PDP-11 Simulator Usage 01-Dec-2008 #### **COPYRIGHT NOTICE** The following copyright notice applies to the SIMH source, binary, and documentation: Original code published in 1993-2008, written by Robert M Supnik Copyright (c) 1993-2008, Robert M Supnik Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik. | 1 | Simulato | or Files | | |---|---------------|---|----| | 2 | | Features | | | _ | | PU and System | | | | 2.1.1 | CPU | | | | 2.1.2 | System Registers (SYSTEM) | | | | | Devices | | | | 2.2.1 | Unibus and Qbus DMA Devices | | | | 2.2.2 | I/O Device Addressing | | | | 2.3 Pro | ogrammed I/O Devices | | | | 2.3.1 | PC11 Paper Tape Reader (PTR) | 10 | | | 2.3.2 | PC11 Paper Tape Punch (PTP) | 11 | | | 2.3.3 | DL11 Terminal Input (TTI) | 11 | | | 2.3.4 | DL11 Terminal Output (TTO) | | | | 2.3.5 | LP11 Line Printer (LPT) | | | | 2.3.6 | KW11-L Line-Time Clock (CLK) | | | | 2.3.7 | KW11-P Programmable Clock (PCLK) | | | | 2.3.8 | TA11/TA60 Cassette Tape (CT) | | | | 2.4 Flo | oppy Disk Drives | 14 | | | 2.4.1 | RX11/RX01 Floppy Disk (RX) | | | | 2.4.2 | RX211/RX02 Floppy Disk (RY) | | | | | artridge Disk Drives | | | | 2.5.1 | RK11/RK05 Cartridge Disk (RK) | | | | 2.5.2 | RK611/RK06,RK07 Cartridge Disk (HK) | 17 | | | 2.5.3 | RL11(RLV12)/RL01,RL02 Cartridge Disk (RL) | | | | | assbus Subsystems | | | | 2.6.1 | RH70/RH11 Massbus Adapters (RHA, RHB) | | | | 2.6.2 | RP04/05/06/07, RM02/03/05/80 Disk Pack Drives (RP) | | | | 2.6.3 | TM02/TM03/TE16/TU45/TU77 Magnetic Tapes (TU) | | | | | QDX3/UDA50 MSCP Disk Controllers (RQ, RQB, RQC, RQD) | | | | 2.8 Fix 2.8.1 | xed Head Disks | | | | 2.8.2 | RC11 Fixed Head Disk (RC)RF11/RS11 Fixed Head Disk (RF) | | | | | C11/TU56 DECtape (DT) | | | | | agnetic Tape Controllers | | | | 2.10 1016 | TM11 Magnetic Tape (TM) | | | | 2.10.1 | TS11/TSV05 Magnetic Tape (TS) | | | | 2.10.2 | TQK50 TMSCP Disk Controller (TQ) | | | | | ommunications Devices | | | | 2.11.1 | DC11 Additional Terminal Interfaces (DCI/DCO) | 29 | | | 2.11.2 | KL11/DL11 Additional Terminal Interfaces (DLI/DLO) | | | | 2.11.3 | DZ11 Terminal Multiplexer (DZ) | | | | 2.11.4 | DHQ11 Terminal Multiplexer (VH) | | | | | hernet Controllers | | | | 2.12.1 | DELQA/DEQNA Qbus Ethernet Controllers (XQ, XQB) | 34 | | | 2.12.2 | DELUA/DEUNA Unibus Ethernet Controllers (XU, XUB) | 35 | | | | R11/CD11 Card Reader (CR) | | | | | ithmetic Options | | | | 2.14.1 | KE11A Extended Arithmetic Option (KE) | | | | 2.14.2 | KG11A Communications Arithmetic Option (KG) | 38 | | 3 | Symboli | ic Display and Input | 38 | | | | | | This memorandum documents the DEC PDP-11 simulator. ## 1 Simulator Files To compile the PDP-11, you must define VM_PDP11 as part of the compilation command line. If you want expanded file support, you must also define USE_INT64 and USE_ADDR64 as part of the compilation command line. ``` sim/ scp.h sim_console.h sim_defs.h sim_ether.h sim_fio.h sim_rev.h sim_sock.h sim_tape.h sim timer.h sim tmxr.h scp.c sim_console.c sim_ether.c sim_fio.c sim_sock.c sim tape.c sim_timer.c sim_tmxr.c sim/pdp11/ pdp11_cpumod.h pdp11_cr_dat.h pdp11_defs.h pdp11_mscp.h pdp11_uqssp.h pdp11_xq.h pdp11_xq_bootrom.h pdp11_cpu.c pdp11_cpumod.c pdp11_cr.c pdp11_dc.c pdp11_dl.c pdp11_dz.c pdp11_fp.c pdp11_hk.c pdp11_ke.c pdp11_kg.c pdp11_io.c pdp11_lp.c pdp11_pclk.c pdp11_pt.c pdp11_rc.c pdp11_rf.c pdp11_rh.c pdp11_rk.c pdp11_rl.c pdp11_rp.c pdp11_rq.c ``` ``` pdp11_rx.c pdp11_ry.c pdp11_stddev.c pdp11_sys.c pdp11_ta.c pdp11_tc.c pdp11_tm.c pdp11_tg.c pdp11_ty.c pdp11_ty.c pdp11_ty.c pdp11_vh.c pdp11_xq.c pdp11_xq.c pdp11_xq.c pdp11_xu.c ``` ## 2 PDP-11 Features #### The PDP-11 simulator is configured as follows: | device name(s) | simulates | |----------------|--| | CPU | PDP-11 CPU with 256KB of memory | | PTR,PTP | PC11 paper tape reader/punch | | TTI,TTO | DL11 console terminal | | CR | CR11/CD11 card reader | | LPT | LP11 line printer | | CLK | KW11-L line frequency clock | | PCLK | KW11-P programmable clock | | DCI,DCO | DC11 additional serial lines (up to 16) | | DLI, DLO | KL11/DL11 additional serial lines (up to 16) | | DZ | DZ11 8-line terminal multiplexer (up to 4) | | VH | DHU11/DHQ11 8-line terminal multiplexer (up to 4) | | RK | RK11/RK05 cartridge disk controller with eight drives | | HK | RK611/RK06,RK07 cartridge disk controller with eight | | | Drives | | RC | RC11 fixed head disk | | RF | RF11/RS11 fixed head disk | | RL | RL11(RLV12)/RL01, RL02 cartridge disk controller with | | | four drives | | RH | RH11/RH70 Massbus adapter (up to 2) | | RP | RP04/05/06/07, $RM02/03/05/80$ Massbus disks with eight | | | drives | | RQ | RQDX3/UDA50 MSCP controller with four drives | | RQB | second RQDX3/UDA50 MSCP controller with four drives | | RQC | third RQDX3/UDA50 MSCP controller with four drives | | RQD | fourth RQDX3/UDA50 MSCP controller with four drives | | RX | RX11/RX01 floppy disk controller with two drives | | RY | RX211/RX01 floppy disk controller with two drives | | TA | TA11/TU60 cassette controller with two drives | | TC | TC11/TU56 DECtape controller with eight drives | | TM | TM11/TU10 magnetic tape controller with eight drives | | TS | TS11/TSV05 magnetic tape controller with one drive | | TQ | TQK50/TU81 TMSCP magnetic tape controller with four drives | | TU | TM02/TM03 magnetic tape formatter with eight drives | | XQ | DELQA/DEQNA Qbus Ethernet controller | | XQB | second DELQA/DEQNA Qbus Ethernet controller | |-----|---| | XU | DELUA/DEUNA Unibus Ethernet controller | | XUB | Second DELUA/DEUNA Unibus Ethernet controller | | KE | KE11A extended arithmetic option | | KG | KG11A communications arithmetic option | The DZ, VH, DCI/DCO, DLI/DLO, RK, HK, RC, RF, RL, RP, RQ, RQB, RQC, RQD, RX, RY, TA, TC, TM, TS, TQ, XQ, XQB, XU, XUB, KE, and KG devices can be set DISABLED. DCI/DCO, DLI/DLO, RC, RF, RQB, RQC, RQD, RY, TA, TS, VH, XQB, XU, XUB, KE, and KG are disabled by default. The PDP-11 simulator implements several unique stop conditions: - Abort during exception vector fetch, and register STOP_VEC is set - Abort during exception stack push, and register STOP_SPA is set - Trap condition 'n' occurs, and register STOP_TRAP<n> is set - Wait state entered, and no I/O operations outstanding (i.e., no interrupt can ever occur) - A simulated DECtape runs off the end of its reel, and flag STOP_OFFR is set The LOAD command supports standard binary format tapes. The DUMP command is not implemented. ## 2.1 CPU and System ## 2.1.1 CPU The CPU options include CPU type, CPU instruction set options for the specified type, and the size of main memory. | SET | CPU | 11/03 | set | CPU | type | to | 11/03 | |-----|-----|--------|------|-------|--------|------|------------| | SET | CPU | 11/04 | set | CPU | type | to | 11/04 | | SET | CPU | 11/05 | set | CPU | type | to | 11/05 | | SET | CPU | 11/20 | set | CPU | type | to | 11/20 | | SET | CPU | 11/23 | set | CPU | type | to | 11/23 | | SET | CPU | 11/23+ | set | CPU | type | to | 11/23+ | | SET | CPU | 11/24 | set | CPU | type | to | 11/24 | | SET | CPU | 11/34 | set | CPU | type | to | 11/34 | | SET | CPU | 11/40 | set | CPU | type | to | 11/40 | | SET | CPU | 11/44 | set | CPU | type | to | 11/44 | | SET | CPU | 11/45 | set | CPU | type | to | 11/45 | | SET | CPU | 11/53 | set | CPU | type | to | 11/53 | | SET | CPU | 11/60 | set | CPU | type | to | 11/60 | | SET | CPU | 11/70 | set | CPU | type | to | 11/70 | | SET | CPU | 11/73 | set | CPU | type | to | 11/73 | | SET | CPU | 11/73B | set | CPU | type | to | 11/73B | | SET | CPU | 11/83 | set | CPU | type | to | 11/83 | | SET | CPU | 11/84 | set | CPU | type | to | 11/84 | | set | CPU | 11/93 | set | CPU | type | to | 11/93 | | set | CPU | 11/94 | set | CPU | type | to | 11/94 | | SET | CPU | U18 | depr | ecat | ted; s | same | as 11/45 | | SET | CPU | URH11 | depr | ecat | ted; s | same | e as 11/84 | | SET | CPU | URH70 | depr | ecat | ted; s | same | e as 11/70 | | SET | CPU | Q22 | depr | ecat | ted; s | same | e as 11/73 | | SET | CPU | NOEIS | disa | ble | EIS i | inst | tructions | | SET | CPU | EIS | enab | ole E | EIS ir | nstr | ructions | | SET | CPU | NOFIS | disa | ble | FIS i | inst | tructions | | SET | CPU | FIS | enab | ole E | IS ir | nstr | ructions | | | | | | | | | | ``` SET CPU NOFPP disable FPP instructions enable FPP instructions SET CPU FPP disable CIS instructions SET CPU NOCIS SET CPU CIS enable CIS instructions SET CPU 16K set memory size = 16KB SET CPU 32K set memory size = 32KB SET CPU 48K set memory size = 48KB SET CPU 64K set memory size = 64KB SET CPU 96K set memory size = 96KB SET CPU 128K set memory size = 192KB SET CPU 192K set memory size = 256KB SET CPU 384K set memory size =
384KB SET CPU 512K set memory size = 512KB SET CPU 768K set memory size = 768KB SET CPU 1024K (or 1M) set memory size = 1024KB SET CPU 2048K (or 2M) set memory size = 2048KB SET CPU 3072K (or 3M) set memory size = 3072KB SET CPU 4096K (or 4M) set memory size = 4096KB SET CPU CIS enable CIS instructions SET CPU 48K SET CPU 64K SET CPU 96K SET CPU 128K SET CPU 192K SET CPU 256K SET CPU 256K .28K .J 192K .CPU 256K .ET CPU 384K .SET CPU 512K .SET CPU 768K .SET CPU 1024K (or 1M) .ET CPU 2048K (or 2M) .T CPU 3072K (or .T CPU 4096K (``` The CPU types and their capabilities are shown in the following table: | type | bus | mem | MMU? | Umap? | EIS? | FIS? | FPP? | CIS? | |--------|-----|------|------|-------|------|------|------|------| | 11/03 | Q | 64K | no | no | std | opt | no | no | | 11/04 | U | 64K | no | no | no | no | no | no | | 11/05 | U | 64K | no | no | no | no | no | no | | 11/20 | U | 64K | no | no | no | no | no | no | | 11/23 | Q | 4M | std | no | std | no | opt | opt | | 11/23+ | - Q | 4M | std | no | std | no | opt | opt | | 11/24 | U | 4M | std | std | std | no | opt | opt | | 11/34 | U | 256K | std | no | std | no | opt | no | | 11/40 | U | 256K | std | no | std | opt | no | no | | 11/44 | U | 4M | std | std | std | no | opt | opt | | 11/45 | U | 256K | std | no | std | no | opt | no | | 11/53 | Q | 4M | std | no | std | no | std | opt | | 11/60 | U | 256K | std | no | std | no | std | no | | 11/70 | U | 4M | std | std | std | no | opt | no | | 11/73 | Q | 4M | std | no | std | no | std | opt | | 11/73B | 3 Q | 4M | std | no | std | no | std | opt | | 11/83 | Q | 4M | std | no | std | no | std | opt | | 11/84 | U | 4M | std | std | std | no | std | opt | | 11/93 | Q | 4M | std | no | std | no | std | opt | | 11/94 | U | 4M | std | std | std | no | std | opt | If a