
Sourcery G++ Lite

ARM SymbianOS

2007q3-52

Getting Started

1

Sourcery G++ Lite: ARM SymbianOS: 2007q3-52: Getting
Started
CodeSourcery, Inc.
Copyright © 2005, 2006, 2007 CodeSourcery, Inc.
All rights reserved.

2

Sourcery G++ Lite

Preface
This preface introduces Getting Started With Sourcery G++ Lite. It explains the structure
of this guide and lists other sources of information that relate to Sourcery G++ Lite.

iii

1 Intended Audience
This guide is written for people who will install and/or use Sourcery G++ Lite. This guide
provides a step-by-step guide to installing Sourcery G++ Lite and to building simple applic-
ations. Parts of this document assume that you have some familiarity with using the com-
mand-line interface. If you are an administrator installing Sourcery G++ Lite on a UNIX-
like system for all of your users to use, you should also be familiar with the package-man-
agement software (such as the Red Hat Package Manager) for your system.

2 Organization
This document is organized into the following chapters and appendices:

Chapter 1, Sourcery G++ Lite Li-
censes

This chapter provides information about the software
licenses that apply to Sourcery G++ Lite. Read this
chapter to understand your legal rights and obliga-
tions as a user of Sourcery G++ Lite.

Chapter 2, Sourcery G++ Subscrip-
tions

This chapter provides information about Sourcery
G++ Lite subscriptions. CodeSourcery customers
with Sourcery G++ Lite subscriptions receive com-
prehensive support for Sourcery G++ Lite. Read this
chapter to find out how to obtain and use a Sourcery
G++ Lite subscription.

Chapter 3, Sourcery G++ Lite for
ARM SymbianOS

This chapter provides information about this release
of Sourcery G++ Lite including any special installa-
tion instructions, recent improvements, or other
similar information. You should read this chapter
before building applications with Sourcery G++ Lite.

Chapter 4, Installation and Configur-
ation

This chapter describes how to download, install and
configure Sourcery G++ Lite. This section describes
the available installation options and explains how
to set up your environment so that you can build ap-
plications.

Chapter 5, Using the Sourcery G++
IDE

This chapter explains how to use the Sourcery G++
IDE, which is based on Eclipse.

Chapter 6, Using Sourcery G++
from the Command Line

This chapter explains how to build applications with
Sourcery G++ Lite using the command line. In the
process of reading this chapter, you will build a
simple application that you can use as a model for
your own programs.

3 Typographical Conventions
The following typographical conventions are used in this guide:

> command arg ... A command, typed by the user, and its output. The “>” character
is the command prompt.

iv

Preface

command The name of a program, when used in a sentence, rather than
in literal input or output.

literal Text provided to or received from a computer program.

placeholder Text that should be replaced with an appropriate value when
typing a command.

v

Preface

Chapter 1
Sourcery G++ Lite Licenses
Sourcery G++ Lite contains software provided under a variety of licenses. Some components
are "free" or "open source" software, while other components are proprietary. This chapter
explains what licenses apply to your use of Sourcery G++ Lite.You should read this chapter
to understand your legal rights and obligations as a user of Sourcery G++ Lite.

1

1.1 Licenses for Sourcery G++ Lite Compon-
ents

The table below lists the major components of Sourcery G++ Lite for ARM SymbianOS and the license
terms which apply to each of these components.

Some free or open-source components provide documentation or other files under terms different
from those shown below. For definitive information about the license that applies to each component,
consult the source package corresponding to this release of Sourcery G++ Lite. Sourcery G++ Lite
may contain free or open-source components not included in the list below; for a definitive list,
consult the source package corresponding to this release of Sourcery G++ Lite.

LicenseComponent

GNU General Public License 3.0 1GNU Binary Utilities

GNU General Public License 3.0 2GNU Compiler Collection

GNU General Public License 2.0 3GNU Make

GNU General Public License 2.0 4GNU Core Utilities

The CodeSourcery License is available in Section 1.2, “Sourcery G++™ Software License Agree-
ment”.

Important

Although some of the licenses that apply to Sourcery G++ Lite are "free software" or "open
source software" licenses, none of these licenses impose any obligation on you to reveal
the source code of applications you build with Sourcery G++ Lite. You can develop propri-
etary applications and libraries with Sourcery G++ Lite.

1.2 Sourcery G++™ Software License Agree-
ment

1. Parties. The parties to this Agreement are you, the licensee ("You" or "Licensee") and
CodeSourcery. If You are not acting on behalf of Yourself as an individual, then "You" means
Your company or organization.

2. The Software. The Software licensed under this Agreement consists of computer programs
and documentation referred to as Sourcery G++™ Lite Edition (the "Software").

3. Definitions.

3.1. CodeSourcery Proprietary Components. The components of the Software that are
owned and/or licensed by CodeSourcery and are not subject to a "free software" or "open
source" license, such as the GNU Public License. The CodeSourcery Proprietary Compon-
ents of the Software include, without limitation, the Sourcery G++ Installer, any Sourcery

1 http://www.gnu.org/licenses/gpl.html
2 http://www.gnu.org/licenses/gpl.html
3 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
4 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

2

Sourcery G++ Lite Licenses

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

G++ Eclipse plug-ins, and any Sourcery G++ Debug Sprite. For a complete list, refer to
the "Getting Started Guide" included with this distribution.

3.2. Open Source Software Components. The components of the Software that are subject
to a "free software" or "open source" license, such as the GNU Public License.

3.3. Proprietary Rights. All rights in and to copyrights, rights to register copyrights, trade
secrets, inventions, patents, patent rights, trademarks, trademark rights, confidential and
proprietary information protected under contract or otherwise under law, and other similar
rights or interests in intellectual or industrial property.

4. License Grant to Proprietary Components of the Software. You are granted a non-exclus-
ive, royalty-free license to install and use the CodeSourcery Proprietary Components of the
Software, transmit the CodeSourcery Proprietary Components over an internal computer network,
and/or copy the CodeSourcery Proprietary Components for Your internal use only.

5. Restrictions. You may not: (i) copy or permit others to use the CodeSourcery Proprietary
Components of the Software, except as expressly provided above; (ii) distribute the CodeSourcery
Proprietary Components of the Software to any third party; or (iii) reverse engineer, decompile,
or disassemble the CodeSourcery Proprietary Components of the Software, except to the extent
this restriction is expressly prohibited by applicable law.

6. "Free Software" or "Open Source" License to Certain Components of the Software.
This Agreement does not limit Your rights under, or grant You rights that supersede, the license
terms of any Open Source Software Component delivered to You by CodeSourcery. For a list
of which license applies to each component, refer to the "Getting Started Guide" included with
this distribution.

7. CodeSourcery Trademarks. Notwithstanding any provision in a "free software" or "open
source" license agreement applicable to a component of the Software that permits You to dis-
tribute such component to a third party in source or binary form, You may not use any Code-
Sourcery trademark, whether registered or unregistered, including without limitation, Code-
Sourcery™, Sourcery G++™, the CodeSourcery crystal ball logo, or the Sourcery G++ splash
screen, or any confusingly similar mark, in connection with such distribution, and You may not
recompile the Open Source Software Components with the --with-pkgversion or
--with-bugurl configuration options that embed CodeSourcery trademarks in the resulting
binary.

8. Term and Termination. This Agreement shall remain in effect unless terminated pursuant
to this provision. CodeSourcery may terminate this Agreement upon seven (7) days written
notice of a material breach of this Agreement if such breach is not cured; provided that the un-
authorized use, copying, or distribution of the CodeSourcery Proprietary Components of the
Software will be deemed a material breach that cannot be cured.

9. Transfers. You may not transfer any rights under this Agreement without the prior written
consent of CodeSourcery, which consent shall not be unreasonably withheld. A condition to
any transfer or assignment shall be that the recipient agrees to the terms of this Agreement. Any
attempted transfer or assignment in violation of this provision shall be null and void.

10. Ownership. CodeSourcery owns and/or has licensed the CodeSourcery Proprietary Com-
ponents of the Software and all intellectual property rights embodied therein, including copyrights
and valuable trade secrets embodied in its design and coding methodology. The CodeSourcery
Proprietary Components of the Software are protected by United States copyright laws and in-
ternational treaty provisions. CodeSourcery also owns all rights, title and interest in and with
respect to its trade names, domain names, trade dress, logos, trademarks, service marks, and

3

Sourcery G++ Lite Licenses

other similar rights or interests in intellectual property. This Agreement provides You only a
limited use license, and no ownership of any intellectual property.

11. Warranty Disclaimer; Limitation of Liability. CODESOURCERY AND ITS LICENSORS
PROVIDE THE SOFTWARE "AS-IS" AND PROVIDED WITH ALL FAULTS. CODE-
SOURCERY DOES NOT MAKE ANY WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED. CODESOURCERY SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES
OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, SYSTEM INTEGRATION, AND DATA ACCURACY. THERE IS NO WAR-
RANTY OR GUARANTEE THAT THE OPERATION OF THE SOFTWARE WILL BE
UNINTERRUPTED, ERROR-FREE, OR VIRUS-FREE, OR THAT THE SOFTWARE WILL
MEET ANY PARTICULAR CRITERIA OF PERFORMANCE, QUALITY, ACCURACY,
PURPOSE, OR NEED. YOU ASSUME THE ENTIRE RISK OF SELECTION, INSTALLA-
TION, AND USE OF THE SOFTWARE. THIS DISCLAIMER OF WARRANTY CONSTI-
TUTES AN ESSENTIAL PART OF THIS AGREEMENT. NO USE OF THE SOFTWARE
IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.

