Linphone Instant Message Encryption v2.0 (Lime v2.0)

Johan Pascal

February 27, 2025
Version 1.2

Contents

—

Changelog
Introduction
Notations

Brief introduction to Signal protocol specification documents

4.1 The Double Ratchet Algorithm . . . . . ... ... ... ... ... ....
4.2 The X3DH Key Agreement Protocol . . . . ... ... ... ........
4.3 The PQXDH Key Agreement Protocol . . . . . .. ... ... ... .. ...
4.4 The Sesame Algorithm . . . . . . . .. ... .. ... ... ...

Major discrepancies between Lime v2.0 and Signal protocol

5.1 Double Ratchet . . . . . . . .. .
5.1.1 Group chat management . . . . . . ... ... ... ...
5.1.2 Post Quantum cryptography . . . . . .. .. ... ... ......
5.1.3 AEAD encryption scheme: AES256-GCM . . . ... ... ... ..

5.2 X3DH Identity Key signature . . . . . .. .. ... ... oL

5.3 Authentication . . . . . ... ...

54 PQXDH . . . . .

5.5 Optional features not implemented . . . . . . . .. .. ... ... .....

Implementation details

6.1 Preliminaries . . . . . . . . . ...

6.2 HKDF . . . . . . e

6.3 Double Ratchet . . . . . . . . ... .
6.3.1 ECDH only Asymmetric Ratchet . . . . . . ... ... .. ... ..
6.3.2 ECDH and KEM Asymmetric Ratchet . . . . . ... ... ... ..
6.3.3 Symmetric Ratchet . . . . . .. ... .. 0L
6.3.4 RatchetEncrypt . . . . . . . ..o
6.3.5 RatchetDecrypt . . . . . . . . . ...
6.3.6 Associated Data . . . ... .. ... ...

6.4 X3DH . . . . . e
6.4.1 DH . ... . . . e
6.4.2 SIE o o o
6.4.3 Shared Secrets generation . . . . . . ... ... ... .. ......



6.5 PQXDH . . . . .. e
6.5.1 KEM . ... .
6.5.2 Shared Secrets generation . . . . . .. .. ... ... .. ......

6.6 Lime key test server . . . . . . ...

6.7 Sesame . . . . . ... e
6.7.1 Scenario 1: first encryption, multiple devices. . . . . . . . .. . ..
6.7.2 Scenario 2: groupchat . . . . ...

6.8 Mutual authentication and peer device status . . . . . . ... .. .. ...

6.9 Keys and sessions management . . . . .. .. ..o
6.9.1 Identity Key . . . . . . . . ..
6.9.2 Signed Pre-key . . . . ...
6.9.3 One-time Pre-key . . . . . . . ... oo o
6.9.4 Double Ratchet Sessions . . . . . . .. ... ... ...
6.9.5 Skipped message keys . . . .. .. ... L

6.10 Multiple base algorithm support . . . . . . .. ... ... ... ... ..
6.10.1 wuser creation . . . . . . ...
6.10.2 encryption . . . . . . . . Lo
6.10.3 decryption . . . . . . ..o

6.11 Local Storage . . . . . . . . . .
6.11.1 Devicestables . . . . . . . . ...
6.11.2 X3DH tables . . . . . . .. ..
6.11.3 Double ratchet tables . . . . . . . ... ... L.

6.12 Summary of cryptographic algorithms used . . . . . . .. .. .. .. ...
6.12.1 Double Ratchet . . . . . . . . ... ... o o
6.12.2 X3DH . . . . .
6.12.3 Cryptographic libraries . . . . . . . . ... ... ..

7 Protocol specification

7.1 Double Ratchet message . . . . . . . .. . ... ... ..
7.1.1 Header. . . . . . . . . . .
7.1.2 Payload in cipher message encryption policy . . . . . . .. .. ...
7.1.3 Payload in Double Ratchet message encryption policy . . . . . ..
714 X3DHinit . . . . . ..

7.2 Cipher Message . . . . . . . . . .

7.3 X3DHmessage . . . . . . . . . e
7.3.1 Register User Message . . . . . . . .. .. .. ... .. .. ...,
7.3.2 Delete User Message . . . . . . .. .. ... ... ... .. ...,
7.3.3 post Signed Pre-key Message . . . . . . .. ... ... ... ..
7.3.4 post One-time Pre-key Message . . . . . . . . ... .. ... ....
7.3.5 get peers key bundles Message . . . . . . ... ...
7.3.6 peers key bundles Message . . . . . ... ... oo
7.3.7 get Self OPks Message . . . . . . . . . .. .. ... ...
7.3.8 self OPks Message . . . . . . . . . . . ...
7.3.9 Error Message . . . . . . . ... o
7.3.10 Deprecated Register User Message . . . . . . ... .. ... ....

8 Acknowledgements

9 IPR

33
33
34
35
35
35
35
36
37
37
37
37
38
38
38
38
39
39

40

41



10 References

42



1 Changelog

Revision History

Revision Date Author(s) Description

1.2 Feb 27, 2025 JP Update PQC description with MLKem
and add multialgo support

1.1 June 15, 2024 JP Add support to Post-Quantum Cryptogra-
phy

1.0 March 6, 2019 JP Initial version



2 Introduction

Linphone Instant Message Encryption (Lime) v2.0 implements the Signal protocol
allowing users to privately and asynchronously exchange messages. Detailed specification
of the Signal protocol can be found on the Signal website. Lime supports multiple devices
per user and multiple users per device.

Lime is designed to be used with Linphone, an open source SIP phone. Lime establishes
encrypted sessions and encrypts messages but relies on Linphone to acquire the unique
identification string of peer devices and route the messages to their recipients. The use
of Lime with other message delivery software is possible but is out of the scope of this
document.

Lime is written in C++17 and the library uses templates to provide support for Curve25519,
Curve448 and hybrids Curve25519/Kyber512, Curve25519/MLKem512, Curve448/MLKem1024
based cryptographic algorithms. The library supports one or several cryptographics bases
according to build settings.

Notes: Lime v1.0 was based on SCIMP. This document presents Lime v2.0, which is
neither related to nor compatible with Lime v1.0. In this document the use of the term
Lime refers to Lime v2.0.

This document(version 1.2) refers to the implementation tagged 5.4.0 on the official
repository.


https://signal.org/docs/
https://linphone.org
https://en.wikipedia.org/wiki/Silent_Circle_Instant_Messaging_Protocol
https://gitlab.linphone.org/BC/public/lime/-/commits/5.4.0
https://gitlab.linphone.org/BC/public/lime/-/commits/5.4.0

3 Notations

A||B denotes the concatenation of byte sequences A and B

A(value) the bytes sequence A size is value. For example, key(32bytes) denotes a 32
bytes long buffer called key. Several values may be included in a comma-separated list,
indicating that several sizes are possible.

element{instances} denotes the number of occurrences of a given element. Instances
may be a number, a range or a comma-separated list of possible values. For example,
key{4} means 4 keys, key{0,1} means either 0 or 1 key.

elementlvalues]: element value can be one of the values given in a comma-separated
list. For example, type[l,2, 3] means type equals either 1, 2, or 3.



4 Brief introduction to Signal protocol specification docu-
ments

4.1 The Double Ratchet Algorithm

“The Double Ratchet algorithm/[1] is used by two parties to exchange encrypted mes-
sages based on a shared secret key. Typically the parties will use some key agreement
protocol (such as X3DH[2]) to agree on the shared secret key. Following this, the parties
will use the Double Ratchet to send and receive encrypted messages.

The parties derive new keys for every Double Ratchet message so that earlier keys
cannot be calculated from later ones. The parties also send Diffie-Hellman public values
attached to their messages. The results of Diffie-Hellman calculations are mized into the
derived keys so that later keys cannot be calculated from earlier ones. These properties
give some protection to earlier or later encrypted messages in case of a compromise of a
party’s keys.”

4.2 The X3DH Key Agreement Protocol

“'X8DH'(or 'Extended Triple Diffie-Hellman')[2] key agreement protocol establishes a
shared secret key between two parties who mutually authenticate each other based on
public keys. X3DH provides forward secrecy and cryptographic deniability.

X3DH is designed for asynchronous settings where one user ('Bob') is offline but has
published some information to a server. Another user ('Alice’) wants to use that infor-
mation to send encrypted data to Bob and also to establish a shared secret key for future
communication.”

4.3 The PQXDH Key Agreement Protocol

“'PQXDH'(or 'Post-Quantum Eztended Diffie-Hellman')[3] key agreement protocol es-
tablishes a shared secret key between two parties who mutually authenticate each other
based on public keys. PQXDH provides post-quantum forward secrecy and a form of
cryptographic deniability but still relies on the hardness of the discrete log problem for
mutual authentication.”