capability is standard, it cannot be disabled; if a capability is not included, it cannot be enabled. The CPU implements a SHOW command to display the I/O address assignments: ``` show I/O space address assignments SHOW CPU IOSPACE ``` If memory size is being reduced, and the memory being truncated contains non-zero data, the simulator asks for confirmation. Data in the truncated portion of memory is lost. Initial memory size is 256KB. If memory size is increased to more than 256KB, or the bus structure is changed, the simulator disables peripherals that can't run in the current bus structure. These switches are recognized when examining or depositing in CPU memory: ``` -v interpret address as virtual d if mem mgt enabled, force data space if mem mgt enabled, force kernel mode if mem mgt enabled, force supervisor mode if mem mgt enabled, force user mode if mem mgt enabled, force previous mode ``` CPU registers include the architectural state of the PDP-11 processor as well as the control registers for the interrupt system. | name | size | comments | |--------------------------|----------|--| | PC | 16 | program counter | | R0R5 | 16 | ROR5, current register set | | SP | 16 | stack pointer, current mode | | R00R05 | 16 | ROR5, register set 0 | | R10R15 | 16 | ROR5, register set 1 | | KSP | 16 | kernel stack pointer | | SSP | 16 | supervisor stack pointer | | USP | 16 | user stack pointer | | PSW | 16 | processor status word | | CM | 2 | current mode, PSW<15:14> | | PM | 2 | previous mode, PSW<13:14> | | RS | 2 | register set, PSW<11> | | - | 3 | interrupt priority level, PSW<7:5> | | IPL
T | 1 | trace bit, PSW<4> | | | | | | N | 1 | negative flag, PSW<3> | | Z | 1 | zero flag, PSW<2> | | V | 1 | overflow flag, PSW<1> | | C | 1 | carry flag, PSW<0> | | PIRQ | 16 | programmed interrupt requests | | STKLIM | 16 | stack limit | | FACOHFAC5H | 32 | FACOFAC5, high 32 bits | | FAC0LFAC5L | 32 | FACOFAC5, low 32 bits | | FPS | 16 | floating point status | | FEA | 16 | floating exception address | | FEC | 4 | floating exception code | | MMR0 to 3 | 16 | memory management registers 0 to 3 | | $\{K/S/U\}\{I/D\}\{PAR/$ | PDR}{07} | | | | 16 | memory management registers | | IREQ[0:7] | 32 | interrupt pending flags, IPL 0 to 7 | | TRAPS | 18 | trap pending flags | | WAIT | 0 | wait state flag | | WAIT_ENABLE | 0 | wait state enable flag | | STOP_TRAPS | 18 | stop on trap flags | | STOP_VECA | 1 | stop on read abort in trap or interrupt | | STOP_SPA | 1 | stop on stack abort in trap or interrupt | | PCQ[0:63] | 16 | PC prior to last jump, branch, or interrupt; | | | | Most recent PC change first | | WRU | 8 | interrupt character | | | | | The CPU attempts to detect when the simulator is idle. When idle, the simulator does not use any resources on the host system. Idle detection is controlled by the SET IDLE and SET NOIDLE commands: | SET | CPU | IDLE | enable idle detection | |-----|-----|--------|------------------------| | SET | CPU | NOIDLE | disable idle detection | Idle detection is disabled by default. The CPU is considered idle if a WAIT instruction is executed. This will work for RSTS/E and RSX-11M+, but not for RT-11 or UNIX. The CPU can maintain a history of the most recently executed instructions. This is controlled by the SET CPU HISTORY and SHOW CPU HISTORY commands: ``` SET CPU HISTORY clear history buffer SET CPU HISTORY=0 disable history SET CPU HISTORY=n enable history, length = n SHOW CPU HISTORY print CPU history SHOW CPU HISTORY=n print first n entries of CPU history ``` The maximum length for the history is 262144 entries. ## 2.1.2 System Registers (SYSTEM) The SYSTEM device implements registers that vary among CPU types: | name | models | size | comments | |-----------------------|---|----------------|--| | SR | 11/04, 11/05, 11/20,
11/23+, 11/34, 11/40,
11/44, 11/45, 11/60,
11/70, 11/73B, 11/83,
11/84, 11/93, 11/94 | 16 | switch register or configuration register | | DR | 11/04, 11/05, 11/20,
1123+, 11/24, 11/34,
11/70, 11/73B, 11/83,
11/84, 11/93, 11/94 | 16 | display register or
board LEDs | | MEMERR | 11/44, 11/60, 11/70, 11/53, 11/73, 11/73B, 11/83, 11/84, 11/93, 11/94 | 16 | memory error register | | CCR | 11/44, 11/60, 11/70, 11/53, 11/73, 11/73B, 11/83, 11/84, 11/93, 11/94 | 16 | cache control register | | MAINT | 11/23+, 11/44, 11/70,
11/53, 11/73, 11/73B,
11/83, 11/84, 11/93,
11/94 | 16 | maintenance register | | HITMISS | 11/44, 11/60, 11/70, 11/53, 11/73, 11/73B, 11/83, 11/84, 11/93, 11/94 | 16 | hit/miss register | | CPUERR | 11/24, 11/44, 11/70,
11/53, 11/73, 11/73B,
11/83, 11/84, 11/93,
11/94 | 16 | CPU error register | | MBRK
SYSID
JCSR | 11/45, 11/70
11/70
11/53, 11/73B, 11/83,
11/84, 11/93, 11/94 | 16
16
16 | <pre>microbreak register system ID (default = 1234 hex) board control/status</pre> | | JPCR | 11/23+, 11/53, 11/73B, 11/83, 11/84, 11/93, 11/94 | 16 | page control register | |-------|---|----|---------------------------| | JASR | 11/93, 11/94 | 16 | additional status | | UDCR | 11/84, 11/94 | 16 | Unibus map diag control | | UDDR | 11/84, 11/94 | 16 | Unibus map diag data | | UCSR | 11/84, 11/94 | 16 | Unibus map control/status | | ULAST | 11/24 | 23 | last Unibus map result | For the 11/83, 11/84, 11/93, and 11/94, the user can set the default value of the clock frequency: ``` SET SYSTEM JCLK_DEFAULT={LINE|50Hz|60HZ|800HZ} ``` The user can check the default value with the SHOW SYSTEM JCLK_DEFAULT command. #### 2.2 I/O Devices #### 2.2.1 Unibus and Qbus DMA Devices DMA peripherals function differently, depending on whether the CPU type supports the Unibus or the Qbus, and whether the Unibus supports 22b direct memory access (11/70 with RH70 controllers): | peripheral | 11/70
+RH70 | all
other
Unibus | Qbus | |------------|----------------|------------------------|------------------------| | CD | 18b | 18b | disabled | | RC | 18b | 18b | disabled | | RF | 18b | 18b | disabled | | RK | 18b | 18b | disabled if mem > 256K | | HK | 18b | 18b | disabled if mem > 256K | | RL | 18b | 18b | 22b RLV12 | | RP | 22b | 18b | 22b third party | | RQ | 18b | 18b | 22b RQDX3 | | RY | 18b | 18b | disabled if mem > 256K | | TC | 18b | 18b | disabled | | TM | 18b | 18b | disabled if mem > 256K | | TS | 18b | 18b | 22b TSV05 | | TQ | 18b | 18b | 22b TQK50 | | TU | 22b | 18b | 22b third party | | VH | 18b | 18b | 22b DHQ11 | | XQ | disabled | disabled | 22b DELQA | | XU | 18b | 18b | disabled | Non-DMA peripherals work the same in all configurations. Unibus-only peripherals are disabled in a Qbus configuration, and Qbus-only peripherals are disabled in a Unibus configuration. In addition, Qbus DMA peripherals with only 18b addressing capability are disabled in a Qbus configuration with more than 256KB memory. ## 2.2.2 I/O Device Addressing PDP-11 I/O space and vector space are not large enough to allow all possible devices to be configured simultaneously at fixed addresses. Instead, many devices have floating addresses and vectors; that is, the assigned device address and vector depend on the presence of other devices in the configuration: | DZ11 | all instances have floating addresses | |-------------|---| | DHU11/DHQ11 | all instances have floating addresses | | RL11 | first instance has fixed address, rest floating | | RX11/RX211 | first instance has fixed address, rest floating | | DEUNA/DELUA | first instance has fixed address, rest floating | | MSCP disk | first instance has fixed address, rest floating | | TMSCP tape | first instance has fixed address, rest floating | In addition, some devices with fixed I/O space addresses have floating vector addresses. DCI/DCO and DLI/DLO have floating vector addresses. To maintain addressing consistency as the configuration changes, the simulator implements DEC's standard I/O
address and vector autoconfiguration. This allows the user to enable or disable devices without needing to manage I/O addresses and vectors. For example, if RY is enabled while RX is present, RY is assigned an I/O address in the floating I/O space range; but if RX is disabled and then RY is enabled, RY is assigned the fixed "first instance" I/O address for floppy disks. Autoconfiguration cannot solve address conflicts between devices with overlapping fixed addresses. For example, with default I/O page addressing, the PDP-11 can support either a TM11 or a TS11, but not both, since they use the same I/O addresses. In addition to autoconfiguration, most devices support the SET <code><device></code> ADDRESS command, which allows the I/O page address of the device to be changed, and the SET <code><device></code> VECTOR command, which allows the vector of the device to be changed. Explicitly setting the I/O address of a device that normally uses autoconfiguration DISABLES autoconfiguration for that device and for the entire system. As a consequence, the user may have to manually configure all other autoconfigured devices, because the autoconfiguration algorithm no longer recognizes the explicitly configured device. A device can be reset to autoconfigure with the SET <code><device></code> AUTOCONFIGURE command. Autoconfiguration can be restored for the entire system with the SET <code>CPU</code> AUTOCONFIGURE command. The current I/O map can be displayed with the SHOW CPU IOSPACE command. Addresses that have set by autoconfiguration are marked with an asterisk (*). All devices support the SHOW <device> ADDRESS and SHOW <device> VECTOR commands, which display the device address and vector, respectively. ## 2.3 Programmed I/O Devices ## 2.3.1 PC11 Paper Tape Reader (PTR) The paper tape reader (PTR) reads data from a disk file. The POS register specifies the number of the next data item to be read. Thus, by changing POS, the user can backspace or advance the reader. The paper tape reader implements these registers: | name | size | comments | |------|------|---| | BUF | 8 | last data item processed | | | • | ± | | CSR | 16 | control/status register | | INT | 1 | interrupt pending flag | | ERR | 1 | error flag (CSR<15>) | | BUSY | 1 | busy flag (CSR<11>) | | DONE | 1 | device done flag (CSR<7>) | | IE | 1 | <pre>interrupt enable flag (CSR<6>)</pre> | | POS | 32 | position in the input file | | TIME | 24 | time from I/O initiation to interrupt | |----------|----|---------------------------------------| | STOP_IOE | 1 | stop on I/O error | #### Error handling is as follows: | error | STOP_IOE | processed as | |--------------|----------|-----------------------------------| | not attached | 1 0 | report error and stop out of tape | | end of file | 1