12. Local Law. If implied warranties may not be disclaimed under applicable law, then ANY
IMPLIED WARRANTIES ARE LIMITED IN DURATION TO THE PERIOD REQUIRED
BY APPLICABLE LAW.

13. Limitation of Liability. INDEPENDENT OF THE FORGOING PROVISIONS, IN NO
EVENT AND UNDER NO LEGAL THEORY, INCLUDING WITHOUT LIMITATION,
TORT, CONTRACT, OR STRICT PRODUCTS LIABILITY, SHALL CODESOURCERY
BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY INDIRECT, SPECIAL, INCID-
ENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING WITHOUT
LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER
MALFUNCTION, OR ANY OTHER KIND OF COMMERCIAL DAMAGE, EVEN IF
CODESOURCERY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
THIS LIMITATION SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL
INJURY TO THE EXTENT PROHIBITED BY APPLICABLE LAW. IN NO EVENT SHALL
CODESOURCERY'S LIABILITY FOR ACTUAL DAMAGES FOR ANY CAUSE WHAT-
SOEVER, AND REGARDLESS OF THE FORM OF ACTION, EXCEED THE AMOUNT
PAID BY YOU IN FEES UNDER THIS AGREEMENT DURING THE PREVIOUS ONE
YEAR PERIOD.

14. Export Controls. You agree to comply with all export laws and restrictions and regulations
of the United States or foreign agencies or authorities, and not to export or re-export the Software
or any direct product thereof in violation of any such restrictions, laws or regulations, or without
all necessary approvals. As applicable, each party shall obtain and bear all expenses relating to
any necessary licenses and/or exemptions with respect to its own export of the Software from
the U.S. Neither the Software nor the underlying information or technology may be electronically
transmitted or otherwise exported or re-exported (i) into Cuba, Iran, Iraq, Libya, North Korea,
Sudan, Syria or any other country subject to U.S. trade sanctions covering the Software, to in-
dividuals or entities controlled by such countries, or to nationals or residents of such countries
other than nationals who are lawfully admitted permanent residents of countries not subject to
such sanctions; or (ii) to anyone on the U.S. Treasury Department's list of Specially Designated
Nationals and Blocked Persons or the U.S. Commerce Department's Table of Denial Orders.
By downloading or using the Software, Licensee agrees to the foregoing and represents and
warrants that it complies with these conditions.

15. U.S. Government End-Users. The Software is a "commercial item," as that term is defined
in 48 C.F.R. 2.101 (Oct. 1995), consisting of "commercial computer software" and "commercial
computer software documentation," as such terms are used in 48 C.F.R. 12.212 (Sept. 1995).

4

Sourcery G++ Lite Licenses

Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995),
all U.S. Government End Users acquire the Software with only those rights set forth herein.

16. Licensee Outside The U.S. If You are located outside the U.S., then the following provisions
shall apply: (i) Les parties aux presentes confirment leur volonte que cette convention de meme
que tous les documents y compris tout avis qui siy rattache, soient rediges en langue anglaise
(translation: "The parties confirm that this Agreement and all related documentation is and will
be in the English language."); and (ii) You are responsible for complying with any local laws
in your jurisdiction which might impact your right to import, export or use the Software, and
You represent that You have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

17. Severability. If any provision of this Agreement is declared invalid or unenforceable, such
provision shall be deemed modified to the extent necessary and possible to render it valid and
enforceable. In any event, the unenforceability or invalidity of any provision shall not affect
any other provision of this Agreement, and this Agreement shall continue in full force and effect,
and be construed and enforced, as if such provision had not been included, or had been modified
as above provided, as the case may be.

18. Arbitration. Except for actions to protect intellectual property rights and to enforce an ar-
bitrator's decision hereunder, all disputes, controversies, or claims arising out of or relating to
this Agreement or a breach thereof shall be submitted to and finally resolved by arbitration under
the rules of the American Arbitration Association ("AAA") then in effect. There shall be one
arbitrator, and such arbitrator shall be chosen by mutual agreement of the parties in accordance
with AAA rules. The arbitration shall take place in Granite Bay, California, and may be conducted
by telephone or online. The arbitrator shall apply the laws of the State of California, USA to
all issues in dispute. The controversy or claim shall be arbitrated on an individual basis, and
shall not be consolidated in any arbitration with any claim or controversy of any other party.
The findings of the arbitrator shall be final and binding on the parties, and may be entered in
any court of competent jurisdiction for enforcement. Enforcements of any award or judgment
shall be governed by the United Nations Convention on the Recognition and Enforcement of
Foreign Arbitral Awards. Should either party file an action contrary to this provision, the other
party may recover attorney's fees and costs up to $1000.00.

19. Jurisdiction And Venue. The courts of Placer County in the State of California, USA and
the nearest U.S. District Court shall be the exclusive jurisdiction and venue for all legal proceed-
ings that are not arbitrated under this Agreement.

20. Independent Contractors. The relationship of the parties is that of independent contractor,
and nothing herein shall be construed to create a partnership, joint venture, franchise, employ-
ment, or agency relationship between the parties. Licensee shall have no authority to enter into
agreements of any kind on behalf of CodeSourcery and shall not have the power or authority
to bind or obligate CodeSourcery in any manner to any third party.

21. Force Majeure. Neither CodeSourcery nor Licensee shall be liable for damages for any
delay or failure of delivery arising out of causes beyond their reasonable control and without
their fault or negligence, including, but not limited to, Acts of God, acts of civil or military au-
thority, fires, riots, wars, embargoes, or communications failure.

22. Miscellaneous. This Agreement constitutes the entire understanding of the parties with respect
to the subject matter of this Agreement and merges all prior communications, representations,
and agreements. This Agreement may be modified only by a written agreement signed by the
parties. If any provision of this Agreement is held to be unenforceable for any reason, such
provision shall be reformed only to the extent necessary to make it enforceable. This Agreement
shall be construed under the laws of the State of California, USA, excluding rules regarding

5

Sourcery G++ Lite Licenses

conflicts of law. The application of the United Nations Convention of Contracts for the Interna-
tional Sale of Goods is expressly excluded. This license is written in English, and English is its
controlling language.

6

Sourcery G++ Lite Licenses

Chapter 2
Sourcery G++ Subscriptions
CodeSourcery provides support contracts for Sourcery G++. This chapter describes these
contracts and explains how CodeSourcery customers can access their support accounts.

7

2.1 About Sourcery G++ Subscriptions
CodeSourcery offers Sourcery G++ subscriptions. Professional Edition subscriptions provide unlimited
support, with no per-incident fees. CodeSourcery's support covers questions about installing and
using Sourcery G++, the C and C++ programming languages, and all other topics relating to Sourcery
G++. CodeSourcery provides updated versions of Sourcery G++ to resolve critical problems. Personal
Edition subscriptions do not include support, but do include free upgrades as long as the subscription
remains active.

CodeSourcery's support is provided by the same engineers who build Sourcery G++. A Sourcery
G++ subscription is like having a team of compiler engineers and programming language experts
available as consultants!

If you would like more information about Sourcery G++ subscriptions, including a price quote or
information about evaluating Sourcery G++, please send email to <sales@codesourcery.com>.

2.2 Accessing your Sourcery G++ Subscription
Account

If you have a Sourcery G++ subscription, you may access your account by visiting the Sourcery G++
Portal1. If you have a support account, but are unable to log in, send email to
<support@codesourcery.com>.

1 https://support.codesourcery.com/GNUToolchain/

8

Sourcery G++ Subscriptions

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/

Chapter 3
Sourcery G++ Lite for ARM
SymbianOS
This chapter contains information about using Sourcery G++ Lite on your target system.
This chapter also contains information about changes in this release of Sourcery G++ Lite.
You should read this chapter to learn how to best use Sourcery G++ Lite on your target
system.

9

3.1 SymbianOS Runtime Libraries
Sourcery G++ Lite does not include C or C++ runtime libraries for SymbianOS. These are provided
separately by Symbian.

3.2 NEON SIMD Code
Sourcery G++ Lite contains preliminary support for automatic generation of NEON SIMD vector
code. Autovectorization is a compiler optimization where loops involving normal integer or floating-
point code are transformed into loops that use NEON SIMD instruction to process several data ele-
ments at once.

To enable generation of NEON vector code specify -ftree-vectorize -mfpu=neon -
mfloat-abi=softfp. -mfpu=neon also enables generations of VFPv3 scalar floating-point
code.

Sourcery G++ Lite also contains preliminary support for manual generation of NEON SIMD code
using C intrinsic functions. These intrinsics, the same as those supported by the ARM RVCT compiler,
are defined in the arm_neon.h header and are documented in the 'ARM NEON Intrinsics' section
of the GCC manual. The options -mfpu=neon -mfloat-abi=softfp must be specified to
use these intrinsics; -ftree-vectorize is not required.

NEON support is still under active development. It has not been subject to extensive testing, and
may not yet take full advantage of all the features provided by the NEON architecture.

