GNUe Reporting Concepts

Understanding the GNUe Reports reporting engine.

1. Introduction

GNUe Reports is the primary reporting agent of the GNU Enterprise project. GNUe Reports is designed
to extract data from diversified data sources (including all major database vendors) and generate
platform- and output-independent reports.

2. Reporting Overview

2.1. XML, XSL, and Output Formats

GNUe Reports uses XML to define reports and as an intermediary format prior to the final output. In
other words, GNUe Reports reads in an XML report definition, uses this definition to extract data from a
database backend, and generates an XML-based report output. This output can then be transformed into
text, HTML, Postscript, PDF, TeX, word processor, Spreadsheet, or a wide variety of other formats.
(Currently, HTML and text outputs are directly supported without the use of an intermediary converter.)
For other formats, one of the natively supported formats can be piped through another utility (such as
ghostscript) to generate a multitude of other formats.

GNUe Reports currently uses XSL Transforms to go from the “report” xml output to the final formats,
“text” and “html”. It is not difficult to create new formats by creating a new XSL script. It is also easy to
create company-customized reports by modifying a few lines of XSL. In the future, we plan to support
“templated” reports so site customizations can be more easily accomplished without the need to know
XSL.

2.2. Reporting Model

The two primary components of a report definition are the datasources and the layout directives. The
datasources tie the report to a database backend. In a relational database environment, a datasource
typically corresponds to a table or a view.

3. Datasources

A datasource contains records and fields of information. Typically it is linked to a defined database and
associates itself with a specific source, like a table, in that database. However it is possible to have

GNUe Reporting Concepts

datasources that have no database link defined. These types of datasources cannot provide persistance to
the information stored within themself. Typically, only data-bound datasources will be used in reports.

3.1. Master/Detail Relationships

Datasources can also be associated with other datasoure in what we call a Master/Detail relationship. A
master datasource has one or more detail datasources associated with itself. These detail datasources
contain a foreign key which points back to a specific master datasource/field key. It’s worth noting that a
datasource can be both a detail and master datasource simultaneously.

3.2. Record Caching/Prefetch

In an effort to improve system performance datasources will eventually be able to be configured to cache
records in memory. The application developer will have control over the number of records cached to
allow them to balance memory usage vs system responsiveness. Currently the cache system in GNUEe is,
in reality, a pre-fetch system. When large numbers of records are requested from the database the system
will fetch only the user specified cache amount at a time. When the report moves beyond the number of
records in memory, the system will automatically fetch another group of records. This allows the system
to respond rapidly to requests involving large number of records.

4. Parameters

Parameters are user-supplied values that can be put in the output stream or used in datasource
conditionals.

5. Sorting Options

* Sorting Options are not fully supported in GNUe Reports. This will be added in an upcoming release.

Sorting Options are predefined ways to sort a report. These are defined in the Report Definition and

6. Triggers

* Triggers are not currently supported in GNUe Reports. Thiswill be added in an upcoming release.

Triggers contain scripts of code that execute during specific events which "fire" the triggers. They can be
attached to any of the components of the virtual form though some trigger events may not pertain to the
component and, as such, will never fire.

Not implemented yet: Triggers normally return a True value upon sucessful completion. It is possible for
the trigger script to return True or False values to influence the applications behaviour.

GNUe Reporting Concepts

6.1. Trigger Languages

Currently, trigger scripts must be written in python. We would like to increase the number of supported
languages as time permits.

6.2. Trigger Events

The following triggers are either implemented or planned for implementation in the GNUe Forms
system. Unless specifically mentioned the return value of the script will not effect the application in any
way.

6.2.1. Implemented

No trigger events have been implemented.

6.2.2. Not Implemented

These triggers are not yet implemented. Plans for these triggers may change prior to implementation.
Use this section only as a tool to understand our conceptual direction.

Entry

« On-New-Value - Fires when a new value is queried. ?????

Summary

« Pre-Calculate - Fires prior to the summary being calcuated. ?????
« Post-Calculate - Fires following the summary being calcuated. ?????

Section/Layout

« Pre-Process - Fires prior to selecting any records ?????
« On-Select - Fires when a new record is queried. ?????

« Post-Process - Fires after selecting and processing all records ?????