0 | report error and stop out of tape | | OS I/O error | X | report error and stop | ## 2.3.2 PC11 Paper Tape Punch (PTP) The paper tape punch (PTP) writes data to a disk file. The POS register specifies the number of the next data item to be written. Thus, by changing POS, the user can backspace or advance the punch. The paper tape punch implements these registers: | name | size | comments | |----------|------|---| | BUF | 8 | last data item processed | | CSR | 16 | control/status register | | INT | 1 | interrupt pending flag | | ERR | 1 | error flag (CSR<15>) | | DONE | 1 | device done flag (CSR<7>) | | IE | 1 | <pre>interrupt enable flag (CSR<6>)</pre> | | POS | 32 | position in the output file | | TIME | 24 | time from I/O initiation to interrupt | | STOP_IOE | 1 | stop on I/O error | ## Error handling is as follows: | error | STOP_IOE | processed as | |--------------|----------|-----------------------------------| | not attached | 1
0 | report error and stop out of tape | | OS I/O error | Х | report error and stop | ## 2.3.3 DL11 Terminal Input (TTI) The terminal interfaces (TTI, TTO) can be set to one of three modes, 7P, 7B or 8B: | mode | input characters | output characters | |------|---|--| | UC | high-order bit cleare, lower case converted | high order-bit cleared, lower case converted | | | to upper case | to upper case | | 7P | high-order bit cleared | high-order bit cleared, | | | | non-printing characters suppressed | | 7B | high-order bit cleared | high-order bit cleared | ## 2.3.4 DL11 Terminal Output (TTO) The terminal input (TTI) polls the console keyboard for input. It implements these registers: | name | size | comments | |------|------|--| | | | | | BUF | 8 | last data item processed | | CSR | 16 | control/status register | | INT | 1 | interrupt pending flag | | ERR | 1 | error flag (CSR<15>) | | DONE | 1 | device done flag (CSR<7>) | | IE | 1 | interrupt enable flag (CSR<6>) | | POS | 32 | number of characters output | | TIME | 24 | input polling interval (if 0, the keyboard | | | | is polled synchronously with the line clock) | The terminal output (TTO) writes to the simulator console window. It implements these registers: | name | size | comments | |------|------|---------------------------------------| | BUF | 8 | last data item processed | | CSR | 16 | control/status register | | INT | 1 | interrupt pending flag | | ERR | 1 | error flag (CSR<15>) | | DONE | 1 | device done flag (CSR<7>) | | IE | 1 | interrupt enable flag (CSR<6>) | | POS | 32 | number of characters input | | TIME | 24 | time from I/O initiation to interrupt | ## 2.3.5 LP11 Line Printer (LPT) The line printer (LPT) writes data to a disk file. The POS register specifies the number of the next data item to be written. Thus, by changing POS, the user can backspace or advance the printer. The line printer implements these registers: | name | size | comments | |----------|------|---------------------------------------| | BUF | 8 | last data item processed | | DUI | 0 | last data item processed | | CSR | 16 | control/status register | | INT | 1 | interrupt pending flag | | ERR | 1 | error flag (CSR<15>) | | DONE | 1 | device done flag (CSR<7>) | | IE | 1 | interrupt enable flag (CSR<6>) | | POS | 32 | position in the output file | | TIME | 24 | time from I/O initiation to interrupt | | STOP_IOE | 1 | stop on I/O error | #### Error handling is as follows: | error STOP_IOE processed a | ìS | |----------------------------|----| |----------------------------|----| | not attached | 1 | report error and stop
out of paper | |--------------|---|---------------------------------------| | OS I/O error | Х | report error and stop | ## 2.3.6 KW11-L Line-Time Clock (CLK) The line-time clock (CLK) frequency can be adjusted as follows: | SET | CLK | 60HZ | set | frequency | to | 60Hz | |-----|-----|------|-----|-----------|----|------| | SET | CLK | 50HZ | set | frequency | to | 50Hz | The default is 60Hz. The line-time clock implements these registers: | name | size | comments | |------|------|---| | | | | | CSR | 16 | control/status register | | INT | 1 | interrupt pending flag | | DONE | 1 | device done flag (CSR<7>) | | IE | 1 | <pre>interrupt enable flag (CSR<6>)</pre> | | TIME | 24 | clock interval | The line-time clock autocalibrates; the clock interval is adjusted up or down so that the clock tracks actual elapsed time. ## 2.3.7 KW11-P Programmable Clock (PCLK) The programmable clock (PCLK) line frequency can be adjusted as follows: | SET | PCLK | 60HZ | set | frequency | to | 60Hz | |-----|------|------|-----|-----------|----|------| | SET | PCLK | 50HZ | set | frequency | to | 50Hz | The default is 60Hz. The programmable clock implements these registers: | name | size | comments | |--------------|------|---| | CSR | 16 | control/status register | | CSB | 16 | count set buffer | | | | | | CNT | 16 | current count | | INT | 1 | interrupt pending flag | | OVFL | 1 | overflow (error) flag (CSR<15>) | | DONE | 1 | device done flag (CSR<7>) | | IE | 1 | <pre>interrupt enable flag (CSR<6>)</pre> | | UPDN | 1 | up/down count mode (CSR<4>) | | MODE | 1 | single/repeat mode (CSR<3>) | | RUN | 1 | clock run (CSR<0>) | | TIME[0 to 3] | 32 | clock interval, rates 0 to 3 | | TPS[0 to 3] | 32 | ticks per second, rates 0 to 3 | The programmable clock autocalibrates; the clock interval is adjusted up or down so that the clock tracks actual elapsed time. Operation at the highest clock rate (100Khz) is not recommended. The programmable clock is disabled by default. #### 2.3.8 TA11/TA60 Cassette Tape (CT) The TA11 is a programmed I/O controller supporting two cassette drives (0 and 1). The TA11 can be used like a small magtape under RT11 and RSX-11M, and with the CAPS-11 operating system. Cassettes are simulated as magnetic tapes with a fixed capacity (93,000 characters). The tape format is always SimH standard. The TA11 is disabled by default. TA11 options include the ability to make units write enabled or write locked. ``` SET CTn LOCKED set unit n write locked SET CTn WRITEENABLED set unit n write enabled ``` Units can not be set ENABLED or DISABLED. The TA11 does not support the BOOT command. The TA11 controller implements these registers: | name | size | comments | |----------|------|---------------------------| | TACS | 16 | control/status register | | TAIDB | 8 | input data buffer | | TAODB | 8 | output data buffer | | INT | 1 | interrupt request | | ERR | 1 | error flag | | TR | 1 | transfer request flag | | IE | 1 | interrupt enable flag | | WRITE | 1 | TA60 write operation flag | | BPTR | 17 | buffer pointer | | BLNT | 17 | buffer length | | STIME | 24 | operation start time | | CTIME | 24 | character latency | | STOP_IOE | 1 | stop on I/O errors flag | | POS[0:1] | 32 | position, units 0-1 | #### Error handling is as follows: ``` error processed as not attached tape
not ready; if STOP_IOE, stop end of file bad tape OS I/O error CRC error; if STOP_IOE, stop ``` ## 2.4 Floppy Disk Drives ## 2.4.1 RX11/RX01 Floppy Disk (RX) RX11 options include the ability to set units write enabled or write locked: ``` SET RXn LOCKED set unit n write locked SET RXn WRITEENABLED set unit n write enabled ``` The RX11 supports the BOOT command. #### The RX11 implements these registers: | name | size | comments | |-------------|------|---| | RXCS | 12 | status | | RXDB | 8 | data buffer | | RXES | 8 | error status | | RXERR | 8 | error code | | RXTA | 8 | current track | | RXSA | 8 | current sector | | STAPTR | 3 | controller state | | BUFPTR | 3 | buffer pointer | | INT | 1 | interrupt pending flag | | ERR | 1 | error flag (CSR<15>) | | TR | 1 | transfer ready flag (CSR<7>) | | IE | 1 | <pre>interrupt enable flag (CSR<6>)</pre> | | DONE | 1 | device done flag (CSR<5>) | | CTIME | 24 | command completion time | | STIME | 24 | seek time, per track | | XTIME | 24 | transfer ready delay | | STOP_IOE | 1 | stop on I/O error | | SBUF[0:127] | 8 | sector buffer array | #### Error handling is as follows: | error | STOP_IOE | processed as | |--------------|----------|--------------------------------------| | not attached | 1 | report error and stop disk not ready | RX01 data files are buffered in memory; therefore, end of file and OS I/O errors cannot occur. ## 2.4.2 RX211/RX02 Floppy Disk (RY) RX211 options include the ability to set units write enabled or write locked, single or double density, or autosized: ``` SET RYN LOCKED set unit n write locked SET RYN WRITEENABLED set unit n write enabled SET RYN SINGLE set unit n single density SET RYN DOUBLE set unit n double density (default) SET RYN AUTOSIZE set unit n to autosize at ATTACH ``` The RX211 supports the BOOT command. The RX211 is disabled in a Qbus system with more than 256KB of memory. #### The RX211 implements these registers: | name | size | comments | |--------------|----------|--------------------------| | RYCS
RYBA | 16
16 | status
buffer address | | RYWC | 8 | word count | | RYDB | 16 | data buffer | |-------------|----|---| | RYES | 12 | error status | | RYERR | 8 | error code | | RYTA | 8 | current track | | RYSA | 8 | current sector | | STAPTR | 4 | controller state | | INT | 1 | interrupt pending flag | | ERR | 1 | error flag (CSR<15>) | | TR | 1 | transfer ready flag (CSR<7>) | | IE | 1 | <pre>interrupt enable flag (CSR<6>)</pre> | | DONE | 1 | device done flag (CSR<5>) | | CTIME | 24 | command completion time | | STIME | 24 | seek time, per track | | XTIME | 24 | transfer ready delay | | STOP_IOE | 1 | stop on I/O error | | SBUF[0:255] | 8 | sector buffer array | #### Error handling is as follows: | error | STOP_IOE | processed as | |--------------|----------|--------------------------------------| | not attached | 1