3.3 Sourcery G++ Lite Release Notes
This section documents Sourcery G++ Lite changes for each released revision.

3.3.1 Changes in Sourcery G++ Lite 2007q3-52

Preprocessing assembly code. The compiler driver passes -I options to the assembler, so that
#include directives (processed by the preprocessor) and .include directives (processed by the
assembler) use the same search path.

C++ class debug information. The flag -femit-class-debug-always is now disabled
by default. The flag produces duplicate C++ class debug information as a work-around for older
debuggers.

Dynamically-initialized const variables. Dynamically-initialized namespace-scope C++
variables are no longer placed in read-only data sections, even when marked const. These variables
must be modified at startup, so they cannot be placed in ROM, even though their values cannot
change once initialized.

Register allocation bug fix. A register allocation bug has been fixed. Under rare circumstances,
the bug caused incorrect code generation.

iWMMXt bug fix. A GCC bug affecting code generation for iWMMXt processors has been
fixed. The bug caused internal compiler errors when compiling some functions with large stack
frames.

10

Sourcery G++ Lite for ARM
SymbianOS

Default linker script. GCC no longer uses the simulator linker script by default. To avoid a link
failure, you must specify a linker script explicitly with the -T command-line option, or via the
Properties item on the Project menu in the Sourcery G++ Lite IDE.

Volatile postincrement and postdecrement bug fix. A code generation bug that caused postin-
crement or postdecrement of a volatile object to reread the modified value from that object in some
contexts has been fixed. The bug affected code performing a comparison of the postincrement or
postdecrement expression with a constant, or that was optimized to comparison with a constant.

Widening multiply instructions for ARMv6 and later. GCC now makes use of the 32-to-64-
bit widening multiply instructions (umull, smull, umlal, and smlal) when generating code for
ARMv6 and later. A bug had caused these instructions to be used for ARMv3 to ARMv5 only.

Stricter check for anonymous unions. G++ now issues an error about invalid code that uses the
same name for a member of an anonymous union and an entity in the surrounding namespace. For
example, you will now get an error about code like:

 int i;
 static union { int i; };

because both the global variable and the anonymous union member are named i. To make this code
valid you must change one of the declarations to use a different name.

Assembler code file name suffixes. GCC now recognizes .sx as well as .S as a file name suffix
indicating assembler code which must be preprocessed. The alternate suffix may be useful in con-
junction with other program development tools on Windows that do not distinguish case on filenames
and treat .S the same as .s, which GCC uses to indicate assembler code without preprocessing.

GCC update. The GCC package has been updated to version 4.2.1. This version includes numerous
bug fixes since GCC 4.2.

Handling of dllimport member functions within notshared classes. G++ now assigns
default ELF visibility to member functions marked dllimport, even if those member functions
appear within notshared classes. As a result, it is now possible to use a notshared class in a
DLL, but still define a member function marked dllimport in another DLL.

Smaller code for C++ destructors. G++ now generates more compact code to handle the destruc-
tion of C++ objects declared at namespace scope or declared within a function scope using the
static keyword.

Binutils update. The binutils package has been updated to the 2007-08-19 version of the pre-
2.18 FSF trunk. This contains many new improvements and bug fixes. For more information, refer
to the manuals for the individual utilities, and to the binutils web site at ht-
tp://www.gnu.org/software/binutils/.

Debugging information fix. GCC no longer generates invalid debugging information for sections
with no contents. The invalid debugging information caused the GNU/Linux prelinker to crash.

Calls to undefined weak symbols. The linker now implements semantics that comply to the
ARM EABI for R_ARM_CALL and T_ARM_THM_CALL relocations against undefined weak symbols.
These now result in a jump to the next instruction.

11

Sourcery G++ Lite for ARM
SymbianOS

Assembler skipping \ characters. A bug is fixed where the assembler would skip \ characters
when they appeared at certain positions in the input file. This bug primarily affected assembler
macros.

Improved diagnostics for region overflow. The linker will now give more helpful diagnostics
when the object files being linked are too big for one of the memory regions defined in the linker
script.

Spurious compiler warnings eliminated. GCC no longer emits warnings when linker-specific
command-line options are provided in combination with modes that do not perform linking, such as
with the -c flag.

Call shortening bug fix. GCC no longer overrides __attribute__((long_call)) on
calls to locally-defined functions when the function is weak, or when it is in a different section from
the caller.

Binutils update. The binutils package has been updated from version 2.17 to the pre-2.18 FSF
trunk. This is a significant update with many improvements and bug fixes.

Changes to the assembler (as) include:

• On MIPS targets, support for additional processors and the SmartMIPS and DSP Release 2 ex-
tensions has been added.

New linker (ld) features include:

• A new command-line option --default-script has been added to give more precise control
over linker script processing.

• There are new command-line options -Bsymbolic-functions, --dynamic-list,
--dynamic-list-cpp-new, and --dynamic-list-data to control symbols that should
be dynamically linked.

• The new --print-gc-sections option lists sections removed by garbage collection.

Other changes include:

• The objcopy utility has a new --extract-symbol option to extract only symbol table inform-
ation from the input file.

• The gprof utility now allows input files to have histogram records for several memory ranges,
provided those ranges are disjoint.

For more information, refer to the manuals for the individual utilities, and the binutils web site at
http://www.gnu.org/software/binutils/.

Forced alignment of array variables. A new option -falign-arrays has been added to the
compiler. Specifying this option sets the minimum alignment for array variables to be the largest
power of two less than or equal to their total storage size, or the biggest alignment used on the machine,
whichever is smaller. This option may be helpful when compiling legacy code that uses type punning
on arrays that does not strictly conform to the C standard.

ARM EABI compliance. Objects produced by Sourcery G++ Lite are now marked as ARM ELF
version 5 rather than ARM ELF version 4. This reflects compliance with recent revisions of the
ARM EABI. Sourcery G++ Lite still accepts objects marked with version 4.

12

Sourcery G++ Lite for ARM
SymbianOS

Smaller C++ applications. The C++ runtime library has been modified so that using namespace-
scope objects with destructors does not pull in unnecessary support functions. Therefore, statically
linked C++ applications compiled with -fno-exceptions are substantially smaller.

ARMv6-M floating-point bug fix. A bug affecting conversion of wider floating-point types to
subnormal float values on ARMv6-M processors has been fixed.

3.3.2 Changes in Sourcery G++ Lite 2007q1-21

NEON coprocessor system registers. The assembler now accepts the MVFR0 and MVFR1 cop-
rocessor registers in fmrx and fmxr instructions.

Disabling diagnostics for use of system header and library directories. The warnings for use
of options such as -I/usr/include when cross compiling can be disabled with a new option
-Wno-poison-system-directories. This option is intended for use in chroot environments
when such directories contain the correct headers and libraries for the target system rather than the
host.

Thumb-2 doubleword writeback addressing modes. An assembler bug that caused writeback
addressing modes for ldrd and strd to be incorrectly encoded has been fixed.

Thumb-2 shift instruction aliases. The assembler now accepts mov with shifted operands as an
alias for Thumb-2 shift instructions. For example mov r0, r1, lsl r2 is encoded as lsl
r0, r1, r2.

EABI object attribute merging. The linker now properly merges EABI object attributes into its
output file.

Thumb-2 exception return instructions. An assembler bug that caused subs pc, lr,
#const and movs pc, lr to be incorrectly encoded has been fixed.

Tag_ABI_PCS_wchar_t object attributes. Objects generated with -fshort-wchar are now
given the correct Tag_ABI_PCS_wchar_t EABI object attribute annotations.

Uppercase special register names. The assembler now accepts both uppercase and lowercase
special register names when assembling msr and mrs instructions for the Microcontroller profile
of the ARM Architecture.

3.3.3 Changes in Sourcery G++ Lite 2007q1-10

Disassembly of overlapping sections. A bug in the disassembler that caused code to be displayed
as data (and vice-versa) in files with overlapping sections has been fixed. This mainly affects the
objdump utility.

Marvell Feroceon support. Sourcery G++ Lite now generates code optimized for Marvell Fero-
ceon CPUs when the mcpu=marvell-f option is specified. This option also selects runtime lib-
raries optimized for this processor.

Fix --gc-sections and C++ exceptions. A bug in the --gc-sections linker option has been
fixed. Previously this would incorrectly remove unwinding tables, breaking C++ applications that
use exceptions.

Installer hangs while refreshing environment. The Sourcery G++ installer for Microsoft Win-
dows now updates the PATH environment variable without waiting for open applications to acknow-
ledge the update. This change prevents open applications from blocking the installer's progress.

13

Sourcery G++ Lite for ARM
SymbianOS

Improved assembler diagnostics for 8-bit offsets. The assembler now correctly diagnoses out-
of-range offsets to instructions such as LDRD as 8-bit rather than half-word offsets.

Less disk space required for installation. Sourcery G++ Lite packages are smaller because
multiple copies of files have been replaced with hard and/or symbolic links when possible. Both the
size of the installer images and the amount of disk space required for an installed package have been
reduced.

Thumb register corruption fix. A bug in the compiler that could cause register corruption in
Thumb mode has been fixed. The compiler was formerly emitting code to restore registers on function
return that was not interrupt safe.

