
Nova Simulator Usage
31-May-2008

COPYRIGHT NOTICE

The following copyright notice applies to the SIMH source, binary, and documentation:

Original code published in 1993-2008, written by Robert M Supnik
Copyright (c) 1993-2008, Robert M Supnik

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL ROBERT M SUPNIK BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Except as contained in this notice, the name of Robert M Supnik shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization from Robert M Supnik.

1 Simulator Files ...3
2 Nova Features ...3

2.1 CPU ..4
2.2 Programmed I/O Devices ...5

2.2.1 Paper Tape Reader (PTR)...5
2.2.2 Paper Tape Punch (PTP) ..6
2.2.3 Terminal Input (TTI) ...6
2.2.4 Terminal Output (TTO) ..7
2.2.5 Line Printer (LPT) ..7
2.2.6 Real-Time Clock (RTC) ...8
2.2.7 Plotter (PLT) ..8
2.2.8 Second Terminal (TTI1, TTO1)..9
2.2.9 Asynchronous Multiplexers (QTY, ALM)..10

2.3 Fixed Head Disk (DSK)...11
2.4 Moving Head Disk (DKP)..12
2.5 Magnetic Tape (MTA) ...13

3 Symbolic Display and Input..14

This memorandum documents the Nova simulator.

1 Simulator Files

sim/ scp.h
 sim_console.h
 sim_defs.h
 sim_fio.h
 sim_rev.h
 sim_sock.h
 sim_tape.h
 sim_timer.h
 sim_tmxr.h
 scp.c
 sim_console.c
 sim_fio.c
 sim_sock.c
 sim_tape.c
 sim_timer.c
 sim_tmxr.c

sim/nova/ nova_defs.h
 nova_cpu.c
 nova_clk.c
 nova_dkp.c
 nova_dsk.c
 nova_lp.c
 nova_mta.c
 nova_plt.c
 nova_qty.c
 nova_sys.c
 nova_tt.c
 nova_tt1.c

2 Nova Features

The Nova simulator is configured as follows:

device names simulates

CPU Nova, Nova 3, Nova 4 CPU with 32KW of memory,

 Or Keronix CPU with 64KW of memory

- hardware multiply/divide

PTR,PTP paper tape reader/punch

TTI,TTO console terminal

TTI1,TTO1 second terminal

LPT line printer

PLT plotter

RTC real-time clock

DSK head-per-track disk controller

DKP moving head disk controller with four drives

MTA magnetic tape controller with eight drives

QTY 4060 multiplexer with up to 64 lines

ALM 4255 multiplexer with up to 64 lines

The Nova simulator implements these unique stop conditions:

- Reference to undefined I/O device, and STOP_DEV is set
- More than INDMAX indirect addresses are detected during an interrupt
- More than INDMAX indirect addresses are detected during memory reference address decoding

Note that indirect address loop detection does not exist on unmapped Novas. Some DG diagnostics test
thousands of levels of indirect addressing. INDMAX may have to be set to 32,000 to get diagnostics to run
properly.

The LOAD command supports standard binary format tapes. The DUMP command is not implemented.

All devices except TTI can be disabled or enabled, by the commands:

 SET <dev> DISABLED

 SET <dev> ENABLED

All devices except QTY are enabled by default.

2.1 CPU

The only CPU options are the presence of the optional instructions and the size of main memory.

 SET CPU MDV enable multiply/divide

 SET CPU EXT64KW enable extended 64KW memory mode

 SET CPU NOVA3 set Nova3 CPU

 SET CPU NOVA4 set Nova4 CPU

 SET CPU KERONIX set Keronix CPU

 SET CPU NONE disable all optional instructions

 SET CPU 4K set memory size = 4K

 SET CPU 8K set memory size = 8K

 SET CPU 12K set memory size = 12K

 SET CPU 16K set memory size = 16K

 SET CPU 20K set memory size = 20K

 SET CPU 24K set memory size = 24K

 SET CPU 28K set memory size = 28K

 SET CPU 32K set memory size = 32K

 SET CPU 36K set memory size = 36K

 SET CPU 40K set memory size = 40K

 SET CPU 44K set memory size = 44K

 SET CPU 48K set memory size = 48K

 SET CPU 52K set memory size = 52K

 SET CPU 56K set memory size = 56K

 SET CPU 60K set memory size = 60K

 SET CPU 64K set memory size = 64K

(MDV = unsigned multiply/divide instructions)

(Nova 3 = unsigned multiply/divide, stack, trap instructions)

(Nova 4 = unsigned and signed multiply/divide, stack, byte,

 trap instructions)

 (Keronix = unsigned multiply/divide, extended 64KW mode)

If memory size is being reduced, and the memory being truncated contains non-zero data, the simulator
asks for confirmation. Data in the truncated portion of memory is lost. Initial memory size is 32K.