0 | report error and stop disk not ready | RX02 data files are buffered in memory; therefore, end of file and OS I/O errors cannot occur. ## 2.5 Cartridge Disk Drives ## 2.5.1 RK11/RK05 Cartridge Disk (RK) RK11 options include the ability to make units write enabled or write locked: | SET | RKn | LOCKED | set | unit | n | write | locked | |-----|-----|--------------|-----|------|---|-------|---------| | SET | RKn | WRITEENABLED | set | unit | n | write | enabled | Units can also be set ENABLED or DISABLED. The RK11 supports the BOOT command. The RK11 is disabled in a Qbus system with more than 256KB of memory. #### The RK11 implements these registers: | name | size | comments | |------|------|--------------------------------| | RKCS | 16 | control/status | | RKDA | 16 | disk address | | RKBA | 16 | memory address | | RKWC | 16 | word count | | RKDS | 16 | drive status | | RKER | 16 | error status | | INTQ | 9 | interrupt queue | | DRVN | 3 | number of last selected drive | | INT | 1 | interrupt pending flag | | ERR | 1 | error flag (CSR<15>) | | DONE | 1 | device done flag (CSR<7>) | | IE | 1 | interrupt enable flag (CSR<6>) | | INT | 1 | interrupt pending flag | | | | | | STIME | 24 | seek time, per cylinder | |----------|----|-------------------------| | RTIME | 24 | rotational delay | | STOP_IOE | 1 | stop on I/O error | #### Error handling is as follows: | error | STOP_IOE | processed as | |--------------|----------|---| | not attached | 1
0 | report error and stop
disk not ready | | end of file | Х | assume rest of disk is zero | | OS I/O error | Х | report error and stop | ## 2.5.2 RK611/RK06,RK07 Cartridge Disk (HK) RK611 options include the ability to set units write enabled or write locked, to set the drive type to RK06, RK07, or autosize, and to write a DEC standard 044 compliant bad block table on the last track: | SET HKn LOCKED | set unit n write locked | |----------------------|---------------------------------------| | SET HKn WRITEENABLED | set unit n write enabled | | SET HKn RK06 | set type to RK06 | | SET HKn RK07 | set type to RK07 | | SET HKn AUTOSIZE | set type based on file size at ATTACH | | SET HKn BADBLOCK | write bad block table on last track | The type options can be used only when a unit is not attached to a file. The bad block option can be used only when a unit is attached to a file. Units can be set <code>ENABLED</code> or <code>DISABLED</code>. The RK611 supports the <code>BOOT</code> command. The RK611 is disabled in a Qbus system with more than 256KB of memory. #### The RK611 implements these registers: | name | size | comments | |-----------|------|--| | 1111.001 | 1.6 | | | HKCS1 | 16 | control/status 1 | | HKWC | 16 | word count | | HKBA | 16 | bus address | | HKDA | 16 | desired surface, sector | | HKCS2 | 16 | control/status 2 | | HKDS[0:7] | 16 | drive status, drives 0 to 7 | | HKER[0:7] | 16 | drive errors, drives 0 to 7 | | HKDB[0:2] | 16 | data buffer silo | | HKDC | 16 | desired cylinder | | HKOF | 8 | offset | | HKMR | 16 | maintenance register | | HKSPR | 16 | spare register | | INT | 1 | interrupt pending flag | | ERR | 1 | error flag (CSR<15>) | | DONE | 1 | device done flag (CSR1<7>) | | IE | 1 | <pre>interrupt enable flag (CSR1<6>)</pre> | | STIME | 24 | seek time, per cylinder | | RTIME | 24 | rotational delay | | STOP_IOE | 1 | stop on I/O error | Error handling is as follows: | error | STOP_IOE | processed as | |--------------|----------|---| | not attached | 1 | report error and stop
disk not ready | | end of file | х | assume rest of disk is zero | | OS I/O error | х | report error and stop | ## 2.5.3 RL11(RLV12)/RL01,RL02 Cartridge Disk (RL) RL11 options include the ability to set units write enabled or write locked, to set the drive type to RL01, RL02, or autosize, and to write a DEC standard 044 compliant bad block table on the last track: | SET RLn LOCKED | set unit n write locked | |----------------------|---------------------------------------| | SET RLn WRITEENABLED | set unit n write enabled | | SET RLn RL01 | set type to RL01 | | SET RLn RL02 | set type to RL02 | | SET RLn AUTOSIZE | set type based on file size at ATTACH | | SET RLn BADBLOCK | write bad block table on last track | The type options can be used only when a unit is not attached to a file. The bad block option can be used only when a unit is attached to a file. Units can be set <code>ENABLED</code> or <code>DISABLED</code>. The RL11 supports the <code>BOOT</code> command. In a Unibus system, the RL behaves like an RL11 with 18b addressing; in a Qbus (Q22) system, the RL behaves like the RLV12 with 22b addressing. #### The RL11 implements these registers: | name | size | comments | |--------------------|------|----------------------------------| | | | | | RLCS | 16 | control/status | | RLDA | 16 | disk address | | RLBA | 16 | memory address | | RLBAE | 6 | memory address extension (RLV12) | | RLMP, RLMP1, RLMP2 | 16 | multipurpose register queue | | INT | 1 | interrupt pending flag | | ERR | 1 | error flag (CSR<15>) | | DONE | 1 | device done flag (CSR<7>) | | IE | 1 | interrupt enable flag (CSR<6>) | | STIME | 24 | seek time, per cylinder | | RTIME | 24 | rotational delay | | STOP_IOE | 1 | stop on I/O error | #### Error handling is as follows: | error | STOP_IOE | processed as | |--------------|----------|---| | not attached | 1
0 | report error and stop
disk not ready | | end of file | Х | assume rest of disk is zero | | OS I/O error | X | report error and stop | ## 2.6 Massbus Subsystems ## 2.6.1 RH70/RH11 Massbus Adapters (RHA, RHB) The RH70/RH11 Massbus adapters interface Massbus peripherals to the memory bus or Unibus of the CPU. The simulator provides two Massbus adapters. The first, RHA, is configured for the RP family of disk drives. The second, RHB, is configured for the TU family of tape controllers. By default, RHA is enabled and RHB is disabled. In a Unibus system, the RH adapters implement 22b addressing for the 11/70 and 18b addressing for all other models. In a Qbus system, the RH adapters always implement 22b addressing. Each RH adapter implements these registers: | name | size | comments | |------|------|--| | | | | | CS1 | 16 | control/status register 1 | | WC | 16 | word count | | BA | 16 | bus address | | CS2 | 16 | control/status register 2 | | DB | 16 | data buffer | | BAE | 6 | bus address extension | | CS3 | 16 | control/status register 3 | | IFF | 1 | transfer complete interrupt request flop | | INT | 1 | interrupt pending flag | | SC | 1 | special condition (CSR1<15>) | | DONE | 1 | device done flag (CSR1<7>) | | IE | 1 | interrupt enable flag (CSR1<6>) | ## 2.6.2 RP04/05/06/07, RM02/03/05/80 Disk Pack Drives (RP) The RP controller implements the Massbus family of large disk drives. RP options include the ability to set units
write enabled or write locked, to set the drive type to one of six disk types or autosize, and to write a DEC standard 044 compliant bad block table on the last track: ``` SET RPN LOCKED set unit n write locked SET RPN WRITEENABLED set unit n write enabled SET RPN RM03 set type to RM03 SET RPN RM05 set type to RM05 SET RPN RM80 set type to RM80 SET RPN RP04 set type to RP04 SET RPN RP06 set type to RP06 SET RPN RP07 set type to RP07 SET RPN AUTOSIZE set type based on file size at ATTACH Write bad block table on last track ``` The type options can be used only when a unit is not attached to a file. The bad block option can be used only when a unit is attached to a file. Units can be set ENABLED or DISABLED. The RP controller supports the BOOT command. The RP controller implements the registers listed below. Registers suffixed with [0:7] are replicated per drive. | name | size | comments | |----------|------|-------------------| | CS1[0:7] | 16 | current operation | | DA[0:7] | 16 | desired surface, sector | |----------|----|---| | DS[0:7] | 16 | drive status | | ER1[0:7] | 16 | drive errors | | OF[0:7] | 16 | offset | | DC[0:7] | 16 | desired cylinder | | ER2[0:7] | 16 | error status 2 | | ER3[0:7] | 16 | error status 3 | | EC1[0:7] | 16 | ECC syndrome 1 | | EC2[0:7] | 16 | ECC syndrome 2 | | MR[0:7] | 16 | maintenance register | | MR2[0:7] | 16 | <pre>maintenance register 2 (RM only)</pre> | | HR[0:7] | 16 | holding register (RM only) | | STIME | 24 | seek time, per cylinder | | RTIME | 24 | rotational delay | | STOP_IOE | 1 | stop on I/O error | #### Error handling is as follows: | error | STOP_IOE | processed as | |--------------|----------|---| | not attached | 1
0 | report error and stop
disk not ready | | end of file | Х | assume rest of disk is zero | | OS I/O error | X | report error and stop | ## 2.6.3 TM02/TM03/TE16/TU45/TU77 Magnetic Tapes (TU) The TU controller implements the Massbus family of 800/1600bpi magnetic tape drives. TU options include the ability to select the formatter type (TM02 or TM03), to set the drive type to one of three drives (TE16, TU45, or TU77), and to set the drives write enabled or write locked. | SET TU TM02 | set controller type to TM02 | |--------------|-----------------------------| | SET TU TM03 | set controller type to TM03 | | SET TUn TE16 | set drive type to TE16 | | SET TUn TU45 | set drive type to TU45 | | SET TUn TU77 | set drive type to TU77 | Magnetic tape units can be set to a specific reel capacity in MB, or to unlimited capacity: ``` SET TUn CAPAC=m set unit n capacity to m MB (0 = unlimited) SHOW TUn CAPAC show unit n capacity in MB ``` Units can be set ENABLED or DISABLED. The TU controller supports the BOOT command. ### The TU controller implements the following registers: | name | size | comments | |------|------|----------------------| | CS1 | 6 | current operation | | FC | 16 | frame count | | FS | 16 | formatter status | | ER | 16 | formatter errors | | CC | 16 | check character | | MR | 16 | maintenance register | ``` TC 16 tape control register TIME 24 operation execution time UST 17 unit status, drives 0 to 7 POS 32 position, drive 0 to 7 STOP_IOE 1 stop of I/O error ``` #### Error handling is as follows: ``` error processed as not attached tape not ready; if STOP_IOE, stop end of file bad tape OS I/O error parity error; if STOP_IOE, stop ``` ## 2.7 RQDX3/UDA50 MSCP Disk Controllers (RQ, RQB, RQC, RQD) The simulator implements four MSCP disk controllers, RQ, RQB, RQC, RQD. Initially, RQB, RQC, and RQD are disabled. Each RQ controller simulates an RQDX3 MSCP disk controller with four disk drives. RQ options include the ability to set units write enabled or write locked, and to set the drive type to one of many disk types: ``` SET RQn LOCKED SET RQn WRITEENABLED SET RQn RX50 SET RQn RX50 SET RQn RX33 SET RQn RD51 SET RQn RD51 SET RQn RD52 SET RQn RD53 SET RQn RD53 SET RQn RD54 SET RQn RD54 SET RQn RB31 SET RQn RA81 SET RQn RA81 SET RQn RA82 Set type to RA81 SET RQn RA71 SET RQn RA72 SET RQn RA90 SET RQn RA90 SET RQn RA90 SET RQn RRD40 SET RQn RAUSER{=n} SET LUNIT N Write locked Set unit n write locked Set type to RX50 Set type to RX33 SET RYDS SET RYDS SET RYDS SET LUNIT N WRITE ``` The type options can be used only when a unit is not attached to a file. RAUSER is a "user specified" disk; the user