4.4 The Sesame Algorithm

“The Sesame algorithm[]] manages message encryption sessions in an asynchronous
and multi-device setting. Sesame was designed to manage Double Ratchet sessions[1] cre-
ated with a X3DH key agreement[2]. However, Sesame is a generic algorithm that works
with any session-based message encryption algorithm that meets certain conditions.”



5 Major discrepancies between Lime v2.0 and Signal pro-
tocol

This section will not go into the details of the Signal protocol specification but will
focus only on the points where the Lime v2.0 implementation does not follow the Signal
specification documentation|[1]|[2][4]. A prior knowledge of these specs is essential to
understand the possible effects of such discrepancies.

5.1 Double Ratchet
5.1.1 Group chat management

The group chat mechanism implemented by Whisper Systems in libsignal-protocol-
[13] uses an unspecified (at least in Double Ratchet document|1]) feature, the sender
key, which:

1. When accepting membership, a group member creates its sender key and dis-
tributes it to all other members using pairwise Double Ratchet sessions; then

2. Members use their sender key to encrypt messages to the group, deriving it by
using a simple symmetric ratcheting.

This mechanism allows an efficient server-side fan-out but loses the break-in recovery
property provided by the Double Ratchet mechanism.

Operating in a multi device environment, Lime provides the following mechanism to
save bandwith when sending message to multiple devices:

1. Generate a random key and use it to encrypt the message.
2. Use Double Ratchet sessions to encrypt the random key.

3. Send to server a bundle of:

DR encrypted random key{one for each recipient device}
|| Message encrypted using the random key

4. Server fans out the messages to recipients mailboxes posting only the appropriate
double ratchet encrypted random key and encrypted message.

This mechanism is optional and the default behavior of the library is to use it when
it saves upload bandwidth, using a regular encryption in the Double Ratchet message
otherwise.

The bandwidth and computational power consumption is greater than the Whisper
System implementation but all the exchanges are protected by an actual Double Ratchet;
maintaining the break-in recovery property.

Silent members/devices (lost devices and users quitting the network are good candi-
dates) may result in weakness in the break-in recovery as no Diffie-Hellman ratchet step
is ever performed. This is mitigated by setting a limit to the sending chain length. The
sending device would create a new Double Ratchet session fetching keys from X3DH key
server if the limit is reached.


https://github.com/WhisperSystems/libsignal-protocol-c
https://github.com/WhisperSystems/libsignal-protocol-c

Note : The actual implementation generates a 32 bytes random seed derived through
HKDF[11] into a 32 bytes key and a 16 bytes nonce. The DR session encrypts the 32
bytes random seed using AES256-GCM (with 16 bytes authentication tag); producing a
48 bytes output to transmit the key.

5.1.2 Post Quantum cryptography

When PQX3DH is used, the Double Ratchet asymmetric ratchet also uses Post quan-
tum cryptography to ensure break-in recovery. In that case the double ratchet symmetric
key also differs from the original specification by including the index in the key derivation
function label as recommended in |8, section 4.2].

PQXDH thus also provides DR with a KEM public key, so DR initialisation can
encapsulate a secret to it. It is the SPk. This implementation then always uses a KEM
public key in the SPk unlike PQXDH using it only when the OPk is missing.

5.1.3 AEAD encryption scheme: AES256-GCM

The Double Ratchet specification [1, section 5.2] recommends the use of a SIV based
AEAD encryption scheme.

The Lime implementation of the Double Ratchet Chain Key derivation is described
in 6.3.3 of this document. The message key(32bytes) and initialisation vector (16bytes)
are generated, used and destroyed during the encryption process. The direct use of an
AES256-GCM as the AEAD encryption scheme is assumed to be secure as the key and
IV are not reused.

5.2 X3DH Identity Key signature

The X3DH specification uses ECDH keys only in combination with XEdADSA[5] to
provide an EADSA-compatible signature using its Identity key (Ik) formatted for X25519
or X448 ECDH functions.

Lime performs the same signature and ECDH operations but the identity key (Ik) is
generated, stored and transmitted in its EADSA format and then converted into X25519
or X448 format when an ECDH computation is performed on it.

The X3DH Encode(PK) function recommends the usage of a single byte constant to
represent the type of curve followed by the encoding specified in [6]. Lime uses direct
encoding specified in [6] for its ECDH public keys and [9] for its EADSA keys but the
type of curve is present in the messages header.

5.3 Authentication

X3DH specification mentions [2, section 4.1] the necessity of an identity authentication
mechanism and libsignal|[13] implements a key fingerprints comparison to provide it.
Lime makes use of a ZRTP[12] call with an oral SAS verification to provide mutual
identity authentication. See implementation details in section 6.8



5.4 PQXDH

In Lime, the key server will allways provide a SPk KEM public key to be able to pass
it to the double ratchet init and an OPk KEM key if available.

KEM OPk keys are not signed to improve the deniability property, see [7]

In order not to rely on KEM properties (Kyber or MLKem), the key derivation func-
tions generating the PQXDH output includes a transcript of all public material (public
keys and cipher text) used in the generation of the shared secrets.

5.5 Optional features not implemented
e Double ratchet with header encryption as in |1, section 4]

e Retry request as in [4, section 4.1]

e Session expiration as in [4, section 4.2] but a related mechanism is implemented:
A Double Ratchet session expires after encrypting a certain number of messages
without performing any Diffie-Hellman ratchet step.

10



6 Implementation details

6.1 Preliminaries

For clarity, the different terms used in this document are defined here:

e device Id: a unique string associated to a device, provided to Lime by Linphone.
It shall be the GRUUJ[10]. Internally a lime user is identified by the pair device Id,
base algorithm.

e user Id: a unique string defining a user or a group of users, provided to Lime by
Linphone. It shall be the sip URI.

e source: the device generating and encrypting a message.

e recipient: the parties targeted to receive and decrypt the message. Multiple devices
can be associated to the it so any mention of recipient must specify user Id or device
Id to clarify the intent.

6.2 HKDF

The HKDF function, as described in RFC5869 [11] is used in both X3DH and Double
Ratchet. Lime uses an implementation of HKDF based on SHA512. Its prototype in
the pseudo-code is as follow, all inputs and output have variable size. salt is optionnal
and the function may be used without(set to null in the pseudo-code). The size of the
generated output key material, okm, is arbitrary and depends only on request not on
input or hash algorithm used.

function HKDFSHAB12(salt,ikm, info)
return okm
end function

6.3 Double Ratchet
6.3.1 ECDH only Asymmetric Ratchet
The ECDH function can be either X448 or X25519 as described in [6].

Root Key Derivation function

As recommended in |1, section 5.2|, this function uses HKDF|[11]| based on SHA512.
The salt is RK and ikm is the output of ECDH(DH_out). The info string is "DR
Root Chain Key Derivation". DH_out size depends on ECDH function used, X25519
produces a 32 bytes output, X448 a 56 bytes output.

function KDF RK(RK(32bytes), DH _out(32,56bytes))

info <+ "DR Root Chain Key Derivation”
RK (32bytes)||C K (32bytes) < HKDFSHAB12(RK, DH out,info)
return RK (32bytes), C K (32bytes)

end function

Sender Asymmetric Ratchet

11



This function is executed during a message encryption, only when an ECDH peer
public key is available(and was never used before)
function ASYMMETRICRATCHETSENDER (peer PublicK ey (32, 56bytes) )
sel f PublicK ey, sel f Private K ey + GENERATEDHKEYPAIR
> tag peerPublicKey as used to avoid triggering another DH with it
DH out < DH (sel fPrivateKey, peer PublicKey)
RK,CKs <+ KDF RK(RK,DH out)
end function

Receiver Asymmetric Ratchet

This function is executed during a message decryption upon reception of a new ECDH
peer public key
function ASYMMETRICRATCHETRECEIVER(peer PublicK ey(32, 56bytes))
> tag peerPublicKey as new so we will use it at next message encryption
DH out < DH (sel f PrivateK ey, peer PublicK ey)
RK,CKr + KDF RK(RK,DH out)
end function

6.3.2 ECDH and KEM Asymmetric Ratchet
The mixed KEM and ECDH asymmetric ratchet uses X25519 and Kyber512 algorithm

Root key derivation function

As recommended in [1, section 5.2], this function uses HKDF|[11] based on SHA512.
The salt is RK and ikm is the output of ECDH(DH _out), the KEM shared secret( KEM out)
and a transcript of the key exchanges: public keys and cipher text. The info string is
"DR Root Chain Key Derivation".
transcript « ECDH Sender Pk||EC DH Receiver Pk||K EM Pk||KEMCt
function KDF KEM RK(RK(32bytes), DH _out(32bytes),
KEM out(32bytes), transcript(1632bytes))
info < "DR Root Chain Key Derivation”
RK (32bytes)||C K (32bytes) < HKDFSHAS12(RK, DH out||KEM out||transcript,info)
return RK (32bytes), C K (32bytes)

end function
Sender Asymmetric Ratchet

This function is executed during a message encryption, only when an ECDH peer
public key is available(and was never used before)
function ASYMMETRICRATCHETSENDER(peer D H PublicK ey (32, 56bytes))
> Perform a DH ratchet
sel f DH PublicK ey, sel f DH PrivateK ey < GENERATEDHKEYPAIR
> tag peerPublicKey as used to avoid triggering another DH with it
DH out < DH(selfDH PrivateK ey, peer DH PublicK ey)