__aeabi_lcmp. An error in the libgcc implementation of __aeabi_lcmp that caused incorrect
results to be returned has been fixed. This is a support routine defined by the ARM EABI. GCC does
not normally use this routine directly, however it may be used by third-party code.

The \@ assembler pseudo-variable. A bug in the assembler that caused uses of the \@ pseudo-
variable to be mis-parsed as comments has been fixed.

Assembly of SRS instructions. An assembler bug that resulted in incorrect encoding of the
Thumb-2 SRS instruction has been fixed. In addition the assembler supports explicit specification
of the base register, as accepted by other ARM toolchains.

Symbols defined in linker scripts. A bug is fixed that caused the linker to crash in some circum-
stances when a linker script defined a symbol in an output section. Typically usage is where the
script contained a __DATA_LOAD = LOADADDR(.data) statement in the .data section.

Crash when generating vector code. A bug that sometimes caused the compiler to crash when
invoked with the -ftree-vectorize option has been fixed.

VFP disassembly crash. A bug that caused crashes when disassembling some forms of the VFP
fmrx and fmxr instructions has been fixed.

ARM NEON store intrinsics bug fix. A compiler bug that incorrectly caused calls to ARM
NEON store intrinsics (such as vst1_u8) to be optimized away has been fixed.

Improvements to ARM NEON support. The ARM NEON support in GCC has been enhanced
to comply with new rules for containerized vector types specified in the ARM procedure call standard.
Additionally, the compiler now rejects implicit conversions between NEON polynomial vector types
and NEON integer vector types of the same layout.

Propagation of Thumb symbol attributes. Symbols referring to Thumb functions on ARM
targets now have their Thumb attribute correctly propagated to any aliases defined with .set or
.symver.

Complex numbers bug fix. A bug that could lead to incorrect code generation for code using
complex numbers has been fixed.

Use of system header and library directories diagnosed. The compiler and linker now diagnose
the incorrect use of native system header and library directories for cross-compilation. This typically
arises from options such as -I/usr/X11R6/include hard-coded in build scripts written without
a view to cross-compilation.

Linking of non-ELF images. A linker bug that could cause a crash when linking non-ELF objects
for ARM targets has been fixed.

14

Sourcery G++ Lite for ARM
SymbianOS

Initialization priorities. The constructor and destructor function attributes now accept
an optional priority argument. Constructors with small priorities are run before those with larger
priorities; the opposite is true for destructors. For example:

void f __attribute__((constructor(500)));
void f() {
 /* Perform initialization. */
}

defines a function f with priority 500. This function will be run before constructors with larger pri-
orities. Constructor and destructors with no explicit priority argument have priority 65535, the
maximum permitted value.

Thumb-2 IT block code generation error fixed. A bug in Thumb-2 code generation has been
fixed. This bug would result in missing IT instructions, causing the assembler to reject the code.

ARM Cortex-R4 performance improvements. Sourcery G++ Lite now generates faster code
when compiling for the ARM Cortex-R4 processor by scheduling instructions for the processor's
pipelines. To generate code for this processor, use the -mcpu=cortex-r4 command-line option.

Invalid load instructions. A bug in the compiler which caused it to generate invalid assembly
(e.g. ldrd r0, [#0, r2]) has been fixed.

VFPv3/NEON debug information. A bug in the compiler which caused it to generate incorrect
debug information for code using VFPv3/NEON registers has been fixed. The debugger is now able
unable to locate and display values held in these registers.

iWMMXt compiler errors. A compiler bug that caused invalid assembly when generating
iWMMXt code has been fixed.

ARMv6-M system instructions. An assembler bug that caused some ARMv6-M system instruc-
tions to be incorrectly rejected has been fixed. The affected instructions are msr, mrs, yield, wfi,
wfe and sev.

Assembling Thumb store-multiple instructions. The assembler now issues an error message
instead of crashing on load/store multiple instructions that incorrectly use Thumb-2 addressing modes
(e.g., ldmdb) in legacy Thumb syntax mode. If you want to use these address modes, you should
use unified syntax mode instead.

Thumb-2 stack decrement misassembly. An assembler bug that resulted in incorrect encoding
of the 32-bit Thumb-2 form of the sub sp, sp, #const instruction has been fixed. Previously
this was misassembled as subs.

Naked functions. Functions marked with __attribute__((naked)) no longer contain
prologue and epilogue code. Please refer to the GCC manual for the proper use of this attribute.

Assembly of Thumb-2 load/store multiple instructions. The Thumb-2 ldm and stm assembly
mnemonics are now assembled to ldr and str instructions when a single register is transferred,
as specified in the Thumb-2 Architecture Supplement.

Conditional Thumb-2 branch instructions. A linker bug that could cause objects involving
conditional Thumb-2 branch instructions to be incorrectly rejected has been fixed.

15

Sourcery G++ Lite for ARM
SymbianOS

Fix addr2line defect. The binary utility addr2line now operates correctly on 64-bit targets with
DWARF2 debug information.

Thumb-2 assembler infinite loop. An assembler bug that would cause it to enter an infinite loop
when processing some Thumb-2 assembly has been fixed.

Assembler warnings about overlapping multiplication operands. The assembler no longer
warns about overlapping Rd and Rm operands when assembling mul and mla instructions for the
ARM architecture version six or above.

Alignment bug fix. A bug has been fixed that formerly caused incorrect code to be generated in
some situations for copying structure arguments being passed by value. The incorrect code caused
alignment errors on stack accesses on some targets.

ARM Cortex-A8 performance improvements. Sourcery G++ Lite now generates faster code
when compiling for the ARM Cortex-A8 processor by scheduling instructions for the processor's
dual-issue pipelines. To generate code for this processor, use the -mcpu=cortex-a8 command-
line option.

GCC version 4.2. Sourcery G++ Lite for ARM SymbianOS is now based on GCC version 4.2.
For more information about changes from GCC version 4.1 that was included in previous releases,
see http://gcc.gnu.org/gcc-4.2/changes.html.

Improve handling of corrupt debug information. The binary utility readelf now copes more
gracefully with corrupted DWARF 2 information.

Smaller C++ programs. Rarely-used functions in the C++ runtime library have been isolated
into separate object files so that they will not be included unless needed. As a result, most statically
linked C++ programs are smaller.

3.3.4 Changes in Sourcery G++ Lite 4.1-37

Preserve volatile accesses. Reads from volatile memory are no longer incorrectly optimized
away at higher optimization levels.

3.3.5 Changes in Sourcery G++ Lite 4.1-34

Implicit conversions between generic vector types. Implicit conversions between generic vector
types are now only permitted when the two vectors in question have the same number of elements
and compatible element types. (Note that the restriction involves compatible element types, not im-
plicitly-convertible element types: thus, a vector type with element type int may not be implicitly
converted to a vector type with element type unsigned int.) This restriction, which is in line
with specifications for SIMD architectures such as AltiVec, may be relaxed using the flag -flax-
vector-conversions. This flag is intended only as a compatibility measure and should not be
used for new code.

type_info comparison fix. Comparison of type_info objects now uses pointer comparison
where possible.

C++ forced unwinding fixes. Some bugs relating to forced unwinding through C++ code have
been fixed.

Support for additional Stellaris boards. Linker scripts are provided for the 6xx and 8xx series
Stellaris boards.

16

Sourcery G++ Lite for ARM
SymbianOS

Linux support for USB Debug Sprite. A new driver is included to allow the Sourcery G++ Lite
USB Debug Sprite to run on Linux hosts. See Chapter 3, Sourcery G++ Lite for ARM SymbianOS
for additional information.

3.3.6 Changes in Sourcery G++ Lite 4.1-33

Linker scripts. A bug is fixed where an erroneous linker script would cause a linker crash. An
error message is now produced.

Newlib memory use improvements. The memory overhead of linking with newlib is reduced.
Applications that use only a minimal set of library features may now require significantly less memory.

3.3.7 Changes in Sourcery G++ Lite 4.1-31

Compiler alias analysis. The type-based alias analysis performed by the compiler when compiling
with -O2 or with -fstrict-aliasing is now more conservative. The more aggressive analysis
used in previous versions sometimes resulted in incorrect code generation.

Fully relocatable preprocessor. When cross-compiling, the default preprocessor search path
includes only the directories present in the installed toolchain. This speeds up the preprocessor and
prevents the unintentional use of unrelated files and directories on the machine where it is installed.

3.3.8 Changes in Sourcery G++ Lite 4.1-29

Support for new-style symbol hashing. Support has been added in binutils and the prelinker for
new-style (also known as DT_GNU_HASH) symbol hashing. This can dramatically speed up symbol
resolution time and is particularly applicable in environments where full prelinking is not possible
(for example where shared libraries are dynamically opened at runtime). The new-style hashing may
be enabled by passing --hash-style=gnu to the linker.

Prelinker update. The prelinker has been updated to the current upstream sources and some bugs
affecting operation have been fixed.

3.3.9 Changes in Sourcery G++ Lite 4.1-28

Improved support for ROM debugging. GDB now determines ROM regions automatically
from the memory map included in target configuration files. This information is used to determine
when hardware breakpoints should automatically be used (for instance the step, next and finish
commands). Separate ROM configurations have been removed from the Eclipse debugger menu.
The Eclipse GUI has been extended to provide improved support for debugging programs in ROM,
when a memory map is not automatically available.

