generate only 'Set’ inside the Property block

- If no attribute is set in "accessed attribute’, it will by default generate an attribute
with same type as the Property return type with the name set to
'm_operation_name’.

G.10. Visual Basic Events

- VB Events are supported by using Event-> stereotypes with operations

G.11. Attribute & Association Ends

« Supports the tagged value 'Protected Friend’

260

Glossary

Action

An action is an atomic computation that cannot be terminated externally, and
changes the state of the model or returns a value.

Action State

An action state is a simple state in an activity graph representing the execution
of an noninterruptible and atomic action that is followed by a transition to
another state.

Activation

An activation, also known as focus of control, shows the execution of an
operation and the duration of time for that operation.

Actor

Actor

An actor is a representation of an entity that interacts with and derives value
from the system.

Aggregation

S

An aggregation relationship is a 'whole-part’ relationship, e.g. a page is a part
of a book.

Association

261

Glossary

262

—

An association is a represention of a semantic relationship between instances
of objects.

Association End

An association end contains a reference to a target classifier and defines the
participation of the classifier in the association.

Attribute

An attribute is a logical data value of a specified type in a class which is
inherent to an object. Each object of the class separately holds a value of the

type.

Boundary-Control-Entity-Schema

The boundary-control-entity-schema describes a three layer architecture. The
boundary layer is the user interface, control decides what to do with the
information gathered from the user interface, and entity holds the data.

Branch

O

Branch

A branch is an element in a state machine where a single trigger leads to more
than one possible outcome, each with its own guard condition.

Class

Class

A class is a descriptor for objects that share the same methods, operations,
attributes, relationships, and behavior, representing a concept within the
system being modeled.

Glossary
Classifier

A classifier is a model element that describes structural features and behavior.
Some classifiers include: class, actor, component, data type, interface, node,
and use case.

Collaboration

-~ e
[Collaboration)
~ -

A collaboration describes a dynamic relationship that exists between objects.
Additionally, ai Classifier Role should be associated to the collaboration to
illustrate the role an element plays in that collaboration.

Comment

Comment

A comment is a textual annotation attached to an element or a collection of
elements that has no direct semantics, but may display semantic information.

Previously referred to as a note.

Compartment
A compartment is a division of a symbol, such as a class rectangle divided

vertically into smaller rectangles. Each compartment shows the properties of
the represented element.

Component

Component

A component is a replaceable, tangible part of a system that realizes of a set of
interfaces, including software code, scripts, or command files, run-time
objects, documents, databases, etc.

263

Glossary

264

Composition

-

A composition is a stronger form of aggregation. A part can only be a part of
one composite, and the destruction of the whole automatically implies
destruction of the parts. Parts with multiplicity that is not fixed can be created
after the composite has been created, but once established they live and die
with it. Parts can be explicitly removed before the death of the composite.

Constraint

Constraints are expressions that represent semantic conditions or restrictions
that are used to limit the use of model elements.

Constructor

A constructor is an operation within the scope of a class that creates and
initializes an instance of a class. It may be used as an operation stereotype.

Container

A container is an object that exists to encompass other objects and provide
operations to access or iterate over its contents. Examples of containers include
arrays, lists, and sets.

Contains

A ’contains’ relationship is used to describe a composition relationship; for
example, an airplane contains wings.

Control Flow

Control flow represents the relationship between actions in a sequence as well
as between input and output objects, shown with messages attached to
associations or as solid arrows between activity symbols.

Dependency

——————— >

Glossary

A dependency exists between elements and expresses that elements within one
package use elements from the package on which it depends, implying that a
change in one element may affect or supply information needed by the other
element.

Details Pane

The Details pane is a quadrant of the Poseidon work area, located in the lower
right corner, which provides advanced editing and viewing capabilities for all
elements.

Descriptor

A descriptor is a model element that describes the commonalities of a set of
instances, including their structure, relationships, behavior, constraints, and
purpose. Most elements in a model are descriptors.

Diagram

A diagram is a graphical presentation of a compilation of model elements,
rendered as a graph of shapes connected by paths. Comprehension resides
mainly in the topology, not in the size or placement of the symbols.

Diagram Pane

The Diagram pane is the main working area of Poseidon, where all of the
diagrams are displayed.

Drill-down Navigation

Drill-down navigation is a means of moving through a model by moving from
element to element via the relationships of those elements.

Element

An element is a broad term with little in the way of specific semantics and
refers to an atomic constituent of a model.