7. Standard Layout Elements

7.1. Overview

7.2. Sections

Sections serve a dual purpose -- to handle logical grouping of fields and ...

count

sum

avg

min

max

GNUe Reporting Concepts

7.3. Fields

To reference a field in the current section,

<field name="bl ah" />

To reference a field in a higher-level section,

<fi el d nane="bl ah" section="bl ah"/>

7.4. Summaries

Summaries provide accumulated statistics for a specific field. This can range from a simple count of the
number of occurances of a field, to the total sum or average of this field.

<summ fi el d="fi el dname" function="sum' secti on="uppersect"/>

Functions:

Computes a "count" of the total number of non-empty instances of a field.

Computes a running total of the specified numeric field.

Computes the average of the specified numeric field.

Remembers the "smallest” value of a field instance.

Remembers the "largest” value in a field instance.

7.5. Parameters

Parameters are pass-through values supplied by the end user. If you create a parameter called “subtitle”
and the user specifies “My Tuesday Report” as its value, then any <param name="subtitle”> will be
replaced with the string “My Tuesday Report”. See the chapter on Parameters for more information on
defining parameters.

GNUe Reporting Concepts

7.6. Formulas
Formulas are currently not supported in GNUe Reports. This will be added in an upcoming release.

Formulas are a simplified version of triggers (or one-shot triggers, so to speak.) Formulas are used to
perform a simple calculation with a few fields (e.q., multiply a “quantity” field by the “retail” field to
generate an “extended price” value on the fly.)

If you require any added functionality, you more than likely should be using a trigger.

7.7. Layout-level Triggers

Triggers are currently not supported in GNUe Reports. Once they are, this section will describe
layout-specific triggers.

8. Layout Templating

8.1. Overview

GNUe Reports, with its versative reporting engine, is not tied to any particular output XML format. In
essence, the reporting engine performs a Database-To-XML transformation, with an arbitrary output
XML format.

8.2. GNUe Namespaces

For example, assume you have the following layout section:

<l ayout out:xn ns="GN\Ue: Reports: Si npl eTabul ation">
<out: nygr oup>
<section source="dtsl">
<out:nydata nyattr="attrval "><fi el d name="f 00"/ ></out: nydat a>
</ section>
</ out : nygr oup>
</l ayout >

Furthermore, assume the datasource dtsl has the following values for field “foo”: Bob, Sam, and Jane.
Then the resulting xml will be:

<mygroup xm ns="CGNUe: Reports: Si npl eTabul ati on" >
<mydata nyattr="attrval ">Bob</ nydat a>
<mydata nyattr="attrval ">Sanx/ nydat a>
<mydata nyattr="attrval ">Jane</ nydat a>

</ nygroup>

GNUe Reporting Concepts

9. Advanced Topics

9.1. Computing Weighted Averages

This will depend on either formulas or triggers to be supported. When they are supported, you can
compute a weighted average by creating a record-level formula that multiplies the two fields containing
the weight and the value. Then, you will create a section-level summary that averages (<summ
function="avg">) this formula-field.

Possible Example:

<section source="nydts">

<field nanme="wei ght"/>

<field name="val "/ >

<f ormul a nane="avgseed" >wei ght *val </ f or mul a>
</ section>
<summ f i el d="avgseed" function="avg"/>

10. GNUe Reports Definition (GRD) File Format

10.1. General Markup

10.1.1. <report>

The <report> tag if the root tag. It’s only purpose is to enclose the report definition. All other tags fall
somewhere inside this tag.

Attributes

Attribute Datatype Default Description

title string none The title of the report.
Only used when user
requests information

about a report.

author string none 'The name of the author of
the report.Only used
when user requests
information about a
report.

Example

GNUe Reporting Concepts

version string none

'The specific version
number of the report.
Only used when user
requests information
about a report.

description string none

/A brief description of the
report. Only used when
user requests information
about a report.

<report title="Accounting Month End Report™
aut hor="GNU Ent erpri se" version="1.2.15">
<l-- Rest of report |ogic goes here -->
</report>

10.2. User-Supplied Parameters

10.2.1. <parameters>

The parameters tag encloses the parameter definition section. It is a container for <parameter> tags.

Attributes
This tag simply serves as a container. It has no attributes.

Example

<par anet er s>
<I-- paraneter definitions go here -->
</ par anet er s>

10.2.2. <parameter>
A parameter tag defines a single user-settable parameter.

Attributes

Attribute Datatype Default

Description

name string none

A unique identifier for
this parameter.