> Check if we should also perform a KEM ratchet

12



if peer K EM PublicK ey available and
( lastReceiver KemRatchet > 1 day
or ratchetChainSize > 42 ) then
> Encapsulate a secret to current peer’s public key
KEM CipherText, KEM out < ENCAPSULATE(peer K EM PublicK ey)
RK,CKs <+ KDF_ KEM RK(RK,DH out, KEM out,
sel f DH PublicK ey||peer D H PublicK ey||peer K EM PublicKey||K EM _CipherText)

> Generate a new KEM key pair so peer may encapsulate a secret to us
> The public key is sent along the previously created ciphertext
sel f K EM PublicKey, sel f K EM PrivateK ey <+ GENERATEKEMKEYPAIR
else
> No KEM ratchet, just perform a DH one
RK,CKs <+ KDF RK(RK,DH out)
end if
end function

Receiver Asymmetric Ratchet

This function is executed during a message decryption upon reception of a new ECDH
peer public key

function ASYMMETRICRATCHETRECEIVER (peer D H PublicK ey(32bytes), K EM CipherText(768bytes))
> tag peerDHPublicKey as new so we will use it at next message encryption
DH out + DH (self DH PrivateK ey, peer DH PublicKey)
> When a new KEM Public key arrives, perform a KEM ratchet
if KEMCipherText is new then
KEM out < DECAPSULATE(sel f K EM PublicKey, KEM CipherText)
RK,CKs + KDF_KEM RK(RK,DH out, KEM out,
peer DH PublicK eyl||sel f DH PublicKey||sel f K EM PublicKey||KEM _CipherText)

else > No KEM ratchet, just perform a DH one
RK,CKr <+ KDF RK(RK,DH out)
end if

end function

6.3.3 Symmetric Ratchet
KDF CK

Implemented as described in |1, section 5.2]. Message key derivation outputs 48 bytes
as it generates the message key (MK (32bytes)) and the AEAD nonce (IV (16bytes)) as
suggested in [1, section 3.1 - ENCRYPT].

function KDF CK(CK(32bytes))

MK||IV < HMACSHA512(ChainKey, 0201)

CK < HMACSHAS12(ChainKey, 0x02)

return CK (32bytes), M K (32bytes), IV (16bytes)
end function

13



When KEM is also used, this function includes the chain key derivation index as
suggested in [§]
function KDF CK(CK(32bytes), index(2bytes))
MKI||IV < HMACSHA512(ChainKey, 0x01, ||index)
CK <+ HMACSHA512(ChainK ey, 0x02||index)
return CK (32bytes), M K (32bytes), IV (16bytes)
end function

6.3.4 RatchetEncrypt

The ratchet encrypt function performs an asymmetric ratchet when possible: if a peer
ECDH public key is available. If the base algorithm includes a KEM, the asymmetric
ratchet involves a KEM encapsulation: if a peer KEM public key is available and if
more than maxKEMRatchetChainPeriod seconds have passed or more than KEMRatch-
etChainSize messages have been exchanged since the last KEM ratchet.

The RatchetEncrypt function described in [1, section 3.4] is not directly used to en-
crypt the message. Instead, to provide the group chat (see section 5.1.1) capabilities,
an encryption request must include a list of recipient devices (can contain one or more
elements).

Each recipient in the list is composed of:

recipient Deviceld: the recipient device Id

DRsession: an active Double Ratchet session with the recipient device

DRmessage: encryption output (Double Ratchet Message) for this recipient device

peer DeviceStatus: an ouput giving a status on the recipient: unknown(till now thus),

untrusted or trusted

The ouput may be completed by a Cipher Message holding the encrypted plain text
according to the selected encryption policy,

The message is sent from the sender device to one recipient user (with one user Id
and one or more associated device Id) but also distributed to other devices registered
to the same sender user. Recipient devices in the list must all be linked to this, unique,
recipient user Id or to the sender user Id. For example:

e Alice, Bob and Claire are users Id. FEach of them have several (nA,nB,nC)
associated devices with devices Id Alice.1, Alice.2, .., Alice.nA

o Alice, Bob and Claire are members of a group with user Id Group

o If Alice.1 sends a message to Bob, the inputs for the RatchetEncrypt function must
include Bob as recipient user and Bob.1, .., Bob.nB, Alice.2, .., Alice.nA as list of
recipient devices.

o If Alice.1 sends a message to Group, the inputs for the RatchetEncrypt function
must include Group as recipient user and Bob.1, .., Bob.nB, Alice.2, .., AlicenA,
Claire.1, .., Claire.nC' as list of recipient devices.

e The Lime library does not perform any check on the link between user Id and
device Id and will not generate any error if the RatchetEncrypt arguments are Bob

14



as recipient user and Bob.1, .., Bob.nB, Alice.2, .., Alice.nA, Claire.l as list of
recipient devices. The error would instead be detected by Claire.1 during decryp-
tion. See 6.3.6 for details on the use of Associated Data to detect mismatching
association of user Id and device Id.

Encryption policy : As stated in section 5.1.1, the plain message can be:

e encrypted directly in the Double Ratchet messages.(Double Ratchet Message en-
cryption policy)

e encrypted by a random key in a common cipher message, the random key being
encrypted into the Double Ratchet messages. (Cipher Message encryption policy)

The two policies are represented on the following diagrams. It is assumed that the server
will dispatch only the requested parts to recipients and not the whole upload. Double
Ratchet sessions establishment are not shown on the diagram but are assumed to be
already completed between all participants. All participants have one device only.

msc Double Ratchet Message encryption policy

Alice SIP server Bob Claire

encrypt

B¢b DR msg||Claire DR misg

Bob DR msg

Claire DR msg

msc Cipher Message encryption policy

encrypt

Bob DR angHClaire DR msg||ciph¢r Message

Bob DR msg||cipher Messajge

Claire DR msg|| cipher Message

Alice SIP server Bob Claire

15



Selection of the encryption policy according to policy parameter, recipientLists and
plain text characteristics. The policy parameter is given at runtime by caller and default
to optimize Upload Size if omitted. Possible values of this parameter are:

e Double Ratchet Message: the plain text is encrypted and embeded in the Double
Ratchet message.

e cipher Message: the plain text is encrypted in a cipher message with a random
key, itself encrypted in the DR message.

e optimize Upload Size: for each message, select the mode which minimize the
upload size. This is the default policy.

e optimize Global Bandwidth: for each message, select the mode which minimize
upload + download size.

Note : the optimize modes do not take in consideration the multipart boundary added
by the presence of an extra part holding the cipher Message.

function MESSAGEENCRYPT(recipient List, plain, source Deviceld, recipientU serId, policy)
switch policy do
case Double RachetMessage
DRMESSAGEENCRYPT(recipient List, plain, source Deviceld, recipientU serld)

case cipher Message
CIPHERMESSAGEENCRYPT(recipient List, plain, sourceDeviceld, recipientU serId)

case optimize Upload Size
n < number of recipients in the recipientList
DRMessageSize < n X plain size
cipher MessageSize < (plain size+authTag size)+nx (randomSeed size)
if DRmessageSize < cipher MessageSize then
DRMESSAGEENCRYPT(recipient List, plain, source Deviceld, recipientU serld)
else
CIPHERMESSAGEENCRYPT(recipient List, plain, sourceDeviceld, recipientU serId)
end if
case optimize Global Bandwidth
n < number of recipients in the recipientList
DRMessageSize < 2 X n X plain size
cipher MessageSize < (plain size + authTag size)
+nx(2xrandomSeed size+plain size+authTag size)
if DRmessageSize < cipher MessageSize then
DRMESSAGEENCRYPT(recipient List, plain, source Deviceld, recipientU serld)
else
CIPHERMESSAGEENCRYPT(recipient List, plain, source Deviceld, recipientU serld)
end if
end function

with following functions definitions:

function DRMESSAGEENCRYPT(recipient List, plain, sourceDeviceld, recipientUserId)
> Encrypts the plain in the Double Ratchet message

16



for all r € recipientList do
AD <« recipientU serld| sourceDeviceld||r.recipient Deviceld
r.DRmessage < RATCHETENCRYPT(r.session, plain, AD)
end for
return recipientList
end function

function CIPHERMESSAGEENCRYPT(recipient List, plain, sourceDeviceld, recipientU serld)
> Generate a random key and nonce to encrypt the plain
randomSeed(32bytes) < RANDOMSOURCE
info <+ "DR Message Key Derivation”
key(32bytes)||[IV (16bytes) < HKDFSHA512(null, randomSeed, in fo)
cipher Message(plainsize+16bytes) < ENCRYPT(key, IV, plain, source Deviceld||recipientU serld)