3.3.10 Changes in Sourcery G++ Lite 4.1-27

Rename Windows executables. The Windows host tools make.exe and rm.exe are now named
cs-make.exe and cs-rm.exe. This change avoids conflicts with tools provided by other distributors.

iWMMXt bug fixes. Some bugs involving incorrect code generation and internal compiler errors
when generating iWMMXt code have been fixed.

Cortex-M3 startup code. The ARMv7M startup code (armv7m-crt0.o) incorrectly contained
ARM code. This has been replaced with Thumb-2 code.

17

Sourcery G++ Lite for ARM
SymbianOS

ARM EABI coverage testing support. Coverage testing using GCOV is now supported for the
ARM EABI target. Please refer to the GNU C Compiler Manual (HTML) for more information on
coverage testing.

3.3.11 Changes in Sourcery G++ Lite 4.1-23

Windows debugging fix. In recent releases of Sourcery G++ Lite, the GDB target remote |
command would hang on Windows. This affected both command line and Eclipse debugging when
using the Sourcery G++ Lite Debug Sprite.

Stellaris USB Debug Sprite improvements. The former USB Debug Stub, armswd, is now
known as the USB Debug Sprite, and has been renamed to arm-stellaris-eabi-sprite. In addition,
its initialization sequence has been updated to recognize the r1p1 release of the Cortex-M3 processor.

Incompatible changes to Stellaris linker scripts. Sourcery G++ Lite now supports linking ex-
ecutables to run from RAM as well as ROM. As part of this change, there are now separate RAM
and ROM versions of the linker scripts for each supported board, and the former ROM-based versions
have been renamed. For example, if you were formerly linking with -T lm3s10x.ld, you should
now use -T lm3s10x-rom.ld to get the same behavior.

3.3.12 Changes in Sourcery G++ Lite 4.1-21

Eclipse debuggers. Eclipse configurations for debugging arm-none-eabi applications using the
GDB simulator and remote debug stubs have been added.

iWMMXt2 support. The assembler and disassembler now support iWMMXt2 instructions.

NEON intrinsics support. GCC now supports NEON intrinsics defined in the arm_neon.h
header. These are the same intrinsics supported by the ARM RVCT compiler and are documented
in the 'ARM NEON Intrinsics' section of the GCC manual.

3.3.13 Changes in Sourcery G++ Lite 4.1-19

ARMv4t linux multilib. Linux configurations now support ARMv4t CPUs.

Linker scripts. Several problems with the linker scripts for bare-metal targets have been fixed.

3.3.14 Changes in Sourcery G++ Lite 4.1-18

Binutils update. The binutils in this release is based on the final binutils 2.17 release.

GDB update. The included version of GDB has been upgraded to 6.5.50.20060822. This includes
numerous bug fixes from the previous version.

GDB support for flash memory. The GDB load command can now write to flash memory, if
the remote debugging stub contains appropriate support.

Compiler support for NEON. Initial GCC support for autovectorization and generation of NEON
SIMD instructions has been added.

Bare metal Cortex-M3 configurations. Bare metal configurations now support generating images
for use on ARMv7M devices (eg. Cortex-M3).

18

Sourcery G++ Lite for ARM
SymbianOS

iWMMXt support in GLIBC. GLIBC's setjmp and longjmp now support saving and
restoring iWMMXt registers on hardware with those registers. This requires a kernel reporting
iwmmxt in the Features entry in /proc/cpuinfo.

iWMMXt exception handling support. Exception handling now restores the values of iWMMXt
registers correctly.

Corrected IPC functions. A bug in GLIBC's msgctl, semctl, and shmctl functions has
been corrected.

3.3.15 Changes in Sourcery G++ Lite 4.1-16

GCC update. This release is based on GCC 4.1.1.

Fully relocatable compiler. The compiler now searches for its components only in the directory
where it has been installed, and no longer also searches pathnames matching the directory where it
was configured. This speeds up the compiler and prevents problems with unintentionally finding
unrelated files or directories on the machine where it has been installed.

Stack permission marking for ARM GNU/Linux. Non-executable stacks can provide increased
security against some forms of buffer overflow attacks. The tools involved must coordinate the an-
notation of required stack permissions, either executable, or non-executable. For ARM GNU/Linux
targets the compiler now outputs annotations indicating the required stack permissions.

3.3.16 Changes in Sourcery G++ Lite 4.1-15

Stabs debugging information support. Using the Stabs debugging format (available with
-gstabs or -gstabs+) now works in conjunction with -mthumb. CodeSourcery recommends
the default DWARF debugging format (available with -g) as DWARF is a more comprehensive
debugging format.

3.3.17 Changes in Sourcery G++ Lite 4.1-13

Stellaris linker scripts in IDE. Linker scripts may now be selected via a drop-down menu in
Eclipse.

Stellaris linker scripts for 3xx series CPUs. The linker scripts for 3xx Series CPUs now place
the ISR vector at address zero, as required by all Cortex-M3 cores.

Stellaris USB Debug Sprite improvements. Bug fixes and new features include:

• A bug that caused the stub not to correctly update the program counter and other register values
was fixed. As a result of this fix, it is now possible to run programs residing in SRAM using the
continue command from GDB.

• The stub no longer prints status messages via GDB console output when invoked with the -q
command-line option.

• The stub's initialization sequence was updated to recognize revision C Cortex-M3 hardware.

3.3.18 Changes in Sourcery G++ Lite 4.1-9

Stellaris USB Debug Sprite improvements. Program images exceeding 4K can now be uploaded
to flash memory.

19

Sourcery G++ Lite for ARM
SymbianOS

Additional Stellaris boards supported. The Stellaris 301, 310, 315, and 316 CPUs are now
supported. Linker scripts have been added for these boards.

3.3.19 Changes in Sourcery G++ Lite 4.1-8

Stellaris USB Debug Sprite improvements. Several bug fixes and enhancements were made to
the USB Debug Stub. In particular:

• Bugs in the implementation of open, read, and lseek were fixed.

• Support was added for isatty, rename, unlink, and system.

• Memory reads that span 4K block boundaries now work correctly.

3.3.20 Changes in Sourcery G++ Lite 4.1-4

Runtime libraries. Support for ARMv7 including Cortex-M3 and pure Thumb-2.

Assembler. Support for NEON and VFPv3, including unified NEON/VFP syntax.

3.3.21 Changes in Sourcery G++ Lite 4.1-1

Initial release. This release is based on GCC 4.1.0.

20

Sourcery G++ Lite for ARM
SymbianOS

Chapter 4
Installation and Configuration
This chapter explains how to install Sourcery G++ Lite.You will learn how to:

1. Verify that you can install Sourcery G++ Lite on your system.

2. Download the appropriate Sourcery G++ Lite installer.

3. Install Sourcery G++ Lite.

4. Configure your environment so that you can use Sourcery G++ Lite.

21

4.1 Terminology
Throughout this document, the term host system refers to the system on which you run Sourcery
G++ Lite while the term target system refers to the system on which the code produced by Sourcery
G++ Lite runs. The target system for this version of Sourcery G++ Lite is "arm-none-symbianelf".

If you are developing a workstation or server application to run on the same system that you are using
to run Sourcery G++ Lite, then the host and target systems are the same. On the other hand, if you
are developing an application for an embedded system, then the host and target systems are probably
different.

4.2 System Requirements

4.2.1 Host Operating System Requirements

Sourcery G++ Lite supports the following host operating systems:

• Microsoft Windows NT 4, Windows 2000, Windows XP, and Windows Vista systems using
IA32, AMD64, and EM64T processors.

• GNU/Linux systems using the IA32, AMD64, or EM64T processors, including Debian 3.0 (and
later), Red Hat Enterprise Linux 3 (and later), SuSE Enterprise Linux 8 (and later).

• Solaris 2.8 (and later) systems using SPARC processors.

Not all combinations of host and target systems are available. Therefore, Sourcery G++ Lite for your
target system may not be available on all of the above host systems.

Sourcery G++ Lite is built as a 32-bit application. Therefore, even when running on a 64-bit
GNU/Linux host system, Sourcery G++ Lite requires 32-bit host libraries. If these libraries are not
already installed on your system, you must install them before installing and using Sourcery G++
Lite. Consult your operating system documentation for more information about obtaining these lib-
raries.

4.2.2 Host Hardware Requirements

In order to install and use Sourcery G++ Lite, you must have at least 128MB of available memory.

The amount of disk space required for a complete Sourcery G++ Lite installation directory depends
on the host operating system and the number of target libraries included. Typically, you should plan
on at least 400MB. In addition, the graphical installer requires a similar amount of scratch space
during the installation process.

4.2.3 Target System Requirements

See Chapter 3, Sourcery G++ Lite for ARM SymbianOS for requirements that apply to the target
system.

4.3 Downloading an Installer
If you have received Sourcery G++ Lite on a CD, or other physical media, then you do not need to
download an installer. You may skip ahead to Section 4.4, “Installing Sourcery G++ Lite”.

22

Installation and Configuration

If you have a Sourcery G++ Lite subscription (or evaluation), then you can log into the Sourcery
G++ Portal1 to download your Sourcery G++ Lite toolchain(s). CodeSourcery also makes some
toolchains available to the general public from the Sourcery G++ web site2. These publicly available
toolchains do not include all the functionality of CodeSourcery's product releases.