265

Glossary
Evaluation Key

An evaluation key is a key granted to a user upon request to allow that user to
operate Poseidon for a limited amount of time.

Event

An event is a non-trivial occurrence with a location in time and space.

Extend

==extend==

——————— >

An extend relationship exists between an extension use case and a basic use
case, and indicates how the behavior of the extension use case can be directly
applied to the behavior defined for the base use case. The extension use case
incrementally modifies the base use case in a modular way.

Extension Point

An extension point is a named marker that references a location or set of

locations within the behavioral sequence for a use case, at which additional
behavior can be added.

Final Key

A final key is a string provided to Poseidon in order to remove time limits and
functionality limits from an evaluation copy of the software.

Final State
O)

Final _State

A final state is a state within a composite state that, when active, indicates that
the activity of the enclosing composite state is complete.

266

Glossary
Fork

Fark

A fork is a complex transition where one source state is replaced by two or
more target states, thus increasing the number of active states.

Friend

A friend dependency grants an operation or class permission to use the
contents of a class where there would otherwise be insufficient permission.

Generalization

—

A generalization is a directed relationship between two like elements, where
one element is the parent element and the other is the child element. This type
of relationship is also referred to as ’kind of’, meaning that the child is a kind

of the parent.
Guard Condition
A guard condition is a boolean expression that must be satisfied in order to
enable an associated transition to fire.
Implementation Relations
An implementation relation is a relation that exists only between interfaces and

classes.

Include

==includes=

An include relationship defines a dependency relationship between a source
use case and a target use case in which the source use case explicitly

incorporates the target use case. The source use case can see and use the target,

but neither the source nor the target may access each other’s attributes.

267

Glossary

Multiple include relationships may be applied to the same base use case. The
same target use case may be included in multiple source use cases.

Inheritance Relations

—

An inheritance relation allows more specific elements to incorporate structures
and behaviors that have been defined by more general elements.

Initial State
@

Initial _State

An initial state is a syntactic notation indicating the default starting place for
an incoming transition to the boundary of a composite state.

Instance

An instance is an individual, concrete entity with its own identity and value.
An object is an instance of a class, a link is an instance of an association

Interface

Interface

An interface is a named set of operations that characterize the behavior of an
element. Interfaces do not have implementations, they lack attributes, states,
and associations, they have only operations.

Join

Al

Join

|

A join is a location in a state machine, activity diagram, or sequence diagram
where two or more concurrent threads or states combine into one thread or
state.

268

Glossary
Label

A label is a notational term for the use of a string on a diagram.

Link

A link is an instance of an association.

Lollipop
O

Lollipop

A lollipop is a type of notation used to denote an offered interface. It consists
of a named circle (the interface) and an relationship drawn as a solid line. This
is also known as ball notation.

Merge
A merge is a location in a state machine, activity diagram, or sequence
diagram where two or more control paths come together.

Message

A message refers to the transfer of information, such as a signal or operation
call, from one object to another with the expectation that activity will result.
The receipt of a message instance is normally considered an instance of an

event.

Metaclass
A metaclass is class whose instances are classes. Metaclasses are typically
used to construct metamodels. A metaclass can be modeled as a stereotype of a
class using the keyword metaclass.

Method

A method is an implementation of an operation that specifies the algorithm or
procedure.

269

Glossary

Model

A model is semantically complete abstraction of a system from a particular
viewpoint.

Multiplicity

A multiplicity is a specification of the range of allowable cardinality values. It
can be an explicit value, a range of values, or an expression that resolves to one
or more values.

Name

A name is a string that is defined within a namespace and is used to identify a
model element.

Namespace

A namespace is a part of the model in which names are defined and used,
where each name has a unique meaning.

Navigation Pane

The Navigation pane is located in the top left corner of the Poseidon work area
and displays model elements according to pre-determined schemas which can
be selected from a dropdown menu.

Node

Mode

A node is a physical object that exists at runtime and represents a
computational resource that executes components. It usually has at least a
memory and often processing capability. Nodes can include, but are not limited
to, computing devices, human resources, or mechanical processing resources.

270

Glossary

Note

The Note element has undergone a name change. See 'Comment’.

Object

Ohject

An object is a discrete entity with a well-defined boundary and identity that
encapsulates state and behavior, an instance of a class.

Object Constraint Language (OCL)

Object Constraint Language (OCL) is a text language for specifying
constraints, writing navigation expressions, boolean expressions, and other
queries. It is not intended for writing actions or executable code

Object Flow State

Obiect Flow

An object flow state represents the existence of an object at a point within a
computation. It can also represent the flow of control among operations in
target objects.