> Use Double Ratchet sessions to encrypt the random seed used to encrypt the plain
for all r € recipientList do
AD <« tag||sourceDeviceld||r.recipient Deviceld
r.DRmessage < RATCHETENCRYPT(r.session, randomSeed, AD)
end for
return recipientList, cipher M essage
end function

function RATCHETENCRYPT(D Rsession, plaintext, AD)

if peer ECpublickeyavailable then

ASYMMETRICRATCHETSENDER
end if
as described in [1, section 3.4):

CKs,mK,IV «+ KDF_ CK(CKs,Ns)

header <— HEADER(DHs, PN, Ns)

Ns+ =1

UPDATED RSESSIONINLOCALSTORAGE(DRsession)

return header || ENCRYPT(mK, IV, plaintext, AD|| X3DH provided AD| header)
end function

function ENCRYPT(key(32bytes), [V (16bytes), plain, associated Data)
return AES256-GCM output||Auth tag (on plain and associatedData)(16bytes)
end function

Header function is specified in section 7.1.1

6.3.5 RatchetDecrypt

The decryption function described in [1, section 3.5] is not directly used to decrypt

the message. Lime first assess the presence of a cipher message and depending on it use

directly the Double Ratchet or perform the two steps of encryption: first decrypt the
Double Ratchet message to retrieve the random Key and IV, then decrypt the message

itself.

17



The receiving process described in Sesame specifications [4, section 3.4] is partly imple-
mented in the Double Ratchet decryption process: the message decrypt function accepts
a list of Double Ratchet sessions and tries them all until one decrypts correctly the
message (or all fail).

The decryption returns the peer device’s status(unknown, unsafe, untrusted or trusted)
in case of success or fail in case of failure.

function MESSAGEDECRYPT(sourceDeviceld,
recipient Deviceld, recipientU serld,
DRsessionList, DRmessage, cipher Message)
if cipher Messaged then
return CIPHERMESSAGEDECRYPT(sourceDeviceld, recipient Deviceld,
recipient Deviceld, recipientU serld
DRsessionList, D Rmessage, cipher Message)
else
return DRMESSAGEDECRYPT(sourceDeviceld, recipient Deviceld,
recipient Deviceld, recipientUserld
DRsessionList, D Rmessage)
end if
end function

function DRMESSAGEDECRYPT(sourceDeviceld,
recipient Deviceld, recipientU serld,
DRsessionList, D Rmessage)

AD < recipientU serld|sourceDeviceld|recipient Deviceld
for all DRsession € DRsessionList do
if plain <~ RATCHETDECRYPT(D Rsession, D Rmessage, AD) then
return plain
end if
end for
return fail
end function

function CIPHERMESSAGEDECRYPT(sourceDeviceld,
recipient Deviceld, recipientU serld,
DRsessionList, D Rmessage, cipher M essage)

AD < tag||sourceDeviceld||recipient Deviceld
for all DRsession € DRsessionList do
if randomSeed < RATCHETDECRYPT(DRsession, DRmessage, AD) then
info < "DR Message Key Derivation"
key(32bytes)||IV (16bytes) + HKDFSHA512(null, randomSeed(32bytes), info)

return AEADDECRYPT&AUTH (key, IV, cipher, tag, source Deviceld||recipientU serId)

end if
end for
return fail

18



end function

function RATCHETDECRYPT(D Rsession, header||payload||tag, AD)

As described in [1, section 3.5/

Try to decrypt the incoming message with stored skipped message keys

if Success then
UPDATEDRSESSIONINLOCALSTORAGE(DRsession)
return

end if

if header does not match current peers Public Key then
ASYMMETRICRATCHETRECEIVER (header public material)

end if

as described in [1, section 3.4):

CKr,mK,IV + KDF_ CK(CKr,Nr)

Associated Data given to AEAD is AD|| X3D H providedAD| header
if AES256-GCMDECRYPT(message||AuthTag, IV, M K) successful then
UPDATEDRSESSIONINLOCALSTORAGE(DRsession)
end if
end function

6.3.6 Associated Data

The double ratchet encryption and decryption AEAD scheme uses Associated Data
as recommended by X3DH and Double Ratchet specifications|2, section 3.3|, [1, section
3.4]. The Associated Data authenticated is composed of:

Cipher Message encryption policy
Message Tag(16bytes)||Source deviceld| Recipient deviceld|| X3DH AD(32bytes)|| DR Header

Double Ratchet Message encryption policy
Recipient UserlId||Source deviceld||Recipient deviceld|| X3DHAD(32bytes)|| DR Header

e Message Tag: AEAD authentication tag computed on plaintext and the associated
data given to AEAD in cipher Message mode: Source deviceld||Recipient UserlId.

e Recipient Userld: The inclusion of Recipient Userld allows the recipient device
to verify the original intended recipient user. The Recipient Userld is provided
to the recipient device along the message by the routing protocol as it may not be
the Userld linked to the recipient device but a group user Id.

e Source deviceld and Recipient deviceld: Enforce identification of source and
recipient device.

e X3DH AD: Associated data computed at session creation by the X3DH protocol,
based on both parties Identity keys and devices Id. See 6.4.3 for details. It is
present in the device local storage from the X3DH initialisation completion.

e DR Header: as specified in [1, section 3.4]. See 7.1.1 for details.

19



6.4 X3DH

As stated in section 5.2, Lime does not use XEADSA but manipulates two key formats:
the identity key is stored in EADSA format (as defined in [9]); while all the other keys
are stored in ECDH format (as defined is [6]).

6.4.1 DH

Available Diffie-Hellman algorithms are X25519 and X448, the DH computations per-
formed strictly follow the X3DH specifications.

6.4.2 Sig

The signature/verify operation performed is an EADSA (both EADSA25519 and Ed-
DSA448 are available). The identity key used is stored in EADSA format so there is no
need to use XEdADSA contrary to the X3DH specifications [2, section 2.2].

6.4.3 Shared Secrets generation

SK is computed as specified in [2, section 3.3 and 2.2]. The salt used for the HKDF
function is a zero filled buffer the size of the hash function used, the info parameter is
"Lime".
ZeroBuf fer(SHA512outputsize(64bytes)) < 0
SK (32bytes) < HKDFSHA512(ZeroBuf fer, F(32,57bytes)| DH1||DH2|| DH3|DH4,"Lime")

F is a 32 (when using curve25519) or 57 (when using curve448) bytes OxFF filled buffer.

Associated Data is computed from identity keys and devices Id as specified in [2,
section 3.3]. For implementation convenience, the actual AD used by the Double Ratchet
session is derived from these inputs by the HKDF function producing a fixed size buffer
as following:

Salt(SH A5120utputsize(64bytes)) < 0

ADinput «+ initiatorIk||receiverIk|initiator Deviceld|receiver Deviceld

AD(32bytes) «+— HKDFSHA512(Salt, ADinput,"X3DH Associated Data")

initiator being the device who initiates the session (Alice in the X3DH spec) by fetching
a keys bundle on the X3DH server and receiver being the recipient device of the first
message (Bob in the X3DH spec).

6.5 PQXDH
All operations performed in X3DH are also performed by PQXDH, as specified in [3].

6.5.1 KEM

In addition, PQXDH performs a key encapsulation. The algorithm available is Ky-
ber512.

20



6.5.2 Shared Secrets generation

SK is computed as specified in [3|. The salt used for the HKDF function is a zero filled
buffer the size of the hash function used, the info parameter is "Lime". In addition, a
transcript of all public material is used in the Shared secret derivation

Salt(SH A512outputsize(64bytes)) < 0

Info«+ ”"Lime (Curveld) SHA512 (KEMId)

SK (32bytes) < HKDFSHA512(Salt,
F(32,57bytes)| DH1||DH2||DH3| DHA|| K EM1
| Alice Tk||Alice Ek||Bob DH SPE||[Bob DH OPK)||Bob K EM Pk||KEM CT,
Info)

F is a 32 (when using curve25519) or 57 (when using curve448) bytes OxFF filled buffer.
Curveld and KEMId are strings identifying the algorithm: CURVE25519, CURVE448,
KYBERbH12. BOB KEM Pk is the KEM public key used to perform the encapsulation:
the OPk if present or the SPk otherwise.

6.6 Lime key test server

Nodejs : An X3DH test server running on nodejs is provided with the Lime library
source code. This server is not meant to be used in production and its purpose is for
testing only. This server lacks user authentication layer, which in real use case is provided
by the linphone ecosystem.