Once you have navigated to the appropriate web site, download the installer that corresponds to your
host operating system. For Microsoft Windows systems, the Sourcery G++ Lite installer is provided
as an executable, with the .exe extension. For GNU/Linux systems with an X Window System,
Sourcery G++ Lite is provided as a graphical installer with the .bin extension. For Solaris, and
GNU/Linux systems without an X Window System, Sourcery G++ Lite is provided as a compressed
archive .tar.bz2. If installing on a RPM-based GNU/Linux system you may download the .rpm
file.

On Microsoft Windows systems, save the installer to the desktop. On GNU/Linux and Solaris systems,
save the download package in your home directory.

4.4 Installing Sourcery G++ Lite
The method used to install Sourcery G++ Lite depends on your host system.

4.4.1 Installing Sourcery G++ Lite on Microsoft Windows

If you have received Sourcery G++ Lite on CD, insert the CD in your computer. On most computers,
the installer then starts automatically. If your computer has been configured not to automatically run
CDs, open My Computer, and double click on the CD. If you downloaded Sourcery G++ Lite,
double-click on the installer.

After the installer starts, follow the on-screen dialogs to install Sourcery G++ Lite. This package
comes with a bundled Java Runtime Environment; you do not have to download any additional
software.

4.4.2 Installing Sourcery G++ Lite on GNU/Linux systems with an X
Window System

Start the graphical installer by invoking the executable shell script:

> /bin/sh ./path/to/package.bin

After the installer starts, follow the on-screen dialogs to install Sourcery G++ Lite. This package
comes with a bundled Java Runtime Environment; you do not have to download any additional
software.

4.4.3 Installing Sourcery G++ Lite on Solaris or GNU/Linux systems
without an X Window System

You do not need to be a system administrator to install Sourcery G++ Lite on a GNU/Linux or Sol-
aris system. You may install Sourcery G++ Lite using any user account and in any directory to which
you have write access. This guide assumes that you have decided to install Sourcery G++ Lite in the
$HOME/CodeSourcery subdirectory of your home directory and that the filename of the package

1 https://support.codesourcery.com/GNUToolchain/
2 http://www.codesourcery.com/gnu_toolchains/

23

Installation and Configuration

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
http://www.codesourcery.com/gnu_toolchains/

you have downloaded is /path/to/package.tar.bz2. After installation the toolchain will
be in $HOME/CodeSourcery/sourceryg++-4.1 or similar.

First, uncompress the package file:

> bunzip2 /path/to/package.tar.bz2

Next, create the directory in which you wish to install the package:

> mkdir -p $HOME/CodeSourcery

Change to the installation directory:

> cd $HOME/CodeSourcery

Unpack the package:

> tar xf /path/to/package.tar

If you are installing a native toolchain, it is then necessary to run a post-install script found in the
share directory:

> /bin/sh sourceryg++-4.1/share/postinst-*

The .tar.bz2 package is not bundled with a Java Runtime Environment.

4.4.4 Installing Sourcery G++ Lite on RPM-based GNU/Linux systems

On a RPM-based system you should use RPM to install the provided package. Execute the following
command as root (administrator):

> rpm -ivh /path/to/package.rpm

The .rpm package is not bundled with a Java Runtime Environment.

4.4.5 Installing the Java Runtime Environment

Some versions of Sourcery G++ Lite include the Eclipse Integrated Development Environment.
Because Eclipse is an optional component, the installer allows you to choose whether or not to install
it. Eclipse is a Java application and requires the Java Runtime Environment (JRE). The Java Runtime
Environment is available at no charge from Sun Microsystems Java website3. You may download
either the Java Runtime Environment (JRE) or the Java Development Kit (JDK). (The JDK includes
the JRE.)

4.5 Uninstalling Sourcery G++ Lite
The method used to uninstall Sourcery G++ Lite depends on your host system. If you have modified
any files in the installation it is recommended that you back up these changes. The uninstall procedure
may remove the files you have altered.

3 http://java.sun.com/j2se/

24

Installation and Configuration

http://java.sun.com/j2se/

4.5.1 Uninstalling Sourcery G++ Lite on Microsoft Windows

Select Start, then Control Panel. Select Add or Remove Programs. Scroll down and
click on Sourcery G++ for ARM SymbianOS. Select Change/Remove and follow the on-
screen dialogs to uninstall Sourcery G++ Lite.

4.5.2 Uninstalling Sourcery G++ Lite on Microsoft Windows Vista

Select Start, then Settings and finally Control Panel. Select the Uninstall a pro-
gram task. Scroll down and double click on Sourcery G++ for ARM SymbianOS. Follow
the on-screen dialogs to uninstall Sourcery G++ Lite.

4.5.3 Uninstalling Sourcery G++ Lite on GNU/Linux using the graphical
uninstaller

If you installed on GNU/Linux using the graphical installer, then you must use the graphical uninstaller
to remove Sourcery G++ Lite. The arm-none-symbianelf directory located in the install dir-
ectory will be removed entirely by the uninstaller. Please back up any changes you have made to
this directory, such as modified linker scripts.

Start the graphical uninstaller by invoking the executable shell script:

> /bin/sh ./path/to/install/\
 Sourcery_G++/\
 Uninstall_Sourcery_GXX_for_ARM SymbianOS

After the uninstaller starts, follow the on-screen dialogs to uninstall Sourcery G++ Lite.

4.5.4 Uninstalling Sourcery G++ Lite on RPM-based GNU/Linux sys-
tems

On a RPM-based system you should use RPM to uninstall the installed package. Execute the following
command as root (administrator):

> rpm -e sourceryg++-arm-none-symbianelf

4.5.5 Uninstalling Sourcery G++ Lite on GNU/Linux

If you did not use the graphical installer or RPM, uninstall Sourcery G++ Lite by manually deleting
the installation directory created in the install procedure.

4.6 Setting up the Environment
As with the installation process itself, the steps required to set up your environment depend on your
host operating system. The name of the Sourcery G++ Lite commands all begin with arm-none-
symbianelf so that you can install Sourcery G++ Lite for multiple target systems in the same directory.

4.6.1 Setting up the Environment on Microsoft Windows

On a non-Vista Microsoft Windows system, the installer automatically adds Sourcery G++ Lite to
your PATH. You can test that your PATH is set up correctly by using the following command:

> arm-none-symbianelf-g++ -v

25

Installation and Configuration

and verifying that the last line of the output contains: Sourcery G++ 2007q3-52.

On a Microsoft Windows Vista system, the installer does not automatically add Sourcery G++ Lite
to your PATH. The Sourcery G++ IDE does not need this step to function correctly. This step is only
required if you wish to use the tools from the command line on a Microsoft Windows Vista system.
To set up your PATH on Microsoft Windows Vista, use the following command in a cmd.exe shell:

setx "%PATH%;C:\Program Files\Sourcery G++\bin"

where C:\Program Files\Sourcery G++ should be changed to the path of your Sourcery
G++ Lite installation. You can verify that the command worked by starting a second cmd.exe shell
and running:

arm-none-symbianelf-g++ -v

Verify that the last line of the output contains: Sourcery G++ 2007q3-52.

4.6.1.1 Working with Cygwin

Sourcery G++ Lite does not require Cygwin or any other UNIX emulation environment. You can
use Sourcery G++ Lite directly from the Eclipse IDE or from the Windows command shell. You can
also use Sourcery G++ Lite from within the Cygwin environment, if you prefer.

The Cygwin emulation environment translates Windows path names into UNIX path names. For
example, the Cygwin path /home/user/hello.c corresponds to the Windows path c:\cyg-
win\home\user\hello.c. Because Sourcery G++ Lite is not a Cygwin application, it does
not, by default, recognize Cygwin paths.

If you are using Sourcery G++ Lite from Cygwin, you should set the CYGPATH environment variable.
If this environment variable is set, Sourcery G++ Lite automatically translates Cygwin path names
into Windows path names. To set this environment variable, type the following command in a Cygwin
shell:

> export CYGPATH=cygpath

To resolve Cygwin path names, Sourcery G++ Lite relies on the cygpath utility provided with
Cygwin. You must provide Sourcery G++ Lite with the full path to cygpath if cygpath is not in
your PATH. For example:

> export CYGPATH=c:/cygwin/bin/cygpath

directs Sourcery G++ Lite to use c:/cygwin/bin/cygpath as the path conversion utility. The
value of CYGPATH must be an ordinary Windows path, not a Cygwin path.

4.6.2 Setting up the Environment on GNU/Linux or Solaris

If you installed Sourcery G++ Lite using the .bin graphical installer then you may skip this step.
The graphical installer does this setup for you.

Before using Sourcery G++ Lite you should add Sourcery G++ Lite to your PATH. The command
you must use varies with the particular command shell that you are using. If you are using the C
Shell (csh or tcsh), use the command:

> setenv PATH $HOME/CodeSourcery/sourceryg++-4.1/bin:$PATH

If you are using Bourne Shell (sh), the Korn Shell (ksh), or another shell, use:

26

Installation and Configuration

> export PATH=$HOME/CodeSourcery/sourceryg++-4.1/bin:$PATH

If you are not sure which shell you are using, try both commands. In both cases, if you have installed
Sourcery G++ Lite in an alternate location, you must replace the directory above with bin subdir-
ectory of the directory in which you installed Sourcery G++ Lite.