The CPU supports the BOOT command. BOOT CPU simulates the Nova hardware APL (automatic program

load) feature. The switch register (SR) bits 12:17 must contain the device code of the device to be booted.
If the device is a "high-speed" (channel) device, SR bit 0 should also be set.

CPU registers include the visible state of the processor as well as the control registers for the interrupt
system.

 name size comments

 PC 15 program counter

 AC0..AC3 16 accumulators 0..3

 C 1 carry

 SR 16 front panel switches

 PI 16 priority interrupt mask

 ION 1 interrupt enable

 ION_DELAY 1 interrupt enable delay for ION

 PWR 1 power fail interrupt

 INT 15 interrupt pending flags

 BUSY 15 device busy flags

 DONE 15 device done flags

 DISABLE 15 device interrupt disable flags

 STOP_DEV 1 stop on undefined IOT

 INDMAX 16 maximum number of nested indirects

 PCQ[0:63] 15 PC prior to last JMP, JMS, or interrupt;

 most recent PC change first

 WRU 8 interrupt character

The CPU can maintain a history of the most recently executed instructions. This is controlled by the SET

CPU HISTORY and SHOW CPU HISTORY commands:

 SET CPU HISTORY clear history buffer

 SET CPU HISTORY=0 disable history

 SET CPU HISTORY=n enable history, length = n

 SHOW CPU HISTORY print CPU history

 SHOW CPU HISTORY=n print first n entries of CPU history

The maximum length for the history is 65536 entries.

2.2 Programmed I/O Devices

2.2.1 Paper Tape Reader (PTR)

The paper tape reader (PTR) reads data from a disk file. The POS register specifies the number of the next
data item to be read. Thus, by changing POS, the user can backspace or advance the reader.

The paper tape reader implements these registers:

 name size comments

 BUF 8 last data item processed

 BUSY 1 device busy flag

 DONE 1 device done flag

 DISABLE 1 interrupt disable flag

 INT 1 interrupt pending flag

 POS 32 position in the input file

 TIME 24 time from I/O initiation to interrupt

 STOP_IOE 1 stop on I/O error

Error handling is as follows:

 error STOP_IOE processed as

 not attached 1 report error and stop

 0 out of tape

 end of file 1 report error and stop

 0 out of tape

 OS I/O error x report error and stop

2.2.2 Paper Tape Punch (PTP)

The paper tape punch (PTP) writes data to a disk file. The POS register specifies the number of the next
data item to be written. Thus, by changing POS, the user can backspace or advance the punch.

The paper tape punch implements these registers:

 name size comments

 BUF 8 last data item processed

 BUSY 1 device busy flag

 DONE 1 device done flag

 DISABLE 1 interrupt disable flag

 INT 1 interrupt pending flag

 POS 32 position in the output file

 TIME 24 time from I/O initiation to interrupt

 STOP_IOE 1 stop on I/O error

Error handling is as follows:

 error STOP_IOE processed as

 not attached 1 report error and stop

 0 out of tape

 OS I/O error x report error and stop

2.2.3 Terminal Input (TTI)

The terminal input polls the console keyboard for input. Terminal input options include the ability to set ANSI
mode or limited Dasher compatibility mode:

 SET TTI ANSI normal mode

 SET TTI DASHER Dasher mode

Setting either TTI or TTO changes both devices. In Dasher mode, carriage return is changed to newline on
input, and ^X is changed to backspace.

The terminal input implements these registers:

 name size comments

 BUF 8 last data item processed

 BUSY 1 device busy flag

 DONE 1 device done flag

 DISABLE 1 interrupt disable flag

 INT 1 interrupt pending flag

 POS 32 number of characters input

 TIME 24 keyboard polling interval

2.2.4 Terminal Output (TTO)

The terminal output writes to the simulator console window. Terminal output options include the ability to set
ANSI mode or limited Dasher compatibility mode:

 SET TTI ANSI normal mode

 SET TTI DASHER Dasher mode

Setting either TTI or TTO changes both devices. In Dasher mode, carriage return is changed to newline on
input, and ^X is changed to backspace.