6.7 Sesame

The Sesame requirements are fulfilled as follow:
e Lime is operating in per-device identity keys mode.

e Providing an updated list of Devices Id to match the intended recipients (and
sender user other devices) is performed by the linphone ecosystem (SIP and con-
ference server). So the loop between client and server during encryption described
in the Sesame spec|4] is not relevant. Lime relies on the SIP or conference server
to provide an updated list of recipient devices before the message encryption.

e Encrypt message to multiple recipient device is performed by the Lime Double
Ratchet message Encrypt function (see section 6.3.4).

e Support for multiple sessions between devices is performed by Lime Double Ratchet
messageDecrypt trying multiples sessions, if present, to find one able to decrypt
the incoming message.

e User and device identifications are provided by the linphone ecosystem: a user Id is
its sip:uri, also used to identify groups. A device Id is its GRUU[10]. The connec-
tion to the X3DH server is performed over HTTPS and uses the user authentication
associated to the SIP user account.

e Mailboxes and message routing are provided by the linphone ecosystem

21



6.7.1

Scenario 1: first encryption, multiple devices

Alicel encrypts a message to Bob for the first time. Alicel must establish Double
Ratchet sessions and, for that, requests key bundles. It is assumed that Alice2 is known
to Alicel; so there is no request for an Alice2 key bundle. The cipher message encryption

policy is used.

Alicel

Alice2

get Bob devfice’s GRUU

msc Alicel encrypts to Bob for the first time

| sIPs. |

|X3DH s.|

Alice2, B

b1, Bob2

get B

b1, Bob2 keys bundles

get

auth challenge

Alice user credenfials

aut

A

lice user credentigls

h challenge respdnse

>

Check credentials

Bobl

Bob2

J Bob|l, Bob2 keys burldles
encrypt
Alicep, Bobl, Bob2 DR msg||cipher M¢ssage
Alice2 DR msg||cipher Nlessage
Bobl DR msg||cipher Message
Bob2 DR msg||cipher Message
] | ] ] | I

22



6.7.2 Scenario 2: group chat

Alice sends a first message to a group called Friends composed of Alice, Bob and Carol.
Alice’s message is dispatched and then Carol posts a message to the group. Carol’s mes-
sage is dispatched and finally Bob sends a message to the group. It is assumed that
users did not exchanged any message prior and that they have one device each. User
authentication messages to and from X3DH server are not shown for better readability
but the users authentication by X3DH server and X3DH server authentication by users
must take place. The cipher message encryption policy is used.

msc Group chat establishment, F'riends is composed of Alice, Bob and Carol

Alice Bob Carol SIP s. X3DH s.

get Friends device’s GRUU
Bob, Carol

get Bob, Cardl keys bundles

Bob, Carol keys bundles

encrypt Bob, Carol DR msg||cipher| Message

Bob DR msg||¢ipher Message

Carol DR msg||cipher Mssage
get ﬁ:m'ends device’s GRUU
Alice, Bob

get Bob kdys bundles
Bob keyg bundles

encrypgt

Alice, Bob DR msg||cipher|Message

Alice DR msg||cipher Mgssage

Bob DR msg||¢ipher Message

get Friends device’s GRUU
Alice,| Carol

<

encrypt

Alice, Carol DR nisg||cipher Message

Alice DR msg||cipher Mpssage

Carol [DR msg||cipher Mssage

23



6.8 Mutual authentication and peer device status

As stated in [2, section 4.1|, the parties shall compare their identity public keys other-
wise they receive no cryptographic guarantee as to whom they are communicating with.
Each peer device has a status available after any encryption or decryption operation
which can be:

e unknown: we had no information about this device in the local storage(before the
last encryption or decryption), this status spots a newly encountered device and
shall be clearly made available to the end user.

e untrusted: it’s is not the first interaction with this device, but we never established
mutual authentication

o trusted: we already performed the mutual authentication ritual with this peer
device.

e unsafe: we know this device, it has been tagged as unsafe by the application(Linphone).

Lime provides an API to set/get peer devices identity keys and trust level indexed by
its device Id. Linphone uses a ZRTP[12] audio call leveraging the MiTM detection offered
by the ZRTP short authentication string to authenticate the peer identity key. ZRTP
auxiliary secret is used to compare both parties’ identity public keys in the following
way:

e parties exchange their identity public keys in the signaling channel at call estab-
lishment;

e parties use caller Ik|receiver Ik as ZRTP auxiliary secret;

e when ZRTP key exchange is complete, parties check that the auxiliary secret is
matching and perform a vocal SAS comparison (if not performed before); and

e if the verification succeeds, each party sets the peer Ik status as trusted in the
Lime local storage. If the peer key is already present in the Lime local storage,
Lime verifies that it matches the one obtained through the ZRTP channel.

In the following diagram alice Ik and bob Ik refer to the identity public key associated
to the particular devices used by Alice and Bob to perform the ZRTP audio call.

24



msc Mutual Authentication

Alice Bob
[ Alice ]

SIP INVITE with alice Ik
SIP 200 Ok with bob Ik ”

set alice Ik|bob Ik set alice Ik||bob Ik
as ZRTP auxsecret as ZRTP auxsecret

ZRTP exchange

<

< ZRTP SAS verified, auxiliary secret match >
[ [
set bob Ik as trusted set alice Ik as trusted
in Lime local storage in Lime local storage

—_ —_

6.9 Keys and sessions management

Key lifetime management is the responsibility of the client device; the X3DH server is
not involved in their management. On a regular schedule (once a day is recommended),
the device must run the update function to check keys validity, renew and delete out-
dated ones. Several settings are involved in the update operation and are all defined in
lime__ settings.hpp.

6.9.1 Identity Key

Is valid for the lifetime of a device.

6.9.2 Signed Pre-key

SPK lifeTime days is a constant (7 days default) defining the key validity period.
Once a key is outdated, a new one is generated, signed and uploaded on the X3DH
server. Old keys are kept in storage with an invalid status so valid but delayed X3DH
initiation messages using this signed pre-key can still be processed.

SPK limboTime days is a constant (30 days default) defining the period invalid
keys are kept by the device.

6.9.3 One-time Pre-key

These can be used only once, so any use implies immediate deletion:
e when the server delivers a One-time Pre-key, it immediately deletes it; and

e when a client makes use of one of its One-time Pre-key (upon reception from peer
of an X3DH init message using that key), it immediately deletes it.

25



During update, a device requests from the X3DH server the list of its own OPk available
on the server. The device can upload more keys if there are not enough online and track
which keys where delivered by the server but not yet used by comparing the server’s
OPk list and the OPk actually in local storage.

The three following constants can be overridden at runtime by parameters passed to
the update or create user functions:

OPK _serverLowLimit is a constant (100 default) defining the lower bound of keys
count present on server. During an update, if there are fewer occurrences of keys on the
X3DH server, the client will generate and upload a batch of One-time Pre-keys.

OPK batchSize is a constant (25 default) defining the number of keys generated
and uploaded to the server if an upload is needed.

OPK _initialBatchSize is a constant (100 default) defining the number of keys gen-
erated and uploaded to the server at the registration of a new user device.

During update, the client will update the status of One-time Pre-keys in local storage
to reflect the information provided by the server. Any key still in local storage but no
longer on the server is assigned the dispatched status.

During update, the device deletes One-time Pre-keys having the dispatched status for
a longer than pre-determined period of time.

OPK limboTime days is a constant (37 days default) defining the period dis-
patched One-time Pre-keys are kept by the device.

6.9.4 Double Ratchet Sessions

More than one double ratchet session may exist between two devices but only one shall
be active. The encryption is always performed by the active session and, on reception, the
session successfully decrypting the message becomes the active session. Stalled sessions
are kept for a pre-determined period of time to allow decrypting of delayed or unordered
messages:

DRSession limboTime days is a constant (30 days default) defining the period
stalled sessions are kept by the device.

In case a peer device is silent, the double ratchet session will never perform a Diffie-
Hellman ratchet but only symmetric ratchet steps. To mitigate this problem, a pre-
defined limit on the number of messages encrypted without performing Diffie-Hellman
is set (effectively being a limit on the length of the sending chain, each Diffie-Hellman
ratchet reset the sending chain counter):

26



maxSendingChain is a constant (500 default) defining the maximum length of a
sending chain. When reached, the Double Ratchet session status is stalled, forcing the
sender device to create a new session; fetching a new key bundle from the X3DH server
in order to keep on sending messages.

KEMRatchetChainSize is a constant (42 default) defining the minimum size of the
cummulated sending and receiving chain before a new KEM ratchet can be initiated by
a message encryption.

maxKEMRatchetChainPeriod is a constant (86400 seconds/1day default) defining
the amount of time elapsed since the last KEM ratchet that will trigger a new KEM
ratchet step regardless to the size of the KEM ratchet chain.