GNUe Reporting Concepts

required

boolean

FALSE

Is this parameter required
in order for the report to
run properly. If “default*
is provided, then this
attribute serves no
meaning.

limited

boolean

FALSE

This parameter is limited
to the results of the
specified “source”. The
source attribute must be
provided in order for this
tag to be processed.

default

string

none

The default value of this
parameter. This value will
be used if the user does
not provide a value for
this parameter.

description

string

none

A description of this
parameter. This should be
meaningful to the
end-user as this will be
used in the prompt for the
parameter value when
displayeed to the user. If
this attribute is not
provided, then the name
will serve as the
prompt.“*

source

string

none

Provides a “lookup*
mechanism for this
parameter. When
“limited is set, the value
the user supplies must be
present in sources. If
limited is not set, then the
results of sources will be
a list of
suggested/possible values
for the user to select.

type

string

char

Specifies the
typecast/data type for this
parameter. Should be
either char, number, or
date.

GNUe Reporting Concepts

Note: Currently, the following attributes are not implemented: “required”, “limited”, and “source”. The
engine will accept values for these attributes, but does not do any processing of them.

Example

This example defines two parameters, beginDate and endDate, which are both “date” types.

<par anet er s>
<par anet er nane="begi nDat e"
description="First day of the period"
type="date"/>
<par anet er nanme="endDat e"
descri ption="Last day of the period"
type="date"/>
</ par anet er s>

10.3. Sorting Options

NOTE: sortoptions are currently not implemented.

10.3.1. <sortoptions>

The parameters tag encloses the parameter definition section. It is a container for <parameter> tags.
Attributes

This tag simply serves as a container. It has no attributes.

Example

<sortoptions>
<I-- sortoption definitions go here -->
</ sortoptions>

10.3.2. <sortoption>

A sortoption tag defines a single user-selectable sortoption. See the chapter on Sorting Options for more
information on these.

Attributes
TODO!!IHm
Attribute Datatype Default Description
title string none The title of the form. Will
be displayed on About
Screen.
width int 10 'The width of the object in
text columns.

GNUe Reporting Concepts

height

int

The height of the object
in text rows.

author

string

none

'The name of the author of
the form. Will be
displayed on About
Screen

version

string

none

'The specific version
number of the form. Will
be displayed on About
Screen

description

string

none

A brief description of the
form to be displayed on
About screen.

tabbed

string

none

Allows a form to convert
it’s pages as notebook
tabs. Allowed values are
left, right, bottom, top.

requireGUI

boolean

FALSE

NOT IMPLEMENTED
'YET: If defined the client
will abort the form if it is
unable to provide
graphical display

noTriggerDownload

boolean

FALSE

NOT IMPLEMENTED
YET: If defined the client
will not attempt to ask the
server for triggers to
download

Example

<report>
</ enphasi s>
</report>

<l--

10.3.3. <sortcolumn>

Attributes

Rest of report

| ogi c goes here -->

Attribute

Datatype

Default

Description

10

GNUe Reporting Concepts

title

string

none

The title of the form. Will
be displayed on About
Screen.

width

int

10

'The width of the object in
text columns.

height

int

The height of the object
in text rows.

author

string

none

'The name of the author of
the form. Will be
displayed on About
Screen

version

string

none

'The specific version
number of the form. Will
be displayed on About
Screen

description

string

none

A brief description of the
form to be displayed on
About screen.

tabbed

string

none

IAllows a form to convert
it’s pages as notebook
tabs. Allowed values are
left, right, bottom, top.

requireGUI

boolean

FALSE

NOT IMPLEMENTED
'YET: If defined the client
will abort the form if it is
unable to provide
graphical display

noTriggerDownload

boolean

FALSE

NOT IMPLEMENTED
'YET: If defined the client
will not attempt to ask the
server for triggers to
download

Example

<report>
<l-- Rest of report
</report>

| ogi c goes here -->

11

10.4. Layout Elements

10.4.1. <layout>

GNUe Reporting Concepts

TODOMII
Attributes
Attribute Datatype Default Description
name string none /A unique ID for the

widget. This is only
useful when importing
from a library.

Example

<page name="pagel”>

Objects that should be on this page go in here
</page>

<page>

Objects that should be on this page go in here

</page>

10.4.2. <section>

Attributes

Attribute Datatype Default

Description

name string none

A unique ID for the
widget. The name of the
widget. No blocks or
datasources can share the
same name without
causing namespace
collisions in user triggers.

datasource string none

The name of a datasource
(defined in by a
<datasource> tag.) that
provides this block with
it’s data.