Operation

An operation is the specification of a transformation on the state of an object or
a query that returns a value to the caller of the operation.

Overview Pane

The Overview pane is located in the bottom left-hand corner of the Poseidon
application and helps the user keep the big picture in mind. It consists of the
birdview tab and the critiques tab.

271

Glossary

272

Package

package

A package, like a file directory, is a general way to put like things together to
provide organization. Packages may be nested within other packages.

Parameter

A parameter is the placeholder for an argument that can be changed, passed or
returned.

Path

A path is a graphical connection between symbols, usually used to show a
relationship.

Plug-in

A Plug-in is a piece of code that extends the capabilities of Poseidon. It may or
may not be authored by Gentleware.

Plug-in Key

A Plug-in Key is the string given to Poseidon to activate the Plug-in.

Port

A Port is a connectable element that specifies a set of required and provided
interfaces.

Profile

A profile takes a part of the UML and extends it with stereotypes for a
particular purpose.

Glossary
Project

A project is saved as a zipped .zuml file and contains all information regarding
the model, both textual and graphical.

Realization

== realize »=

A realization is the relationship between an element that specifies behavior and
one that provides an implementation. A specification describes a behavior or
structure without specifying how the behavior will be implemented. An
implementation provides the details about how to implement behavior in an
effective way.

Relationship

A relationship is reified semantic connection among model elements. Types of
relationships include association, generalization, and dependency.

Role

A role is a named slot within an object structure that represents the behavior of
an element as it participates in a given context (in contrast to the inherent
gualitites of the element).

Socket

—C

Socket

A socket is a notation for a required interface. It is denoted as a semi-circle.
Specialization

A specialization produces a more specific description of a model element by
adding children. A child element is the specialization of a parent element.

273

Glossary
State

A state is a condition or situation during the life of an object during which it
satisfies a condition, performs an activity, or waits for an event.

Stereotype

A stereotype characterizes a type of element without specifying its
implementation and assists in teh creation of a new model element that is
derived from an existing model element.

Synchronization State

O

Synch_State

A synchronization state is a special state that synchronizes control between
two concurrent regions in a state machine.

System

A system is collection of connected units organized to accomplish a purpose.
A system can be described by one or more models, possibly from different
viewpoints.

Tagged Value

A tagged value is consists of a tag-value pair and is attached to an element to
hold some piece of information.

Transition

A transition is a relationship between two states within a state machine where
an object in the first state will perform one or more actions and then enter the
second state when a certain event occurs and guard conditions are satisfied.

Trigger

A trigger is an event whose occurrence makes a transition eligible to fire.

274

Glossary
Type

A type is a declared classifier that the value of an attribute, parameter, or

variable must hold. The actual value must be an instance of that type or one of
its descendants.

Use Case
A use case defines a piece of behavior of a classifier without revealing its
internal structure by describing the behavior of a system from a user’s

standpoint, providing a functional description of a system and its major
processes, and providing a graphical description of users and interactions.

View

A view is a collection of diagrams that describe a particular aspect of the
project.

Visibility

Visibility refers to an enumeration whose value determines whether a model
element may be seen outside its enclosing namespace.

275

Glossary

276

	Poseidon for UML Users Guide
	Table of Contents
	List of Tables
	List of Figures
	List of Examples
	Chapter 1. About Gentleware and Poseidon for UML
	1.1. About Gentleware and Poseidon for UML
	1.1.1. Our Vision
	1.1.2. Innovation
	1.1.3. Cooperation
	1.1.4. Contact

	1.2. New Features in Version 2.x
	1.3. About This Document

	Chapter 2. Editions
	2.1. Community Edition
	2.2. Standard Edition
	2.3. Professional Edition
	2.4. Enterprise Edition
	2.5. Embedded Edition
	2.6. Edition Comparison

	Chapter 3. Installation and First Start
	3.1. Prerequisites
	3.1.1. Additional Requirements for MacOS X Users
	3.1.1.1. Jaguar (MacOS X 10.2.x)
	3.1.1.2. Panther (10.3.x)

	3.2. Community, Standard, Professional, and Embedded Editions
	3.2.1. Install Using InstallAnywhere
	3.2.1.1. Windows
	3.2.1.2. *NIX