The terminal output implements these registers:

 name size comments

 BUF 8 last data item processed

 BUSY 1 device busy flag

 DONE 1 device done flag

 DISABLE 1 interrupt disable flag

 INT 1 interrupt pending flag

 POS 32 number of characters output

 TIME 24 time from I/O initiation to interrupt

2.2.5 Line Printer (LPT)

The line printer (LPT) writes data to a disk file. The POS register specifies the number of the next data item
to be written. Thus, by changing POS, the user can backspace or advance the printer.

The line printer implements these registers:

 name size comments

 BUF 8 last data item processed

 BUSY 1 device busy flag

 DONE 1 device done flag

 DISABLE 1 interrupt disable flag

 INT 1 interrupt pending flag

 POS 32 number of characters output

 TIME 24 time from I/O initiation to interrupt

 STOP_IOE 1 stop on I/O error

Error handling is as follows:

 error STOP_IOE processed as

 not attached 1 report error and stop

 0 out of paper

 OS I/O error x report error and stop

2.2.6 Real-Time Clock (RTC)

The real-time clock (RTC) line frequency can be adjusted as follows:

 SET RTC 60HZ set line frequency to 60Hz

 SET RTC 50HZ set line frequency to 50Hz

The default is 60Hz.

The clock implements these registers:

 name size comments

 SELECT 2 selected clock interval

 BUSY 1 device busy flag

 DONE 1 device done flag

 DISABLE 1 interrupt disable flag

 INT 1 interrupt pending flag

 TIME0 24 clock frequency, select = 0

 TIME1 24 clock frequency, select = 1

 TIME2 24 clock frequency, select = 2

 TIME3 24 clock frequency, select = 3

The real-time clock autocalibrates; the clock interval is adjusted up or down so that the clock tracks actual
elapsed time.

2.2.7 Plotter (PLT)

The plotter (PLT) writes data to a disk file. The POS register specifies the number of the next data item to
be written. Thus, by changing POS, the user can backspace or advance the plotter.

The plotter implements these registers:

 name size comments

 BUF 8 last data item processed

 BUSY 1 device busy flag

 DONE 1 device done flag

 DISABLE 1 interrupt disable flag

 INT 1 interrupt pending flag

 POS 32 position in the output file

 TIME 24 time from I/O initiation to interrupt

 STOP_IOE 1 stop on I/O error

Error handling is as follows:

 error STOP_IOE processed as

 error STOP_IOE processed as

 not attached 1 report error and stop

 0 out of paper

 OS I/O error x report error and stop

2.2.8 Second Terminal (TTI1, TTO1)

The second terminal consists of two independent devices, TTI1 and TTO1. The additional terminal performs
input and output through a Telnet session connecting into a user-specified port. The ATTACH command

specifies the port to be used:

 ATTACH TTI1 <port> set up listening port

where port is a decimal number between 1 and 65535 that is not being used for other TCP/IP activities.

Once TTI1 is attached and the simulator is running, the terminal listens for a connection on the specified
port. It assumes that the incoming connection is a Telnet connection. The connection remains open until
disconnected by the Telnet client, or by a DETACH TTI1 command.

The second terminal has two options, recognized on both devices, for setting limited Dasher-compatibility
mode or ANSI mode:

 SET TTI1 ANSI normal mode

 SET TTI1 DASHER Dasher mode

 SET TTO1 ANSI normal mode

 SET TTO1 DASHER Dasher mode

Setting either TTI1 or TTO1 changes both devices. In Dasher mode, carriage return is changed to newline
on input, and ^X is changed to backspace. TTO1 supports output logging. The SET TTO1 LOG command

enables logging:

 SET TTO1 LOG=filename log output to filename

The SET TTO1 NOLOG command disables logging and closes the open log file, if any.

Other special TTI1 commands:

SHOW TTI1 CONNECTIONS show current connections

SHOW TTI1 STATISTICS show statistics for active connections

SET TTO1 DISCONNECT disconnects the line.