12

GNUe Reporting Concepts

restrictDelete

boolean

none

If set then the user will be
unable to request that a
record be deleted via the
user interface.

restrictinsert

boolean

none

If set then the user will be
unable to request that new|
records be inserted into
the block

transparentBlock

boolean

none

If set then the you can tab
out of the block via next
or previous field events.
Makes navigation in
mutliblock forms easier.

rows

int

Any widgets inside the
block will display this
number of copies in a
verticle column.
Simulates a very crude
grid entry system. Serves
the same purpose as the
visibleCount attribute on
some widgets.

rowSpacer

int

IAdjusts the verticle gap of]
this number of rows
between duplicated
widgets. Serves the same
purpose as some of the
gap attributes on
individual widgets.

Example

<block name="cities" datasource="city" master="state.st_code" detail="state">

label and entry objects that are part of this block go here

</block>

The cities block defined in the above example is a detail block. It is linked to a datasource named city
and it keeps the data displayed within itself in sync with the block named state. It does this by
monitoring the entry named st_code in the state block, when that data changes it sets the entry within
itself named state to match the value stored in st_code as querying data from the datasource.

<layout>

Attributes

Attribute

Datatype

Default

Description

13

GNUe Reporting Concepts

name

string

none

/A unique ID for the
widget. The name of the
widget. No blocks or
datasources can share the
same name without
causing namespace
collisions in user triggers.

datasource

string

none

'The name of a datasource
(defined in by a
<datasource> tag.) that
provides this block with
it’s data.

restrictDelete

boolean

none

If set then the user will be
unable to request that a
record be deleted via the
user interface.

restrictInsert

boolean

none

If set then the user will be
unable to request that new|
records be inserted into
the block

transparentBlock

boolean

none

If set then the you can tab
out of the block via next
or previous field events.
Makes navigation in
mutliblock forms easier.

rows

int

Any widgets inside the
block will display this
number of copies in a
verticle column.
Simulates a very crude
grid entry system. Serves
the same purpose as the
visibleCount attribute on
some widgets.

rowSpacer

int

Adjusts the verticle gap of|
this number of rows
between duplicated
widgets. Serves the same
purpose as some of the
gap attributes on
individual widgets.

Example

<block name="cities" datasource="city" master="state.st_code" detail="state">

14

GNUe Reporting Concepts

label and entry objects that are part of this block go here
</block>

The cities block defined in the above example is a detail block. It is linked to a datasource named city
and it keeps the data displayed within itself in sync with the block named state. It does this by
monitoring the entry named st_code in the state block, when that data changes it sets the entry within
itself named state to match the value stored in st_code as querying data from the datasource.

10.4.3. <field>

Attributes

Attribute Datatype Default Description

X int none The text column starting
position of the widget .
Based upon leftmost
column of screen being 0.

y int none The text row starting
position of the widget.
Based upon the top row
of the screen being 0.

text string none The text to be displayed.
width int 10 The width of the label in
text columns. Defaults to
the width of the text. Only|
really usefull when used
with the justification
attribute.

alignment string left The justification of the
label. Can be one of the
following left, right, or
center. Requires that the
width attribute be set.

rows int 1 Overrides the rows setting
defined at the block level.

rowSpacer int 1 Overriders the rowSpace
setting defined at the
block level.

name string none The unique ID of the
label.

15

Example

10.4.4. <summ>

Attributes

GNUe Reporting Concepts

Attribute

Datatype

Default

Description

X

int

none

The text column starting
position of the widget .
Based upon leftmost
column of screen being 0.

int

none

The text row starting
position of the widget.
Based upon the top row
of the screen being 0.

text

string

none

The text to be displayed.

width

int

10

The width of the label in
text columns. Defaults to
the width of the text. Only|
really usefull when used
with the justification
attribute.

alignment

string

left

The justification of the
label. Can be one of the
following left, right, or
center. Requires that the
width attribute be set.

rows

int

Overrides the rows setting
defined at the block level.

rowSpacer

int

Overriders the rowSpace
setting defined at the
block level.

name

string

none

The unique ID of the
label.