6.9.5 Skipped message keys

As messages may be out of order on reception, Double Ratchet specifies how skipped
intermediate messages keys, generated to decrypt a received message, shall be stored to
allow the decryption of out-of-order messages. After a pre-determined number of mes-
sages successfully decrypted by a double ratchet session, skipped messages are considered
lost and their stored message keys are deleted from local storage:

maxMessagesReceivedAfterSkip is a constant (128 default) linked to a double
ratchet receiving chain (a new chain is started within the session each time a Diffie-
Hellman ratchet is performed). FEach time a skipped message key is stored in this
chain, the counter is reset. Each time a message is decrypted by the session, all
skipped message key chain counters are increase by one. When the counter reaches
maxMessagesReceived A fter Skip, the skipped message key chain is deleted.

6.10 Multiple base algorithm support

To enable migration from one base algorithm to another (mostly to migrate from
elliptic curve cryptography to elliptic curve and post quantum cryptography), the lime
library supports the concurrent usage of multiple base algorithms.

The base mechanims of this support is:
e devices are identitied by the pair deviceld (GRUU)/base algorithm

e most of the API gets as input parameters: the deviceld and an ordered list of base
algorithms

6.10.1 wuser creation

The API provides a function to check user existence, getting as parameter the deviceld
and a list of base algorithms. When at least one pair is not a active user(public key
publication confirmed by the key server), it will returns false.

The user creation function gets the deviceld/ordered base algorithm list parameters
and check, in the given order, that the lime user deviceld/base algorithm exists. Every
non existing user is created. When all potential users have been processed, the provided
callback is called.

27



6.10.2 encryption

Given the localDeviceld /ordered base algorithms list, the library tries to encrypt for
all recipients using the first user localDeviceld/base algo. Any recipient non sastified
after this round will try with the next base algorithm in the list until all recipients get
a cipher text or all algorithm in the list have been tried.

When using the cipher message encryption policy, the plain text is encrypted with a
random key itself encrypted with Double Ratchet protocol. The MessageEncrypt func-
tion (see section 6.3.4) in that case produces a cipher message common to all recipients
on top of their individual double ratchet cipher text. In order to keep this functionnality
in the context of several calls to MessageEncrypt made by different local users(same
device Id but different base algorithm), the random key can be stored in a callback acce-
sible buffer by the MesssageEncrypt function caller. The first call to Message Encrypt
will generate the random key (and the cipher message) and store it in the buffer using the
provided callback. Successive calls retrieve the random key using the same mechanism.

6.10.3 decryption

Upon cipher text reception, the recipient parses the message header which contains the
base algorithm id. This allows to load the appropriate user to decrypt the incoming
message.

6.11 Local Storage

The local storage is provided by an sqlite3 database accessed using the SOCI library
[17].

6.11.1 Devices tables
lime LocalUsers stores data relative to local devices.

e Uid: integer primary key.

Userld: the device Id provided by linphone, it shall be the GRUU.

Ik: Identity key, an EADSA key stored as public key || private key.

server: the X3DH server URL to be used by this user.

curveld: An unsigned integer, mapped as following;:

— LSB(bit 7 to 0) stores the curve id mapped to integers: 0x01 for Curve 25519
or 0x02 for Curve 448. This value must match the X3DH server setting.

— bit 8 is the active flag : 0 for active user, 1 for inactive user

lime PeerDevices Note: Records in this table are not linked to a local user but
shared among local users in order to avoid storing multiple records containing the same
information.

e Did: integer primary key.
e Dewviceld: the peer device Id, it shall be its GRUU.

28


https://github.com/SOCI/soci

curveld: the base algorithm used by this peer device.
Ik: the peer’s public EADSA identity key.

Active: this peer device is the active one, used to select a peer device when asked
for status.

Status: status flag:

— 0 for untrusted: peer’s identity is not verified(default value)
— 1 for trusted: peer’s identity was already verified

— 2 for unsafe: peer’s device has been flagged as unsafe

see this document section 6.8 for usage.

6.11.2 X3DH tables

The X3DH dedicated tables store local users’ Signed Pre-keys and One-time Pre-keys,
records are linked to a local user through a foreign key: Utd.

X3DH_ SPK Note: signature is computed and uploaded to the server at key gener-
ation but is then not needed, so not stored locally.

SPKid: arandom Id (unsigned integer on 31 bits) to identify the key. This value
being public, it is not a sequence but a random number.

SPK: an ECDH key (stored as public key||private key).
timeStamp: is set to current time when the key status is set to invalid.

Status: set to valid (1) at creation and then to invalid (0) when a new key is
generated.

Uid: link to lime__ LocalU sers: identifies which local user owns this record.

X3DH_OPK

OPKid: arandom Id (unsigned integer on 31 bits) to identify the key. This value
being public, it is not a sequence but a random number.

OPK: an ECDH key (stored as public key||private key).
timeStamp: is set to current time when the key status is set to dispatched.

Status: set to online (1) at key generation and then to dispatched (0) when the
key is not found anymore on the X3DH server by the update request.

Uid: link to lime_ LocalU sers: identify which local user owns this record.

KEM version

When the base algorithm includes a KEM (curve25519/kyber512), SPks and OPks
also holds a KEM key pair. They are stored in the tables along the EC ones as EC
public key||[EC private key||KEM public key|| KEM private key

29



6.11.3 Double ratchet tables

The Double Ratchet tables store all material needed for the Double Ratchet session,
including dedicated tables for skipped keys. Records are linked to local and peer devices
through foreign keys: Uid and Did.

DR sessions

e Did: link to lime_PeerDevices: identify peer device for this session.

o Uid:

link to lime__ LocalU sers: identify local device for this session.

e sessionld: integer primary key.

e Ns: index of current sending chain.

e Nr: index of current receiving chain.

e PN:

index of previous sending chain.

e DHr: peer’'s ECDH public key or (EC public| KEM public)

e DHs: self ECDH key (public||private) or (EC public||EC private| KEM public|| KEM
private))

e RK:

Diffie-Hellman Ratchet Root key.

e C'Kr: Symmetric Ratchet receiver chain key.

e C'Ks: Symmetric Ratchet sender chain key.

o AD:

session Associated Data (provided at session creation by X3DH).

e Status: active (1) or stale (0), only one session can be active between two devices.

e DHrStatus: a 4 bytes integer mapped as follow

KEMChainSize(23 bits): cumulative number of sent and received (or skipped)
messages since the last KEM receiver ratchet

KEM force flag: force a KEM ratchet as soon as possible: is set when
creating a session in receiver mode to force the KEM ratchet at first reply

KEMpeerPk flag: is set when a peer KEM public key is available for en-
capsulation (only one encapsulation is performed to a peer’s Pk)

KEMselfPk flag: is set when from some replies we deduce that peer’s
know our current KEM public key so we do not need to send it anymore in
the header

DHpeerPk flag: is set when a peer DH public key is available to perform a
DH ratchet step with a fresh generated DH key pair

e timeStamp: Two purposes:

— while the session is active: is updated at each KEM receiving ratchet to be

able to trigger a new KEM ratchet step when the last one is old enough

30



— is updated to current time when the status is switched from active to stale,
so we know when we should delete a stale session from DB

e X3DHInit: holds the X3DH init message while it is requested to insert it in
message header.

The two following tables store the skipped message keys, indexed by peer’s ECDH
public key and receiving chain index:

DR_MSk DHr stores key chain information: peer’'s ECDH public keys.
e DHid: integer primary key

e sessionld: link to DR_ sessions: identifies to which session this chain of skipped
message keys belongs.

e DHr: peer’s ECDH public key associated to this message key chain or SHA512(EC
public| KEM public)

e received: counts the messages successfully decrypted after the last insertion of a
skipped message key in this chain. Is used to delete old message keys.

DR_MSk MK is the actual storage of message keys.

e DHid: link to DR MSk DHr: identifies to which receiving chain this message
key belongs.

e Nr: index of the skipped message in the receiving chain.

e MK: the message key(32bytes)||initial vector(16bytes).

6.12 Summary of cryptographic algorithms used
6.12.1 Double Ratchet
e Diffie-Hellman using either X25519 or X448

e KEM: Kyber512 or MLKEM512(with X25519), MLKEM1024 (with X448)
e KDF are HKDF[11] based on Sha512

e ENCRYPT is AES256-GCM with a 128bits authentication tag

6.12.2 X3DH
e Diffie-Hellman using either X25519 or X448

e KEM: Kyber512 (always used with X25519)

e HKDF uses Shab12

Signature uses EADSA25519 or EADSA448

EdDSA keys are converted to ECDH keys to perform classic ECDH

31



6.12.3 Cryptographic libraries

Elliptic curves operations are provided by decaf library|[14], version 0.9.4 or above:
X25519, X448, EdDSA25519, EdDSA448 and conversion function from EdDSA key to
ECDH key format.

Hash (HmacSha512), HKDF-Sha512 and encryption (AES256-GCM) are provided by
mbedtls library|[15]. Version 3.4 or above.