	3.2.2. Install Through Java Web Start (Community Edition Only)
	3.2.3. Install from a ZIP File
	3.2.4. Silent Installation
	3.2.4.1. Installer Properties File
	3.2.4.2. Command Line Parameter
	3.2.4.3. Uninstallation

	3.2.5. Uninstallation

	3.3. Enterprise Edition
	3.4. Environment Variables
	3.5. Keys and Registration
	3.5.1. Types and Terminology
	3.5.2. Community Edition
	3.5.3. Evaluation Copy
	3.5.4. Premium Version Purchase
	3.5.5. Keys for PlugIns

	Chapter 4. A Short Tour of Poseidon for UML
	4.1. Opening the Default Example
	4.2. Introducing the Work Area
	4.2.1. The Navigation Pane
	4.2.1.1. Changing the Navigation View
	4.2.1.2. Opening Multiple Navigation Panes

	4.2.2. The Diagram Pane
	4.2.3. The Details Pane
	4.2.4. The Overview Pane

	4.3. Navigation
	4.3.1. Navigating with the Navigation Pane
	4.3.2. Navigating in the Properties Tab

	4.4. Modify Elements
	4.4.1. Change Element
	4.4.2. Create Element
	4.4.3. Delete Elements

	Chapter 5. Interface
	5.1. Toolbar
	5.2. Menus
	5.2.1. File
	5.2.2. Edit
	5.2.3. View
	5.2.4. Create Diagram
	5.2.5. Align
	5.2.6. Critique
	5.2.7. Generation
	5.2.8. PlugIns
	5.2.9. Help

	Chapter 6. Panes
	6.1. Navigation Pane
	6.1.1. Add a Tab
	6.1.2. Delete a Tab
	6.1.3. Delete a Diagram

	6.2. Diagram Pane
	6.2.1. Diagram Pane Toolbar
	6.2.2. Remove Tabs
	6.2.3. Change Properties of the Diagram Pane
	6.2.3.1. Grid Settings
	6.2.3.2. Other Settings

	6.3. Details Pane
	6.3.1. Properties Tab
	6.3.2. C++ Properties
	6.3.3. Style Tab
	6.3.4. To Do Items Tab
	6.3.4.1. Snooze Critique
	6.3.4.2. Toggle Critique
	6.3.4.3. Turn Off Autocritique

	6.3.5. Source Code Tab
	6.3.6. Documentation Tab
	6.3.6.1. Toolbar
	6.3.6.2. Dropdowns

	6.3.7. Constraints Tab
	6.3.8. Tagged Values Tab

	6.4. Overview Pane
	6.4.1. Birdview Tab
	6.4.1.1. Redisplay a Section of a Diagram
	6.4.1.2. Zoom in Birdview Only
	6.4.1.3. Zoom in a Diagram
	6.4.1.4. Turn Off Birdview in Settings

	6.4.2. Critique tab
	6.4.2.1. Open a Critique
	6.4.2.2. Navigate to a Critiqued Area
	6.4.2.3. Turn Off Autocritique
	6.4.2.4. Hide/Display Critique Window

	Chapter 7. Setting Properties
	7.1. General
	7.2. Appearance
	7.3. Modeling
	7.4. Environment
	7.5. User
	7.6. Project
	7.7. Key Mappings
	7.8. Diagram Display

	Chapter 8. Model Reference
	8.1. Views

	Chapter 9. Using Models
	9.1. Creating New Models
	9.2. Saving and Loading Models
	9.3. Importing Files
	9.4. Importing Models
	9.5. Exporting Models
	9.6. Exporting Graphics and Printing

	Chapter 10. Diagram Reference
	10.1. Use Case Diagrams
	10.1.1. Diagram Elements
	10.1.2. Toolbar

	10.2. Class Diagram
	10.2.1. Diagram Elements
	10.2.2. Toolbar

	10.3. Object Diagram
	10.3.1. Diagram Elements
	10.3.2. Toolbar

	10.4. Activity Diagrams
	10.4.1. Diagram Elements
	10.4.2. Toolbar

	10.5. State Diagrams
	10.5.1. Diagram Elements
	10.5.2. Toolbar

	10.6. Sequence Diagrams
	10.6.1. Diagram Elements
	10.6.2. Toolbar

	10.7. Collaboration Diagrams
	10.7.1. Diagram Elements
	10.7.2. Toolbar

	10.8. Component Diagrams
	10.8.1. Diagram Elements
	10.8.2. Toolbar

	10.9. Deployment Diagrams
	10.9.1. Diagram Elements
	10.9.2. Toolbar

	Chapter 11. Using Diagrams
	11.1. Creating New Diagrams
	11.2. Opening Diagrams
	11.3. Viewing Diagrams
	11.3.1. Details Pane
	11.3.2. Zooming
	11.3.3. Scrolling
	11.3.4. Birdview Tab