Example

10.4.5. <param>

16

Attributes

GNUe Reporting Concepts

Attribute

Default

Description

X

Datatype
int

none

The text column starting
position of the widget .
Based upon leftmost
column of screen being 0.

int

none

The text row starting
position of the widget.
Based upon the top row
of the screen being 0.

text

string

none

The text to be displayed.

width

int

10

The width of the label in
text columns. Defaults to
the width of the text. Only|
really usefull when used
with the justification
attribute.

alignment

string

left

The justification of the
label. Can be one of the
following left, right, or
center. Requires that the
width attribute be set.

rows

int

Overrides the rows setting
defined at the block level.

rowSpacer

int

Overriders the rowSpace
setting defined at the
block level.

name

string

none

The unique ID of the
label.

Example

10.4.6. <default>

Attributes

This tag has no attributes.

Example

17

GNUe Reporting Concepts

10.4.7. <firstRow>
Attributes
This tag has no attributes.

Example

10.4.8. <notFirstRow>
Attributes
This tag has no attributes.

Example

10.4.9. <lastRow>
Attributes
This tag has no attributes.

Example

10.4.10. <notLastRow>
Attributes
This tag has no attributes.

Example

11. The grrun Command-line Client

The grrun utility is currently the only interface to the GNUe Reports engine.

11.1. Command line options (switches)
The following options are available. (This list is also available by running “grrun --help”
--comment, -C Include structural comments in the XML output stream. Useful for debugging .grd files.

--connections <loc> Specifies the location of the connection definition file. <loc> may specify a file
name (/usr/local/gnue/etc/connections.conf), or a URL location (http://localhost/connections.conf). If
this option is not specified, the environent variable GNUE_CONNECTIONS is checked.

18

GNUe Reporting Concepts

--debug-file <file> Sends all debugging messages to a specified file (e.g., "--debug-file trace.log" sends
all output to "trace.log") [for developer’s use]

--debug-level <level> Enables debugging messages. Argument specifies the level of messages to display
(e.g., "--debug-level 5" displays all debugging messages at level 5 or below.) [for developer’suse]

--destination <dest>, -d Where should the report be output to? The value of this depends on the
destination type (e.g., if sending to printer, then -d specifies the printer name; if sending via email, then
-d specifies the email address.) If <dest> is "-", then output is sent to stdout -- NOTE: when sending to
stdout, also use the -q [--quiet] option or you may get junk in your output stream. NOTE: Currently the
default value is "-" -- this may change once GNUe Reports is formally released!

--destination-options <opts> Options to pass to the destination process. Available options are specific to
the type of destination. Example: ’--destination-options -0 nobanner"’

--destination-type <type>, -D This specifies how the report should be output. The currently supported
values for <type> are file [default], printer, email, and fax. Note that printer, email, and fax are sent via
the server’s machine, not the client’s machine. To NOTE: Only file, printer, and email are currently
implemented!

--exclude-xml, -X Do not output GNUe Reports runtime XML markup information. If specified, then the
GRDs layout section will be processed and output as-is; i.e., without any additional information added
by GNUe Reports.

-filter <filt>, -f Select the filter to be used to process report output. <filt> is the name of the filtering
process as defined on the Report Server machine. If not specified, the "raw" filter is used (i.e., no filtering
takes place.)

-filter-list List the available [predefined] filters available to GNUe Reports

-filter-options <opts>, -F Options to pass to the filter process. Available options are specific to the filter.
-filter-list will list available filters and their options. Example: ’--filter-options "paper=letter
margin=1,1,1,1""

--help Displays this help screen.
--interactive-debugger Run the app inside Python’s built-in debugger [for developer’suse]

--pass <passwd> Password used to log into the database. Note that if specified, this will be used for all
databases. If not supplied, the program will prompt for password. NOTE: SUPPLYING A PASSWORD
VIA THE COMMAND LINE MAY BE CONSIDERED A SECURITY RISK.

--profile Run Python’s built-in profiler and display the resulting run statistics. [for developer’suse]

--quiet, -g Run GNUe Reports in quiet mode -- i.e., display no output. NOTE: if --debug-level is
specified, then suppressed text will be output as debugging information (at debug level 1)

--sort <sort>, -s Select the "sort-option™ used to sort the report.

--standalone, -S Create a standalone, single-use server instance. Use this option in a non-client/server
environment or in a debugging/development environment. NOTE: Until the Reports Server is
operational, this mode is implied

--user <name>, -u Username used to log into the database. Note that if specified, this will be used for all
databases. If not supplied, the program will prompt for username.

--version Displays the version information for this program.

19