The second terminal input implements these registers:

 name size comments

 BUF 8 last data item processed

 BUSY 1 device busy flag

 DONE 1 device done flag

 DISABLE 1 interrupt disable flag

 INT 1 interrupt pending flag

 TIME 24 keyboard polling interval

The second terminal output implements these registers:

 name size comments

 BUF 8 last data item processed

 BUSY 1 device busy flag

 DONE 1 device done flag

 DISABLE 1 interrupt disable flag

 INT 1 interrupt pending flag

 TIME 24 time from I/O initiation to interrupt

2.2.9 Asynchronous Multiplexers (QTY, ALM)

The QTY and ALM are terminal multiplexers with up to 64 lines. Either the QTY or ALM can be enabled, but
not both; the ALM is enabled by default. The number of lines can be changed with the command

 SET {QTY|ALM} LINES=n set line count to n

The line count maximum is 64.

The QTY and ALM support 8-bit input and output of characters. 8-bit I/O may be incompatible with certain
operating systems; 7-bit is the default. The command

 SET {QTY|ALM} 8B

enables 8-bit input and output.

The terminal lines perform input and output through Telnet sessions connected to a user-specified port. The
ATTACH command specifies the port to be used:

 ATTACH {-am} {QTY|ALM} <port> set up listening port

where port is a decimal number between 1 and 65535 that is not being used for other TCP/IP activities. For
the ALM multiplexer, the optional switch -m turns on the multiplexer modem controls; the optional switch -a
turns on active disconnects (disconnect session if computer clears Data Terminal Ready). The QTY
multiplexer does not support modem control. Without modem control, the multiplexer behaves as though
terminals were directly connected; disconnecting the Telnet session does not cause any operating system-
visible change in line status.

Once the multiplexer is attached and the simulator is running, it listens for connections on the specified port.
It assumes that the incoming connections are Telnet connections. The connection remains open until
disconnected by the simulated program, the Telnet client, a SET {QTY|ALM} DISCONNECT command, or a

DETACH {QTY|ALM} command.

Other special QTY/ALM commands:

SHOW {QTY|ALM} CONNECTIONS show current connections

SHOW {QTY|ALM} STATISTICS show statistics for active connections

SET {QTY|ALM} DISCONNECT=n disconnects the specified line.

The QTY/ALM implement these registers:

 name size comments

 BUF 8 character buffer

 BUSY 1 device busy flag

 DONE 1 device done flag

 DISABLE 1 device disable flag

 INT 1 interrupt pending flag

 MDMCTL 1 modem control flag

 AUTODS 1 autodisconnect flag

 POLLS 32 number of service polls

 STOP_IOE 1 stop on I/O error

The multiplexers do not support save and restore. All open connections are lost when the simulator shuts
down or the multiplexer is detached.

2.3 Fixed Head Disk (DSK)

Fixed head disk options include the ability to set the number of platters to a fixed value between 1 and 8, or
to autosize the number of platters from the attached file:

 SET DSK 1P one platter (256K)

 SET DSK 2P two platters (512K)

 SET DSK 3P three platters (768K)

 SET DSK 4P four platters (1024K)

 SET DSK 5P five platters (1280K)

 SET DSK 6P six platters (1536K)

 SET DSK 7P seven platters (1792K)

 SET DSK 8P eight platters (2048K)

 SET DSK AUTOSIZE autosized on ATTACH

The default is 1P (minimum size). The fixed head disk controller supports the BOOT command.

The fixed head disk controller implements these registers:

 name size comments

 STAT 16 status

 DA 16 disk address

 MA 16 memory address

 BUSY 1 device busy flag

 DONE 1 device done flag

 DISABLE 1 device disable flag

 INT 1 interrupt pending flag

 WLK 8 write lock switches

 TIME 24 rotational delay, per sector

 STOP_IOE 1 stop on I/O error

Error handling is as follows:

 error STOP_IOE processed as

 not attached 1 report error and stop

 0 disk not ready

Fixed head disk data files are buffered in memory; therefore, end of file and OS I/O errors cannot occur.

2.4 Moving Head Disk (DKP)

Moving head disk options include the ability to make units write enabled or write locked, and to select the
type of drive (or autosize):

 SET DKPn LOCKED set unit n write locked

 SET DKPn WRITEENABLED set unit n write enabled

 SET DKPn FLOPPY (or 6030) set unit n to floppy disk

 SET DKPn DSDD (or 6097) set unit n to double density floppy

 SET DKPn D31 (or 4047) set unit n to Diablo 31

 SET DKPn D44 (or 4234,6045) set unit n to Diablo 44

 SET DKPn C111 (or 4048) set unit n to Century 111

 SET DKPn C114 (or 2314,4057) set unit n to Century 114

 SET DKPn 6225 set unit n to 6225

 SET DKPn 6099 set unit n to 6099

 SET DKPn 6227 set unit n to 6227

 SET DKPn 6070 set unit n to 6070

 SET DKPn 6103 set unit n to 6103

 SET DKPn 4231 (or 3330) set unit n to 4231

 SET DKPn AUTOSIZE set type based on file size at ATTACH

Units can also be set ENABLED or DISABLED. The moving head disk controller supports the BOOT

command.