You may also wish to set the MANPATH environment variable so that you can access the Sourcery
G++ Lite manual pages, which provide additional information about using Sourcery G++ Lite. To
set the MANPATH environment variable, follow the same steps shown above, replacing PATH with
MANPATH, and bin with share/doc/sourceryg++-2007q3-52-arm-none-symbi-
anelf/man.

You can test that your PATH is set up correctly by using the following command:

> arm-none-symbianelf-g++

and verifying that you receive the message:

arm-none-symbianelf-g++: no input files

27

Installation and Configuration

Chapter 5
Using the Sourcery G++ IDE
This chapter explains how to use the Sourcery G++ IDE provided in the Personal and Pro-
fessional editions of this product. The Sourcery G++ IDE is not included in Sourcery G++
Lite.

28

5.1 Overview
This chapter explains how to create, modify, and debug a program using the Sourcery G++ IDE.
After working through the example program in this chapter, you can use the same techniques to
create your own programs.

This chapter is divided into two sections. The first explains how to create and build a program; the
second section explains how to debug and run a program once it has been built.

Learning More About Eclipse

The Sourcery G++ IDE is based on Eclipse. While this chapter explains how to accomplish
basic tasks using the Sourcery G++ IDE, it is not a comprehensive reference manual. If you
want to learn more about Eclipse visit the Eclipse web site1.

5.2 Building Applications
In the Sourcery G++ IDE, every program is a project. The project contains all of the source files re-
quired to build the program. So, the first step is to create a project.

There are two kinds of projects: “Managed Make” and “Standard Make” projects. In general, if you
intend to do all of your development from within the IDE, you should use a Managed Make project.
In this mode, the IDE automatically handles building your project for you. However, if you are
working with code that has previously been built with make, you may wish to use a Standard Make
project instead. The following several sections explain how to create and work with a Managed Make
project. If you wish to use a Standard Make project instead, skip ahead to section Section 5.2.5,
“Using Standard Make Mode”.

5.2.1 Setting Up

Create a new project by selecting File → New → Project. Expand the C label and select Man-
aged Make C Project. (If you want to build a C++ application, expand the C++ label instead.)
Click the Next button.

1 http://www.eclipse.org

29

Using the Sourcery G++ IDE

http://www.eclipse.org

Expand the C folder and select the Managed Make C Project to create a new program.

Give the project the name factorial and click the Next button. From the Project Type
menu select Executable (Sourcery G++ for ARM SymbianOS) and click Finish. If
you are asked whether or not to open a new perspective, click the Yes button.

On ELF and EABI targets, you must choose a target board before you can link your application. On
all targets, you may wish to choose a CPU other than the default so that Sourcery G++ can optimize
for your processor. To set these options right-click on the factorial project, and select Proper-
ties. From the list on the left select C/C++ Build. From the Configuration Settings
panel select the Tool Settings tab. Select the Target menu from the list and choose your
target-specific options. If you have no target board use the Simulator board option, when available;
otherwise choose the first board on the list.

At this point, the project exists, but there is no associated source code. So, the next step is to create
the main program. Right-click on the factorial project, and select New → Source File. Give
the new file the name main.c and click the Finish button.

30

Using the Sourcery G++ IDE

Right-click on the project name to add a new source file.

5.2.2 Writing Source Code

Whenever you create or save a file, the Sourcery G++ IDE attempts to rebuild the program. Because
the program is empty at this point, the compilation does not succeed, and you may notice some
messages in the Console tab indicating errors. Those errors will go away when the program is
completed.

The Sourcery G++ IDE now displays an editing window for you to use to create the program. Type
(or cut-and-paste) the following program into the editor:

#include <stdio.h>

int factorial(int n) {
 if (n == 0)
 return 1;
 return n * factorial (n - 1);
}

int main () {
 int i;
 int n;
 for (i = 0; i < 10; ++i) {
 n = factorial (i);
 printf ("factorial(%d) = %d\n", i, n);
 }
 return 0;
}

31

Using the Sourcery G++ IDE

When you are done, save the file with File → Save (Ctrl-S).

When you save the file, the Sourcery G++ IDE rebuilds the project. The output of the commands
run by the IDE is displayed in the Console tab. You should see the following output at the bottom
of the console:

Build complete for project factorial

5.2.3 Using Cross-Reference Information

Whenever it rebuilds your project, the Sourcery G++ IDE also computes cross-reference information.
You can see some of this information in the Outline pane. In particular, each of the two functions
in the program (factorial and main) are shown in the Outline pane. When you click on name
of a function or variable in the Outline pane, the IDE repositions the cursor to show you that entity.

Click a function name in the Outline to jump to it in the editor.

You can also use the cross-reference information to jump from the place where a function is called
to the definition of the function. For example, find the line in main which calls factorial and
place the cursor over the name factorial. Then, right-click and select Open Declaration
(F3) to jump to the point at which factorial is declared. The cross-reference functionality works
even if the function call is in a different file from the declaration of the function.

5.2.4 Dealing with Errors

If you pasted the sample application into the IDE, the program probably compiled correctly the first
time. But, of course, that rarely happens when writing a large program from scratch. To see how the
Sourcery G++ IDE deals with errors, you can intentionally introduce an error.

32

Using the Sourcery G++ IDE

Change the declaration of n in main to declare m, instead of n, and save the file. This change makes
the program invalid because there are references to n in the function, but no declaration. In addition,
the new variable m is not serving any useful purpose (since there are no references to it). Sourcery
G++ informs you of both issues by flagging the problematic lines of source code.

The IDE places a circular red symbol next to lines that cause errors and a triangular yellow symbol
 on lines that cause warnings. There are several ways to get more detailed information about the

problems. One way is to click on the Problems pane at the bottom of the IDE. This pane shows
the error and/or warning messages issued by the compiler. Also, when you place the cursor over the
error indicators, the IDE displays the error message.

Place the cursor over a warning or error indicator to see the cause of the problem.

Before proceeding, you must correct the error by changing m back to n.

5.2.5 Using Standard Make Mode

This section explains how to use the advanced Standard Make mode, instead of the simpler Managed
Make mode described above. If you are just getting started with Sourcery G++, you should skip this
section and proceed directly to Section 5.3, “Debugging Applications”.

Caution

Using Standard Make Mode requires that you manually maintain information about how
your program is built. If you use this mode, you need to be familiar with the make utility.

If you want to import an existing project for use with the Sourcery G++ IDE, and that project uses
make, or some similar command-line tool to manage the build process, you should use a Standard
Make project, instead of a Managed Make project. In Standard Make mode, the IDE invokes make

33

Using the Sourcery G++ IDE

(or an alternative program that you specify) to build your program. If you add new files to your
project, you have to manually update the Makefile for your project.

To set up the Standard Make mode to work with Sourcery G++, you have to make a few changes to
the default project settings. When you create the project, the IDE displays a window that permits
you to define the project settings.

Select the Discovery Options tab and set the Compiler invocation command to arm-
none-symbianelf-gcc instead of the default gcc. That change tells the IDE to use the Sourcery G++
compilers when scanning your program code to determine cross-reference information. You may
also have to adjust your Makefile to use Sourcery G++. For example, you might need to set the
CC variable in your Makefile to arm-none-symbianelf-gcc.

5.3 Debugging Applications

5.3.1 Starting the Debugger

After you build your application, choose Run. Select the C/C++ Local Application label in

the Configurations pane. Then, click the New icon positioned towards the upper left of the
window.

Click the New icon to create to create a new debug configuration.

When you create the launch configuration, a new window appears. On the Main tab, use the
Browse... button to select your project, if it is not already selected. Then, use the Search
Project.. button to select your application.

34

Using the Sourcery G++ IDE

Use the Search Project... button to locate your program.

5.3.2 Choosing a Debugging Mode

Before you can use the Sourcery G++ IDE to debug your application, you must decide which debug-
ging mode to use. Sourcery G++ supports several debugging modes, as described below.

5.3.2.1 Selecting a Debugger

Once you have decided which debugger to use, switch to the Debugger tab and select the appropriate
Sourcery G++ option.

35

Using the Sourcery G++ IDE

Pick the debugger that you want to use.

Once you have made any necessary adjustments, click the Debug button to start the debugger.

You do not need to repeat the debugger selection process the next time you launch the debugger.
Instead, you can select Run → Debug Last Launched to start the debugger using the settings
you have selected.

5.3.3 Controlling Execution

When you start the debugger, the IDE switches from the C/C++ perspective to the debug perspective.
Instead of showing panes that help you to develop your application, the IDE now shows panes that
help you to debug your application.

36

Using the Sourcery G++ IDE

The debug perspective displays the stack, local variables, and the current location.

The debugger automatically stops on the first line of main. The currently active source line is
highlighted. The pane at the upper left shows the application threads and the stack associated with
each thread. The pane at the upper right shows the values of local variables. (At this point, i and n
have not yet been initialized, so their values are indeterminate.)

Use Run → Step Over (F6) to advance by a single line. Because the program has changed the
value of i, the IDE highlights the value in the variable pane.

By looking at the code, you can see that the program calls factorial and then calls printf to
print out the resulting value. You can set a breakpoint right before the call to printf by clicking
anywhere on that line, and then using Run (Ctrl-Shift-B).