	11.4. Navigation
	11.4.1. Navigation Pane
	11.4.2. Details Pane
	11.4.3. Diagram Pane

	11.5. Editing Diagrams
	11.5.1. Drag and Drop
	11.5.2. Changing Namespaces
	11.5.3. Layout Functions
	11.5.4. Undo/Redo
	11.5.5. NonUML Additions
	11.5.5.1. Select
	11.5.5.2. Comments
	11.5.5.3. Drawing Tools
	11.5.5.4. Toggle Between Editing Modes
	11.5.5.5. Close Shape
	11.5.5.6. Opacity
	11.5.5.7. Waypoints
	11.5.5.8. Diagramspecific Tools

	Chapter 12. Element Reference
	12.1. Relationships
	12.1.1. Types of Relationships
	12.1.2. Navigability
	12.1.3. Hiding and Displaying Multiplicity of 1
	12.1.4. SelfAssociations

	12.2. Classes
	12.2.1. Attributes
	12.2.2. Operations
	12.2.3. Association Classes

	12.3. Interfaces
	12.3.1. Box Notation
	12.3.2. Lollipop Notation
	12.3.2.1. Sockets

	12.3.3. Ports

	Chapter 13. Using Elements
	13.1. Creating New Elements
	13.1.1. Diagram Pane Toolbar
	13.1.2. The Rapid Buttons

	13.2. Editing Elements
	13.2.1. Inline Editing Text Values
	13.2.2. Editing Via the Details Pane
	13.2.2.1. The Properties Tab
	13.2.2.2. The Style Tab
	13.2.2.3. The Documentation Pane

	13.2.3. Editing Via the Context Menu
	13.2.4. Undo/Redo
	13.2.5. Stereotypes
	13.2.6. Removing and Deleting Elements

	Chapter 14. Generation
	14.1. Code Generation
	14.1.1. Generation Settings
	14.1.2. Reverse Engineering
	14.1.3. Roundtrip Engineering
	14.1.4. Fine Tuning Code Generation

	14.2. Advanced Code Generation
	14.2.1. Velocity Template Language
	14.2.1.1. References
	14.2.1.2. Directives
	14.2.1.3. Comments
	14.2.1.4. Examples

	14.2.2. Working with the Standard Templates
	14.2.3. Code Generation API

	14.3. Documentation Generation
	14.3.1. UMLdoc
	14.3.2. Generation Settings
	14.3.3. Supported Javadoc Tags

	Chapter 15. PlugIns
	15.1. The PlugIn Panel
	15.1.1. Installing a New PlugIn
	15.1.1.1. Add the PlugIn License
	15.1.1.2. Install the PlugIn
	15.1.1.3. Enable the PlugIn

	15.2. Removing PlugIns
	15.3. Available PlugIns
	15.3.1. JAR Import
	15.3.2. RoundTrip UML/Java
	15.3.3. Refactoring Browser
	15.3.4. MDL Import
	15.3.4.1. Installing and Using MDL Import
	15.3.4.2. Supported Diagrams
	15.3.4.3. Unsupported Features
	15.3.4.4. Display Issues
	15.3.4.5. Status

	Chapter 16. Advanced Features
	16.1. Constraints with OCL
	16.2. Critiques
	16.3. Searching for Model Elements
	16.4. Profiles

	Chapter 17. Using The Enterprise Edition
	17.1. Interface
	17.1.1. Connection Status
	17.1.2. Toolbar
	17.1.3. Menu
	17.1.4. License Manager
	17.1.4.1. Test Connection

	17.2. Modeling with Others
	17.2.1. Collaborations
	17.2.1.1. New Collaboration
	17.2.1.2. Join Collaboration
	17.2.1.3. Leave Collaboration

	17.2.2. Projects
	17.2.2.1. Load and Start Project
	17.2.2.2. Upload Project

	17.2.3. Model Locking and Conflict Checking
	17.2.3.1. JavaImport

	17.3. Enterprise Server Administration Tool
	17.3.1. Collaboration Administration
	17.3.1.1. Removing locks
	17.3.1.2. Renaming collaborations
	17.3.1.3. Ending collaborations