can specify the size of the disk in either MB (1000000 bytes) or logical block numbers (LBN's, 512 bytes each). The minimum size is 5MB; the maximum size is 2GB without extended file support, 1TB with extended file support. Units can be set ENABLED or DISABLED. Each RQ controller supports the BOOT command. In a Unibus system, an RQ supports 18b addressing and identifies itself as a UDA50. In a Qbus system, an RQ supports 22b addressing and identifies itself as an RQDX3. Each RQ controller implements the following special SHOW commands: ``` SHOW RQn TYPE show drive type SHOW RQ RINGS show command and response rings ``` | SHOW RQ FREEQ | show packet free queue | |----------------|-------------------------------| | SHOW RQ RESPQ | show packet response queue | | SHOW RQ UNITQ | show unit queues | | SHOW RQ ALL | show all ring and queue state | | SHOW RQn UNITQ | show unit queues for unit n | #### Each RQ controller implements these registers: | name | size | comments | |-------------|------|--| | SA | 16 | status/address register | | SIDAT | 16 | step 1 init host data | | COBA | 22 | command queue base address | | COLNT | 8 | command queue length | | COIDX | 8 | command queue index | | ROBA | 22 | request queue base address | | RQLNT | 8 | request queue length | | ROIDX | 8 | request queue index | | FREE | 5 | head of free packet list | | RESP | 5 | head of response packet list | | PBSY | 5 | | | - | | number of busy packets | | CFLGS | 16 | controller flags | | CSTA | 4 | controller state | | PERR | 9 | port error number | | CRED | 5 | host credits | | HAT | 17 | host available timer | | HTMO | 17 | host timeout value | | CPKT[0:3] | 5 | current packet, units 0 to 3 | | PKTQ[0:3] | 5 | packet queue, units 0 to 3 | | UFLG[0:3] | 16 | unit flags, units 0 to 3 | | INT | 1 | interrupt request | | ITIME | 1 | response time for initialization steps | | | | (except for step 4) | | QTIME | 24 | response time for 'immediate' packets | | XTIME | 24 | response time for data transfers | | PKTS[33*32] | 16 | packet buffers, 33W each, 32 entries | | • | | <u> </u> | Some DEC operating systems, notably RSX11M/M+, are very sensitive to the timing parameters. Changing the default values may cause M/M+ to crash on boot or to hang during operation. #### Error handling is as follows: | error | processed as | |--------------|-----------------------------| | not attached | disk not ready | | end of file | assume rest of disk is zero | | OS I/O error | report error and stop | ## 2.8 Fixed Head Disks ## 2.8.1 RC11 Fixed Head Disk (RC) RC11 options include the ability to set the number of platters to a fixed value between 1 and 4, or to autosize the number of platters: | SET RC 1P | one platter (256K) | |-----------------|-----------------------| | SET RC 2P | two platters (512K) | | SET RC 3P | three platters (768K) | | SET RC 4P | four platters (1024K) | | SET RC AUTOSIZE | autosized on ATTACH | The default is one platter. The RC11 does not support the BOOT command. The RC11 is disabled at startup and is automatically disabled in a Qbus system. The RC11 is a DMA device. The entire transfer occurs in a single DMA transfer. The RC11 implements these registers: | name | size | comments | |----------|------|----------------------------| | RCLA | 16 | look ahead register | | RCDA | 16 | current disk address | | RCER | 16 | error register | | RCCS | 16 | control/status | | RCWC | 16 | word count | | RCCA | 16 | current memory address | | RCMN | 16 | maintenance register | | RCDB | 16 | data buffer | | RCWLK | 32 | write lock switches | | INT | 1 | interrupt pending flag | | ERR | 1 | device error flag | | DONE | 1 | device done flag | | IE | 1 | interrupt enable flag | | TIME | 24 | rotational delay, per word | | STOP_IOE | 1 | stop on I/O error | #### Error handling is as follows: | error | STOP_IOE | processed as | |--------------|----------|-----------------------| | not attached | 1 | report error and stop | | | 0 | non-existent disk | ## 2.8.2 RF11/RS11 Fixed Head Disk (RF) RF11 options include the ability to set the number of platters to a fixed value between 1 and 8, or to autosize the number of platters: | SET RF 1P | one platter (256K) | |---------------|------------------------| | SET RF 2P | two platters (512K) | | SET RF 3P | three platters (768K) | | SET RF 4P | four platters (1024K) | | SET RF 5P | five platters (1280K) | | SET RF 6P | six platters (1536K) | | SET RF 7P | seven platters (1792K) | | SET RF 8P | eight platters (2048K) | | SET RF AUTOSI | ZE autosized on ATTACH | The default is one platter. The RF11 supports the BOOT command. The RF11 is disabled at startup and is automatically disabled in a Qbus system. #### The RF11 implements these registers: | size | comments | |------|--| | 16 | control/status | | 16 | word count | | 16 | current memory address | | 16 | current disk address | | 16 | disk address extension | | 16 | data buffer | | 16 | maintenance register | | 32 | write lock switches | | 1 | interrupt pending flag | | 1 | device error flag | | 1 | device done flag | | 1 | interrupt enable flag | | 24 | rotational delay, per word | | 1 | burst flag | | 1 | stop on I/O error | | | 16
16
16
16
16
16
16
32
1
1
1
1
24 | The RF11 is a DMA device. If BURST = 0, word transfers are scheduled individually; if BURST = 1, the entire transfer occurs in a single DMA transfer. #### Error handling is as follows: | error | STOP_IOE | processed as
| |--------------|----------|-----------------------| | not attached | 1 | report error and stop | | | 0 | non-existent disk | RF11 data files are buffered in memory; therefore, end of file and OS I/O errors cannot occur. ## 2.9 TC11/TU56 DECtape (DT) DECtapes drives are numbered 1-8; in the simulator, drive 8 is unit 0. DECtape options include the ability to make units write enabled or write locked. ``` SET DTn LOCKED set unit n write locked SET DTn WRITEENABLED set unit n write enabled ``` Units can be set <code>ENABLED</code> or <code>DISABLED</code>. The TC11 supports the <code>BOOT</code> command. The TC11 is automatically disabled in a Qbus system. The TC11 supports supports PDP-8 format, PDP-11 format, and 18b format DECtape images. ATTACH assumes the image is in PDP-11 format; the user can force other choices with switches: | -t | PDP-8 format | |----|-------------------------------| | -f | 18b format | | -a | autoselect based on file size | The DECtape controller is a data-only simulator; the timing and mark track, and block header and trailer, are not stored. Thus, the WRITE TIMING AND MARK TRACK function is not supported; the READ ALL function always returns the hardware standard block header and trailer; and the WRITE ALL function dumps non-data words into the bit bucket. The TC controller implements these registers: | name | size | comments | |------------|------|-----------------------------------| | TCST | 16 | status register | | TCCM | 16 | command register | | TCWC | 16 | word count register | | TCBA | 16 | bus address register | | TCDT | 16 | data register | | INT | 1 | interrupt pending flag | | ERR | 1 | error flag | | DONE | 1 | done flag | | IE | 1 | interrupt enable flag | | CTIME | 31 | time to complete transport stop | | LTIME | 31 | time between lines | | DCTIME | 31 | time to decelerate to a full stop | | SUBSTATE | 2 | read/write command substate | | POS[0:7] | 32 | position, in lines, units 0 to 7 | | STATT[0:7] | 31 | unit state, units 0 to 7 | | STOP_OFFR | 1 | stop on off-reel error | It is critically important to maintain certain timing relationships among the DECtape parameters, or the DECtape simulator will fail to operate correctly. - LTIME must be at least 6 - DCTIME needs to be at least 100 times LTIME Acceleration time is set to 75% of deceleration time. ## 2.10 Magnetic Tape Controllers ## 2.10.1 TM11 Magnetic Tape (TM) TM options include the ability to make units write enabled or write locked. ``` SET TMn LOCKED set unit n write locked SET TMn WRITEENABLED set unit n write enabled ``` Magnetic tape units can be set to a specific reel capacity in MB, or to unlimited capacity: ``` SET TMn CAPAC=m set unit n capacity to m MB (0 = unlimited) SHOW TMn CAPAC show unit n capacity in MB ``` Units can be set ENABLED or DISABLED. The TM11 supports the BOOT command. The bootstrap supports both original and DEC standard boot formats. Originally, a tape bootstrap read and executed the first record on tape. To allow for ANSI labels, the DEC standard bootstrap skipped the first record and read and executed the second. The DEC standard is the default; to bootstrap an original format tape, use the command BOOT -O MTn. The TM11 is automatically disabled in a Qbus system with more than 256KB of memory. #### The TM controller implements these registers: | name | size | comments | |----------|------|---------------------------| | | | | | MTS | 16 | status | | MTC | 16 | command | | MTCMA | 16 | memory address | | MTBRC | 16 | byte/record count | | INT | 1 | interrupt pending flag | | ERR | 1 | error flag | | DONE | 1 | device done flag | | IE | 1 | interrupt enable flag | | STOP_IOE | 1 | stop on I/O error | | TIME | 24 | delay | | UST[0:7] | 16 | unit status, units 0 to 7 | | POS[0:7] | 32 | position, units 0 to 7 | #### Error handling is as follows: | error | processed as | |--------------|-----------------------------------| | not attached | tape not ready; if STOP_IOE, stop | | end of file | bad tape | | OS I/O error | parity error; if STOP_IOE, stop | ## 2.10.2 TS11/TSV05 Magnetic Tape (TS) TS options include the ability to make the unit write enabled or write locked. ``` SET TS LOCKED set unit write locked SET TS WRITEENABLED set unit write enabled ``` The TS drive can be set to a specific reel capacity in MB, or to unlimited capacity: | SET TSO CAPAC=m | set capacity to m MB $(0 = unlimited)$ | |-----------------|--| | SHOW TSO CAPAC | show capacity in MB | The TS11 supports the BOOT command. The bootstrap supports only DEC standard boot formats. To allow for ANSI labels, the DEC standard bootstrap skipped the first record and read and executed the second. In a Unibus system, the TS behaves like the TS11 and implements 18b addresses. In a Qbus system, the TS behaves like the TSV05 and implements 22b addresses. #### The TS controller implements these registers: | name | size | comments | |-------|------|-------------------------------------| | | | | | TSSR | 16 | status register | | TSBA | 16 | bus address register | | TSDBX | 16 | data buffer extension register | | CHDR | 16 | command packet header | | CADL | 16 | command packet low address or count | | CADH | 16 | command packet high address | | CLNT | 16 | command packet length | | | | | | MHDR | 16 | message packet header | |-------|----|-------------------------------------| | MRFC | 16 | message packet residual frame count | | MXS0 | 16 | message packet extended status 0 | | MXS1 | 16 | message packet extended status 1 | | MXS2 | 16 | message packet extended status 2 | | MXS3 | 16 | message packet extended status 3 | | MXS4 | 16 | message packet extended status 4 | | WADL | 16 | write char packet low address | | WADH | 16 | write char packet high address | | WLNT | 16 | write char packet length | | WOPT | 16 | write char packet options | | WXOPT | 16 | write char packet extended options | | ATTN | 1 | attention message pending | | BOOT | 1 | boot request pending | | OWNC | 1 | if set, tape owns command buffer | | OWNM | 1 | if set, tape owns message buffer | | TIME | 24 | delay | | POS | 32 | position | #### Error handling is as follows: ``` error processed as not attached tape not ready end of file bad tape OS I/O error fatal tape error ``` ## 2.10.3 TQK50 TMSCP Disk Controller (TQ) The TQ controller simulates the TQK50 TMSCP disk controller. TQ options include the ability to set units write enabled or write locked, and to specify the controller type and tape length: | SET TQn LOCKED | set unit n write locked | |-----------------------|----------------------------------| | SET TQn WRITEENABLED | set unit n write enabled | | SET TQ TK50 | set controller type to TK50 | | SET TQ TK70 | set controller type to TK70 | | SET TQ TU81 | set controller type to TU81 | | SET TQ TKUSER { = n } | set controller type to TK50 with | | | tape capacity of n MB | User-specified capacity must be between 50 and 2000 MB. Regardless of the controller type, individual units can be set to a specific reel capacity in MB, or to unlimited capacity: ``` SET TQn CAPAC=m set unit n capacity to m MB (0 = unlimited) SHOW TQn CAPAC show unit n capacity in MB ``` The TQ controller supports the BOOT command. In a Unibus system, the TQ supports 18b addressing. In a Qbus system, the TQ supports 22b addressing. The TQ controller implements the following special SHOW commands: ``` SHOW TQ TYPE show controller type ``` | SHOW TQ RINGS | show command and response rings | |----------------|---------------------------------| | SHOW TQ FREEQ | show packet free queue | | SHOW TQ RESPQ | show packet response queue | | SHOW TQ UNITQ | show unit queues | | SHOW TQ ALL | show all ring and queue state | | SHOW TQn UNITQ | show unit queues for unit n | ## The TQ controller implements these registers: | name | size | comments | |-------------|------|--| | SA | 16 | status/address register | | S1DAT | 16 | step 1 init host data | | CQBA | 22 | command queue base address | | CQLNT | 8 | command queue length | | CQIDX | 8 | command queue index | | RQBA | 22 | request queue base address | | RQLNT | 8 | request queue length | | RQIDX | 8 | request queue index | | FREE | 5 | head of free packet list | | RESP | 5 | head of response packet list | | PBSY | 5 | number of busy packets | | CFLGS | 16 | controller flags | | CSTA | 4 | controller state | | PERR | 9 | port error number | | CRED | 5 | host credits | | HAT | 17 | host available timer | | HTMO | 17 | host timeout value | | CPKT[0:3] | 5 | current packet, units 0 to 3 | | PKTQ[0:3] | 5 | packet queue, units 0 to 3 | | UFLG[0:3] | 16 | unit flags, units 0 to 3 | | POS[0:3] | 32 | tape position, units 0 to 3 | | OBJP[0:3] | 32 | object position, units 0 to 3 | | INT | 1 | interrupt request | | ITIME | 1 | response time for initialization steps | | | | (except for step 4) | | QTIME | 24 | response time for 'immediate' packets | | XTIME | 24 | response time for data transfers | | PKTS[33*32] | 16 | packet buffers, 33W each, 32 entries | Some DEC operating systems, notably RSX11M/M+, are very sensitive to the timing parameters. Changing the default values may cause M/M+ to crash on boot or to hang during operation. #### Error handling is as follows: | error | processed as | |--------------|------------------| | not attached | tape not ready | | end of file | end of medium | | OS I/O error | fatal tape error | #### 2.11 Communications Devices #### 2.11.1 DC11 Additional Terminal Interfaces (DCI/DCO) For very early system programs, the PDP-11 simulator supports up to sixteen additional DC11 terminal interfaces. The additional terminals consist of two independent devices, DCI and DCO. The entire set is modeled as a terminal multiplexer, with DCI as the master controller. The additional terminals perform input and output through Telnet sessions connected to a user-specified port. The number of lines is specified with a SET command: ``` SET DCIX LINES=n set number
of additional lines to n [1-16] ``` The ATTACH command specifies the port to be used: ``` ATTACH DCIX <port> set up listening port ``` where port is a decimal number between 1 and 65535 that is not being used for other TCP/IP activities. The additional terminals are disabled by default. The additional terminals can be set to one of four modes: UC, 7P, 7B, or 8B. | mode | input characters | output characters | |------|---|---| | UC | lower case converted to upper case, | lower case converted to upper case, high-order bit cleared, | | 7P | high-order bit cleared high-order bit cleared | non-printing characters suppressed high-order bit cleared, | | | | non-printing characters suppressed | | 7B | high-order bit cleared | high-order bit cleared | | 8B | no changes | no changes | The default mode is 7P. In addition, each line can be configured to behave as though it was attached to a dataset, or hardwired to a terminal: ``` SET DCOn DATASET simulate attachment to a dataset (modem) SET DCOn NODATASET simulate direct attachment to a terminal ``` Finally, each line supports output logging. The SET DCOn LOG command enables logging on a line: ``` SET DCOn LOG=filename log output of line n to filename ``` The SET DCOn NOLOG command disables logging and closes the open log file, if any. Once DCI is attached and the simulator is running, the terminals listen for connections on the specified port. They assume that the incoming connections are Telnet connections. The connections remain open until disconnected either by the Telnet client, a SET DCI DISCONNECT command, or a DETACH DCI command. Other special commands: ``` SHOW DCI CONNECTIONS show current connections SHOW DCI STATISTICS show statistics for active connections SET DCOn DISCONNECT disconnects the specified line. ``` The input device (DCI) implements these registers: | name | size | comments | |-----------|------|---| | | | | | CSR[0:15] | 16 | input control/stats register, lines 0 to 15 | | BUF[0:15] | 16 | input buffer, lines 0 to 15 | | IREQ | 16 | interrupt requests, lines 0 to 15 | The output device (DCO) implements these registers: | name | size | comments | |------------|------|---| | CSR[0:15] | 16 | input control/stats register, lines 0 to 15 | | BUF [0:15] | 8 | input buffer, lines 0 to 15 | | IREQ | 16 | interrupt requests, lines 0 to 15 | | TIME[0:15] | 31 | time from I/O initiation to interrupt, | | | | lines 0 to 15 | The additional terminals do not support save and restore. All open connections are lost when the simulator shuts down or DCI is detached. #### 2.11.2 KL11/DL11 Additional Terminal Interfaces (DLI/DLO) The PDP-11 simulator supports up to sixteen additional KL11/DL11 terminal interfaces. The additional terminals consist of two independent devices, DLI and DLO. The entire set is modeled as a terminal multiplexer, with DLI as the master controller. The additional terminals perform input and output through Telnet sessions connected to a user-specified port. The number of lines is specified with a SET command: ``` SET DLI LINES=n set number of additional lines to n [1-16] ``` The ATTACH command specifies the port to be used: ``` ATTACH DLI <port> set up listening port ``` where port is a decimal number between 1 and 65535 that is not being used for other TCP/IP activities. The additional terminals are disabled by default. The additional terminals can be set to one of four modes: UC, 7P, 7B, or 8B. | mode | input characters | output characters | |------|---|---| | UC | lower case converted to upper case, | lower case converted to upper case, high-order bit cleared, | | 7P | high-order bit cleared high-order bit cleared | non-printing characters suppressed high-order bit cleared, | | | | non-printing characters suppressed | | 7B | high-order bit cleared | high-order bit cleared | | 8B | no changes | no changes | The default mode is 7P. . In addition, each line can be configured to behave as though it was attached to a dataset, or hardwired to a terminal: ``` SET DLOn DATASET simulate attachment to a dataset (modem) SET DLOn NODATASET simulate direct attachment to a terminal ``` Finally, each line supports output logging. The SET DLOn LOG command enables logging on a line: The SET DLON NOLOG command disables logging and closes the open log file, if any. Once DLI is attached and the simulator is running, the terminals listen for connections on the specified port. They assume that the incoming connections are Telnet connections. The connections remain open until disconnected either by the Telnet client, a SET DLI DISCONNECT command, or a DETACH DLI command. #### Other special commands: | SHOW DLI CONNECTIONS | show current connections | |----------------------|--| | SHOW DLI STATISTICS | show statistics for active connections | | SET DLOn DISCONNECT | disconnects the specified line. | #### The input device (DLI) implements these registers: | name | size | comments | |-----------|------|---| | CSR[0:15] | 16 | input control/stats register, lines 0 to 15 | | BUF[0:15] | 16 | input buffer, lines 0 to 15 | | IREQ | 16 | receive interrupt requests, lines 0 to 15 | | DSI | 16 | dataset interrupt requests, lines 0 to 15 | #### The output device (DLO) implements these registers: | name | size | comments | |------------------------|---------|--| | CSR[0:15]
BUF[0:15] | 16