Kyber512 is provided by libogs library[16], version 0.9.1 or above. The Kyber512
version provided is the one from NIST round3

Note : These libraries are not accessed directly but through the bctoolbox abstraction
library or the postquantumcryptoengine library.

32



7 Protocol specification

This section describes the details of messages structures.

Notes : Keys are intended as public keys and their size depends on the selected base
algorithm indicated in the messages header. The following sizes apply:

e Curve 25519 ECDH: 32 bytes

e Curve 25519 EdDSA: 32 bytes

e Curve 25519 Signature: 64 bytes

e Curve 448 ECDH: 56 bytes

e Curve 448 EADSA: 57 bytes

e Curve 448 Signature: 114 bytes

e Kyber/MLKEM 512 Public Key: 800 bytes
e Kyber/MLKEM 512 Cipher Text: 768 bytes
e MLKEM 1024 Public Key: 1568 bytes

e MLKEM 1024 Cipher Text: 1568 bytes

Keys are stored and distributed in the formats described in [6] and [9].
Others numeric values (counts, Ids, counters) are unsigned integers in big endian.

7.1 Double Ratchet message

These messages are exchanged among devices. The system runs in asynchronous mode,
and messages are sent to and stored by a server and are fetched by final recipients
when online. The server in charge of storing/routing the messages shall fan-out to the
respective recipients not all the incoming message but only the part addressed to them.

Double Ratchet messages are composed of header and payload. The payload is the
AEAD output (cipher text and authentication tag) of either a random seed used to
encrypt the plain message or the plain message itself according to selected encryption
policy. The sender produces one Double Ratchet message per recipient device.
Definitions:

e Protocol Version: 0x01.
e Message Type is a byte with following bit mapping;:

— bit 7 to 3: not used.

— bit 2: KEM public key index flag: (used only when the base algorithm includes
a KEM)

* 1: Peer and Self KEM public indexes only are present in this message
x 0: A KEM public key and Cipher Text are present in this message

— bit 1: Payload encryption flag:

33



* 1: payload in the DR message
* (0: payload in a cipher message, DR holds the random seed
— bit 0: X3DH init flag:

* 1: (X3DH init in the header)
% 0: (no X3DH init in the header)
e Curve Id:
— 0x01: curve 25519
— 0x02: curve 448
— 0x03: curve 25519 + Kyber512
— 0x04: curve 25519 + MLKEM512
— 0x05: curve 448 + MLKEM1024
7.1.1 Header
For DH only
byte 0 byte 1 byte 2 byte 3
Protocol Version [0x01] Message type Curve Id

X3DH Init (variable size){0,1}
This part is present only if Message type X3DH init flag is set

Ns PN
DHs(32, 56bytes)
KEM based, when a KEM ratchet took place
byte 0 byte 1 byte 2 byte 3
Protocol Version [0x01] Message type Curve Id

X3DH Init (variable size){0,1}
This part is present only if Message type X3DH init flag is set

Ns PN

DHs(32, 56bytes)

KEM self public key (800, 1568bytes)

KEM cipherText(encapsulation to peer’s KEM pk)(768, 1568bytes)

KEM based, when the KEM ratchet is skipped (signaled in Message Type bit 3)

byte 0 byte 1 byte 2 byte 3

Protocol Version [0x01] Message type Curve Id

X3DH Init (variable size){0,1}
This part is present only if Message type X3DH init flag is set

Ns PN

DHs(32, 56bytes)

Self KEM Pk index(12bytes)

Peer KEM Pk index(12bytes)

34




7.1.2 Payload in cipher message encryption policy

byte 0 \ byte 1 \ byte 2 \ byte 3

Random Seed encrypted using DR session(32bytes)

Double Ratchet AEAD authentication tag(16bytes)

7.1.3 Payload in Double Ratchet message encryption policy

byte 0 \ byte 1 \ byte 2 \ byte 3

plaintext encrypted using DR session(variable size, same as plaintext)

Double Ratchet AEAD authentication tag(16bytes)

7.1.4 X3DH init
DH only

byte 0 byte 1 \ byte 2 \ byte 3

OPk flag [0x00,0x01]

EdDSA Identity Key(32, 57bytes)

ECDH Ephemeral Key(32, 56bytes)

Signed Pre-key Id

One Time Pre-key 1d{0,1} only if OPk flag = 0x01

KEM based

byte 0 byte 1 \ byte 2 \ byte 3

OPk flag [0x00,0x01]

EdDSA Identity Key(32, 57bytes)

ECDH Ephemeral Key(32, 56bytes)

KEM cipherText(encapsulation to OPk - or SPk(768, 1568bytes)

Signed Pre-key Id

One Time Pre-key 1d{0,1} only if OPk flag = 0x01

7.2 Cipher Message

The cipher message is produced only when selecting the cipher message encryption
policy. The sender produces one cipher message common to all recipients. When present,
the cipher message is dispatched along the Double Ratchet messages.(see 6.3.4 for details)

byte 0 ‘ byte 1 ‘ byte 2 ‘ byte 3

Cipher text produced by AEAD using a derivative of Random Seed <variable size>

AEAD authentication tag(16bytes)

35



7.3 X3DH message

Theses messages are exchanged between devices and the X3DH key server.

The messages are sent to the server using the HT'TPS protocol. Clients identify them-
selves to the server by setting their device Id (GRUU) in the HTTPS packet custom
header X-Lime-user-identity field. Server challenges the client with a nonce and expects
a digest of the password of their user account on the SIP server. X3DH server must have
access to the SIP register server database to be able to authenticate clients. Commu-
nications between clients and X3DH server are assumed to be secure and the details of
this assumption are out of the scope of this document.

X3DH messages are composed of a header and the content:
Protocol Version(lbyte)|| Message Type (lbyte)|| Curve Id (1byte)| Message content.
Definitions:

e Protocol Version: 0x01.

e Message Type:

0x01: deprecated register User: a device registers its Id and Identity key on
X3DH server, this message holds the Ik only and shall be supported for retro-
compatibility with old clients only.

0x02: delete User: a device deletes its Id and Identity key from X3DH server.

0x03: post Signed Pre-key: a device publishes a Signed Pre-key on X3DH
server.

0x04: post One-time Pre-keys: a device publishes a batch of One-time Pre-
keys on X3DH server.

0x05: get peers key bundles: a device requests key bundles for a list of peer
devices.

0x06: peers key bundles: X3DH server responds to device with the list of
requested key bundles.

0x07: get self One-time Pre-keys: ask server for self One-time Pre-keys Ids
available.

0x08: self One-time Pre-keys: server response with a count and list of all
One-time Pre-keys Ids available.

0x09: register User: a device registers its Id and Identity key, Signed Pre-key
and a batch of One-time Pre-keys on X3DH server.

O0xF'F: error: something went wrong on server side during processing of client
message, server respond with details on failure.

e Curve Id: [0x01 (curve 25519), 0x02 (curve 448), 0x03 (curve25519/kyber512)]

To device generated messages (deprecated) register User, delete User, post Signed
Pre-key and post One-time Pre-key, on success, the X3DH server responds with the
original message header:

Protocol Version || Message type || Curve Id

36



OPk and SPk keys, when based on multiple scheme (ECDH and KEM), are a con-
catenation of the ECDH public key with the KEM public key.

7.3.1 Register User Message

byte 0 byte 1 byte 2 byte 3

Protocol Version [0x01] Message type [0x09] Curve Id
EdDSA Identity Key(32, 57bytes)

Signed Pre-key(32, 56, 832, 1600bytes)

Signed Pre-key Signature(64, 114bytes)

Signed Pre-key Id

keys Count | One-time Pre-key bundle(36, 60, 836, 1604bytes){keys Count}

with One-time Pre-key bundle:

byte 0 byte 1 [ byte 2 [ byte 3

One-Time Pre-key(32, 56, 832, 1600bytes)

One-Time Pre-key Id

7.3.2 Delete User Message

byte 0 byte 1 byte 2 byte 3
Protocol Version [0x01] Message type [0x02] Curve Id

7.3.3 post Signed Pre-key Message

byte 0 byte 1 byte 2 byte 3
Protocol Version [0x01] Message type [0x03] Curve Id
Signed Pre-key(32, 56, 832, 1600bytes)

ECDH Signed Pre-key Signature(64, 114bytes)

Signed Pre-key Id

7.3.4 post One-time Pre-key Message

byte 0 byte 1 byte 2 byte 3
Protocol Version [0x01] Message type [0x04] Curve Id keys Count MSB

keys Count LSB One-time Pre-key bundle(36, 60bytes){keys Count}

with One-time Pre-key bundle:

byte 0 ‘ byte 1 ‘ byte 2 ‘ byte 3

One-Time Pre-key(32, 56, 832, 1600bytes)

One-Time Pre-key Id

37



7.3.5 get peers key bundles Message

byte 0 byte 1 byte 2 byte 3
Protocol Version [0x01] Message type [0x05] Curve Id request Count MSB

request Count LSB request{request Count}

with request:

byte 0 [ byte 1 [ byte 2 [ byte 3

Device 1d size | Device Id(variable size)...