	17.3.2. Project Administration
	17.3.3. CVS Support
	17.3.3.1. Configuring Your System for CVS Support
	17.3.3.2. Using the CVS Support

	Chapter 18. Epilogue
	Appendix A. Poseidon C# Code Generation PlugIn Guide
	A.1. General Rules
	A.1.1. Tagged Values
	A.1.2. Additional Stereotypes

	A.2. Modeling Element Rules
	A.2.1. Classes
	A.2.1.1. Class Signature
	A.2.1.2. Class Attributes
	A.2.1.3. Class Operations

	A.2.2. Interface
	A.2.2.1. Interface Signature
	A.2.2.2. Interface Members

	A.2.3. Structure
	A.2.3.1. Structure Signature
	A.2.3.2. Structure Members

	A.2.4. Enumeration
	A.2.4.1. Enumeration Signature

	A.2.5. Delegate
	A.2.5.1. Delegate Signature

	A.2.6. C# Event
	A.2.7. Operations

	Appendix B. Poseidon CORBA IDL Code Generation PlugIn Guide
	B.1. General Rules
	B.2. CORBA Interface
	B.3. CORBA Value
	B.4. CORBA Struct
	B.5. CORBA Enum
	B.6. CORBA Exception
	B.7. CORBA Union

	Appendix C. Poseidon Delphi Code Generation PlugIn Guide
	C.1. Classfiers
	C.2. Tagged Values
	C.2.1. Classifier
	C.2.2. Attribute
	C.2.3. Operation
	C.2.4. Exception

	C.3. Stereotypes
	C.3.1. Attribute
	C.3.2. Operation
	C.3.3. Classifier

	C.4. Modeling Element Rules
	C.4.1. Class
	C.4.2. Interface
	C.4.3. Enumeration
	C.4.4. Record
	C.4.5. Set
	C.4.6. Sub Range
	C.4.7. Array
	C.4.8. Exception

	C.5. Specific Rules

	Appendix D. Poseidon PHP4 Code Generation PlugIn Guide
	D.1. General Rules
	D.1.1. Tagged Values

	D.2. PHP4 Class Modeling Rules
	D.2.1. Class Signature
	D.2.2. Class Attributes
	D.2.3. Class Operations

	Appendix E. Poseidon Perl Code Generation Guide
	E.1. General Rules
	E.2. Classes
	E.3. Class Attributes
	E.4. Class Operations
	E.5. Associations
	E.6. Aggregation
	E.7. Inheritance

	Appendix F. Poseidon SQL DDL Code Generation PlugIn Guide
	F.1. Modeling Element Rules
	F.1.1. Classes
	F.1.2. Attributes
	F.1.3. Association Ends

	F.2. Tagged Values
	F.3. Additional Stereotypes

	Appendix G. Poseidon VB.Net Code Generation PlugIn Guide
	G.1. General Rules
	G.2. Classes
	G.3. Interfaces
	G.4. Modules
	G.5. Structures
	G.6. Enums
	G.7. Operations
	G.8. Operation's Parameters
	G.9. Visual Basic Properties
	G.10. Visual Basic Events
	G.11. Attribute & Association Ends

	Glossary
	Action
	Action State
	Activation
	Actor
	Aggregation
	Association
	Association End
	Attribute
	BoundaryControlEntitySchema
	Branch
	Class
	Classifier
	Collaboration
	Comment
	Compartment
	Component
	Composition
	Constraint
	Constructor
	Container
	Contains
	Control Flow
	Dependency
	Details Pane
	Descriptor
	Diagram
	Diagram Pane
	Drilldown Navigation
	Element
	Evaluation Key
	Event
	Extend
	Extension Point
	Final Key
	Final State
	Fork
	Friend
	Generalization
	Guard Condition
	Implementation Relations
	Include
	Inheritance Relations
	Initial State
	Instance
	Interface
	Join
	Label
	Link
	Lollipop
	Merge
	Message
	Metaclass
	Method
	Model
	Multiplicity
	Name
	Namespace
	Navigation Pane
	Node
	Note
	Object
	Object Constraint Language (OCL)
	Object Flow State
	Operation
	Overview Pane
	Package
	Parameter
	Path
	Plugin
	Plugin Key
	Port
	Profile
	Project
	Realization
	Relationship
	Role
	Socket
	Specialization
	State
	Stereotype
	Synchronization State
	System
	Tagged Value
	Transition
	Trigger
	Type
	Use Case
	View
	Visibility