All drives have 256 16b words per sector. The other disk parameters are:

 drive cyl surf sectors size (MW) model numbers

 floppy 77 1 8 .158 6030

 dsdd floppy 77 2 16 .632 6097

 D31 203 2 12 1.247 4047, 4237, 4238

 D44 408 4 12 5.014 4234, 6045

 C111 203 10 6 3.118 4048

 C114 203 20 12 12.472 2314, 4057

 6225 245 2 20 2.508

 6099 192 4 32 6.291

 6227 245 6 20 7.526

 6070 408 4 24 10.027

 6103 192 8 32 12.583

 4231 411 19 23 45.979 3330

The moving head disk controller implements these registers:

 name size comments

 FCCY 16 flags, command, cylinder

 USSC 16 unit, surface, sector, count

 STAT 16 status

 MA 16 memory address

 BUSY 1 device busy flag

 DONE 1 device done flag

 DISABLE 1 interrupt disable flag

 INT 1 interrupt pending flag

 DIAG 1 diagnostic mode flag

 MAP 2 map select

 STIME 24 seek time, per cylinder

 RTIME 24 rotational delay

Error handling is as follows:

 error processed as

 not attached disk not ready

 end of file assume rest of disk is zero

 OS I/O error report error and stop

2.5 Magnetic Tape (MTA)

Magnetic tape options include the ability to make units write enabled or write locked.

 SET MTAn LOCKED set unit n write locked

 SET MTAn WRITEENABLED set unit n write enabled

Magnetic tape units can be set to a specific reel capacity in MB, or to unlimited capacity:

 SET MTAn CAPAC=m set unit n capacity to m MB (0 = unlimited)

 SHOW MTAn CAPAC show unit n capacity in MB

Units can also be set ENABLED or DISABLED. The magnetic tape controller supports the BOOT command.

The magnetic tape controller implements these registers:

 name size comments

 CU 16 command, unit

 MA 16 memory address

 WC 16 word count

 STA1 16 status word 1

 STA2 16 status word 2

 EP 1 extended polling mode (not supported)

 BUSY 1 device busy flag

 DONE 1 device done flag

 DISABLE 1 interrupt disable flag

 INT 1 interrupt pending flag

 STOP_IOE 1 stop on I/O error

 CTIME 24 controller delay

 RTIME 24 record delay

 UST[0:7] 32 unit status, units 0-7

 POS[0:7] 31 position, units 0-7

Error handling is as follows:

 error processed as

 not attached tape not ready

 end of file bad tape

 OS I/O error report error and stop

3 Symbolic Display and Input

The Nova simulator implements symbolic display and input. Display is controlled by command line switches:

 -a display as ASCII character

 -c display as two packed ASCII characters

 -m display instruction mnemonics

Input parsing is controlled by the first character typed in or by command line switches:

 ' or -a ASCII character

 " or -c two packed ASCII characters

 alphabetic instruction mnemonic

 numeric octal number

Instruction input uses standard Nova assembler syntax. There are three instruction classes: memory
reference, IOT, and operate.

Memory reference instructions have the format

 memref {ac,}{@}address{,index}

LDA and STA require an initial register; ISZ, DSZ, JSR, and JMP do not. The syntax for addresses and
indices is as follows:

syntax mode displacement comments

0 <= n < 0400 0 n

{+/-}n >= 0400 1 {+/-}n – PC must be in range [-200, 177]

 invalid on disk

.+/-n 1 {+/-}n must be in range [-200, 177]

{+/-}n,2 2 {+/-}n must be in range [-200, 177]

{+/-}n,3 3 {+/-}n must be in range [-200, 177]

IOT instructions have one of four formats:

 syntax example

 iot HALT

 iot reg INTA

 iot device SKPDN

 iot reg,device DOAS

Devices may be specified as mnemonics or as numbers in the range 0 - 077.

Operate instructions have the format:

 opcode{#} reg,reg{,skip}

In all Nova instructions, blanks may be substituted for commas as field delimiters.