...Device Id(variable size)

7.3.6 peers key bundles Message

byte 0 byte 1 byte 2 byte 3
Protocol Version [0x01] Message type [0x06] Curve Id bundles Count MSB

bundles Count LSB key Bundle{bundles Count}

with key Bundle(if a the device has published keys on the server):

byte 0 ‘ byte 1 byte 2 ‘ byte 3

Device 1d size Device Id(variable size)...

...Device Id(variable size)

bundle flag [0x00,0x01] |

EdDSA Identity Key(32, 57bytes)

Signed Pre-key(32, 56, 832, 1600bytes)

Signed Pre-key Id

Signed Pre-key Signature(64, 114bytes)

One-Time Pre-key(32, 56,832, 1600bytes){0,1} only if bundle flag = 0x01

One-Time Pre-key 1d{0,1} only if bundle flag = 0x01

or key Bundle(if a the device has not published keys on the server):

byte 0 ‘ byte 1 byte 2 ‘ byte 3

Device Id size Device Id(variable size)...

...Device Id(variable size)

bundle flag [0x02] ‘

7.3.7 get Self OPks Message

byte 0 byte 1 byte 2 byte 3

Protocol Version [0x01] Message type [0x07] Curve Id

7.3.8 self OPks Message

byte 0 byte 1 byte 2 byte 3
Protocol Version [0x01] Message type [0x08] Curve Id OPk Count MSB

OPk Count LSB OPk Id(4bytes){OPk Count}

38




7.3.9 Error Message

byte 0

byte 1

byte 2

byte 3

Protocol Version [0x01]

Message type [0xFF|

Curve Id

Error Code[0x00-0x08]

Optional error message of variable size
Null terminated ASCII string

With Error codes in:

0x00: bad content type: HTTPS packet content-type is not "x3dh/octet-stream"
0x01: bad curve: client and server curve mismatch.
0x02: missing Sender Id: HTTPS packet from is not set.

0x03: bad protocol version: client and server X3DH protocol version number
mismatch.

0x04: bad size: the size of received Message is not the expected one

0x05: user already in: trying to register a user on X3DH server but it is already
in the database

0x06: user not found: an operation concerning a user could not be performed
because the user was not found in server database.

0x07: db error: server encountered problem with its database.
0x08: bad request: malformed peer bundle request.
0x09: server failure: server is badly configured and cannot run correctly.

0x0a: resource limit reached: the request temporarily cannot be served as the
user reached the usage limit.

7.3.10 Deprecated Register User Message

byte 0

byte 1 byte 2 byte 3

Protocol Version [0x01]

Message type [0x01] Curve Id

EdDSA Identity Key(32, 57bytes)

39




8 Acknowledgements

Many thanks to Rune Fiedler for his precious help to introduce Post Quantum cryp-
tography in the protocol

40



9 IPR

Copyright(©)2024 Belledonne Communications. All rights reserved.

41



10
(1]

2]

3]

4]

[5]

[6]

7]

8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]
[16]

References

Moxie Marlinspike, Trevor Perrin (editor) "The Double Ratchet Algorithm", Revi-
sion 1, 2016-11-20. https://signal.org/docs/specifications/doubleratchet

Moxie Marlinspike, Trevor Perrin (editor) "The X3DH Key Agreement Protocol”,
Revision 1, 2016-11-04. https://signal.org/docs/specifications/x3dh

Ehren Kret, Rolfe Schmidt "The PQXDH Key Agreement Protocol”, Revision 3,
2024-01-23. https://signal.org/docs/specifications/pgxdh

Moxie Marlinspike, Trevor Perrin (editor)  "The Sesame Algorithm: Session
Management for Asynchronous Message Encryption”, Revision 2, 2017-04-14.
https:/ /signal.org/docs/specifications /sesame

Trevor Perrin (editor) "The XEdDSA and VXEdDSA Signature Schemes", Revi-
sion 1, 2016-10-20. https://signal.org/docs/specifications/xeddsa

A. Langley, M. Hamburg, and S. Turner, "Elliptic Curves for Security.”,
Internet Engineering Task Force; RFC 7748 (Informational); IETF, Jan-2016.
http:/ /www.ietf.org/rfc/rfc7748.txt

Rune Fiedler and Christian Janson "A  Deniability Analysis of Signal’s
Initial Handshake PQXDH", Cryptology ePrint Archive, Paper 2024/741
https://eprint.iacr.org/2024 /741

John Preufs Mattsson "Security of Symmetric Ratchets and Key Chains” Cryptol-
ogy ePrint Archive, Paper 2024 /220 https://eprint.iacr.org/2024 /220

S. Josefsson and I. Liusvaara "Edwards-Curve Digital Signature Algorithm (Ed-
DSA)" Internet Engineering Task Force; RFC 8032 (Informational); IETF, Jan-
2017. https://tools.ietf.org/html/rfc8032

J. Rosenberg "Obtaining and Using Globally Routable User Agent URIs (GRUUs)
in the Session Initiation Protocol (SIP)", Internet Engineering Task Force; RFC
5627 (Standards Track); IETF, Oct-2009. https://tools.ietf.org/html/rfe5627

H. Krawczyk and P. Eronen "HMAC-based Extract-and-Expand Key Derivation
Function (HKDF)", Internet Engineering Task Force; RFC 5869 (Informational);
IETF, May-2010. https://tools.ietf.org/html/rfc5869

P. Zimmermann, A. Johnston and J. Callas "ZRTP: Media Path Key Agreement for
Unicast Secure RTP", Internet Engineering Task Force; RFC 6189 (Informational);
IETF, April-2011. https://tools.ietf.org/html/rfc6189

Whisper Systems "Signal Protocol C Library”,
https://github.com/WhisperSystems/libsignal-protocol-c

Mike Hamburg "Ed448-Goldilocks”, https:/ /sourceforge.net /projects/ed448goldilocks
ARM mbed "mbed TLS", https://tls.mbed.org
Douglas Stebila and Michele Mosca  "Open  Quantum Safe library”,

https://github.com /open-quantum-safe /liboqs

42


https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/pqxdh/
https://signal.org/docs/specifications/sesame/
https://signal.org/docs/specifications/xeddsa/
http://www.ietf.org/rfc/rfc7748.txt
https://eprint.iacr.org/2024/741
https://eprint.iacr.org/2024/220
https://tools.ietf.org/html/rfc8032
https://tools.ietf.org/html/rfc5627
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc6189
https://github.com/WhisperSystems/libsignal-protocol-c
https://sourceforge.net/projects/ed448goldilocks/
https://tls.mbed.org/
https://github.com/open-quantum-safe/liboqs

[17] SOCI "SOCI - The C++ Database Access Library. ",

https:/ /github.com /SOCI /soci

43


https://github.com/SOCI/soci

	Changelog
	Introduction
	Notations
	Brief introduction to Signal protocol specification documents
	The Double Ratchet Algorithm
	The X3DH Key Agreement Protocol
	The PQXDH Key Agreement Protocol
	The Sesame Algorithm

	Major discrepancies between Lime v2.0 and Signal protocol
	Double Ratchet
	Group chat management
	Post Quantum cryptography
	AEAD encryption scheme: AES256-GCM

	X3DH Identity Key signature
	Authentication
	PQXDH
	Optional features not implemented

	Implementation details
	Preliminaries
	HKDF
	Double Ratchet
	ECDH only Asymmetric Ratchet
	ECDH and KEM Asymmetric Ratchet
	Symmetric Ratchet
	RatchetEncrypt
	RatchetDecrypt
	Associated Data

	X3DH
	DH
	Sig
	Shared Secrets generation

	PQXDH
	KEM
	Shared Secrets generation

	Lime key test server
	Sesame
	Scenario 1: first encryption, multiple devices
	Scenario 2: group chat

	Mutual authentication and peer device status
	Keys and sessions management
	Identity Key
	Signed Pre-key
	One-time Pre-key
	Double Ratchet Sessions
	Skipped message keys

	Multiple base algorithm support
	user creation
	encryption
	decryption

	Local Storage
	Devices tables
	X3DH tables
	Double ratchet tables

	Summary of cryptographic algorithms used
	Double Ratchet
	X3DH
	Cryptographic libraries


	Protocol specification
	Double Ratchet message
	Header
	Payload in cipher message encryption policy
	Payload in Double Ratchet message encryption policy
	X3DH init

	Cipher Message
	X3DH message
	Register User Message
	Delete User Message
	post Signed Pre-key Message
	post One-time Pre-key Message
	get peers key bundles Message
	peers key bundles Message
	get Self OPks Message
	self OPks Message
	Error Message
	Deprecated Register User Message


	Acknowledgements
	IPR
	References