8 | <pre>input control/stats register, lines 0 to 15 input buffer, lines 0 to 15</pre> | | IREQ | 16 | interrupt requests, lines 0 to 15 | | TIME[0:15] | 31 | time from I/O initiation to interrupt, lines 0 to 15 | The additional terminals do not support save and restore. All open connections are lost when the simulator shuts down or DLO is detached. ## 2.11.3 DZ11 Terminal Multiplexer (DZ) The DZ11 is an 8-line terminal multiplexer. Up to 4 DZ11's (32 lines) are supported. The number of lines can be changed with the command ``` SET DZ LINES=n set line count to n ``` The line count must be a multiple of 8, with a maximum of 32. #### The DZ11 supports three character processing modes, 7P, 7B, and 8B: | mode | input characters | output characters | |----------|-----------------------------------|--| | 7P | high-order bit cleared | high-order bit cleared, non-printing characters suppressed | | 7B
8B | high-order bit cleared no changes | high-order bit cleared no changes | The default is 8B. The DZ11 supports logging on a per-line basis. The command ``` SET DZ LOG=line=filename ``` enables logging for the specified line to the indicated file. The command ``` SET DZ NOLOG=line ``` disables logging for the specified line and closes any open log file. Finally, the command ``` SHOW DZ LOG ``` displays logging information for all DZ lines. The terminal lines perform input and output through Telnet sessions connected to a user-specified port. The ATTACH command specifies the port to be used: ``` ATTACH {-am} DZ <port> set up listening port ``` where port is a decimal number between 1 and 65535 that is not being used for other TCP/IP activities. The optional switch -m turns on the DZ11's modem controls; the optional switch -a turns on active disconnects (disconnect session if computer clears Data Terminal Ready). Without modem control, the DZ behaves as though terminals were directly connected; disconnecting the Telnet session does not cause any operating system-visible change in line status. Once the DZ is attached and the simulator is running, the DZ will listen for connections on the specified port. It assumes that the incoming connections are Telnet connections. The connection remains open until disconnected by the simulated program, the Telnet client, a SET DZ DISCONNECT command, or a DETACH DZ command. Other special DZ commands: | SHOW DZ CONNECTIONS | show current connections | |------------------------------|--| | SHOW DZ STATISTICS | show statistics for active connections | | SET DZ DISCONNECT=linenumber | disconnects the specified line. | #### The DZ11 implements these registers: | name | size | comments | |------------|------|--| | CSR[0:3] | 16 | control/status register, boards 0 to 3 | | RBUF[0:3] | 16 | receive buffer, boards 0 to 3 | | LPR[0:3] | 16 | line parameter register, boards 0 to 3 | | TCR[0:3] | 16 | transmission control register, boards 0 to 3 | | MSR[0:3] | 16 | modem status register, boards 0 to 3 | | TDR[0:3] | 16 | transmit data register, boards 0 to 3 | | SAENB[0:3] | 1 | silo alarm enabled, boards 0 to 3 | | RXINT | 4 | receive interrupts, boards 30 | | TXINT | 4 | transmit interrupts, boards 30 | | MDMTCL | 1 | modem control enabled | | AUTODS | 1 | autodisconnect enabled | The DZ11 does not support save and restore. All open connections are lost when the simulator shuts down or the DZ is detached. #### 2.11.4 DHQ11 Terminal Multiplexer (VH) The DHQ11 is an 8-line terminal multiplexer for Qbus systems. Up to 4 DHQ11's are supported. The DHQ11 is a programmable asynchronous terminal multiplexer. It has two programming modes: DHV11 and DHU11. The register sets are compatible with these devices. For transmission, the DHQ11 can be used in either DMA or programmed I/O mode. For reception, there is a 256-entry FIFO for received characters, dataset status changes, and diagnostic information, and a programmable input interrupt timer (in DHU mode). The device supports 16-, 18-, and 22-bit addressing. The DHQ11 can be programmed to filter and/or handle XON/XOFF characters independently of
the processor. The DHQ11 supports programmable bit width (between 5 and 8) for the input and output of characters. The DHQ11 has a rocker switch for determining the programming mode. By default, the DHV11 mode is selected, though DHU11 mode is recommended for applications that can support it. The VH controller may be adjusted on a per controller basis as follows: ``` SET VHn DHU use the DHU programming mode and registers SET VHn DHV use the DHV programming mode and registers ``` DMA output is supported. In a real DHQ11, DMA is not initiated immediately upon receipt of TX.DMA.START but is dependent upon some internal processes. The VH controller mimics this behavior by default. It may be desirable to alter this and start immediately, though this may not be compatible with all operating systems and diagnostics. You can change the behavior of the VH controller as follows: ``` SET VHn NORMAL use normal DMA procedures SET VHn FASTDMA set DMA to initiate immediately ``` The terminal lines perform input and output through Telnet sessions connected to a user-specified port. The ATTACH command specifies the port to be used: ``` ATTACH VH <port> set up listening port ``` where port is a decimal number between 1 and 65535 that is not being used for other TCP/IP activities. This port is the point of entry for al lines on all VH controllers. Modem and auto-disconnect support may be set on an individual controller basis. The SET MODEM command directs the controller to report modem status changes to the computer. The SET HANGUP command turns on active disconnects (disconnect session if computer clears Data Terminal Ready). ``` SET VHn [NO]MODEM disable/enable modem control SET VHn [NO]HANGUP disable/enable disconnect on DTR drop ``` Once the VH is attached and the simulator is running, the VH will listen for connections on the specified port. It assumes that the incoming connections are Telnet connections. The connection remains open until disconnected by the simulated program, the Telnet client, a SET VH DISCONNECT command, or a DETACH VH command. Other special VH commands: ``` SHOW VH CONNECTIONS show current connections SHOW VH STATISTICS show statistics for active connections SET VH DISCONNECT=linenumber disconnects the specified line. ``` The DHQ11 implements these registers, though not all can be examined from SCP: | name | size | comments | |-----------------------|----------|--| | CSR[0:3]
RBUF[0:3] | 16
16 | control/status register, boards 0 to 3 receive buffer, boards 0 to 3 | | LPR[0:3] | 16 | line parameter register, boards 0 to 3 | | RXINT | 4 | receive interrupts, boards 30 | | TXINT | 4 | transmit interrupts, boards 30 | [more to be described...] The DHQ11 does not support save and restore. All open connections are lost when the simulator shuts down or the VH is detached. #### 2.12 Ethernet Controllers #### 2.12.1 DELQA/DEQNA Qbus Ethernet Controllers (XQ, XQB) The simulator implements two DELQA/DEQNA Qbus Ethernet controllers (XQ, XQB). Initially, XQ is enabled, and XQB is disabled. Options allow control of the MAC address, the controller mode, and the sanity timer. ``` SET XQ MAC=<mac-address> ex. 08-00-2B-AA-BB-CC SHOW XQ MAC ``` These commands are used to change or display the MAC address. <mac-address> is a valid ethernet MAC, delimited by dashes or periods. The controller defaults to 08-00-2B-AA-BB-CC, which should be sufficient if there is only one SIMH controller on your LAN. Two cards with the same MAC address will see each other's packets, resulting in a serious mess. ``` SET XQ TYPE={DEQNA|[DELQA]} SHOW XQ TYPE ``` These commands are used to change or display the controller mode. DELQA mode is better and faster but may not be usable by older or non-DEC OS's. Also, be aware that DEQNA mode is not supported by many modern OS's. The DEQNA-LOCK mode of the DELQA card is emulated by setting the the controller to DEQNA -- there is no need for a separate mode. DEQNA-LOCK mode behaves exactly like a DEQNA, except for the operation of the VAR and MOP processing. ``` SET XQ SANITY={ON|[OFF]} SHOW XO SANITY ``` These commands change or display the INITIALIZATION sanity timer (DEQNA jumper W3/DELQA switch S4). The INITIALIZATION sanity timer has a default timeout of 4 minutes, and cannot be turned off, just reset. The normal sanity timer can be set by operating system software regardless of the state of this switch. Note that only the DEQNA (or the DELQA in DEQNA-LOCK mode (=DEQNA)) supports the sanity timer -- it is ignored by a DELQA in Normal mode, which uses switch S4 for a different purpose. ``` SET XQ POLL={DEFAULT|4..2500} SHOW XQ POLL ``` These commands change or display the service polling timer. The polling timer is calibrated to run the service thread 200 times per second. This value can be changed to accommodate particular system requirements for more (or less) frequent polling. ``` SHOW XQ STATS ``` This command will display the accumulated statistics for the simulated Ethernet controller. To access the network, the simulated Ethernet controller must be attached to a real Ethernet interface: ``` ATTACH XQ0 {ethX|<device_name>} ex. eth0 or /dev/era0 SHOW XQ ETH ``` where X in 'ethX' is the number of the Ethernet controller to attach, or the real device name. The X number is system dependant. If you only have one Ethernet controller, the number will probably be 0. To find out what your system thinks the Ethernet numbers are, use the SHOW XQ ETH command. The device list can be quite cryptic, depending on the host system, but is probably better than guessing. If you do not attach the device, the controller will behave as though the Ethernet cable were unplugged. XQ and XQB have the following registers: | name | size | comments | |-------|------|------------------------------------| | C 3 O | 1.0 | | | SA0 | 16 | station address word 0 | | SA1 | 16 | station address word 1 | | SA2 | 16 | station address word 2 | | SA3 | 16 | station address word 3 | | SA4 | 16 | station address word 4 | | SA5 | 16 | station address word 5 | | RBDL | 32 | receive buffer descriptor list | | XBDL | 32 | trans(X)mit buffer descriptor list | | CSR | 16 | control status register | | VAR | 16 | vector address register | | INT | 1 | interrupt request flag | One final note: because of its asynchronous nature, the XQ controller is not limited to the ~1.5Mbit/sec of the real DEQNA/DELQA controllers, nor the 10Mbit/sec of a standard Ethernet. Attach it to a Fast Ethernet (100 Mbit/sec) card, and "Feel the Power!" :-) ## 2.12.2 DELUA/DEUNA Unibus Ethernet Controllers (XU, XUB) The simulator implements two DELUA/DEUNA Unibus Ethernet controllers (XU, XUB). Its