37

Using the Sourcery G++ IDE

Set a breakpoint by highlighting the line where you want to stop and then using the Run menu.

After setting the breakpoint, use Run → Step Into (F5) to step into the body of factorial.

The IDE no longer displays the value of i because there is no local variable i within factorial.
If you wish to see the value of i (from main), select the stack frame for main in the pane at the
upper left. The IDE displays the variables for whichever frame is presently selected.

Now, proceed to the breakpoint by using Run → Resume (F8). The variable n now has the value
1 because the factorial of zero is one. Step over the call to printf to print the value in the console.

5.3.4 Low-Level Debugging

You may sometimes need to debug at the machine level, rather than at the source code level. For
example, if you are working with an assembly code device driver, you may wish to see the values
stored in machine registers and step through the code instruction by instruction.

To view machine registers, click on the Registers tab, and expand the Main register group. To
see the instructions being executed, use Window → Show View → Disassembly.

38

Using the Sourcery G++ IDE

The Sourcery G++ IDE can display machine registers and assembly code.

When the disassembly window is active, the Step Over and Step Into commands operate at
the assembly level, rather than at the source code level. So, a Step Over command advances by
a single machine instruction. When the values of registers change, the registers are highlighted in
the IDE. You can set breakpoints on particular machine instructions in the same way that you can
set breakpoints on source code.

5.3.5 Troubleshooting

When your application is large, or the debugging device is relatively slow, you may encounter timeout
errors when starting debugging. In that case, you should increase the timeout settings. Select the
Preferences item in the Window menu, and in the dialog that appears select C/C++, Debug,
GDB MI. Increase the values in the Debugger Timeout and the Launch Timeout fields until
your application starts without errors.

5.4 Sample Programs
Sourcery G++ comes with some simple applications. You can import the sample programs into an
IDE project.

Start by following the steps described in Section 5.2, “Building Applications”. Call the project
sample, and do not create a new source file.

39

Using the Sourcery G++ IDE

Click Finish to import the selected file.

At this point, the sample project exists, but there is no associated source code. The next step is to
import a file from the example directory. Right-click on the sample project, and select Import....
Select General → File System, and click Next. Click on Browse... beside the From
directory: edit box. Navigate to the Sourcery G++ install directory and then to
share/sourceryg++-arm-none-symbianelf-examples/fibonacci, and click Ok.
Click the checkbox beside main.c and fib.c, then click Finish.

The “Managed Make C project” compiles automatically. Your sample program is now ready to execute
or debug. Please refer to Section 5.3, “Debugging Applications” for instructions on how to debug
the target application.

40

Using the Sourcery G++ IDE

Chapter 6
Using Sourcery G++ from the
Command Line
This chapter demonstrates the use of Sourcery G++ Lite from the command line. This
chapter assumes you have installed Sourcery G++ Lite as described in Chapter 4, Installation
and Configuration. If you prefer to use an integrated development environment to build your
applications, you may refer to Chapter 5, Using the Sourcery G++ IDE instead.

41

6.1 Building an Application
This chapter explains how to build an application with Sourcery G++ Lite using the command line.
As elsewhere in this manual, this section assumes that your target system is arm-none-symbianelf.
If you are using a different target system, you must replace commands that begin with arm-none-
symbianelf with the name of your target system.

Using an editor (such as notepad on Microsoft Windows or vi on UNIX-like systems), create a file
named hello.c containing the following simple program:

#include <stdio.h>

int
main (void)
{
 printf("Hello World!\n");
 return 0;
}

Compile and link this program using the command:

> arm-none-symbianelf-gcc -o hello hello.c

There should be no output from the compiler. (If you are building a C++ application, instead of a C
application, replace arm-none-symbianelf-gcc with arm-none-symbianelf-g++.)

Sourcery G++ Lite may require that you specify a linker script to build the application. If you receive
linker errors like “undefined reference to `read'”, then you must select an appropriate linker script
for your target system. Default linker scripts are provided in arm-none-symbianelf/lib. You
may use a linker script by adding the following -T script to the compiler command line.

6.2 Running an Application
If the target system is the same as the host system (e.g., if you are running Sourcery G++ Lite on
IA32 GNU/Linux to build an application for IA32 GNU/Linux), then you can just run the resulting
application. On a Microsoft Windows system, you may use the command:

> hello

On a GNU/Linux or Solaris system, use the slightly more complex:

> ./hello

command. In either case, you should see:

Hello world!

If the target system is not the same as the host system, then you cannot run the application directly.
Instead, you must run the application on the target system. You should consult the manuals for your
target system to determine the exact procedures required to run the application.

On some systems, Sourcery G++ Lite includes a simulator that can be used to run the program. To
use the simulator run:

42

Using Sourcery G++ from the
Command Line

> arm-none-symbianelf-run hello

The simulator is available if you see the expected output:

Hello, world!

There is no simulator for your target system if you see a message like:

'arm-none-symbianelf-run' is not recognized \
as an internal or external command

or:

arm-none-symbianelf-run: command not found

43

Using Sourcery G++ from the
Command Line

	Sourcery G++ Lite
	Preface
	1Intended Audience
	2Organization
	3Typographical Conventions

	Chapter 1Sourcery G++ Lite Licenses
	1.1Licenses for Sourcery G++ Lite Components
	1.2Sourcery G++™ Software License Agreement

	Chapter 2Sourcery G++ Subscriptions
	2.1About Sourcery G++ Subscriptions
	2.2Accessing your Sourcery G++ Subscription Account

	Chapter 3Sourcery G++ Lite for ARM SymbianOS
	3.1SymbianOS Runtime Libraries
	3.2NEON SIMD Code
	3.3Sourcery G++ Lite Release Notes
	3.3.1Changes in Sourcery G++ Lite 2007q3-52
	3.3.2Changes in Sourcery G++ Lite 2007q1-21
	3.3.3Changes in Sourcery G++ Lite 2007q1-10
	3.3.4Changes in Sourcery G++ Lite 4.1-37
	3.3.5Changes in Sourcery G++ Lite 4.1-34
	3.3.6Changes in Sourcery G++ Lite 4.1-33
	3.3.7Changes in Sourcery G++ Lite 4.1-31
	3.3.8Changes in Sourcery G++ Lite 4.1-29
	3.3.9Changes in Sourcery G++ Lite 4.1-28
	3.3.10Changes in Sourcery G++ Lite 4.1-27
	3.3.11Changes in Sourcery G++ Lite 4.1-23
	3.3.12Changes in Sourcery G++ Lite 4.1-21
	3.3.13Changes in Sourcery G++ Lite 4.1-19
	3.3.14Changes in Sourcery G++ Lite 4.1-18
	3.3.15Changes in Sourcery G++ Lite 4.1-16
	3.3.16Changes in Sourcery G++ Lite 4.1-15
	3.3.17Changes in Sourcery G++ Lite 4.1-13
	3.3.18Changes in Sourcery G++ Lite 4.1-9
	3.3.19Changes in Sourcery G++ Lite 4.1-8
	3.3.20Changes in Sourcery G++ Lite 4.1-4
	3.3.21Changes in Sourcery G++ Lite 4.1-1

	Chapter 4Installation and Configuration
	4.1Terminology
	4.2System Requirements
	4.2.1Host Operating System Requirements
	4.2.2Host Hardware Requirements
	4.2.3Target System Requirements

	4.3Downloading an Installer
	4.4Installing Sourcery G++ Lite
	4.4.1Installing Sourcery G++ Lite on Microsoft Windows
	4.4.2Installing Sourcery G++ Lite on GNU/Linux systems with an X Window System
	4.4.3Installing Sourcery G++ Lite on Solaris or GNU/Linux systems without an X Window System
	4.4.4Installing Sourcery G++ Lite on RPM-based GNU/Linux systems
	4.4.5Installing the Java Runtime Environment

	4.5Uninstalling Sourcery G++ Lite
	4.5.1Uninstalling Sourcery G++ Lite on Microsoft Windows
	4.5.2Uninstalling Sourcery G++ Lite on Microsoft Windows Vista
	4.5.3Uninstalling Sourcery G++ Lite on GNU/Linux using the graphical uninstaller
	4.5.4Uninstalling Sourcery G++ Lite on RPM-based GNU/Linux systems
	4.5.5Uninstalling Sourcery G++ Lite on GNU/Linux

	4.6Setting up the Environment
	4.6.1Setting up the Environment on Microsoft Windows
	4.6.1.1Working with Cygwin

	4.6.2Setting up the Environment on GNU/Linux or Solaris

	Chapter 5Using the Sourcery G++ IDE
	5.1Overview
	5.2Building Applications
	5.2.1Setting Up
	5.2.2Writing Source Code
	5.2.3Using Cross-Reference Information
	5.2.4Dealing with Errors
	5.2.5Using Standard Make Mode

	5.3Debugging Applications
	5.3.1Starting the Debugger
	5.3.2Choosing a Debugging Mode
	5.3.2.1Selecting a Debugger

	5.3.3Controlling Execution
	5.3.4Low-Level Debugging
	5.3.5Troubleshooting

	5.4Sample Programs

	Chapter 6Using Sourcery G++ from the Command Line
	6.1Building an Application
	6.2Running an Application