operation is analogous to the DELQA/DEQNA controller. ## 2.13 CR11/CD11 Card Reader (CR) The card reader (CR) implements a single controller (either the CR11 or the CD11) and card reader (e.g., Documation M200, GDI Model 100) by reading a file and presenting lines or cards to the simulator. Card decks may be represented by plain text ASCII files, card image files, or column binary files. The CR11 controller is also compatible with the CM11-F, CME11, and CMS11. Card image files are a file format designed by Douglas W. Jones at the University of Iowa to support the interchange of card deck data. These files have a much richer information carrying capacity than plain ASCII files. Card Image files can contain such interchange information as card-stock color, corner cuts, special artwork, as well as the binary punch data representing all 12 columns. Complete details on the format, as well as sample code, are available at Prof. Jones's site: http://www.cs.uiowa.edu/~jones/cards/. The card reader can be configured to support either of the two controllers supported by DEC: ``` SET CR CR11 set controller type to CR11 SET CR CD11 set controller type to CD11 ``` The controller type must be set before attaching a virtual card deck to the device. You may NOT change controller type once a file is attached. The primary differences are summarized in the table below. By default, CR11 simulation is selected. ``` CR11 CD11 BR 6 4 registers 4 3 data transfer BR DMA card rate 200-600 1000-1200 hopper cap. <= 1000 1000-2250 cards Mark-sense & punched only punched ``` Examples of the CR11 include the M8290 and M8291 (CMS11). All card readers use a common vector at 0230 and CSR at 177160. Even though the CR11 is normally configured as a BR6 device, it is configured for BR4 in this simulation. The card reader supports ASCII, card image, and column binary format card "decks." When reading plain ASCII files, lines longer than 80 characters are silently truncated. Card image support is included for 80 column Hollerith, 82 column Hollerith (silently ignoring columns 0 and 81), and 40 column Hollerith (marksense) cards. Column binary supports 80 column card images only. All files are attached read-only (as if the -R switch were given). ``` ATTACH -A CR <file> file is ASCII text ATTACH -B CR <file> file is column binary ATTACH -I CR <file> file is card image format ``` If no flags are given, the file extension is evaluated. If the filename ends in .TXT, the file is treated as ASCII text. If the filename ends in .CBN, the file is treated as column binary. Otherwise, the CR driver looks for a card image header. If a correct header is found the file is treated as card image format, otherwise it is treated as ASCII text. The correct character translation MUST be set if a plain text file is to be used for card deck input. The correct translation SHOULD be set to allow correct ASCII debugging of a card image or column binary input deck. Depending upon the operating system in use, how it was generated, and how the card data will be read and used, the translation must be set correctly so that the proper character set is used by the driver. Use the following command to explicitly set the correct translation: ``` SET TRANSLATION={DEFAULT|026
026FTN|029|EBCDIC} ``` This command should be given after a deck is attached to the simulator. The mappings above are completely described at http://www.cs.uiowa.edu/~jones/cards/codes.html. Note that DEC typically used 029 or 026FTN mappings. DEC operating systems used a variety of methods to determine the end of a deck (recognizing that 'hopper empty' does not necessarily mean the end of a deck. Below is a summary of the various operating system conventions for signaling end of deck: ``` RT-11: 12-11-0-1-6-7-8-9 punch in column 1 RSTS/E: 12-11-0-1 or 12-11-0-1-6-7-8-9 punch in column 1 ``` ``` RSX: 12-11-0-1-6-7-8-9 punch VMS: 12-11-0-1-6-7-8-9 punch in first 8 columns TOPS: 12-11-0-1 or 12-11-0-1-6-7-8-9 punch in column 1 ``` Using the AUTOEOF setting, the card reader can be set to automatically generate an EOF card consisting of the 12-11-0-1-6-7-8-9 punch in columns 1-8. When set to CD11 mode, this switch also enables automatic setting of the EOF bit in the controller after the EOF card has been processed. [The CR11 does not have a similar capability.] By default AUTOEOF is enabled. ``` SET CR AUTOEOF SET CR NOAUTOEOF ``` The default card reader rate for the CR11 is 285 cpm, while the default rate for the CD11 is 1000 cpm. The reader rate can be set to its default value or to anywhere in the range 200..1200 cpm. This rate may be changed while the unit is attached. ``` SET CR RATE={DEFAULT|200..1200} ``` It is standard operating procedure for operators to load a card deck and press the momentary action RESET button to clear any error conditions and alert the processor that a deck is available to read. Use the following command to simulate pressing the card reader RESET button, ``` SET CR RESET ``` Another common control of physical card readers is the STOP button. An operator could use this button to finish the read operation for the current card and terminate reading a deck early. Use the following command to simulate pressing the card reader STOP button. ``` SET CR STOP ``` The simulator does not support the BOOT command. The simulator does not stop on file I/O errors. Instead the controller signals a reader check to the CPU. The CR controller implements these registers: | name | size | comments | |--------|------|--------------------------------------| | | | | | BUF | 8 | ASCII value of last column processed | | CRS | 16 | CR11 status register | | CRB1 | 16 | CR11 12-bit Hollerith character | | CRB2 | 16 | CR11 8-bit compressed character | | CRM | 16 | CR11 maintenance register | | CDST | 16 | CD11 control/status register | | CDCC | 16 | CD11 column count | | CDBA | 16 | CD11 current bus address | | CDDB | 16 | CD11 data buffer, 2nd status | | BLOWER | 2 | blower state value | | INT | 1 | interrupt pending flag | | ERR | 1 | error flag (CRS<15>) | | IE | 1 | interrupt enable flag (CRS<6>) | | POS | 32 | file position - do not alter | | TIME | 24 | delay time between columns | | | | | The CD11 simulation includes the Rev. J modification to make the CDDB act as a second status register during non-data transfer periods. ## 2.14 Arithmetic Options #### 2.14.1 KE11A Extended Arithmetic Option (KE) The KE11A extended arithmetic option (KE) provides multiply, divide, normalization, and multi-bit shift capability on Unibus PDP-11's that lack the EIS instruction set. In practice, it was only sold with the PDP-11/20. The KE is disabled by default. The KE implements these registers: | name | size | comments | |------|------|---------------------| | AC | 16 | accumulator | | MQ | 16 | multiplier-quotient | | SC | 6 | shift count | | SR | 8 | status register | ## 2.14.2 KG11A Communications Arithmetic Option (KG) The KG11-A is a programmed I/O, non-interrupting, dedicated arithmetic processor for the Unibus. The device is used to compute the block check character (BCC) over a block of data, typically in data communication applications. The KG11 can compute three different Cyclic Redundancy Check (CRC) polynomials (CRC-16, CRC-12, CRC-CCITT) and two Longitudinal Redundancy Checks (LRC, Exclusive-OR; LRC-8, LRC-16). Up to eight units may be contiguously present in a single machine and are all located at fixed addresses. This simulation implements all functionality of the device including the ability to single step computation of the BCC. The KG is disabled by default. The KG11 supports the following options: ``` SET KG UNITS=n set the number of units [0-8] SET KG DEBUG={opt,opt...} set the debugging options REG - any time a register is touched POLY - any time the polynomial is changed CYCLE - each cycle computing the polynomial ``` The KG11 implements the following registers, replicated for each unit: | name | size | comments | |--------------|------|-----------------------------------| | SR[0:7] | 16 | control and status register; R/W | | BCC[0:7] | 16 | result block check character; R/O | | DR[0:7] | 16 | input data register; W/O | | PULSCNT[0:7] | 16 | polynomial cycle stage | ## 3 Symbolic Display and Input The PDP-11 simulator implements symbolic display and input. Display is controlled by command line switches: ``` display as ASCII characterdisplay as two packed ASCII charactersdisplay instruction mnemonics ``` #### Input parsing is controlled by the first character typed in or by command line switches: ``` ' or -a ASCII character " or -c two packed ASCII characters alphabetic instruction mnemonic numeric octal number ``` #### Instruction input uses standard PDP-11 assembler syntax. There are sixteen instruction classes: | class | operands | examples | comments | |--------------|------------------------|--------------------|------------| | no operands | none | HALT, RESET | | | = | | • | | | 3b literal | literal [O to 7] | SPL | | | 6b literal | literal [0-077] | MARK | | | 8b literal | literal [0-0377] | EMT, TRAP | | | register | register | RTS | | | sop | specifier | SWAB, CLR, ASL | | | reg-sop | register, specifier | JSR, XOR, MUL | | | fop | flt specifier | ABSf, NEGf | | | ac-fop | flt reg, flt specifier | LDf, MULf | | | ac-sop | flt reg, specifier | LDEXP, STEXP | | | ac-moded sop | flt reg, specifier | LDCif, STCfi | | | dop | specifier, specifier | MOV, ADD, BIC | | | cond branch | address | BR, BCC, BNE | | | sob | register, address | SOB | | | cc clear | cc clear instructions | CLC, CLV, CLZ, CLN | combinable | | cc set | cc set instructions | SEC, SEV, SEZ, SEN | combinable | ## For floating point opcodes, F and D variants, and I and L variants, may be specified regardless of the state of FPS. #### The syntax for specifiers is as follows: | syntax | specifier | displacement | comments | |-----------------|-----------|---------------------|-------------------------| | Rn | 0n | _ | | | Fn | 0 n | _ | only in flt reg classes | | (Rn) | 1n | _ | | | @(Rn) | 7n | 0 | equivalent to @0(Rn) | | (Rn)+ | 2n | _ | | | @(Rn)+ | 3n | _ | | | -(Rn) | 4n | _ | | | @-(Rn) | 5n | _ | | | $\{+/-\}d(Rn)$ | 6n | $\{+/-\}d$ | | | $@\{+/-\}d(Rn)$ | 7n | $\{+/-\}d$ | | | #n | 27 | n | | | @#n | 37 | n | | | .+/-n | 67 | +/-n - 4 | | | @.+/-n | 77 | +/-n - 4 | | | $\{+/-\}$ n | 67 | $\{+/-\}n - PC - 4$ | if on disk, 37 and n | | $@\{+/-\}n$ | 77 | $\{+/-\}n - PC - 4$ | if on disk, invalid |